

MD0120021

Is my water safe?

Hart Heritage is pleased to provide this annual water quality report for calendar year 2022. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. Hart Heritage routinely monitors for contaminants in your drinking water, and we are committed to ensuring the quality of your water. Our system was in violation of the Lead and Copper Rule (LCR) for failing to test our drinking water for lead and copper from an appropriate sampling location and for failing to notify customers of the results. We have since returned to compliance status.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from and what are the potential sources of contamination?

Your drinking water is supplied by one well located in the Metagraywacke Wissahickon Formation. The susceptibility analysis for Hart Heritage's water supply is based on a review of the water quality data, potential sources of contamination, aquifer characteristics, and well integrity. For more information on the source of your water, the significant potential sources of contamination, and susceptibility analysis, contact the Maryland Source Water Assessment Program at the Maryland Department of the Environment at (410) 537-3714 or visit on the web at: https://mde.maryland.gov/programs/Water/water supply/Source Water Assessment Program/Pages/by county.aspx

Why may there be contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- 1. Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- 2. Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- 3. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- 4. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- 5. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Important Drinking Water Definitions:

MCLG: Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risks for safety. MCLG allows for margin of safety.

MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

AL: Action Level. The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

LCR: Lead and Copper Rule. A United States federal regulation which limits the concentration of **lead and copper** allowed in public drinking water at the consumer's tap, as well as limiting the permissible amount of pipe corrosion occurring due to the water itself.

M/R: Monitoring and Reporting

Units of Measurement & Conversions:

NA: Not applicable pCi/L: picocuries per liter (a measure of radioactivity) ppm: parts per million, or milligrams per liter (mg/L) ppb: parts per billion, or micrograms per liter (μ g/L)

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected in your water. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, may be up to five years old.

	Date		Action	90 th	# sites			
Contaminant	Sampled	MCLG	Level (AL)	Percentile	over AL	Units	Violation	Typical Source
Copper	2022	1.3	1.3	0.18	0	ppm	No	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems
Lead	2022	0	15	1.7	0	ppb	No	Corrosion of household plumbing systems; erosion of natural deposits

Contaminant (units)	Collection Date	MCLG	MCL	Highest Level Detected	Ra Low	nge High	Violation	Typical Source
Inorganic Contaminants:								
Nitrate as Nitrogen (ppm)	2022	10	10	3	3	3	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Violation Type	Violation Begin	Violation End	Violation Explanation				
Lead and Copper Rule (LCR):							
Follow-up or Routine Tap	10/01/2019	09/28/2022	We failed to test our drinking water for the contaminant and period				
M/R (LCR) Violation			indicated. Because of this failure, we cannot be sure of the quality of				
			our drinking water during the period indicated.				
Lead Consumer Notice (LCR)	01/01/2014	2022	We failed to provide the results of lead tap water monitoring to the				
			consumers at the location water was tested. These were supposed to				
			be provided no later than 30 days after learning the result.				
Lead Consumer Notice (LCR)	01/01/2017	09/28/2022	We failed to provide the results of lead tap water monitoring to the				
			consumers at the location water was tested. These were supposed to				
			be provided no later than 30 days after learning the result.				

Lead

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hart Heritage is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Sandy Ayres at 410-836-1295. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Copper

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Nitrate

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

PFAS

PFAS – or per- and polyfluoroalkyl substances – refers to a large group of more than 4,000 human-made chemicals that have been used since the 1940s in a range of products, including stain- and water-resistant fabrics and carpeting, cleaning products, paints, cookware, food packaging and fire-fighting foams. These uses of PFAS have led to PFAS entering our environment, where they have been measured by several states in soil, surface water, groundwater, and seafood. Some PFAS can last a long time in the environment and in the human body and can accumulate in the food chain.

Beginning in 2020, the Maryland Department of the Environment (MDE) initiated a PFAS monitoring program. Our water system was not tested for PFAS in 2022. In March 2023, EPA announced proposed Maximum Contaminant Levels (MCLs) of 4 ppt for PFOA and 4 ppt for PFOS, and a Group Hazard Index for four additional PFAS compounds. Future regulations would require additional monitoring as well as certain actions for systems above the MCLs. EPA will publish the final MCLs and requirements by the end of 2023 or beginning of 2024. Additional information about PFAS can be found on the MDE website: https://mde.maryland.gov/PublicHealth/Pages/PFAS-Landing-Page.aspx

Hart Heritage

For additional information or questions contact:

Sandy Ayres (410) 836-1295

Prepared by: Water Testing Labs of Maryland, Inc.
For more information on contaminants in drinking water and its effects go to www.wtlmd.com