# UPDATED STUDY REPORT INSTREAM FLOW HABITAT ASSESSMENT BELOW CONOWINGO DAM RSP 3.16

# **CONOWINGO HYDROELECTRIC PROJECT**

# **FERC PROJECT NUMBER 405**



Prepared for:



Prepared by:

**Gomez and Sullivan Engineers** 

Normandeau Associates, Inc.

January 2012

#### **EXECUTIVE SUMMARY**

Exelon Generation Company, LLC (Exelon) has initiated with the Federal Energy Regulatory Commission (FERC) the process of relicensing the 573-megawatt Conowingo Hydroelectric Project (Conowingo Project). The current license for the Conowingo Project was issued on August 14, 1980 and expires on September 1, 2014. FERC issued the final study plan determination for the Conowingo Project on February 4, 2010, approving the revised study plan with certain modifications. The final study plan determination required Exelon to conduct an Instream Flow Assessment below Conowingo Dam, which is this report's subject.

An initial study report (ISR) was filed on May 6, 2011, containing Exelon's 2010 study findings. An ISR meeting was held on August 23 and 24, 2011 with resource agencies and interested members of the public. This updated study report (USR) addresses updates to the juvenile American shad habitat suitability criteria, as well as minor editorial changes.

This study's goal is to determine the relationship between flow and aquatic habitat conditions in the Susquehanna River below Conowingo Dam. This required the development of a two-dimensional (depth-averaged) hydraulic and habitat model of the study reach. The study reach extended from the downstream face of Conowingo Dam to the downstream end of Spencer Island, a length of approximately 4.5 miles. The study area also included the spillway portion below Conowingo Dam.

Evaluation species were selected, in consultation with the licensing stakeholders, for analysis from a list of species known to be present in the general study area. In consultation with stakeholders, several species of special concern were selected for detailed analysis, while the remaining target species were analyzed using a habitat guild-type approach. Depth, velocity and substrate Habitat Suitability Indices were developed from previous studies, scientific literature, and the professional judgment of Exelon and stakeholder biologists. In addition, a separate analysis was conducted using the model's hydraulic output to assess habitat for mussels.

The specific hydrodynamic model used was River2D, a two-dimensional (lateral-longitudinal, depth averaged), finite element hydraulic and habitat model. River2D input consisted of a bathymetric/topographic (x,y,z) characterization of the study reach, a roughness parameter and substrate code for each x,y location, inflow discharge, a downstream boundary water surface elevation and target species' Habitat Suitability Indices for depth, velocity and substrate. All input data were based on field data collection, including a bathymetry survey, substrate survey and LIDAR survey. The hydraulic model water surface elevation output was calibrated to  $\pm$  0.15 ft for several flows between 5,000 cfs and

73,000 cfs, including a detailed calibration at 40,000 cfs. Following typical USGS calibration guidelines, model accuracy is usually maintained for a 40% to 250% range around the calibration flow (e.g calibration flow at 10,000 cfs is valid for 4,000 cfs to 25,000 cfs). This allows model production run flows of 2,000 cfs to 182,500 cfs, though the model was not run above 86,000 cfs. Once the model was calibrated, several production runs were conducted, simulating flows of 2,000 cfs, 3,500 cfs, 5,000 cfs, 7,500 cfs, 10,000 cfs, 15,000 cfs, 20,000 cfs, 30,000 cfs, 40,000 cfs, 50,000 cfs, 60,000 cfs, 70,000 cfs, 80,000 cfs and 86,000 cfs. Using the model's hydraulic outputs, several habitat analyses were run, including weighted usable area, persistent habitat and mussel habitat analyses.

Habitat modeling results showed that the target species had a wide range of preferred flows and areas. Many species had divergent flow preferences, with no single flow or flow range providing optimal or near-optimal habitat for all target species. Most life stages of American shad, shortnose sturgeon and striped bass preferred higher flows. Smallmouth bass, macroinvertebrates, and the habitat guilds generally preferred lower flows. The magnitude of available habitat also varied greatly by species. Some species did not appear to have substantial habitat at any of the modeled flows, including shortnose sturgeon (fry, juveniles, adults), smallmouth bass (spawning, fry), ephemeroptera, plecoptera, the shallow-fast and deep-fast guilds.

There were several areas in the river that appeared to provide high-quality habitat for several species and life stages. These areas included downstream of Rowland Island, near the mouths of Octoraro and Deer Creeks, an area southwest of Bird Island, downstream of Snake Island and in-between Robert, Wood and Spencer Islands. The substrates available in these areas (sand, gravel, cobble) were generally finer than those found in the main channel (boulder, bedrock) and were well-suited for many species and life stages.

Habitat persistence analyses were conducted for all immobile life species/life stages. For this analysis, all spawning/incubation and fry life stages were considered immobile, as were all of the macroinvertebrate species and habitat guilds. Persistent habitat analyses showed that more divergent minimum/generation flow pairs had less common, or persistent, habitat. Some species were more sensitive to flow changes than others. Striped bass were less sensitive to flow differences, while macroinvertebrates and smallmouth bass were more sensitive to flow differences.

Mussel habitat analyses were conducted using shear stress thresholds. The analyses showed that higher catch-per-unit-effort rates were associated with areas with lower shear stresses. Results also showed that higher flows tended to increase the area exceeding mussels' preferred shear stress range. Flows over 10,000 cfs had few areas below the low-flow (95% flow exceedance) threshold of 20 dynes/cm<sup>2</sup> (0.042

lb/ft<sup>2</sup>), while areas below the high-flow (25% flow exceedance) threshold of 150 dynes/cm<sup>2</sup> (0.313 lb/ft<sup>2</sup>) steadily decreased between 10,000 cfs and 86,000 cfs. Relative shear stress (shear stress/critical shear stress) thresholds were also investigated. The large amount of bedrock throughout the study made relative shear stress a somewhat ineffective comparison metric, as bedrock has a very high critical shear stress. The metrics relating mussel development to high-flow and low-flow thresholds were developed for unregulated, smaller streams. Thus, it is not clear how these thresholds would be used to inform flow management decisions in a highly regulated stream.

A habitat time series analysis, as described in task 7 of the RSP, will be released in a subsequent report following the completion of the operations modeling analysis. This report will compare the results of a "baseline" or existing conditions model run to additional operations model production runs that are designed in consultation with the resource agencies.

While the habitat modeling provided estimates of available habitat at various flows, the river flow available is an important consideration in flow and habitat management decisions. There are four hydroelectric projects on the lower Susquehanna River, three of which are main channel peaking hydroelectric plants (Safe Harbor, Holtwood, Conowingo), one of which is a pumped storage project (Muddy Run). All four have the ability to influence the river's flow regime, particularly on a sub-daily scale. The project with the largest hydraulic capacity is Safe Harbor, the farthest upstream project, with a maximum hydraulic capacity of 110,000 cfs. This is greater than the hydraulic capacity of Holtwood (61,460 cfs following expansion construction) and Conowingo (86,000 cfs). Safe Harbor has no minimum flow release requirements as stipulated in its current license, which expires in 2030. Conowingo has a seasonally-varying minimum flow release, and Holtwood will also provide a minimum flow release beginning no later than 2012. Thus, flow management decisions should consider not only the river's unregulated hydrology, but upstream projects' water availability influences, which can greatly impact the lower Susquehanna River's flow management effectiveness.

## TABLE OF CONTENTS

| 1.            | INTRODUCTION                                                           | Ĺ  |  |
|---------------|------------------------------------------------------------------------|----|--|
| 2. BACKGROUND |                                                                        |    |  |
| 2.1           | Project Operation                                                      | )  |  |
| 2.2           | Basin Hydrology                                                        |    |  |
| 2.2.          | 1 USGS Gages4                                                          | ŀ  |  |
| 2.2.2         | 2 Unregulated Hydrology Downstream of Conowingo Dam                    | 5  |  |
| 3.            | METHODS                                                                | ,  |  |
| 3.1           | Study Area7                                                            | 1  |  |
| 3.2           | Evaluation Species, Habitat Suitability Indices, and Substrate Coding7 | 1  |  |
| 3.2.          | 1 Evaluation Species                                                   | 7  |  |
| 3.2.2         | 2 Habitat Suitability Indices                                          | 7  |  |
| 3.2.          | 3 Substrate Classification                                             | )  |  |
| 3.3           | Hydraulic Model Input Data                                             | )  |  |
| 3.3.          | 1 Bathymetric, Hydraulic, and Substrate Field Data Collection          | )  |  |
| 3.3.          | 2 Topographic Data Collection                                          | )  |  |
| 3.4           | Hydraulic Model Development, Calibration and Simulation                | )  |  |
| 3.4.          | 1 Model Development                                                    |    |  |
| 3.4.          | 2 Model Calibration and Simulation                                     |    |  |
| 3.5           | Habitat Modeling                                                       |    |  |
| 3.6           | Habitat Persistence Analysis                                           |    |  |
| 3.7           | Mussel Habitat Analysis                                                | ŀ  |  |
| 3.8           | Habitat Time Series                                                    | ŀ  |  |
| 4.            | RESULTS15                                                              | ;  |  |
| 4.1           | Bathymetric and Topographic Mapping15                                  | j  |  |
| 4.2           | Hydraulic Model                                                        | ;  |  |
| 4.2.          | 1 Calibration Results                                                  | 5  |  |
| 4.2.2         | 2 Simulation Results                                                   | 5  |  |
| 4.3           | Habitat Modeling Results                                               | ý  |  |
| 4.3.          | 1 Habitat versus Discharge Relationships16                             | 5  |  |
| 4.3.          | 2 Habitat Persistence                                                  | )  |  |
| 4.3.          | 3 Mussel Habitat Assessment                                            | \$ |  |
| 5.            | STEADY-STATE HABITAT ANALYSIS DISCUSSION                               | ,  |  |
| 5.1           | Monthly Analysis of WUA and Persistent Habitat Results                 | ,  |  |
| 5.1.          | 1 January                                                              | 7  |  |

| 5.1.2  | February                |    |
|--------|-------------------------|----|
| 5.1.3  | March                   |    |
| 5.1.4  | April                   |    |
| 5.1.5  | May                     | 40 |
| 5.1.6  | June                    | 41 |
| 5.1.7  | July                    | 41 |
| 5.1.8  | August                  | 42 |
| 5.1.9  | September               |    |
| 5.1.10 | October                 |    |
| 5.1.11 | November                | 44 |
| 5.1.12 | December                | 45 |
| 5.2 N  | Aussel Habitat Analysis | 45 |
|        | Iabitat Conclusions     |    |
| 6. RI  | EFERENCES               | 48 |

## LIST OF TABLES

| TABLE 2.2.1-2: MARIETTA USGS GAGE (#01576000) DAILY AVERAGE FLOWEXCEEDENCE PERCENTILES (CFS), WY 1932-2009                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TABLE 2.2.1-3: CONOWINGO USGS GAGE (#01578310) DAILY AVERAGE FLOWEXCEEDENCE PERCENTILES (CFS), WY 1968-2009                                                                                            |
| TABLE 2.2.2-1: INCREMENTAL RIVER REACHES USED TO ESTIMATEUNREGULATED CONOWINGO FLOW. MARIETTA WATERSHED SIZE IS 25,990MI2. CONOWINGO WATERSHED SIZE IS 27,100 MI2                                      |
| TABLE 2.2.2-2: CONOWINGO ESTIMATED DAILY AVERAGE UNREGULATEDFLOW EXCEEDANCE PERCENTILES, WY 1934-2009                                                                                                  |
| TABLE 3.2.1-1: TARGET SPECIES, HABITAT GUILD ASSIGNMENTS, AND SPECIESOF SPECIAL CONCERN. NOTE THAT ALL SPAWNING/INCUBATION AND FRYLIFE STAGES ARE CONSIDERED IMMOBILE                                  |
| TABLE 3.2.1-2: SEASONAL PERIODICITY OF OCCURRENCE OF TARGETSPECIES IN THE SUSQUEHANNA RIVER BELOW CONOWINGO DAM.ITALICIZED LIFE STAGES ARE CONSIDERED IMMOBILE. HABITAT GUILDSARE SHOWN IN PARENTHESES |
| TABLE 3.2.2-1: SOURCES OF HABITAT SUITABILITY INDICES FOR SPECIES OFSPECIAL CONCERN AND HABITAT-BASED GUILDS                                                                                           |
| TABLE 3.2.3-1: SUBSTRATE CLASSIFICATION SYSTEM. CLASSIFICATIONSBASED ON PREVIOUS IFIM STUDIES AND THE PROFESSIONAL JUDGMENT OFEXELON AND STAKEHOLDER BIOLOGISTS                                        |
| TABLE 4.2.1-1: HYDRAULIC MODEL CALIBRATION (40,000 CFS) RESULTS60                                                                                                                                      |
| TABLE 4.2.1-2: HYDRAULIC MODEL CALIBRATION (5,000 CFS, 20,000 CFS, 60,000CFS AND 80,000 CFS) RESULTS                                                                                                   |
| TABLE 4.3-1: PERCENTAGE OF PEAK WUA RELATIVE TO TOTAL WETTED         AREA                                                                                                                              |
| TABLE 4.3.3-1: MUSSEL SUBSTRATE CODES AND CORRESPONDING CRITICALSHEAR STRESS VALUES                                                                                                                    |
| TABLE 5.1-1: FLOWS PROVIDING PERCENTAGES OF MAXIMUM WEIGHTEDUSABLE AREA (WUA)                                                                                                                          |
| TABLE 5.1-2: PERCENTAGE OF THE MAXIMUM WEIGHTED USABLE AREA(WUA) FOR VARIOUS FLOWS                                                                                                                     |

| TABLE 5.1.1-1: SELECT JANUARY SPECIES/LIFE STAGES    65 |
|---------------------------------------------------------|
| TABLE 5.1.2-1: SELECT FEBRUARY SPECIES/LIFE STAGES      |
| TABLE 5.1.3-1: SELECT MARCH SPECIES/LIFE STAGES         |
| TABLE 5.1.4-1: SELECT APRIL SPECIES/LIFE STAGES67       |
| TABLE 5.1.5-1: SELECT MAY SPECIES/LIFE STAGES           |
| TABLE 5.1.6-1: SELECT JUNE SPECIES/LIFE STAGES          |
| TABLE 5.1.7-1: SELECT JULY SPECIES/LIFE STAGES70        |
| TABLE 5.1.8-1: SELECT AUGUST SPECIES/LIFE STAGES        |
| TABLE 5.1.9-1: SELECT SEPTEMBER SPECIES/LIFE STAGES     |
| TABLE 5.1.10-1: SELECT OCTOBER SPECIES/LIFE STAGES      |
| TABLE 5.1.11-1: SELECT NOVEMBER SPECIES/LIFE STAGES     |
| TABLE 5.1.12-1: SELECT DECEMBER SPECIES/LIFE STAGES     |

| FIGURE 3.1-1: STUDY AREA MAP76                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 3.2.2-1: SHORTNOSE STURGEON, JUVENILE, HSI CURVES FOR DEPTH,<br>VELOCITY AND SUBSTRATE                                                                                                                       |
| FIGURE 3.2.2-2: COMPARISON OF ORIGINAL AND UPDATED JUVENILE<br>AMERICAN SHAD DEPTH HSI CRITERIA                                                                                                                     |
| FIGURE 3.3.1-1: BATHYMETRIC DATA COLLECTION TRANSECTS                                                                                                                                                               |
| FIGURE 3.3.1-2: WATER LEVEL MONITORING LOCATIONS                                                                                                                                                                    |
| FIGURE 3.4.1-1: EASTWARD-LOOKING VIEW OF THE LOWER STUDY REACH,<br>OUTLINING BEDROCK OUTCROPS. THE ISLAND ON THE LEFT EDGE OF THE<br>IMAGE IS THE UPSTREAM TIP OF ROBERT ISLAND. FLOW TRAVELS FROM<br>RIGHT TO LEFT |
| FIGURE 4.1-1: BATHYMETRIC AND TOPOGRAPHIC MAP OF THE STUDY REACH82                                                                                                                                                  |
| FIGURE 4.2.1-1: HISTOGRAM SHOWING MODEL CALIBRATION ERROR<br>DISTRIBUTION OF 6935 CALIBRATION POINTS                                                                                                                |
| FIGURE 4.2.1-2: HISTOGRAM SHOWING VELOCITY ERROR DISTRIBUTION OF 6935 CALIBRATION POINTS                                                                                                                            |
| FIGURE 4.3.1.1-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY,<br>JUVENILE AND ADULT LIFE STAGES OF AMERICAN SHAD                                                                                                 |
| FIGURE 4.3.1.2-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY,<br>JUVENILE AND ADULT LIFE STAGES OF SHORTNOSE STURGEON                                                                                            |
| FIGURE 4.3.1.3-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY,<br>JUVENILE AND ADULT LIFE STAGES OF STRIPED BASS                                                                                                  |
| FIGURE 4.3.1.4-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY,<br>JUVENILE AND ADULT LIFE STAGES OF SMALLMOUTH BASS                                                                                               |
| FIGURE 4.3.1.5-1: WUA CURVES FOR EPHEMEROPTERA (MAYFLIES),<br>PLECOPTERA (STONEFLIES), AND TRICHOPTERA (CADDISFLIES)                                                                                                |
| FIGURE 4.3.1.6-1: WUA CURVES FOR THE SHALLOW-SLOW, SHALLOW-FAST, DEEP-SLOW, AND DEEP-FAST HABITAT GUILDS90                                                                                                          |
| FIGURE 4.3.2.1-1: AMERICAN SHAD PERSISTENT QUALITY HABITAT VERSUS<br>MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)91                                                                                       |

## LIST OF FIGURES

| FIGURE 4.3.2.2-1: SHORTNOSE STURGEON PERSISTENT QUALITY HABITAT<br>VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)91                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 4.3.2.3-1: STRIPED BASS PERSISTENT QUALITY HABITAT VERSUS<br>MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)92                                                               |
| FIGURE 4.3.2.4-1: SMALLMOUTH BASS PERSISTENT QUALITY HABITAT VERSUS<br>MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)92                                                            |
| FIGURE 4.3.2.5-1: MACROINVERTEBRATE PERSISTENT QUALITY HABITAT<br>VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)93                                                          |
| FIGURE 4.3.2.6-1: SHALLOW-FAST AND SHALLOW-SLOW GUILD PERSISTENT<br>QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL<br>GENERATION (86,000 CFS)                                       |
| FIGURE 4.3.2.6-2: DEEP-FAST AND DEEP-SLOW GUILD PERSISTENT QUALITY<br>HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000<br>CFS)                                             |
| FIGURE 4.3.3-1: MUSSEL SEMI-QUANTITATIVE SURVEY LOCATIONS MAPPED<br>WITH RIVERBED SUBSTRATE95                                                                                              |
| FIGURE 4.3.3-2: MUSSEL SEMI-QUANTITATIVE SURVEY LOCATIONS' CATCH-<br>PER-UNIT-EFFORT (NUMBER OF MUSSELS PER HOUR) VS. SHEAR STRESS AT<br>3,500 CFS, 5,000 CFS, 40,000 CFS AND 86,000 CFS   |
| FIGURE 4.3.3-3: PERCENTAGE OF WETTED STUDY AREA THAT DOES NOT<br>EXCEED THE MUSSEL LOW-FLOW THRESHOLD (20 DYNES/CM <sup>2</sup> ) AND HIGH-<br>FLOW THRESHOLD (150 DYNES/CM <sup>2</sup> ) |
| FIGURE 5.1.1-1: JANUARY FLOW VS. HABITAT COMPARISON. FLOW<br>EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,<br>PERIOD OF RECORD WY 1934-2009                                  |
| FIGURE 5.1.2-1: FEBRUARY FLOW VS. HABITAT COMPARISON. FLOW<br>EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,<br>PERIOD OF RECORD WY 1934-2009                                 |
| FIGURE 5.1.3-1: MARCH FLOW VS. HABITAT COMPARISON. FLOW<br>EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,<br>PERIOD OF RECORD WY 1934-2009                                    |
| FIGURE 5.1.4-1: APRIL FLOW VS. HABITAT COMPARISON. FLOW<br>EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,<br>PERIOD OF RECORD WY 1934-2009101                                 |
|                                                                                                                                                                                            |

| FIGURE 5.1.5-1: MAY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES  |
|--------------------------------------------------------------------|
| ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF          |
| RECORD WY 1934-2009                                                |
|                                                                    |
| FIGURE 5.1.6-1: JUNE FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES |
| ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF          |
| RECORD WY 1934-2009                                                |
| RECORD 11 1754-2007.                                               |
| FIGURE 5.1.7-1: JULY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES |
| ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF          |
| RECORD WY 1934-2009                                                |
| RECORD W 1 1754-2007104                                            |
| FIGURE 5.1.8-1: AUGUST FLOW VS. HABITAT COMPARISON. FLOW           |
| EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,        |
| PERIOD OF RECORD WY 1934-2009                                      |
| <b>FERIOD OF RECORD W 1 1934-2009.</b> 105                         |
| FIGURE 5.1.9-1: SEPTEMBER FLOW VS. HABITAT COMPARISON. FLOW        |
| EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,        |
| PERIOD OF RECORD WY 1934-2009                                      |
| I EXIOD OF RECORD W 1 1934-2009100                                 |
| FIGURE 5.1.10-1: OCTOBER FLOW VS. HABITAT COMPARISON. FLOW         |
| EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,        |
| PERIOD OF RECORD WY 1934-2009                                      |
| <b>FERIOD OF RECORD W 1 1954-2009.</b> 107                         |
| FIGURE 5.1.11-1: NOVEMBER FLOW VS. HABITAT COMPARISON. FLOW        |
| EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,        |
|                                                                    |
| PERIOD OF RECORD WY 1934-2009                                      |
| FIGURE 5.1.12.1. DECEMBER EL ON VELLADITAT COMPARISON EL ON        |
| FIGURE 5.1.12-1: DECEMBER FLOW VS. HABITAT COMPARISON. FLOW        |
| EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS,        |
| PERIOD OF RECORD 1934-2009109                                      |

## LIST OF APPENDICES

APPENDIX A- HABITAT SUITABILITY INDICES CONSULTATION

**APPENDIX B-HABITAT SUITABILITY INDICES** 

APPENDIX C-WATER VELOCITY PLOTS FOR SIMULATION FLOWS

APPENDIX D-DEPTH PLOTS FOR SIMULATION FLOWS

APPENDIX E-COMBINED SUITABILITY HABITAT MAPS FOR SIMULATION FLOWS

**APPENDIX F-HABITAT PERSISTENCE MAPS** 

APPENDIX G-HABITAT PERSISTENCE TABLES

APPENDIX H-MUSSEL HABITAT HYDRAULIC PARAMETERS

APPENDIX I-SHEAR STRESS MAPS PLOTTED WITH SEMI-QUANTITATIVE MUSSEL SURVEY LOCATIONS

## LIST OF ABBREVIATIONS

ADCP: Acoustic Doppler Current Profiler CF(I): Compound Function Index cfs: cubic feet per second cm: centimeter **CPUE:** Catch-Per-Unit-Effort **DEM:** Digital Elevation Model EAV: Emergent Aquatic Vegetation FERC: Federal Energy Regulatory Commission ft: foot/feet GPS: Global Positioning System HSI: Habitat Suitability Index IFIM: Instream Flow Incremental Method **ILP: Integrated Licensing Process** kHz: kilohertz lb: pound mi: mile MW: Megawatt NGO: Non-Government Organization NGVD: National Geodetic Vertical Datum PAD: Pre-Application Document Project: Conowingo Hydroelectric Project psf: pounds per square foot PSP: Proposed Study Plan RSP: Revised Study Plan **RTK:** Real-Time Kinematic SAV: Submerged Aquatic Vegetation sec: second SI: Suitability Index **USGS: United States Geological Survey** WSE: Water Surface Elevation WUA: Weighted Usable Area

### 1. INTRODUCTION

Exelon Generation Company, LLC (Exelon) has initiated with the Federal Energy Regulatory Commission (FERC) the process of relicensing the 573-megawatt (MW) Conowingo Hydroelectric Project (Project). Exelon is applying for a new license using the FERC's Integrated Licensing Process (ILP). The current license for the Conowingo Project was issued on August 14, 1980 and expires on September 1, 2014.

Exelon filed its Pre-Application Document (PAD) and Notice of Intent with FERC on March 12, 2009. On June 11 and 12, 2009, a site visit and two scoping meetings were held at the Project for resource agencies and interested members of the public. Following these meetings, formal study requests were filed with FERC by several resource agencies. Many of these study requests were included in Exelon's Proposed Study Plan (PSP), which was filed on August 24, 2009. On September 22 and 23, 2009, Exelon held a meeting with resource agencies and interested members of the public to discuss the PSP.

Formal comments on the PSP were filed with FERC on November 22, 2009 by Commission staff, and several resource agencies. Exelon filed a Revised Study Plan (RSP) for the Project on December 22, 2009. FERC issued the final study plan determination for the Project on February 4, 2010, approving the RSP with certain modifications.

The final study plan determination required Exelon to conduct an Instream Flow Assessment below Conowingo Dam, which is this report's subject. This study's goal is to determine the relationship between flow and aquatic habitat conditions in the Susquehanna River below Conowingo Dam.

An initial study report (ISR) was filed on May 6, 2011, containing Exelon's 2010 study findings. An ISR meeting was held on August 23 and 24, 2011 with resource agencies and interested members of the public. This updated study report (USR) addresses updates to the juvenile American shad habitat suitability criteria, as well as minor editorial changes.

### 2. BACKGROUND

## 2.1 **Project Operation**

The Conowingo Project has an installed capacity of 573 MW and a hydraulic capacity of 86,000 cfs. The reservoir, known as Conowingo Pond and formed by Conowingo Dam, extends approximately 14 miles upstream from Conowingo Dam to the lower end of the Holtwood Project tailrace. Conowingo Pond serves many diverse uses including hydropower generation, water supply, industrial cooling water, recreational activities and various environmental resources.

The Conowingo Project license allows for the Conowingo Pond to normally fluctuate between elevation 101.2 to 110.2 NGVD 1929<sup>1</sup>. The following factors also influence the management of water levels within the Conowingo Pond:

- The Conowingo Pond must be maintained at an elevation above 107.2 ft on weekends between Memorial Day and Labor Day to meet recreational needs;
- The Muddy Run Project cannot operate its pumps below elevation 104.7 ft due to cavitation;
- PBAPS begins experiencing cooling problems when the pool elevation drops to 104.2 ft;
- The CWA cannot withdraw water below elevation 100.5 ft;
- The Nuclear Regulatory Commission license for Peach Bottom Atomic Power Station requires the plant to shut down completely at pond elevations of 99.2 ft or below; and
- The City of Baltimore cannot withdraw water when the pond is below elevation 91.5 ft.

The current minimum flow regime below Conowingo Dam was formally established with the signing of a settlement agreement in 1989 between the project owners and several federal and state resource agencies. The established minimum flow regime below Conowingo Dam is the following:

March 1 – March 31

3,500 cfs or natural river flow<sup>2</sup>, whichever is less

<sup>&</sup>lt;sup>1</sup> The datum used in this document is NGVD 1929. The NGVD 1929 datum elevation is 0.7 ft higher than the Conowingo Datum.

<sup>&</sup>lt;sup>2</sup> As measured at the Susquehanna River at Marietta USGS gage (No. 0157600).

| April 1 – April 30         | 10,000 cfs or natural river flow, whichever is less    |
|----------------------------|--------------------------------------------------------|
| May 1 – May 31             | 7,500 cfs or natural river flow, whichever is less     |
| June 1 – September 14      | 5,000 cfs or natural river flow, whichever is less     |
| September 15 – November 30 | 3,500 cfs or natural river flow, whichever is less     |
| December 1 – February 28   | 3,500 cfs intermittent (maximum six hours off followed |
|                            | by equal amount on)                                    |

The downstream discharge must equal these values or the discharge measured at the Susquehanna River at the Marietta United States Geological Survey (USGS) gage (No. 01576000), whichever is less. The Marietta USGS gage is located approximately 35 miles upstream of Conowingo Dam above the Safe Harbor Dam.

During periods of regional drought and low river flow, Exelon has requested and received FERC approval for a temporary variance in the required minimum flow release from the Conowingo Project. Specifically, in the summers of 1999, 2001, 2002, 2005, 2007, and 2010 Exelon has received approval to count the leakage from the Conowingo Project (approximately 800 cfs) as part of the minimum flow discharge.

## 2.2 Basin Hydrology

The total drainage area of the Susquehanna River basin is 27,510 mi<sup>2</sup>, of which 6,270 mi<sup>2</sup> are in southcentral New York, 20,950 mi<sup>2</sup> are in central Pennsylvania, and 280 mi<sup>2</sup> are in northeastern Maryland. The drainage area above Conowingo Dam is approximately 27,100 mi<sup>2</sup>. Several statistical flow analyses were performed using the Conowingo and Marietta USGS gages as part of Conowingo Study 3.11-Hydrologic Study of the Lower Susquehanna River.

There are three hydroelectric generation projects located between the Marietta gage and Conowingo Dam. The projects are, from upstream to downstream, Safe Harbor Hydroelectric Project, Holtwood Hydroelectric Project and Muddy Run Pumped Storage Project. Safe Harbor and Holtwood are located on the Susquehanna River main stem, while Muddy Run is a pumped storage project that uses Conowingo Pond as the lower reservoir of a two-reservoir system. Conowingo is the fourth and most downstream hydroelectric project on the lower Susquehanna River. The two main stem projects upstream of Conowingo Dam have the ability to heavily influence river flows into Conowingo Pond, and are operated as peaking hydroelectric projects. Safe Harbor is licensed until 2030 and has no minimum flow release obligations, with an estimated hydraulic capacity of 110,000 cfs. Holtwood is also licensed until 2030, but as part of a recent expansion settlement Holtwood has agreed to supply Conowingo with a continuous inflow of 800 cfs or net inflow, and 98.7% of Conowingo's daily volumetric minimum flow requirement. Holtwood's maximum hydraulic capacity is currently approximately 31,500 cfs, and will be 61,460 cfs

following the completion of the expansion project, which is expected to be completed in 2012. A detailed flow management timeline is presented in Conowingo Study 3.11: Hydrologic Study of the Lower Susquehanna River.

## 2.2.1 USGS Gages

There are two USGS flow gages on the lower Susquehanna River. One is located upstream of the hydroelectric stations (Marietta, PA), while one is downstream of all of the hydroelectric stations (Conowingo, MD). No USGS gages exist between the impoundments of Conowingo and Holtwood, or Holtwood and Safe Harbor.

The Marietta, PA USGS Gage No. 10576000 (Marietta) is located on the upper end of the lower Susquehanna River (RM 45), just upstream of the Safe Harbor Dam impoundment. The drainage area at this gage is 25,990 mi<sup>2</sup>. The gage has daily average flow data available beginning water year<sup>3</sup> (WY) 1932. As of 4/1/2011, USGS-approved daily average flows range from 10/1/1931 to 12/9/2010 (79+ years). The gage also has 30-min instantaneous flow data, available from 10/1/1985 to 9/30/2009, with no data available for WY 1991 (10/1/1990 – 9/30/1991) (23 years). Marietta is generally considered reflective of the lower Susquehanna River's flow regime absent regulation from peaking hydroelectric projects<sup>4</sup>.

The Conowingo, PA USGS Gage No. 01578310 is located on the downstream face of Conowingo Dam (RM 10). The drainage area is 27,100 mi<sup>2</sup>. The gage has daily average flow data available beginning 10/1/1967 (WY 1968). As of 4/1/2011, USGS-approved daily average flows range from 10/1/1967 to 1/31/2011 (44+ years). The gage also has 15-min instantaneous flow data<sup>5</sup>, available from 2/2/1988 to 9/30/2009, with no data available for WY 1994 (20+ years). The Conowingo gage is immediately downstream of Conowingo Dam, and thus directly reflects Project operations and the influences of the other lower Susquehanna water users.

<sup>&</sup>lt;sup>3</sup> Water years begin October 1 and end September 30. For example, WY 1933 is 10/1/1932 to 9/30/1933.

<sup>&</sup>lt;sup>4</sup> There are several hydroelectric dams, flood control dams, and various other water withdrawals/uses upstream of the Marietta USGS gage in the Susquehanna River and its tributaries.

<sup>&</sup>lt;sup>5</sup> For consistency with the Marietta gage, all 15-minute Conowingo flow data were converted to 30min flow data for all analyses

Conowingo sub-daily annual and monthly flow exceedances for the period WY 1988-2009 are shown in <u>Table 2.2.1-1</u>. Annual and monthly flow exceedances were calculated using the full period of record<sup>6</sup> daily flow data for both gages and are shown in Tables <u>2.2.1-2</u> and <u>2.2.1-3</u>.

### 2.2.2 Unregulated Hydrology Downstream of Conowingo Dam

Major hydrologic influences have existed on the lower Susquehanna River since the late 1920's, predating all flow records downstream of Conowingo Dam. Thus, there are no measurements of unregulated hydrology downstream of Conowingo Dam. However, flow records at the Marietta USGS gage are considered reflective of an unregulated (by peaking hydropower) flow regime. Additionally, the Marietta and Conowingo gages are relatively close in total drainage area, draining 25,990 mi<sup>2</sup> and 27,100 mi<sup>2</sup>, respectively. Thus, it is reasonable to assume that the Marietta flow records could be used to estimate the unregulated hydrology downstream of Conowingo Dam.

While a typical drainage area proration is commonly used to relate flow estimates between two gages, this report uses a different method. This study estimated the daily average unregulated river flow hydrology at Conowingo Dam by taking Marietta gage flow and adding the incremental flow estimates between the four hydroelectric projects on the lower Susquehanna. This is consistent with the methodology used in the Susquehanna River operations model described in the Conowingo and Muddy Run Operations Modeling Report (SRBC, 2009).

The operations model determines daily average river flow at the Marietta USGS gage and downstream watersheds by adding flow proportional to the incremental drainage area contributed by each reservoir. Starting at Marietta and going downstream, the model estimates incremental flow input between Marietta and Safe Harbor, Safe Harbor and Holtwood, Holtwood and Conowingo, and inflow from Muddy Run. The operations model uses prorated flows from the Lancaster, PA (USGS Gage No. 01576500) and Manchester, PA (USGS Gage No. 01574000) USGS gages. The specific incremental drainage areas and flow estimates are outlined in Table 2.2.2-1.

The estimated unregulated hydrology was then estimated for the common period of record for the three USGS gages<sup>7</sup> (Marietta, PA, Lancaster, PA and Manchester, PA), which was from WY 1934 to WY

<sup>&</sup>lt;sup>6</sup> WY 2010 flow data were not used for any (daily or instantaneous) exceedance calculations because WY 2010 USGS-approved instantaneous flow data are not yet available.

2009. The unregulated hydrology was estimated by taking the Marietta USGS gage daily average flow and adding in the daily average incremental flows for the four incremental drainage areas between Marietta and Conowingo (Marietta-Safe Harbor, Safe Harbor-Holtwood, Holtwood-Conowingo, and Muddy Run). Annual and monthly exceedance percentiles were calculated for the estimated daily average unregulated hydrology, which are shown in <u>Table 2.2.2-2</u>.

 $<sup>^{7}</sup>$  The Lancaster, PA gage's continuous records began in April 1933. Thus, the first complete WY was 1934 (10/1/1933-9/30/1934).

#### 3. METHODS

The study required the development of a two-dimensional hydraulic and habitat model to examine the project operation's aquatic habitat impacts below Conowingo Dam.

#### 3.1 Study Area

The investigation area for this study encompasses the river reach between Conowingo Dam and the downstream end of Spencer Island, which is approximately 4.5 miles in length. The study area also includes the spillway area below Conowingo Dam (Figure 3.1-1).

#### 3.2 Evaluation Species, Habitat Suitability Indices, and Substrate Coding

#### 3.2.1 Evaluation Species

Evaluation species were selected for analysis from a list of species known to be present in the general study area. In consultation with stakeholders (<u>Appendix A</u>), several species of special concern (American shad, striped bass, shortnose sturgeon, smallmouth bass, Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) were selected for detailed analysis. The remaining target species were analyzed using a habitat guild-type approach. In addition, a separate analysis was conducted using hydraulic model output (e.g., shear stress) to assess mussel habitat.

The guild-type approach was deemed necessary due to the diversity of the species and habitat types encountered in the study area. Additionally, by grouping species into guilds, the number of required Habitat Suitability Index (HSI) curves and resulting model output could be reduced to a manageable level for data organization and interpretation. <u>Table 3.2.1-1</u> identifies the target species, their respective habitat guilds assignments and species of special concern.

Shown in <u>Table 3.2.1-2</u> is a monthly periodicity chart, which summarizes when certain species and life stages are expected to be present in the study area.

#### 3.2.2 Habitat Suitability Indices

Aquatic habitat in a river is comprised of both microhabitat and macrohabitat parameters. Microhabitat represents a particular location's physical characteristics within a river, such as slope, width, substrate, cover and the variation of depth and velocity with flow. Macrohabitat refers to broader characteristics impacting fish survival and movement such as food supply, predation and water quality. The following analyses implicitly assume that macrohabitat is suitable throughout the study reach.

Referring to microhabitat characteristics, each species/life stage has a preference for a certain range of depth, velocity, substrate and cover conditions. For example, adult smallmouth bass may prefer higher depths and lower velocities when compared to adult American shad. Over the years, biologists have conducted studies to identify the depth, velocity, and substrate preferences for an array of species and life stages. Using the results of these studies, preference or HSI curves have been developed for depth, velocity, substrate, and in some cases, cover.

Suitability index curves describe the species/life stage preference using a 0 to 1 scale. A suitability index value of 0 indicates no habitat value, while a suitability index value of 1 indicates optimal habitat value. Shown in Figure 3.2.2-1 are juvenile shortnose sturgeon depth, velocity and substrate HSI curves. The optimal depth and velocity for this particular species is 5.0 to 20.0 ft, and 0.20 to 1.50 ft/sec, respectively. Quality habitat (SI  $\geq$  0.5), although not optimal, is also available at values outside of these ranges as well.

The HSI values for this study were derived from previous IFIM studies, the scientific literature, and the professional judgment of Exelon and stakeholder biologists. <u>Table 3.2.2-1</u> is a summary of the species/life stages, as well as the literature source for the HSI. HSI, as agreed to with the stakeholders, for the species and life stages evaluated as part of this study are shown in <u>Appendix B</u>.

The juvenile American shad HSI criteria were modified from those used in this study's ISR, released in May 2011. This process was initiated when Exelon compiled the ISR's habitat results and noticed that the juvenile American shad results appeared to be substantially different than the three other American shad life stages (spawning and incubation, fry and adult). Further investigation into the results revealed a notable difference between the juvenile American shad depth HSI relative to other American shad lifestages. After reviewing the source of the original juvenile American shad depth criteria, new information obtained from the Atlantic Stages Marine Fisheries Commission (Greene et al. 2009) suggested that the original depth HSI may have been inadequate. On June 15, 2011, Exelon, sent a memo outlining the differences between the original and newer HSI depth criteria to stakeholders that were previously involved with HSI discussions. In response to the June 2011 memo, stakeholders proposed alternative depth HSI criteria combining the new and old information sources with their system-specific field observations. As part of an August 2011 stakeholder meeting, Exelon held a discussion with stakeholders to determine the group's overall consensus. It was agreed that an alternative juvenile American shad depth HSI criteria would be adopted as a replacement for the original juvenile American shad depth HSI criteria in this study's ISR. Both juvenile American shad HSI criteria are compared in Figure 3.2.2-2. The results shown in this study report reflect only the updated juvenile American shad

depth HSI criteria, as all further references to the original criteria have been removed and replaced with the new criteria.

#### 3.2.3 Substrate Classification

HSI for each of the target species/life stages are based on habitat variables of depth, velocity and substrate. Substrate, like velocity and depth, plays a vital role for fish habitat, particularly as it relates to spawning. While velocity and depth are modeling outputs, substrate was field identified and classified using the classification system shown in <u>Table 3.2.3-1</u>. Substrate refers to the material armoring the channel bed (e.g., sand, gravel, bedrock) and is an important variable, as certain species and life stages of fish prefer different substrate types.

#### 3.3 Hydraulic Model Input Data

Input to the two-dimensional hydrodynamic model consisted of a bathymetric/topographic (x,y,z) characterization of the study reach, a roughness parameter and substrate code for each x,y location, inflow, and a downstream boundary water surface elevation.

#### 3.3.1 Bathymetric, Hydraulic, and Substrate Field Data Collection

Bathymetric and hydraulic data collection followed similar USGS study procedures described in Elliot et al. (2004) and Jacobson et al. (2002). The bathymetric survey was conducted on June 14 to 17, 2010, and was carried out using an 18-ft long Kevlar-hull, jet-propelled vessel equipped with a 1000-kHz Sontek acoustic Doppler current profiler (ADCP), a 200-kHz Odom Hydrotrac single beam echosounder, a RoxAnn Seafloor Classification System and a Trimble real-time kinematic (RTK) global positioning system (GPS) system.

The survey was designed with pre-planned systematic transects orientated from bank to bank approximately perpendicular to flow and spaced 90-150 feet apart over the 4.5 mile study reach (Figure 3.3.1-1). Data collection occurred at a constant flow of approximately 40,000 cfs.

Geo-referenced water surface elevations, bed elevations, and water column velocities were collected using the single beam echo sounder and ADCP linked to an RTK-GPS system. The RTK-GPS equipment provided a three-dimensional position of the echosounder transducer. Thus, the horizontal and vertical position of the echosounder transducer was known for each sonar ping. Subtracting the depth from the transducer elevation for each ping gave an elevation of the river bottom. Since the RTK-GPS equipment provided x, y (horizontal) and z (elevation) data in real time, changes in water level due to standing waves, and turbulence are accounted for.

Substrate data were collected by field teams during August 2010, as part of Conowingo Study RSP 3.17-Downstream EAV/SAV Study, at an approximate 5,000 cfs flow release. During these surveys, the predominant bottom substrate was visually identified (<u>Table 3.2.3-1</u>) and mapped using GPS equipment over the entire study area.

In addition, 15-min water level stage data were collected at six locations<sup>8</sup> along the study reach during the 2010 season (Figure 3.3.1-2). Stage data were collected between flows of approximately 5,000 cfs and 73,000 cfs. Data from three of these stations<sup>9</sup> along with streamflow data measured at the Conowingo USGS gage were used to develop rating curves at all three locations to assist with model calibration.

#### **3.3.2** Topographic Data Collection

Topographic data for streambanks, permanent islands, the Conowingo Dam spillway area, and other above-water features were obtained from LIDAR surveys. LIDAR data was provided in the form of 2-ft contours by Harford County on the Western side of the Susquehanna River. Multipoint-form LIDAR data on the Cecil County (Eastern) side of the Susquehanna River were available through NOAA's Digital Coast website. In addition, Exelon conducted a LIDAR survey of Conowingo Pond on September 18, 2010 as part of Conowingo Study 3.12-Water Level Management Study. During this survey, LIDAR data was also collected (at a flow release of 3,500 cfs) to define the topography of the Conowingo Dam spillway area.

#### **3.4** Hydraulic Model Development, Calibration and Simulation

Hydraulic modeling was performed using River2D modeling software, described in Steffler and Blackburn (2002). River2D is a depth-averaged two-dimensional (lateral-longitudinal), finite element hydraulic and habitat model. It requires input data for a set of spatially-distributed points or "nodes" throughout the study reach. It then creates a linearly-interpolated triangulated mesh from the set of nodes, with each triangle referred to as an "element". River2D solves for mass conservation and momentum balance in two (x,y) dimensions using the St. Venant flow equations. Input data include a digital bathymetric (riverbed topography) map, a stage-discharge relationship or boundary elevation at the

<sup>&</sup>lt;sup>8</sup> While shown on the map, station 7 was not in the study reach.

<sup>&</sup>lt;sup>9</sup> Stations 1, 5 and 6 were not used in the rating curve analysis. Station 1 was moved mid-deployment by natural flow events and/or human interference. Stations 5 and 6 were tidally influenced.

downstream end of the study reach, and bed roughness throughout the study reach. Observed water surface elevation data are used for calibration purposes, but are not direct model inputs.

#### **3.4.1 Model Development**

Accurate representation of the river bed's physical features is the most crucial factor in successful river flow modeling (Blackburn and Steffler 2002). Generally, elevation transitions in rivers are relatively continuous (except for the toe-of-bank contour), and most features are aligned longitudinally relative to the banks and thalweg. This was not the case for most of the modeled reach, as the lower Susquehanna is primarily a bedrock-controlled channel. The bedrock often transitioned in different angles than the river flowed, and bedrock outcrops were present throughout the reach (Figure 3.4.1-1). Triangulation of the collected bathymetry data occasionally resulted in localized areas of sharp transitions, discontinuities of contours in continuous features. Additional nodes were added when necessary to smooth out irregular features.

A two-dimensional, finite-element computational mesh consisting of linear triangular elements was generated for the study reach, following the procedure described in Bovee et al. (2007). A uniform base mesh (65 ft spacing) was initially applied across the study reach. The mesh was then modified with the primary objective of accurately representing bed structure in the model. This was done by visually assessing the raw bathymetry data, aerial photos and local knowledge of the river. At each node, bed elevation and roughness height were specified, and the model assumed a linear transition between each node. The final mesh contained 37,528 nodes and 75,018 triangulated elements. However, the node size was not uniform throughout the study reach. There was generally denser node spacing in wetted areas, particularly with complex geometry, and sparser node spacing in upland areas that never became wetted.

#### 3.4.2 Model Calibration and Simulation

Concurrent with the collection of bathymetric data, a direct-measurement survey of the water surface profile was conducted for the study reach. The discharge (40,000 cfs) associated with the water surface profile was determined from station operation records. In addition, continuous water surface elevation data were used from the three locations used to create rating curves in Section 3.3.1. Stage data was collected between flows of 5,000 cfs and 73,000 cfs.

With the measured inflow discharge (40,000 cfs) and the measured low-tide outflow water surface elevation as boundary conditions, River2D was run to produce a predicted water surface profile corresponding to the measured profile at the 40,000 cfs discharge. To calibrate the model, adjustments were made to the finite element mesh where increased mesh density was warranted, and the roughness

parameter was adjusted upward or downward to alter the resistance to flow provided by friction. For example, if the predicted water surface profile was uniformly lower than the measured profile, roughness height was increased. The increase in resistance caused the velocity to decrease and the depth to increase, thereby raising the elevation of the predicted water surface profile. This procedure was repeated until a reasonable match (+/- 0.15 ft) between the predicted and measured water surface profiles was obtained in the study area.

Water surface elevations were recorded at three point locations throughout the study reach, at flows between 5,000 cfs and 73,000 cfs. Using these data, additional model calibrations were performed at flows of 5,000, 7,500, 10,000, 15,000, 20,000, 60,000 and 73,000 cfs. Following typical USGS calibration guidelines, model accuracy is usually accepted for a 40% to 250% range around the calibration flow (e.g., a calibration flow at 10,000 cfs is valid for 4,000 cfs to 25,000 cfs). Thus, the model is accurate for production run flows of 2,000 cfs to 182,500 cfs, though no flows greater than 86,000 cfs were run.

Following calibration, a series of discharges ranging from 2,000 cfs to 86,000 cfs were simulated. The 14 simulated flows were 2,000 cfs, 3,500 cfs, 5,000 cfs, 7,500 cfs, 10,000 cfs, 15,000 cfs, 20,000 cfs, 30,000 cfs, 40,000 cfs, 50,000 cfs, 60,000 cfs, 70,000 cfs, 80,000 cfs and 86,000 cfs. These discharges were selected to cover the flow range experienced by the study reach due to project operations.

#### 3.5 Habitat Modeling

The calibrated hydraulic model, which predicts velocities and depths over a range of flows, was then combined with a habitat model. The amount of aquatic habitat for a given species/life stage of fish is calculated using the River2D program. Each habitat area is evaluated for its habitat suitability for a particular species/life stage based on the fixed characteristics (substrate) and the variable characteristics of the cell (depth and velocity).

Fish habitat, as used in IFIM procedures, is quantified in terms of a variable known as Weighted Usable Area (WUA). A unit of WUA represents a unit of suitable habitat for the life stage evaluated. The following equation is used to calculate WUA:

$$WUA = \frac{\sum_{i=1}^{n} WUA(i)}{L} \times L_{mac}$$

where: WUA(I) = Weighted Usable Area (i);

n = Total number of nodes;

L = Total length of the study reach; and

 $L_{mac}$  = Length of stream, which is represented by the reach, with suitable macrohabitat conditions.

The individual WUA(I) for a node is calculated as follows:

 $WUA(I) = CF(I) \times Area(i)$ 

where: Area(i) = Surface area of represented by node(i); and

CF(i) = Compound Function Index for the node area(i)

The Compound Function Index, CF(i), is calculated as follows:

$$CF(i) = SI_V \times SI_D \times SI_S$$

where:  $SI_V = Suitability$  Index for Velocity;

 $SI_D$  = Suitability Index for Depth; and

 $SI_{S} =$  Suitability Index for Substrate.

The WUA is then computed for each node area. In a given study section or reach, the WUA(i) for all the node areas are summed and expressed in units of square feet. For this analysis it was assumed that  $L_{mac}$  was equal to L.

#### **3.6 Habitat Persistence Analysis**

Habitat persistence was evaluated to assess the effects of the short-term hydrologic variability created by peaking operation at the Conowingo Project. Habitat persistence was determined as the union of "quality" or "good" habitat (CF(I)  $\ge 0.5$ ) polygon areas between a pair of project flows for a particular species life stage. For example, the available quality habitat polygon areas for adult striped bass at a flow of 5,000 cfs was overlaid with the available quality habitat polygon areas for the same species at a flow of 86,000 cfs. Adult striped bass habitat persistence for that pair of discharges was calculated as the area of overlap between the quality habitat polygons. The habitat persistence analysis was conducted for all immobile target species (macroinvertebrates) and life stages (spawning and fry), including habitat guilds.

#### 3.7 Mussel Habitat Analysis

Several hydraulic parameters are useful in assessing mussel habitat, including water depth, velocity, shear stress, Froude number, Reynolds number, critical shear stress and relative shear stress (Pers. Communication, M. Ashton, 2011). Literature states differing threshold limits above which mussel habitat appears to be compromised. Layzer and Madison (1995) recommend that shear stress not exceed 50 dynes/cm<sup>2</sup> (0.103 psf<sup>10</sup>) over mussel beds. An MDNR interpretation of an Allen and Vaughn (2010) mussel study showed mussel richness and abundance are greatest in areas where shear stress did not exceed 150 dynes/cm<sup>2</sup> (0.31 psf) under high flows (>25% exceedance), nor exceed 20 dynes/cm<sup>2</sup> (0.042 psf) under low flows (<95% exceedance) (Pers. Communication, M. Ashton, 2011). Research also shows that relative shear stress, a unitless ratio of shear stress divided by critical shear stress (the shear stress threshold that initiates sediment transport), is an important parameter for evaluating mussel habitat (Allen and Vaughn, 2010). An MDNR interpretation of Allen and Vaughn (2010) results showed that mussel development is best when relative shear stress is below 0.4 at low flows (<95% exceedance) and below 2.0 at high flows (> 25% exceedance) (Pers. Communication, M. Ashton, 2011). In a modeling study, Morales et al. (2006) concluded that mussel density would be best if relative shear stress did not exceed 1.0 under most flow conditions, and found a maximum tolerance threshold of 1.25.

The hydraulic model output allows each of these parameters to be calculated and mapped over the entire study reach. This allows the model results to be compared to mussel catch-per-unit-effort (CPUE) observations made during Conowingo Study 3.19: Freshwater Mussel Characterization below Conowingo Dam.

#### 3.8 Habitat Time Series

A habitat time series analysis, as described in task 7 of the RSP, will be was released in a subsequent report addendum following the completion of the operations modeling analysis "Baseline" modeling run. This report will compare contained the results of a the "bBaseline" or existing conditions model run, which will be the basis of comparison for to additional operations model production runs that are designed in consultation with the resource agencies.

<sup>&</sup>lt;sup>10</sup> For consistency with existing mussel literature, mussel results are expressed in metric units. US Standard units will also be shown where possible. For reference, 1 dyne =  $1 \text{ g*cm/s}^2 = 10^{-5} \text{ Newtons (N)} = 0.225*10^{-6} \text{ lb}$ 

#### 4. RESULTS

#### 4.1 Bathymetric and Topographic Mapping

<u>Figure 4.1-1</u> illustrates the bathymetric and topographic characteristics of the study reach, which is typified by a very irregular stream bottom. The average stream channel slope of the study reach is 0.0007 ft/ft.

#### 4.2 Hydraulic Model

#### 4.2.1 Calibration Results

The hydraulic model was calibrated to the water surface profile collected at 40,000 cfs, following the calibration procedure described in Bovee et al. (2007). The final finite element mesh comprising the study reach contained approximately 37,500 nodes. Calibration to within +/-0.15 ft (5 cm) of observed water surface elevations at 40,000 cfs was targeted. <u>Table 4.2.1-1</u> shows the results of the calibration, while Figure 4.2.1-1 shows the error distribution. Most (72%) simulated water surface elevations were within the targeted +/-0.15 ft threshold and 93% were within +/-0.25 ft. All of the simulated water surface elevations fell within +/-0.50 ft of observed water surface elevations.

The model was also calibrated using rating curves developed from water surface elevation data collected at the three continuous water level recorder stations for flows of 5,000 cfs, 20,000 cfs, 60,000 cfs and 80,000 cfs. Table 4.2.1-2 shows the results of this calibration. The predicted water surface elevations computed by the hydraulic model corresponded well with the field measured water surface elevations at the three sites, as the difference between the predicted and measured water surface elevations was within +/-0.15 ft, except at 5,000 cfs for gage 2, which was within 0.25 ft.

Observed velocities were compared to model velocities at 40,000 cfs across several transects in the study reach. Across each transect, the water velocity profiles has similar shapes as those measured by the ADCP, with low velocities near the banks and higher velocities mid-channel. Flow and velocity distribution between islands and side channels is fairly good. The model tended to be least accurate near water line boundaries (e.g. islands, banks), and was generally better in the main channel. Figure 4.2.1-2 shows the velocity error distribution across the entire study reach.

#### 4.2.2 Simulation Results

The hydraulic model was used to simulate 14 flows in the study reach of 2,000 cfs, 3,500 cfs, 5,000 cfs, 7,500 cfs, 10,000 cfs, 20,000 cfs, 30,000 cfs, 40,000 cfs, 50,000 cfs, 60,000 cfs, 70,000 cfs, 80,000 cfs

and 86,000 cfs. Water velocity and depth maps for each simulation flow are shown in <u>Appendix C</u> and <u>Appendix D</u>, respectively.

#### 4.3 Habitat Modeling Results

This section presents the results of the habitat modeling in terms of WUA (habitat) versus flow relationships. <u>Table 4.3-1</u> summarizes for each species/life stage at what flow the WUA curve (i.e. habitat) peaks, the computed habitat area at maximum WUA flow, the total wetted area of the study reach, and the percentage of total habitat available at the peak WUA. This table puts into perspective how much habitat is available for a given species/life stage relative to the total area of the study reach.

#### 4.3.1 Habitat versus Discharge Relationships

The following sections briefly describe the habitat preferences for each species/life stage based on the HSI curves contained in <u>Appendix B</u>. In addition, the WUA (habitat) versus flow relationships resulting from the habitat modeling are summarized for each species/life stage. Habitat maps showing combined suitability for each species/life stage for each simulated flow are shown in <u>Appendix E</u>.

#### 4.3.1.1 American Shad

Shown in Figure 4.3.1.1-1 are the WUA curves for the spawning & incubation, fry, juvenile and adult life stages of American shad. Notable is the marked difference between the juvenile flow preferences and spawning, fry and adult flow preferences. The HSI values used to develop the juvenile curve came from a study on the upper Delaware River by Ross et al. (1993). However, a 2009 Atlantic States Marine Fisheries Commission (ASMFC) report on Atlantic coast diadromous fish habitat indicates that the values chosen for this analysis may be too restrictive (Greene et al. 2009).

**Spawning & Incubation:** American shad spawning is known to occur in the lower Susquehanna River below Conowingo dam, primarily in the vicinity of Robert, Wood and Spencer Islands. The spawning and incubation HSI curve shows optimal velocities between 1.0 and 3.0 ft/sec (SI=1.0). The optimal depth range for the species/life stage is between 5.0 and 20.0 ft. American shad typically spawn over sand, gravel, and cobble substrates.

The American shad spawning and incubation WUA curve increases to a peak at 40,000 cfs, before declining gradually due to velocities above the optimal range. In general, habitat for the spawning and incubation life stage is reduced in the study reach due to the absence of ideal substrate; however, literature indicates that substrate is not a predictor of spawning and nursery habitat and that it is not important in

spawning site selection (Bilkovic et al. 2002; Krauthamer and Richkus 1987). Usable habitat represents approximately 33% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was little habitat throughout the reach, and quality habitat was concentrated southwest of Bird Island. At the peak WUA flow (40,000 cfs), most of the quality habitat is found downstream of Rowland Island, near the mouth of Octoraro Creek, between Robert and Spencer Island and downstream of Snake Island. Additionally, the reach in between Rowland and Spencer islands becomes moderately suitable at 50,000 and 60,000 cfs, then generally declining to the maximum modeled flow of 86,000 cfs. To date, no studies have documented spawning in the Conowingo tailrace.

**Fry:** American shad eggs are fertilized and eventually sink to the bottom and become wedged under rocks, boulders and fractures or are swept into pools where they hatch. Sand and gravel also provide good substrate as they allow sufficient velocity to prevent the eggs from becoming buried (Greene et al. 2009). Optimal velocities for fry are 0.2 to 1.0 ft/sec (SI=1) and optimal depths are between 5.0 and 20.0 ft (SI=1). American shad fry have optimal preference for silt, sand, gravel, and cobble substrates.

The American shad fry WUA curve increases to a peak at 30,000 cfs, before declining gradually due to velocities above the optimal range. In general, habitat for the fry life stage is reduced in the study reach due to the absence of optimal substrate. As with spawning, substrate is not a good predictor of fry habitat. Greene et al. (2009) found that other factors such as velocity in relation to downstream transport and temperature are more important. Juvenile American shad are sampled annually by MDNR in the upper Chesapeake Bay and Susquehanna Flats to estimate production (SRAFRC 2010). Usable habitat represents approximately 26% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was little habitat throughout the reach, and quality habitat was primarily found southwest of Bird Island, downstream of Robert Island and downstream of Snake Island. At the peak WUA flow (30,000 cfs), most of the quality habitat is found downstream of Rowland Island, near the mouth of Octoraro Creek, between Robert and Spencer Island and downstream of Snake Island. At higher flows (>70,000 cfs) quality habitat was primarily found near the mouth of Octoraro Creek and between Spencer, Wood and Robert Islands.

**Juvenile:** Juvenile American shad are considered to be more habitat generalists than fry or spawning adults (Greene et al. 2009). Juvenile American shad prefer a velocity between 0.2 and 1.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 4.5 ft/sec. Optimal depths for juvenile American shad are between 0.66 and 3.994.90 and 6.60 ft. in the upper Delaware River, with a tolerated range of 0 to 50 ft(Ross et al. 1993); however, water depth is not considered to be a critical factor in

nursery habitat (Krauthamer and Richkus 1987). Silt, sand, gravel and cobble are the preferred substrates for juveniles. Juveniles have historically been sampled on the Susquehanna Flats by MDNR.

The WUA curve for juvenile American shad shows habitat increasing steadily before peaking at a flow of 510,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines due to water velocities and water depths exceeding the preferred range for the species/life stage. In general, habitat for the juvenile life stage is reduced in the study reach due to the absence of optimal substrate. However, Ross et al. (1997) found that there was no overall effect of habitat type on juveniles. This indicated that they utilize a variety of habitats, and that depth and substrate are not driving factors. Ross et al. (1997) did find a positive correlation between percent submersed aquatic vegetation (SAV) and juvenile shad abundance in the upper Delaware River. Useable habitat constitutes approximately 324% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was little habitat throughout the reach, and quality habitat was primarily found downstream of Rowland Island, near the mouth of Octoraro Creek, and downstream of Robert Islandwest of Bird Island. As flows increased above 1030,000 cfs, habitat generally became increasingly fragmented and of lower quality, though habitat became more suitable downstream of Robert Island. At higher flows (>60,000 cfs) there was very little habitat throughout the entire reach, with the spillway area providing some moderate habitatexception of near Octoraro Creek's mouth and downstream of Robert Island.

**Adult:** Adult American shad prefer a velocity between 0.5 and 3.0 ft/sec and the suitability steadily decreases to a SI=0 at a velocity of 5.0 ft/sec. The adult American shad HSI curve shows that adults prefer depths of 5.0 and 20.0 ft and substrates of silt, sand, cobble, and gravel.

The adult American shad WUA curve shows habitat increasing with flow until 40,000 cfs, before peaking and gradually declining at higher flows. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the adult life stage is reduced in the study reach due to the absence of optimal substrate; however, popular literature indicates that substrate is not a predictor of spawning and that it is not important in spawning site selection (Bilkovic et al. 2002; Krauthamer and Richkus 1987). Usable habitat constitutes approximately 36% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was relatively poor habitat throughout the reach, and quality habitat was mostly limited to southwest of Bird Island and near the mouth of Octoraro Creek. At the peak WUA flow (40,000 cfs), there was quality habitat downstream of Rowland Island, near the mouth of Octoraro

Creek, southwest of Bird Island, downstream of Snake Island and between Robert, Wood and Spencer Islands. At higher flows (>60,000 cfs) habitat suitability generally declined in the study reach, but the high quality habitat areas remained fairly unaffected by increasing flows.

#### 4.3.1.2 Shortnose Sturgeon

Shown in <u>Figure 4.3.1.2-1</u> are the WUA curves for the spawning & incubation, fry, juvenile and adult life stages of shortnose sturgeon.

**Spawning & Incubation:** Shortnose sturgeon use deep channels within the main river to spawn (NMFS 1998). The spawning and incubation HSI curve shows optimal velocities between 1.0 and 3.0 ft/sec (SI=1.0). The optimal depth range for the species/life stage is between 5.0 and 40.0 ft. Shortnose sturgeon typically spawn on cobble substrates, and to lesser extents, gravel, rubble, boulder and ledge substrate.

The shortnose sturgeon spawning and incubation WUA curve increases to a peak at 50,000 cfs, before declining at higher flows. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the spawning and incubation life stage is reduced by the absence of ideal substrate. Useable habitat represents approximately 15% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was relatively poor habitat throughout the reach, with a patch of quality habitat located southwest of Bird Island. At the peak WUA flow (50,000 cfs) there was quality habitat downstream of Rowland Island, near the mouth of Octoraro Creek, southwest of Bird Island, downstream of Sterrit Island and between Robert and Wood Islands. The area just downstream of Rowland Island provides significant spawning habitat from approximately 20,000 cfs through the highest modeled flow of 86,000 cfs. However, at higher flows (>60,000 cfs) habitat quality degraded in most other areas but improved or stayed consistent in some tidally-influenced areas downstream of Deer Creek.

**Fry:** Shortnose sturgeon that have just hatched are considered to "swim-up" and drift downstream more than any active, directed movement until they are considered fry. At this point they resemble adults and actively migrate downstream (NMFS 1998). Optimal velocities for fry are 0.5 to 1.5 ft/sec (SI=1). Optimal depths are between 5.0 and 40.0 ft (SI=1) as they are generally found in the deepest water within the river channel (NMFS 1998). Shortnose sturgeon fry have optimal preference for sand substrate as they are likely to be found in the tidal section of rivers where this substrate would tend to dominate.

The shortnose sturgeon fry WUA curve increases to a peak at 30,000 cfs, before declining gradually. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the fry life stage is very limited in the study reach, due to the absence of suitable substrate, with useable habitat representing approximately 1% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was relatively poor habitat throughout the reach, with no sizable quality habitat areas. Above 10,000 cfs there was a small patch of quality habitat between Robert and Spencer Islands. This small patch remained relatively constant in size and quality through 86,000 cfs.

The behavior of shortnose sturgeon fry likely preclude them from being found within the study reach. The eggs are demersal and will drift until settled on bottom substrate and the fry drift close to the bottom after hatching until they are large enough for more directed movements. In light of these life history characteristics, the likelihood of shortnose sturgeon fry being present in the area affected by Conowingo Dam is low.

**Juvenile:** Juvenile shortnose sturgeon are found at the freshwater/saltwater interface in most rivers (NMFS 1998) and prefer a velocity between 0.2 and 1.5 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 5.0 ft/sec. Optimal depths for juvenile shortnose sturgeon are between 5.0 and 20.0 ft. Sand and gravel are juveniles' preferred substrates, but they can be found over mud in some rivers as well (NMFS 1998).

The juvenile shortnose sturgeon WUA curve shows habitat increasing steadily before peaking at a flow of 30,000 cfs and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the juvenile life stage is very limited in the study reach, due to the absence of suitable substrate, with useable habitat constituting approximately 2% of the overall wetted study area at the peak WUA flow.

At all flows there was relatively poor habitat throughout the reach, though there were patches of quality habitat near the mouth of Octoraro Creek, between Robert and Spencer Islands and downstream of Snake Island.

Given that shortnose sturgeon juveniles are found at the freshwater/saltwater interface in most rivers, which is near the river mouth at Havre de Grace (Conowingo Study 3.20: Salinity and Salt Wedge Encroachment), there is a low likelihood that they will be found within the influence of the Project.

**Adult:** Adult shortnose sturgeon can be found in the freshwater or freshwater-tidal reaches of a river (NMFS 1998) and prefer a velocity between 0.2 and 1.5 ft/sec, with the suitability steadily decreasing to a SI=0 for a velocity of 5.0 ft/sec. The adult shortnose sturgeon HSI curve shows that adults prefer depths of 5.0 and 20.0 ft and substrates of sand and gravel.

The WUA curve for adult shortnose sturgeon shows habitat increasing steadily before peaking at a flow of 30,000 cfs and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the adult life stage is very limited in the study reach, due to the absence of suitable substrate, with useable habitat constituting approximately 2% of the overall wetted study area at the peak WUA flow.

At all flows there was relatively poor habitat throughout the reach, though there were patches of quality habitat near the mouth of Octoraro Creek, between Robert and Spencer Islands and downstream of Snake Island. The area between Robert and Spencer islands is persistent for all flows modeled.

Adult shortnose sturgeon in the warmer climates of its range tend to congregate in deeper water with thermal refugia (NMFS 1998) and may not be within the study reach. There has been documentation of individuals caught in the head of the Chesapeake Bay near the mouth of the Susquehanna River in the early 1980s and again in 1997 (NMFS 1998), but only anecdotal information exists that any have ever been caught in the Susquehanna River historically, even though there is a population present in the nearby Delaware River.

#### 4.3.1.3 Striped Bass

The Chesapeake Bay is considered the epicenter of migratory striped bass abundance and production on the east coast, although there are other estuaries that contribute to the sustainability of the species (Greene et al. 2009). Many individuals are migratory; however, it has been recently discovered that some individuals may be freshwater residents or move between fresh and saltwater (Greene et al. 2009). Shown in Figure 4.3.1.3-1 are the WUA curves for the spawning & incubation, fry, juvenile and adult life stages of striped bass.

**Spawning & Incubation:** The spawning and incubation HSI curve shows optimal velocities between 1.64 and 3.0 ft/sec (SI=1.0). The optimal depth range for the species/life stage is between 6.0 and 30.0 ft. Striped bass typically spawn on sand, gravel, cobble, boulder and bedrock substrates.

The striped bass spawning and incubation WUA curve increases to a peak at 50,000 cfs, before declining gradually. The WUA curve declines primarily due to water velocities exceeding the preferred range for

the species/life stage. In general, habitat for the spawning and incubation life stage is good throughout the study reach, with useable habitat representing approximately 77% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was relatively poor habitat throughout the reach, with quality habitat generally confined to the deeper, faster channel downstream of the dam powerhouse and west of Rowland Island. Habitat rapidly improved throughout the reach above 10,000 cfs, with large swaths of optimal habitat throughout the river between 30,000 cfs and 60,000 cfs. At higher flows (>60,000 cfs) habitat quality remained high, but optimal habitat began to become slightly more fragmented.

**Fry:** Optimal velocities for fry are 1.64 to 3.0 ft/sec (SI=1). Optimal depths are between 6.0 and 10.0 ft (SI=1). Striped bass fry have optimal preference for sand, gravel, cobble, boulder and bedrock substrates.

The striped bass fry WUA curve increases to a peak at 50,000 cfs, before declining gradually. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the fry life stage is good throughout the study reach, with useable habitat representing approximately 76% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) there was relatively poor habitat throughout the reach, quality habitat generally confined to the deeper, faster channel downstream of the dam powerhouse and west of Rowland Island. Habitat rapidly improved throughout the reach above 10,000 cfs, with large swaths of optimal habitat throughout the river between 40,000 cfs and 60,000 cfs. At higher flows (>60,000 cfs) habitat quality remained high, but optimal habitat became slightly more fragmented.

**Juvenile:** Juvenile striped bass prefer a velocity between 0.5 and 3.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 13.1 ft/sec. Optimal depths for juvenile striped bass are between 6.0 and 30.0 ft. Sand, gravel, and cobble are juveniles' preferred substrates; however, they can be found over mud and rock as well (Greene et al 2009).

The WUA curve for juvenile striped bass shows habitat increasing steadily before peaking at a flow of 40,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the juvenile life stage is reduced throughout the study reach due to the absence of ideal substrate. Useable habitat constitutes approximately 42% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs) quality habitat was generally confined to an area southwest of Bird Island. Habitat improved above 10,000 cfs, with quality habitat shifting from southwest of Bird Island to downstream of Rowland Island and between Spencer, Wood and Robert Islands.

Juvenile striped bass are generally found in streams, riverine, estuarine or even freshwater pond habitats, but young-of-the-year juveniles tend to move downstream to higher salinity estuarine areas during their first summer (Greene et al. 2009). Research has indicated that juveniles will use various nearshore areas without requiring specific microhabitats in the summer and move offshore in the fall (Greene et al. 2009). Given these observations, the lower Susquehanna River within the Project influence is not necessarily an important rearing area for striped bass juveniles. Stated another way, substrate is driving the WUA versus flow curve for juvenile striped bass; however, substrate may not be the most important factor influencing where the juveniles may be found at a given time of year.

**Adult:** Adult striped bass prefer a velocity between 0.9 and 4.0 ft/sec and the suitability steadily decreases to a SI=0 for a velocity of 13.1 ft/sec. The adult striped bass HSI curve shows that adults prefer depths of 6.0 and 30.0 ft and substrates of sand, gravel, cobble, boulder and bedrock.

The WUA curve for adult striped bass shows habitat increasing steadily before peaking at a flow of 80,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat is excellent throughout the study reach, with useable habitat constituting approximately 85% of the overall wetted study area at the peak WUA flow.

At lower flows (<5,000 cfs), quality habitat was generally confined to the deeper, faster channel downstream of the dam powerhouse and west of Rowland Island, though isolated quality habitat patches were present throughout the river. Habitat rapidly improved throughout the reach above 15,000 cfs, with large swaths of optimal habitat throughout the river between 40,000 cfs and 86,000 cfs. At the peak WUA flow (80,000 cfs) the vast majority of the river was optimal habitat, except the channel downstream of the dam powerhouse west of Rowland Island.

#### 4.3.1.4 Smallmouth Bass

The lower Susquehanna River generally does not provide large quantities of quality spawning and fry and juvenile rearing habitat. In spite of this, there is an adult population present below the Conowingo Dam. The population is likely being supported from the passage of fry, juveniles and adults from Conowingo

Pond past the station as well as inputs from downstream tributaries. Shown in Figure 4.3.1.4-1 are the WUA curves for the spawning & incubation, fry, juvenile and adult life stages of smallmouth bass.

**Spawning & Incubation:** The spawning and incubation HSI curve shows optimal velocities between 0.0 and 0.5 ft/sec (SI=1.0). The optimal depth range for the species/life stage is between 2.2 and 4.8 ft. Smallmouth bass typically spawn on gravel substrate, and to a lesser extent, sand substrate.

The smallmouth bass spawning and incubation WUA curve increases to a peak at 5,000 cfs, before declining gradually. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the spawning and incubation life stage is very limited in the study reach, due to the absence of suitable substrate, with useable habitat representing approximately 2% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs), quality habitat generally was confined to a small patch near the mouth of Octoraro Creek and downstream of Robert Island, with only small patches of lower quality habitat in the other parts of the river. Above 10,000 cfs all quality habitat patches slowly degraded until there were only a few small lower quality habitat areas available at 86,000 cfs.

**Fry:** Optimal velocities for fry are 0.0 to 0.2 ft/sec (SI=1). Optimal depths are between 0.5 and 2.0 ft (SI=1). Smallmouth bass fry have optimal preference for gravel, and to lesser extent, cobble substrate.

The smallmouth bass fry WUA curve peaked at 2,000 cfs, the lowest modeled flow. The habitat declined rapidly between 2,000 cfs and 10,000 cfs, before continuing to decline gradually. In general, habitat for the fry life stage is limited in the study reach, due to the absence of ideal substrate and high water velocities, with useable habitat representing approximately 6% of the overall wetted study area at the peak WUA flow.

There was very little habitat available at any flow throughout the study area. At 30,000 cfs and above there was some lower quality habitat available in the spillway area, but this dissipated at flows above 60,000 cfs.

**Juvenile:** Juvenile smallmouth bass prefer a velocity between 0.0 and 1.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 4.92 ft/sec. Optimal depths for juvenile smallmouth bass are between 1.0 and 4.0 ft. Cobble is the preferred substrates for juveniles.

The WUA curve for juvenile smallmouth bass shows habitat increasing steadily before peaking at a flow of 5,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines primarily due to

water velocities exceeding the preferred range for the species/life stage. In general, habitat for the juvenile life stage is somewhat reduced throughout the study reach due to the absence of ideal substrate. Useable habitat constitutes approximately 39% of the overall wetted study area at the peak WUA flow.

At lower flows (<15,000 cfs), there was habitat found through much of the river, with quality habitat available downstream of Rowland Island, near the mouth of Octoraro Creek and between Spencer, Wood and Robert Islands. As flows increased above 15,000 cfs habitat degraded in all areas, though the spillway and areas around islands provided some lower quality habitat at flows above 40,000 cfs.

**Adult:** Adult smallmouth bass prefer a velocity between 0.0 and 1.0 ft/sec, and the suitability steadily decreases to a SI=0 for a velocity of 4.92 ft/sec. The adult smallmouth bass HSI curve shows that adults prefer depths of 3.0 and 7.0 ft, and substrates of boulder, and to a lesser extent cobble, gravel, and bedrock.

The WUA curve for adult smallmouth bass shows habitat increasing steadily before peaking at a flow of 15,000 cfs and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species/life stage. In general, habitat for the adult life stage is somewhat reduced throughout the study reach due to the absence of ideal substrate. Useable habitat constitutes approximately 42% of the overall wetted study area at the peak WUA flow.

At lower flows (<10,000 cfs), there was habitat found through much of the river, with quality habitat available near the mouths of Octoraro and Deer Creeks and at the upstream edge of Sterret Island. At the peak WUA flow (20,000 cfs) there was quality habitat available near the mouths of Deer and Octoraro Creeks, around the upstream and downstream ends of Sterret Island, between Robert and Wood Island and east of Robert Island. As flows increased above 60,000 cfs, habitat degraded through most of the reach, though quality habitat was still available between Spencer, Wood and Robert Islands.

In light of the fact that little spawning and fry or juvenile rearing habitat exists below Conowingo Dam, the population is likely being supported from Conowingo Pond and downstream tributaries. Any flow management for this species would likely have negligible effects on spawning or fry habitat and not influence the overall population.

#### 4.3.1.5 Macroinvertebrates

Shown in Figure 4.3.1.5-1 are the WUA curves for Ephemeroptera (Mayflies), Plecoptera (Stoneflies), and Trichoptera (Caddisflies).

**Ephemeroptera** (**Mayflies**): This group prefers a velocity between 0.3 and 1.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 3.0 ft/sec. Optimal depths for Ephemeroptera are between 1.6 and 2.3 ft. Cobble, and to a lesser extent, gravel and boulder are the preferred substrates.

The WUA curve for Ephemeroptera shows habitat increasing steadily before peaking at a flow of 5,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines primarily due to both water velocities and water depths exceeding the preferred range for the species. In general, habitat is limited throughout the study reach, due to the absence of ideal substrate. Useable habitat constitutes approximately 9% of the overall wetted study area at the peak WUA flow.

At flows at or below 5,000 cfs habitat was generally poor, but quality habitat was available near the mouths of Octoraro and Deer Creeks and downstream of Rowland Island. As flows increased above 5,000 cfs, habitat quality degraded in the entire river, with nearly all quality habitat eliminated by 20,000 cfs.

**Plecoptera** (Stoneflies): This group prefers a velocity between 0.3 and 1.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 3.0 ft/sec. Optimal depths for Plecoptera are between 1.6 and 2.6 ft. Cobble, and to a lesser extent, gravel and boulder are the preferred substrates.

The WUA curve for Plecoptera shows habitat increasing steadily before peaking at a flow of 5,000 cfs, and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities and water depths exceeding the preferred range for the species. In general, habitat is limited throughout the study reach, due to the absence of ideal substrate. Useable habitat constitutes approximately 7% of the overall wetted study area at the peak WUA flow.

At flows at or below 5,000 cfs habitat was generally poor, but quality habitat was available near the mouth of Octoraro Creek and downstream of Rowland Island. As flows increased above 5,000 cfs habitat quality degraded in the entire river, with nearly all quality habitat eliminated by 20,000 cfs.

**Trichoptera (Caddisflies):** This group prefers a velocity between 0.3 and 1.0 ft/sec, with the suitability steadily declining to a SI=0 as velocity increases to 3.0 ft/sec. Optimal depths for Trichoptera are between 1.6 and 3.3 ft. Cobble and boulder are the preferred substrates.

The WUA curve for Trichoptera shows habitat increasing steadily before peaking at a flow of 10,000 cfs and then gradually decreasing as flow increases. The WUA curve declines primarily due to water velocities exceeding the preferred range for the species. In general, habitat is reduced throughout the study reach due to the absence of ideal substrate. Useable habitat constitutes approximately 19% of the overall wetted study area at the peak WUA flow.

At flows at or below 10,000 cfs habitat was generally poor, but there were multiple patches of quality habitat located downstream of Rowland Island, near the mouths of Octoraro and Deer Creeks, upstream and downstream of Sterrit Island, downstream of Snake Island and around the edges of Robert Island. As flows increased above 20,000 cfs habitat quality degraded in the entire river, though quality habitat patches remained between Robert and Wood Islands and near the mouths of Octoraro and Deer Creeks.

#### 4.3.1.6 Habitat Guilds

Shown in <u>Figure 4.3.1.6-1</u> are the WUA curves for the shallow-slow, shallow-fast, deep-slow, and deep-fast habitat guilds.

**Shallow-Slow:** For this guild, preferred velocities are between 0.0 and 1.0 ft/sec. The shallow-slow guild HSI curve shows preferred depths of 0.5 and 2.0 ft and substrates of gravel, cobble, boulder, and bedrock.

The shallow-slow guild WUA curve peaked at 2,000 cfs, the lowest modeled flow. The habitat declined rapidly between 2,000 cfs and 15,000 cfs, before remaining roughly constant up to 86,000 cfs. There was a small secondary peak around 40,000 cfs, due to the spillway area becoming initially inundated. The WUA curve declined primarily due to water velocities and water depths exceeding the preferred range for the guild, with useable habitat representing approximately 45% of the overall wetted study area at the peak WUA flow.

There were large amounts of optimal habitat throughout the river channel below flows of 5,000 cfs. At flows above 30,000 cfs high quality habitat was available in the spillway area, with little habitat available elsewhere in the river.

**Shallow-Fast:** For this guild, preferred velocities are between 0.5 and 1.0 ft/sec. The shallow-fast guild HSI curve shows preferred depths of 0.75 and 1.5 ft and substrates of gravel, cobble, and boulder.

The shallow-fast guild WUA curve peaked at 2,000 cfs, the lowest modeled flow. The habitat declined rapidly between 2,000 cfs and 15,000 cfs, before gradually declining between 15,000 cfs and 86,000 cfs. The WUA curve declined primarily due to water velocities and water depths exceeding the preferred range for the guild and was also limited by a lack of suitable substrate. The useable habitat represented approximately 2% of the overall wetted study area at the peak WUA flow.

The majority of the river was unsuitable habitat for all flows. At flows below 5,000 cfs some quality habitat was available downstream of Rowland Island, near the mouths of Deer and Octoraro Creeks and near Sterrit Island. At flows above 15,000 cfs there was almost no habitat of any quality available in any part of the river.

**Deep-Slow:** For this guild, preferred velocities are between 0.0 and 1.0 ft/sec. The deep-slow guild HSI curve shows preferred depths of greater than 2.0 ft, and all substrates are considered optimal.

The deep-slow guild WUA curve peaked at 5,000 cfs. The habitat declined rapidly between 5,000 cfs and 30,000 cfs, before gradually declining between 30,000 cfs and 86,000 cfs. The WUA curve declined primarily due to water velocities exceeding the preferred range for the guild, with useable habitat representing approximately 52% of the overall wetted study area at the peak WUA flow.

There is optimal habitat throughout the river channel below flows of 20,000 cfs, though the majority of the habitat is in the tidally-influenced part of the study area downstream of Deer Creek. At flows above 30,000 cfs high quality habitat was primarily limited to the area around Spencer, Wood and Robert Islands, the spillway area and near the mouth of Octoraro Creek. River banks and island edges provided some quality habitat as well at higher flows.

**Deep-Fast:** For this guild, preferred velocities are between 1.0 and 3.5 ft/sec. The deep-fast guild HSI curve shows preferred depths between 2.5 and 4.0 ft, and gravel and cobble substrates are considered optimal.

The deep-fast guild WUA curve peaked at 20,000 cfs. The habitat declined rapidly between 20,000 cfs and 50,000 cfs, before gradually declining between 50,000 cfs and 86,000 cfs. The WUA curve declined primarily due to water velocities and water depths exceeding the preferred range for the guild and was also limited by a lack of suitable substrate, with useable habitat representing approximately 2% of the overall wetted study area at the peak WUA flow.

The majority of the river was unsuitable habitat for all flows. At flows below 5,000 cfs habitat was extremely limited. At flows above 5,000 cfs there was some quality habitat available downstream of Rowland and Robert Islands, as well as around the mouth of Octoraro Creek. As flows increased above 20,000 cfs the habitat quality degraded, with only very small pockets of habitat left at flows above 50,000 cfs.

#### 4.3.2 Habitat Persistence

Habitat persistence was determined as the intersection of quality habitat polygon areas (combined suitability  $\geq 0.5$ ) for all immobile species (macroinvertebrates) and life stages (spawning and fry) for every modeled flow combination. Each flow combination consisted of a low flow matched with an equal or higher flow, to emulate a minimum flow and generation flow combination. Though it was typical for a species' persistent habitat to peak at the same flow as the WUA habitat, this was not necessarily true because the persistent habitat was calculated excluding lower-quality habitat areas (SI < 0.5).

Persistent habitat maps showing each flow pair (3,500 cfs through 40,000 cfs paired with 86,000 cfs) for each species and life stage are located in <u>Appendix F</u>. Persistent habitat tables showing each flow pair for each species and life stage are located in <u>Appendix G</u>.

#### 4.3.2.1 American Shad

The American shad spawning/incubation and fry habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in Figure 4.3.2.1-1.

#### **Spawning & Incubation:**

Generation flows of 86,000 cfs paired with minimum flows below 7,500 cfs produced little American shad spawning and incubation persistent habitat. Increasing the minimum flow above 7,500 cfs resulted in a rapid persistent habitat increase up through a minimum flow of 15,000 cfs, followed by moderate persistent habitat increases above minimum flows of 15,000 cfs. The majority of the persistent habitat (paired with 86,000 cfs) is located downstream of Rowland Island, near the mouths of Deer and Octoraro Creeks, around Sterrit Island, and around Robert Island, though other small patches exist elsewhere.

#### Fry:

Generation flows of 86,000 cfs paired with minimum flows between 2,000 cfs and 20,000 cfs steadily increased American shad fry persistent habitat, with minimum flows above 20,000 cfs producing more gradual persistent habitat increases. The majority of the persistent habitat (paired with 86,000 cfs) is located downstream of Rowland Island, near the mouth of Octoraro Creek and between Spencer, Wood and Robert Islands, though other small patches exist elsewhere.

#### 4.3.2.2 Shortnose Sturgeon

The shortnose sturgeon spawning/incubation and fry habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in Figure 4.3.2.2-1.

#### **Spawning & Incubation:**

Generation flows of 86,000 cfs paired with minimum flows below 5,000 cfs resulted in little shortnose sturgeon spawning and incubation persistent habitat. Increasing the minimum flow above 5,000 cfs resulted in a rapid persistent habitat increase up through a minimum flow of 20,000 cfs, followed by moderate persistent habitat increases above minimum flows of 20,000 cfs. The majority of the persistent habitat (paired with 86,000 cfs) is located downstream of Rowland Island, but smaller patches exist southwest of Bird Island, near the mouth of Octoraro Creek, around Sterrit Island and downstream of Snake Island.

#### Fry:

Generation flows of 86,000 cfs paired with minimum flows below 5,000 cfs resulted in little shortnose sturgeon fry persistent habitat. Increasing the minimum flow above 5,000 cfs resulted in a steady persistent habitat increases up through a minimum flow of 86,000 cfs. Overall, there is very little total persistent habitat. The small amount that exists (paired with 86,000 cfs) is found between Robert and Spencer Islands.

#### 4.3.2.3 Striped Bass

The striped bass spawning/incubation and fry habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in Figure 4.3.2.3-1.

#### **Spawning & Incubation:**

Generation flows of 86,000 cfs paired with minimum flows below 7,500 cfs produced little striped bass spawning and incubation persistent habitat. Increasing the minimum flow above 7,500 cfs resulted in a rapid persistent habitat increase up through a minimum flow of 30,000 cfs, followed by gradual persistent habitat increases above minimum flows of 30,000 cfs. The persistent habitat at flows greater than 7,500 cfs (paired with 86,000 cfs) is distributed throughout the entire study area.

Fry:

Generation flows of 86,000 cfs paired with minimum flows below 7,500 cfs produced little striped bass fry persistent habitat. Increasing the minimum flow above 7,500 cfs resulted in a rapid persistent habitat increase up through a minimum flow of 20,000 cfs, followed by gradual persistent habitat increases above minimum flows of 20,000 cfs. The persistent habitat at flows greater than 7,500 cfs (paired with 86,000 cfs) is distributed throughout the entire study area.

#### 4.3.2.4 Smallmouth Bass

The smallmouth bass spawning/incubation and fry habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in Figure 4.3.2.4-1.

#### **Spawning & Incubation:**

Generation flows of 86,000 cfs paired with minimum flows below 10,000 cfs produced a small amount of smallmouth bass spawning and incubation persistent habitat. Increasing the minimum flow above 10,000 cfs resulted in a gradual persistent habitat increase up through a minimum flow of 86,000 cfs. The small amount of persistent habitat was located primarily between Robert and Spencer Islands.

#### Fry:

Generation flows of 86,000 cfs paired with minimum flows below 7,500 cfs produced little smallmouth bass fry persistent habitat. Increasing the minimum flow above 7,500 cfs resulted in a gradual persistent habitat increase up through a minimum flow of 50,000, followed by rapid persistent habitat increases above minimum flows of 50,000 cfs. The small amount of persistent habitat available was primarily found along the river edges and around islands.

#### 4.3.2.5 Macroinvertebrates

The macroinvertebrate habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in <u>Figure 4.3.2.5-1</u>, while only the Ephemeroptera and Plecoptera habitat persistence curves are shown in <u>Figure 4.3.2.5-2</u>.

#### Ephemeroptera (Mayfly):

Generation flows of 86,000 cfs paired with minimum flows below 10,000 cfs produced little Ephemeroptera persistent habitat. Increasing the minimum flow above 10,000 cfs resulted in a gradual persistent habitat increase up through a minimum flow of 50,000 cfs, followed by moderate persistent

habitat increases above minimum flows of 50,000 cfs. The small amount of persistent habitat available was primarily found along the river edges and around islands.

#### **Plecoptera** (Stonefly):

Generation flows of 86,000 cfs paired with minimum flows at or below 20,000 cfs produced no Plecoptera persistent habitat. Increasing the minimum flow above 20,000 cfs resulted in a gradual persistent habitat increase up through a minimum flow of 60,000 cfs, followed by steady persistent habitat increases above minimum flows of 60,000 cfs. The small amount of persistent habitat available was primarily found along the river edges and around islands.

#### Trichoptera (Caddisfly):

Generation flows of 86,000 cfs paired with minimum flows resulted in steadily increasing Trichoptera persistent habitat as the minimum flow increased, through 86,000 cfs. Somewhat smaller incremental habitat increases occurred at higher minimum flows. The small amount of persistent habitat available was primarily found downstream of Rowland Island, around the mouth of Octoraro Creek and between Robert, Spencer and Wood Islands.

#### 4.3.2.6 Habitat Guilds

The shallow-slow and shallow-fast habitat persistence curves for all modeled flows paired with full generation (86,000 cfs) are shown in <u>Figure 4.3.2.6-1</u>, and the deep-slow and deep-fast curves are shown in <u>Figure 4.3.2.6-2</u>.

#### **Shallow-Slow:**

Generation flows of 86,000 cfs paired with minimum flows between 2,000 cfs and 50,000 cfs resulted in gradual shallow-slow guild persistent habitat increases as minimum flow increased. Increasing the minimum flow above 50,000 cfs resulted in a rapid persistent habitat increase up through a minimum flow of 86,000 cfs. The small amount of persistent habitat available was primarily found along the river edges and around islands.

#### **Shallow-Fast:**

Generation flows of 86,000 cfs paired with minimum flows below 70,000 cfs produced no shallow-fast guild persistent habitat. Persistent habitat only marginally increased for minimum flows above 70,000 cfs.

#### **Deep-Slow:**

Generation flows of 86,000 cfs paired with minimum flows between 2,000 cfs and 86,000 cfs produced steadily increasing deep-slow guild persistent habitat as minimum flow increased. The small amount of persistent habitat available was primarily found between Spencer, Wood and Robert Islands, the mouths of Deer and Octoraro Creeks, as well as river edges and around islands.

#### **Deep-Fast:**

Generation flows of 86,000 cfs paired with minimum flows below 7,500 cfs resulted in a rapid deep-fast guild persistent habitat increase up through a minimum flow of 30,000 cfs, followed by a gradual persistent habitat increase as minimum flows increased between 30,000 cfs and 86,000 cfs. The small amount of persistent habitat available was primarily found along the river edges and around islands.

#### 4.3.3 Mussel Habitat Assessment

Mussel habitat analyses primarily involved comparing mussel CPUE rates from semi-quantitative<sup>11</sup> mussel sampling locations (Conowingo Study 3.19: Freshwater Mussel Characterization Study below Conowingo Dam) to hydraulic parameters and substrate in the study reach (Figure 4.3.3-1).

Several hydraulic parameters are useful in assessing mussel habitat, but recent literature shows that bed shear stress( $\tau$ ) and relative shear stress<sup>12</sup> ( $\tau_c$ ) are two of the more important metrics (Pers. Comm, M. Ashton, 2011). While River2D directly calculates bed shear velocity, which is easily converted to bed shear stress, the model does not calculate relative shear stress. Relative shear stress ( $\tau_{rel}$ ) is defined as the ratio of bed shear stress to critical shear stress ( $\tau_{rel} = \tau/\tau_c$ ). Thus, to calculate relative shear stress, critical shear stress must also be known.

<sup>&</sup>lt;sup>11</sup> As stated in Conowingo Study 3.19, semi-quantitative mussel sampling consists of only riverbed surface sampling, with no sub-surface sampling, as is done in quantitative mussel sampling.

<sup>&</sup>lt;sup>12</sup> The "relative shear stress" calculations in this report are comparable to the "entrainment potential" calculations in Conowingo Study 3.15: Sediment Introduction and Transport, and differ in terminology in order to be consistent with each study's respective literature. The equations and methods used in both reports are identical, and the grain size classes are the only difference. The grain size classes in Conowingo Study 3.15 were chosen to be consistent with other sediment transport literature, while this report utilizes the HSI grain size classes described in Table 3.2.3-1 to be consistent with other analyses in this report.

Critical shear stress is the threshold that bed shear stress must meet or exceed to initiate particle movement and is defined in Allen and Vaughn (2010) as  $\tau_c = \theta_c g D_{50}(\rho_s - \rho)$ , where  $\theta_c$  is Shield's parameter (unitless),  $D_{50}$  is the median substrate particle size (cm),  $\rho_s$  is substrate density (2.65 g/cm<sup>3</sup>) [165.4 lb/ft<sup>3</sup>]<sup>13</sup>, and  $\rho$  is water density (0.998 g/cm<sup>3</sup>) [62.4 lb/ft<sup>3</sup>]. Shield's parameter ( $\theta_c$ ) and median particle size ( $D_{50}$ ) had to be estimated in order to estimate critical shear stress for each substrate type.

Allen and Vaughn (2010) conducted a mussel study that included six sampling sites on the Little River in Oklahoma. They used 0.065 as Shield's parameter, which they listed as appropriate for normally-packed gravel substrate<sup>14</sup>. The lower Susquehanna has a wide range of substrates, so  $\theta_c$  values from Julien (2010) were used for each substrate type. The  $\theta_c$  value used in Allen and Vaughn (2010) of 0.065 was noticeably larger than the gravel  $\theta_c$  listed in Julien (2010) of 0.039. It appears the differences is that the  $\theta_c$  of 0.065 is only applicable to normally-packed gravel, while a  $\theta_c$  of 0.039 is a more general estimate for all types of gravel. For this analysis, a  $\theta_c$  of 0.039 was used because it was more conservative (more sediment transport). The lower  $\theta_c$  used results in a lower critical shear stress threshold, and thus a more conservative analysis.

 $D_{50}$  substrate estimates were categorized using the substrate codes in <u>Table 3.2.3-1</u>, with an additional differentiation between bedrock in the tidal and non-tidal portions of the study reach. With the exception of silt, the median particle size was conservatively estimated as the smallest value of the particle range for that substrate, which would tend to slightly overestimate the amount of sediment moving. For example, gravel ranged from 2 to 64 mm, so the  $D_{50}$  was estimated as 2 mm [0.079 inches]. For silt, the particle size was estimated as the "medium silt" size of 0.016 mm [0.0006 inches] as defined in Julien (2010). Though a critical shear stress cannot be accurately estimated for bedrock, it was acknowledged that areas designated as bedrock dominated in the habitat analysis were not composed completely of bedrock and that other sediment types were present. Thus, for bedrock only, all present substrates identified in the 2008 aquatic habitat study were used to create an estimated composite particle size distribution from which the median particle size could be calculated, calculated as:

 $D_{50} = (\% gravel*D_{50gravel}) + (\% cobble*D_{50cobble}) + ([\% boulder+\% bedrock]*D_{50boulder}).$ 

<sup>&</sup>lt;sup>13</sup> For consistency with existing mussel literature, mussel results will be expressed in SI units. US Standard units will also be shown where possible.

<sup>&</sup>lt;sup>14</sup> No description of normally-packed gravel was provided.

Note that bedrock and boulder assumed the same  $D_{50}$  for calculation purposes. Additionally, field observations and local knowledge indicate that while the 2008 aquatic habitat study estimated substrate proportions correctly for non-tidal bedrock areas, substrate are slightly finer in tidally-influenced bedrock areas (Pers. Comm., M. Ashton, 2011). To account for this, bedrock was broken into tidal and non-tidal areas, which are shown in Figure 4.3.3-1. The makeup for the bedrock in non-tidal areas was 20% cobble, 15% boulder and 65% bedrock. The makeup for the bedrock in tidal areas was 5% gravel, 25% cobble, 20% boulder and 50% bedrock.

<u>Table 4.3.3-1</u> shows the substrates used in the mussel analysis, as well as the estimated median particle sizes, Shield's parameter and calculated critical shear stresses for each substrate code.

Hydraulic parameters were matched with the semi-quantitative mussel sampling locations. Appendix H includes tables showing modeled depth, water velocity, Froude number, shear stress and relative shear stress as well as CPUE<sup>15</sup>, alewife floater presence/absence, substrate and critical shear stress at each semi-quantitative mussel sampling location for all 14 modeled flows. Each table also highlights where shear stress and relative shear stress thresholds are exceeded for low flows in orange (20 dynes/cm<sup>2</sup> and 0.4, respectively) and high flows in red (150 dynes/cm<sup>2</sup> and 2.0, respectively). While there was a large variability in results, the semi-quantitative mussel surveying locations with the highest CPUE generally had low shear stress and relative shear stress values. A plot of CPUE vs. shear stress at several flows showed that stations with the highest CPUEs tended to have relatively low shear stresses (Figure 4.3.3-2). It also showed that at 3,500 cfs and 5,000 cfs the highest CPUEs were associated with shear stresses lower than 40-60 dynes/cm<sup>2</sup>.

To understand the relative amount of area suitable for mussel development at different flows, the area above the low flow and high flow shear stress thresholds were plotted in Figure 4.3.3-3. Maps of shear stress at each modeled flow are shown in <u>Appendix I</u>. The results showed that a moderate to high percentage of the wetted study area exceeded the low flow threshold, while a low to moderate percentage exceeded the high flows. The low flow threshold curve showed a rapid increase in area exceeding 20 dynes/cm<sup>2</sup> between 2,000 cfs and 10,000 cfs, with a moderate increase between 10,000 cfs and 30,000 cfs, followed by a gradual increase between 30,000 and 86,000 cfs. The high flow threshold curve showed a gradual decrease increase in area exceeding 150 dynes/cm<sup>2</sup> between 2,000 cfs and 5,000 cfs,

<sup>&</sup>lt;sup>15</sup> All CPUE numbers reflect overall mussel catch numbers, not any specific species

followed by a graduate increase in area between 5,000 cfs and 10,000 cfs, followed by a steady increase between 10,000 cfs and 86,000 cfs.

#### 5. STEADY-STATE HABITAT ANALYSIS DISCUSSION

This purpose of this section is to summarize the results presented in Section 4 so that flow regime preferences are compared across all target species or guilds.

#### 5.1 Monthly Analysis of WUA and Persistent Habitat Results

Shown in <u>Table 5.1-1</u> is the flow that provides the maximum WUA for each species and life stage (second column). The table also depicts the range of flows that provide 90%, 80%, 70% and 60% of the maximum WUA. Based on <u>Table 5.1-1</u>, a series of flows were chosen, and the habitat values as a percentage of maximum habitat were calculated for each species/life stage analyzed. This information is presented in <u>Table 5.1-2</u>.

Habitat as a percentage of maximum WUA was plotted against flow for each species, with daily average flow exceedance percentiles from the Conowingo estimated daily average unregulated flow added for reference (Table 2.2.2-2). Several species/life stages are tolerant of a wide flow range (e.g., American Shad Adult, all Striped Bass life stages), while several prefer narrow flow ranges (e.g., Mayfly, Smallmouth Bass Spawning). Some year-round species' have no preferred flow range overlap (e.g., Striped Bass Adult vs. Deep-Slow Guild), indicating that some species/life stages will be subject to sub-optimal flow conditions regardless of the flow regime.

Based on the discussion relative to species and life stage use in Section 4.2, the estimated unregulated hydrology at Conowingo (Table 2.2.2-2) and the maximum available habitat as a percentage of the study area, we narrowed the list of target species and life stages (Table 3.2.1-2) to those we expect would utilize the lower river and be compatible with its structural habitat and unregulated flow regime. We then analyzed these species and life stages, on a monthly basis, to provide information that could be used in determining a monthly flow schedule.

#### 5.1.1 January

<u>Figure 5.1.1-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in January along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of January these species include:

- Striped bass adults;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.1-1 provides the above species' flow preferences and January's median monthly flow.

#### 5.1.2 February

<u>Figure 5.1.2-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in February along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of February these species include:

- Striped bass adults;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.2-1 provides the above species' flow preferences and February's median monthly flow.

#### 5.1.3 March

<u>Figure 5.1.3-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in March along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of March these species include:

- Striped bass adults;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.3-1 provides the above species' flow preferences and March's median monthly flow.

#### 5.1.4 April

<u>Figure 5.1.4-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in April along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of April these species include:

- American shad spawning;
- American shad adults;
- Striped bass spawning;
- Striped bass fry;
- Striped bass adults;
- Smallmouth bass adults;
- Shortnose sturgeon spawning;
- Trichoptera;

- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.4-1 provides the above species' flow preferences and April's median monthly flow.

#### 5.1.5 May

Figure 5.1.5-1 provides the flow preferences of all target species' that are potentially present below Conowingo Dam in May along with estimated unregulated flow exceedance percentiles from Table 2.2.2-2. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of May these species include:

- American shad spawning;
- American shad fry
- American shad adults;
- Striped bass spawning;
- Striped bass fry;
- Striped bass adults;
- Smallmouth bass adults;
- Shortnose sturgeon spawning;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.5-1 provides the above species' flow preferences and May's median monthly flow.

#### 5.1.6 June

<u>Figure 5.1.6-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in June along with estimated unregulated flow exceedance percentiles from <u>Table 2.2.2</u>. <u>2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of June these species include:

- American shad spawning;
- American shad fry
- American shad adults;
- Striped bass spawning;
- Striped bass fry;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.6-1 provides the above species' flow preferences and June's median monthly flow.

#### 5.1.7 July

<u>Figure 5.1.7-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in July along with estimated unregulated flow exceedance percentiles from <u>Table 2.2.2</u>. <u>2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of July these species include:

- American shad fry;
- American shad juveniles;
- Striped bass fry;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.7-1 provides the above species' flow preferences and July's median monthly flow.

#### 5.1.8 August

<u>Figure 5.1.8-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in August along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of August these species include:

- American shad juveniles;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;

- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.8-1 provides the above species' flow preferences and August's median monthly flow.

#### 5.1.9 September

<u>Figure 5.1.9-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in September along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of September these species include:

- American shad juveniles;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.9-1 provides the above species' flow preferences and September's median monthly flow.

#### 5.1.10 October

<u>Figure 5.1.10-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in October along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of October these species include:

- American shad juveniles;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.10-1 provides the above species' flow preferences and October's median monthly flow.

#### 5.1.11 November

Figure 5.1.11-1 provides the flow preferences of all target species' that are potentially present below Conowingo Dam in November along with estimated unregulated flow exceedance percentiles from <u>Table 2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of November these species include:

- American shad juveniles;
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;

- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

Table 5.1.11-1 provides the above species' flow preferences and November's median monthly flow.

#### 5.1.12 December

<u>Figure 5.1.12-1</u> provides the flow preferences of all target species' that are potentially present below Conowingo Dam in December along with estimated unregulated flow exceedance percentiles from <u>Table</u> <u>2.2.2-2</u>. We narrowed the broader list of target species down to the following species and lifestages for which there is a relatively high amount of structural habitat available (relative to total wetted area), are expected to be present in the study reach and have some compatibility with the unregulated flow regime. For the month of December these species include:

- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;
- Smallmouth bass adults;
- Trichoptera;
- Members of the shallow-slow guild; and
- Members of the deep-slow guild.

<u>Table 5.1.12-1</u> provides the above species' flow preferences and December's median monthly flow.

#### 5.2 Mussel Habitat Analysis

The riverbed's primarily high critical shear stress, due to large amounts of boulder and bedrock, made comparing relative shear stresses to mussel catch rates (CPUE) ineffective. As a result, shear stress criteria were primarily used to analyze mussel habitat in the study reach. A plot of mussel CPUE vs. shear stress at various flows showed that stations with the highest CPUE tended to have relatively low

shear stresses (Figure 4.3.3-2). Study area shear stresses were compared to low flow and high flow thresholds of 20 dynes/cm<sup>2</sup> and 150 dynes/cm<sup>2</sup>, respectively, showing how higher flows reduced optimal mussel habitat availability (Figure 4.3.3-3). Results showed that the percent of the wetted study area exceeding the low flow threshold area rapidly increased between 2,000 cfs and 10,000 cfs and then leveled off, while the percent of the wetted study area exceeding the high flow threshold steadily increased between 10,000 cfs and 86,000 cfs.

The low-flow and high-flow shear stress thresholds predict that significant portions of the study area are not suitable for mussel development, particularly at high flows. While the high-flow shear stress thresholds appear to be related to preventing mussels from being carried downstream by current, the mechanisms driving low-flow shear stress thresholds are not entirely clear. Though Allen and Vaughn (2010) found a relationship between low-flow shear stress and mussel richness and abundance, they stated that better relationships were found with high-flow parameters. Thus, it was not clear whether low-flow shear stress at higher flows. Layzer and Madison (1995) suggest that adult mussel abundance is controlled at least partially by juvenile tolerances, such that adults are more abundant where juvenile development is best. They implied that adult mussels may be more tolerant of habitat changes than juveniles, but this topic was not investigated in their study. Thus, it is possible that the shear stress thresholds are more descriptive of juvenile habitat preferences than adult mussel tolerances.

Shear stress thresholds of 20 dynes/cm<sup>2</sup>, 50 dynes/cm<sup>2</sup> and 150 dynes/cm<sup>2</sup> have all been related to mussel richness and abundance, showing considerable variability associated with what is best for mussel development. In addition to shear stress tolerances' variability in literature, using shear stress thresholds developed with data from other rivers and areas of the country may introduce more uncertainty. Allen and Vaughn's (2010) study was conducted on a river with no peaking hydroelectric influences (flood control only) and the Layzer and Madison (1995) study site was completely unregulated. It is not clear in a highly regulated stream how this information would be used to inform flow management decisions.

Mussel habitat is found exclusively on the riverbed, and in the main-channel is generally found behind small-scale local refugia, such as behind bedrock outcrops and large boulders (Pers. Communication, W. Ettinger). This merits consideration that the hydraulic model, while utilizing a dense mesh relative to the study area, does not capture microhabitat behind individual bed features smaller than the mesh size (20-65 ft). Thus, while the model may be appropriate for identifying hydraulic properties and habitat throughout the reach, the results may underestimate the amount of available mussel habitat. Regardless, the CPUE

vs. shear stress plots show that model-predicted shear stress relates fairly well to mussel density, indicating that the model results are moderately capable at identifying large-scale mussel distribution.

#### 5.3 Habitat Conclusions

Habitat analyses for most species were conducted using SI curves, and habitat vs. flow curves were developed. Additionally, mussel habitat and habitat persistence analyses were run.

There were several areas in the river that appeared to provide high-quality habitat for many species and life stages. These areas included downstream of Rowland Island, near the mouths of Octoraro and Deer Creeks, an area southwest of Bird Island, downstream of Snake Island and in-between Robert, Wood and Spencer Islands. These areas often provided unique combinations of depth, velocity and substrate, providing refugia for species and life stages that are not well suited for the conditions found in the river's main channel. Other than for striped bass, these areas often proved to be the highest quality habitat found in the river for the target species.

While the habitat modeling provided estimates of available habitat at various flows, the river flow available is an important consideration in flow and habitat management decisions. There are four hydroelectric projects on the lower Susquehanna River, three of which are main channel peaking hydroelectric plants (Safe Harbor, Holtwood, Conowingo), one of which is a pumped storage (Muddy Run). All four have the ability to influence the river's flow regime, particularly on a sub-daily scale. The project with the largest hydraulic capacity is Safe Harbor, the farthest upstream project, with a maximum hydraulic capacity of 110,000 cfs. This is greater than the hydraulic capacity of Holtwood (61,460 cfs following expansion construction) and Conowingo (86,000 cfs). Safe Harbor also has no minimum flow release requirements as stipulated in its current license, which expires in 2030. Conowingo has a seasonally-varying minimum flow release, and Holtwood will also provide a minimum flow release beginning no later than 2012. Thus, it is important to consider not only the river's unregulated hydrology, but upstream projects' water availability influences, which can greatly impact the effectiveness of flow management decisions in the lower Susquehanna River.

#### 6. REFERENCES

- Allen, D.C., C.C. Vaughn. 2010. Complex hydraulic and substrate parameters limit freshwater mussel species richness: a test of the substrate stability hypothesis. Journal of the North American Benthological Sociatety. 29:383-394
- Bovee, K.D., B.L.Lamb, J.M. Bartholow, C.B. Stalnaker, J. Taylor, and J. Henriksen. 1998. Stream habitat analysis using the Instream Flow Incremental Methodology. U.S. Geological Survey, USGS/BRD/ITR--1998-0004. VIII + 131 pp.
- Bovee, K.D., Waddle, T.J., Bartholow, J., and Burris, L., 2007, A decision support framework for water
- management in the upper Delaware River: U.S. Geological Survey Open-File Report 2007-1172, 122 p.
- Bovee, K. D., T. J. Waddle, and R. B. Jacobson. 2004. Quantification of habitat patch persistence in river affected by hydropeaking. Geographic Information systems and Water Resources III AWRA Spring Specialty Conference. Nashville, Tennessee, May 17-19, 2004.
- Elliot, C.M., R.B. Jacobson, A.J. DeLonay. 2004. Physical Aquatic Habitat Assessment, Fort Randall Segment of the Missouri River, Nebraska and South Dakota. USGS Open-File Report 2004-1060
- Greene, K.E., J.L. Zimmerman, R.W. Laney, and J.C. Thomas-Blate. 2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Atlantic States marine Fisheries Commission Habitat Management Series No. 9, Washington, D.C.
- Jacobson, R.B., M.S. Laustrup, and J.M. Reuter. 2002. Habitat Assessment, Missouri River at Hermann, Missouri. USGS Open-File Report 02-32.
- Julien, P. 2010. Erosion and Sedimentation. 2<sup>nd</sup> Edition. Cambridge University Press. UK. 371p.
- Missouri Department of Conservation. November 2004. Assessment of Operational Alternatives for the Osage Hydroelectric Project, FERC Project No. 459.
- Susquehanna River Anadromous Fish Restoration Cooperative (SRAFRC). 2010. Migratory Fish Management and Restoration Plan for the Susquehanna River Basin. Final Draft Approved by Policy Committee.
- Susquehanna River Basin Commission (SRBC). June 2009. Extension of the Susquehanna River Basin Hydrology (October 2002-March 2008).
- Morales, Y., L.J. Weber, A.E. Mynett, and T.J. Newton. 2006. Effects of substrate and hydrodynamic conditions on the formation of mussel beds in a large river. Journal of the North American Benthological Society. 25:664-676.

| Exceedance<br>Percentile | Annual  | January | February | March   | April   | May     | June    | July    | August  | September | October | November | December |
|--------------------------|---------|---------|----------|---------|---------|---------|---------|---------|---------|-----------|---------|----------|----------|
| 0                        | 909,000 | 909,000 | 264,000  | 415,000 | 498,000 | 278,000 | 461,000 | 235,000 | 179,000 | 619,000   | 262,000 | 303,000  | 295,000  |
| 5                        | 119,000 | 164,000 | 114,000  | 173,000 | 187,000 | 119,000 | 84,000  | 68,900  | 57,500  | 73,100    | 84,800  | 95,900   | 140,000  |
| 10                       | 85,200  | 117,000 | 85,200   | 132,000 | 126,000 | 86,800  | 69,700  | 56,500  | 42,900  | 55,800    | 74,900  | 80,900   | 99,300   |
| 15                       | 78,800  | 89,200  | 80,000   | 104,000 | 102,000 | 80,500  | 62,500  | 46,100  | 38,400  | 42,900    | 59,400  | 75,900   | 83,600   |
| 20                       | 72,600  | 81,100  | 77,200   | 87,400  | 87,900  | 74,400  | 54,100  | 36,500  | 25,400  | 33,600    | 45,700  | 67,700   | 80,000   |
| 25                       | 66,600  | 78,800  | 73,100   | 82,900  | 83,800  | 67,800  | 47,000  | 27,900  | 12,900  | 24,600    | 36,300  | 61,600   | 76,400   |
| 30                       | 59,700  | 74,060  | 69,900   | 79,900  | 80,500  | 64,830  | 39,000  | 19,200  | 6,960   | 11,700    | 29,950  | 53,600   | 70,400   |
| 35                       | 49,800  | 68,100  | 65,500   | 77,100  | 77,700  | 59,700  | 32,500  | 8,310   | 6,550   | 6,500     | 23,500  | 45,900   | 65,900   |
| 40                       | 40,700  | 61,900  | 61,600   | 74,000  | 74,200  | 53,800  | 27,200  | 7,060   | 6,400   | 6,020     | 16,200  | 38,900   | 59,700   |
| 45                       | 32,500  | 52,400  | 51,500   | 71,800  | 71,600  | 46,000  | 23,700  | 6,700   | 6,250   | 5,740     | 7,080   | 32,100   | 51,600   |
| 50                       | 24,900  | 43,200  | 41,900   | 69,400  | 69,000  | 38,600  | 16,900  | 6,450   | 6,110   | 5,340     | 5,050   | 25,400   | 42,300   |
| 55                       | 16,200  | 33,200  | 33,700   | 65,600  | 65,955  | 33,000  | 8,560   | 6,300   | 5,930   | 5,000     | 4,690   | 17,900   | 33,500   |
| 60                       | 9,480   | 26,000  | 26,200   | 60,000  | 62,500  | 26,200  | 7,010   | 6,200   | 5,790   | 4,636     | 4,600   | 7,010    | 26,000   |
| 65                       | 6,700   | 18,700  | 19,800   | 49,900  | 54,700  | 22,200  | 6,510   | 6,020   | 5,690   | 4,450     | 4,540   | 5,190    | 18,400   |
| 70                       | 6,120   | 7,881   | 10,100   | 39,200  | 44,200  | 11,800  | 6,270   | 5,880   | 5,550   | 4,320     | 4,450   | 4,720    | 7,010    |
| 75                       | 5,690   | 4,770   | 5,538    | 30,200  | 33,100  | 10,100  | 6,150   | 5,790   | 5,390   | 4,200     | 4,370   | 4,550    | 4,460    |
| 80                       | 5,050   | 3,960   | 4,320    | 23,000  | 24,500  | 9,580   | 5,960   | 5,650   | 5,190   | 3,960     | 4,250   | 4,450    | 3,510    |
| 85                       | 4,540   | 1,520   | 1,680    | 7,350   | 13,600  | 9,270   | 5,830   | 5,500   | 4,950   | 3,690     | 3,880   | 4,320    | 1,450    |
| 90                       | 4,120   | 1,110   | 1,140    | 5,190   | 12,400  | 9,110   | 5,690   | 5,290   | 4,680   | 3,540     | 3,760   | 4,000    | 1,030    |
| 95                       | 3,010   | 958     | 950      | 4,500   | 11,900  | 8,800   | 5,440   | 4,950   | 3,840   | 3,140     | 3,620   | 3,650    | 879      |
| 100                      | 257     | 279     | 257      | 1,070   | 10,000  | 6,200   | 4,370   | 3,070   | 2,200   | 1,680     | 950     | 748      | 257      |

#### DED CENTRE EC - $\mathbf{\alpha}$ TNO 0 11/11 1000 0000 00 1 OTT

## TABLE 2.2.1-2: MARIETTA USGS GAGE (#01576000) DAILY AVERAGE FLOW EXCEEDENCE PERCENTILES (CFS), WY 1932-<br/>2009.

| Exceedance<br>Percentile | Annual    | January | February | March   | April   | May     | June      | July    | August  | September | October | November | December |
|--------------------------|-----------|---------|----------|---------|---------|---------|-----------|---------|---------|-----------|---------|----------|----------|
| 0                        | 1,040,000 | 556,000 | 446,000  | 700,000 | 431,000 | 450,000 | 1,040,000 | 223,000 | 287,000 | 545,000   | 252,000 | 396,000  | 348,000  |
| 5                        | 118,000   | 127,000 | 121,000  | 188,000 | 196,050 | 114,150 | 67,810    | 41,800  | 32,515  | 43,405    | 65,090  | 85,045   | 114,150  |
| 10                       | 84,800    | 90,990  | 92,000   | 148,000 | 146,000 | 90,200  | 51,500    | 30,430  | 23,100  | 26,800    | 41,000  | 63,300   | 83,690   |
| 15                       | 67,400    | 71,200  | 74,710   | 123,000 | 123,000 | 76,200  | 43,400    | 24,800  | 18,700  | 20,100    | 29,490  | 50,630   | 70,045   |
| 20                       | 56,120    | 59,920  | 63,200   | 108,000 | 105,000 | 66,320  | 37,000    | 21,600  | 16,600  | 16,700    | 22,860  | 42,440   | 59,300   |
| 25                       | 47,400    | 50,100  | 54,325   | 95,675  | 93,900  | 60,300  | 31,900    | 19,400  | 14,800  | 13,700    | 19,000  | 37,000   | 51,500   |
| 30                       | 40,800    | 43,500  | 47,610   | 85,590  | 85,400  | 54,300  | 29,000    | 17,300  | 13,100  | 11,800    | 16,090  | 33,230   | 45,000   |
| 35                       | 35,000    | 38,205  | 42,600   | 77,300  | 77,800  | 50,100  | 26,300    | 16,000  | 11,700  | 10,200    | 13,605  | 29,900   | 40,400   |
| 40                       | 30,200    | 34,000  | 38,600   | 70,300  | 71,840  | 45,800  | 23,900    | 14,400  | 10,600  | 9,110     | 11,700  | 27,100   | 36,200   |
| 45                       | 26,300    | 30,435  | 34,665   | 64,800  | 66,800  | 41,400  | 21,600    | 13,300  | 9,590   | 8,285     | 10,400  | 24,600   | 32,335   |
| 50                       | 23,000    | 27,000  | 31,000   | 59,700  | 62,700  | 37,650  | 19,900    | 12,300  | 8,690   | 7,580     | 9,495   | 22,300   | 29,000   |
| 55                       | 20,000    | 24,000  | 28,135   | 54,365  | 58,755  | 34,300  | 18,600    | 11,300  | 7,900   | 6,996     | 8,680   | 19,400   | 25,965   |
| 60                       | 17,500    | 21,500  | 26,200   | 48,780  | 54,300  | 31,900  | 17,200    | 10,400  | 7,368   | 6,386     | 7,908   | 17,200   | 23,100   |
| 65                       | 15,200    | 19,400  | 23,800   | 44,800  | 50,100  | 29,000  | 15,600    | 9,490   | 6,710   | 5,920     | 7,090   | 14,765   | 21,000   |
| 70                       | 13,000    | 17,500  | 21,700   | 41,000  | 46,100  | 26,300  | 14,300    | 8,750   | 6,190   | 5,540     | 6,451   | 12,800   | 19,200   |
| 75                       | 11,100    | 16,000  | 19,400   | 37,400  | 42,200  | 24,100  | 13,100    | 7,983   | 5,740   | 5,068     | 5,743   | 11,200   | 17,900   |
| 80                       | 9,310     | 14,500  | 17,160   | 32,900  | 38,340  | 21,800  | 12,180    | 7,210   | 5,350   | 4,590     | 5,150   | 9,508    | 16,000   |
| 85                       | 7,600     | 13,000  | 15,045   | 28,300  | 34,100  | 20,100  | 11,200    | 6,397   | 4,886   | 4,130     | 4,640   | 7,809    | 13,400   |
| 90                       | 6,070     | 11,170  | 13,000   | 24,170  | 30,700  | 17,800  | 9,880     | 5,530   | 4,360   | 3,690     | 4,080   | 6,080    | 11,000   |
| 95                       | 4,690     | 9,081   | 11,000   | 18,970  | 25,095  | 14,900  | 8,380     | 4,629   | 3,760   | 3,000     | 3,650   | 4,980    | 8,200    |
| 100                      | 1,380     | 4,000   | 6,000    | 6,500   | 15,300  | 8,680   | 4,830     | 2,580   | 2,610   | 1,380     | 1,450   | 2,100    | 3,300    |

#### TABLE 2.2.1-3: CONOWINGO USGS GAGE (#01578310) DAILY AVERAGE FLOW EXCEEDENCE PERCENTILES (CFS), WY 1968

| 2 | Λ | A | C |
|---|---|---|---|
|   | v | υ | 1 |

| Exceedance<br>Percentile | Annual    | January | February | March   | April   | May     | June      | July    | August  | September | October | November | December |
|--------------------------|-----------|---------|----------|---------|---------|---------|-----------|---------|---------|-----------|---------|----------|----------|
| 0                        | 1,120,000 | 622,000 | 470,000  | 462,000 | 467,000 | 235,000 | 1,120,000 | 213,000 | 202,000 | 662,000   | 245,000 | 272,000  | 357,000  |
| 5                        | 121,000   | 131,000 | 139,000  | 184,000 | 188,050 | 104,000 | 80,645    | 50,575  | 41,300  | 56,480    | 84,690  | 90,320   | 129,950  |
| 10                       | 85,400    | 93,980  | 98,500   | 139,000 | 144,000 | 81,100  | 59,000    | 37,500  | 28,280  | 35,240    | 57,170  | 70,410   | 98,350   |
| 15                       | 70,600    | 76,140  | 81,420   | 119,000 | 116,150 | 70,685  | 49,015    | 31,985  | 24,100  | 26,315    | 42,285  | 60,215   | 80,000   |
| 20                       | 60,300    | 62,160  | 70,860   | 102,000 | 102,200 | 64,000  | 42,240    | 28,080  | 20,600  | 22,120    | 32,480  | 53,600   | 71,380   |
| 25                       | 52,600    | 53,775  | 60,500   | 88,600  | 89,175  | 58,700  | 37,725    | 25,500  | 18,400  | 19,325    | 26,825  | 46,800   | 64,050   |
| 30                       | 46,100    | 47,800  | 54,240   | 81,400  | 82,700  | 53,400  | 33,900    | 23,170  | 16,300  | 17,100    | 22,700  | 42,500   | 57,200   |
| 35                       | 40,700    | 42,800  | 48,890   | 73,500  | 76,870  | 49,300  | 31,400    | 20,665  | 14,900  | 14,900    | 20,265  | 39,035   | 52,630   |
| 40                       | 35,700    | 38,060  | 44,800   | 68,360  | 70,900  | 45,760  | 28,900    | 18,900  | 13,300  | 13,100    | 17,460  | 35,200   | 47,820   |
| 45                       | 31,600    | 33,955  | 41,060   | 63,155  | 66,545  | 43,000  | 26,800    | 17,355  | 12,000  | 11,900    | 15,355  | 31,700   | 43,900   |
| 50                       | 27,800    | 30,250  | 36,800   | 58,900  | 61,800  | 39,400  | 24,500    | 15,700  | 10,650  | 10,400    | 13,800  | 28,700   | 40,300   |
| 55                       | 24,800    | 27,600  | 33,500   | 54,100  | 57,700  | 36,245  | 22,555    | 14,400  | 9,489   | 8,861     | 12,100  | 26,000   | 36,900   |
| 60                       | 21,700    | 25,040  | 30,840   | 50,440  | 53,900  | 33,200  | 20,300    | 13,100  | 8,380   | 7,410     | 10,900  | 23,460   | 33,880   |
| 65                       | 19,000    | 22,635  | 27,900   | 46,335  | 50,500  | 30,700  | 18,600    | 11,800  | 6,837   | 6,393     | 9,690   | 20,200   | 31,235   |
| 70                       | 16,200    | 20,800  | 25,680   | 42,130  | 45,470  | 28,030  | 17,170    | 10,400  | 6,143   | 5,337     | 8,320   | 17,700   | 28,330   |
| 75                       | 13,700    | 18,700  | 23,050   | 38,025  | 42,000  | 26,200  | 15,400    | 8,373   | 5,663   | 4,953     | 6,890   | 14,775   | 25,800   |
| 80                       | 11,200    | 16,240  | 20,700   | 34,100  | 38,200  | 23,520  | 13,580    | 6,946   | 5,290   | 4,368     | 4,912   | 12,400   | 22,040   |
| 85                       | 8,270     | 13,200  | 18,490   | 30,300  | 34,500  | 21,100  | 11,385    | 6,152   | 5,002   | 3,799     | 4,460   | 9,459    | 18,815   |
| 90                       | 5,840     | 10,210  | 15,500   | 24,410  | 29,690  | 18,100  | 8,658     | 5,421   | 4,490   | 3,037     | 3,750   | 5,807    | 13,610   |
| 95                       | 4,300     | 5,465   | 10,790   | 18,415  | 24,485  | 14,005  | 6,179     | 4,527   | 2,702   | 1,420     | 1,212   | 3,838    | 7,831    |
| 100                      | 269       | 511     | 758      | 287     | 6,090   | 5,220   | 622       | 269     | 367     | 363       | 295     | 303      | 777      |

#### TABLE 2.2.2-1: INCREMENTAL RIVER REACHES USED TO ESTIMATE UNREGULATED CONOWINGO FLOW. MARIETTA WATERSHED SIZE IS 25,990 MI<sup>2</sup>. CONOWINGO WATERSHED SIZE IS 27,100 MI<sup>2</sup>.

| River Reach             | Incremental        | Gage Used to  | Gage Proration      |
|-------------------------|--------------------|---------------|---------------------|
|                         | Drainage Area      | Prorate Flows | Factor (Incr.       |
|                         | (mi <sup>2</sup> ) |               | Drainage Area/      |
|                         |                    |               | Gage Drainage Area) |
| Marietta-Safe Harbor    | 100                | Manchester,   | 0.196               |
|                         |                    | PA            |                     |
| Safe Harbor-Holtwood    | 696                | Lancaster, PA | 2.148               |
| Muddy Run <sup>16</sup> | 9.2                | Lancaster, PA | 0.029               |
| Holtwood-Conowingo      | 304.8              | Lancaster, PA | 0.941               |
| Total                   | 1,110              |               |                     |
|                         | =,==0              |               |                     |

<sup>&</sup>lt;sup>16</sup> Muddy Run is part of the Holtwood-Conowingo incremental reach, but was explicitly broken out in the model separately. The Holtwood-Conowingo incremental drainage areas accounts for this.

#### TABLE 2.2.2-2: CONOWINGO ESTIMATED DAILY AVERAGE UNREGULATED FLOW EXCEEDANCE PERCENTILES, WY 1934-

| 7 | 0 | n | C  |
|---|---|---|----|
| 4 | υ | υ | כי |

| Exceedance<br>Percentile | Annual    | January | February | March   | April   | May     | June      | July    | August  | September | October | November | December |
|--------------------------|-----------|---------|----------|---------|---------|---------|-----------|---------|---------|-----------|---------|----------|----------|
| 0                        | 1,058,069 | 562,718 | 452,536  | 706,014 | 439,768 | 451,923 | 1,058,069 | 226,007 | 199,595 | 555,083   | 254,490 | 398,881  | 353,075  |
| 5                        | 120,856   | 131,040 | 123,979  | 192,806 | 199,103 | 115,402 | 69,826    | 43,987  | 33,750  | 43,622    | 67,382  | 86,033   | 118,143  |
| 10                       | 86,715    | 94,842  | 94,961   | 150,195 | 148,422 | 91,444  | 53,137    | 31,969  | 24,026  | 26,710    | 42,795  | 64,234   | 86,577   |
| 15                       | 69,143    | 73,798  | 77,813   | 126,139 | 123,804 | 77,387  | 44,356    | 26,333  | 19,583  | 20,313    | 30,958  | 51,860   | 73,422   |
| 20                       | 58,021    | 61,713  | 65,481   | 110,520 | 105,972 | 67,626  | 38,131    | 22,850  | 17,346  | 16,949    | 23,797  | 43,386   | 62,020   |
| 25                       | 48,894    | 52,130  | 56,367   | 97,286  | 95,263  | 61,351  | 33,289    | 20,600  | 15,498  | 14,053    | 19,617  | 37,692   | 53,782   |
| 30                       | 42,016    | 44,487  | 49,905   | 87,924  | 86,070  | 55,435  | 30,130    | 18,477  | 13,616  | 12,234    | 16,514  | 33,764   | 47,654   |
| 35                       | 36,107    | 39,580  | 44,625   | 79,579  | 78,967  | 51,125  | 27,262    | 16,924  | 12,238  | 10,586    | 14,167  | 30,522   | 42,309   |
| 40                       | 31,375    | 35,575  | 40,560   | 72,324  | 72,653  | 46,637  | 24,898    | 15,266  | 11,043  | 9,482     | 12,151  | 27,877   | 37,514   |
| 45                       | 27,322    | 31,302  | 36,222   | 67,131  | 67,906  | 42,553  | 22,670    | 14,038  | 10,142  | 8,685     | 10,805  | 25,271   | 34,077   |
| 50                       | 23,818    | 27,732  | 32,617   | 61,744  | 63,752  | 38,768  | 20,661    | 13,045  | 9,201   | 7,995     | 9,845   | 22,927   | 30,672   |
| 55                       | 20,778    | 24,620  | 29,506   | 56,991  | 59,617  | 35,025  | 19,243    | 12,080  | 8,339   | 7,402     | 9,060   | 20,143   | 27,619   |
| 60                       | 18,205    | 21,908  | 27,159   | 51,367  | 55,340  | 32,630  | 18,118    | 11,040  | 7,748   | 6,761     | 8,297   | 17,690   | 24,740   |
| 65                       | 15,779    | 19,823  | 24,738   | 46,930  | 50,852  | 29,504  | 16,576    | 10,019  | 7,119   | 6,249     | 7,514   | 15,447   | 22,125   |
| 70                       | 13,546    | 17,862  | 22,601   | 42,912  | 46,792  | 26,976  | 15,030    | 9,167   | 6,515   | 5,822     | 6,804   | 13,455   | 20,392   |
| 75                       | 11,599    | 16,363  | 20,002   | 39,457  | 43,046  | 24,650  | 13,737    | 8,403   | 6,049   | 5,408     | 6,132   | 11,633   | 18,376   |
| 80                       | 9,726     | 14,949  | 17,750   | 34,825  | 38,842  | 22,390  | 12,676    | 7,551   | 5,662   | 4,877     | 5,532   | 10,127   | 16,393   |
| 85                       | 8,022     | 13,394  | 15,741   | 30,157  | 35,093  | 20,506  | 11,654    | 6,680   | 5,166   | 4,382     | 4,949   | 8,387    | 13,806   |
| 90                       | 6,409     | 11,557  | 13,551   | 25,813  | 31,464  | 18,070  | 10,195    | 5,787   | 4,582   | 3,913     | 4,426   | 6,598    | 11,410   |
| 95                       | 4,991     | 9,638   | 11,264   | 20,786  | 25,450  | 15,319  | 8,670     | 4,815   | 3,872   | 3,283     | 3,792   | 5,542    | 8,519    |
| 100                      | 1,504     | 4,367   | 6,083    | 6,765   | 15,878  | 8,959   | 5,003     | 2,677   | 2,692   | 1,504     | 2,246   | 2,192    | 3,572    |

#### TABLE 3.2.1-1: TARGET SPECIES, HABITAT GUILD ASSIGNMENTS, AND SPECIES OF SPECIAL CONCERN. NOTE THAT ALL SPAWNING/INCUBATION AND FRY LIFE STAGES ARE CONSIDERED IMMOBILE.

|                      | Habitat Guild Assignment     |                      |                      |                      |  |  |  |  |  |  |
|----------------------|------------------------------|----------------------|----------------------|----------------------|--|--|--|--|--|--|
|                      | Shallow-slow<br>(< 2 ft, < 1 | Shallow-fast         | Deep slow            | Deep-fast            |  |  |  |  |  |  |
| Target Species       | ft/s)                        | (< 2  ft, > 1  ft/s) | (> 2  ft, < 1  ft/s) | (> 2  ft, > 1  ft/s) |  |  |  |  |  |  |
| American shad*       | F, J                         |                      | J                    | A, S                 |  |  |  |  |  |  |
| Hickory shad         | F                            |                      | J, S                 | А                    |  |  |  |  |  |  |
| Blueback herring     | F, J                         |                      | A, S                 |                      |  |  |  |  |  |  |
| Alewife              | F, J                         |                      | A, S                 |                      |  |  |  |  |  |  |
| White perch          | F, J                         | S                    | A, J                 | S                    |  |  |  |  |  |  |
| Yellow perch         | F                            |                      | A, J, S              |                      |  |  |  |  |  |  |
| Striped bass *       | F, J, S                      |                      | F, J, S              | A, S                 |  |  |  |  |  |  |
| Largemouth bass      | F, J, S                      |                      | A, F, J, S           |                      |  |  |  |  |  |  |
| Smallmouth bass *    | F                            |                      | A, F, J, S           |                      |  |  |  |  |  |  |
| Walleye              |                              |                      | A, J, F              | S                    |  |  |  |  |  |  |
| Shortnose sturgeon * | F                            | F                    | A, J, F              | A, F, J, S           |  |  |  |  |  |  |
| Atlantic sturgeon    |                              |                      | A, J, F              | A, F, J, S           |  |  |  |  |  |  |
| American eel***      | J                            |                      | A, J                 | J                    |  |  |  |  |  |  |
| EPT**                | V                            | V                    | V                    | V                    |  |  |  |  |  |  |

### A=Adult, J=Juvenile, F=Fry, S=Spawning

\*Species of special concern for instream flow assessment.

\*\* Ephemeroptera-Plecoptera-Trichoptera

\*\*\* Juvenile refers to elver and yellow eels, while adult refers to silver eels

# TABLE 3.2.1-2: SEASONAL PERIODICITY OF OCCURRENCE OF TARGET SPECIES IN THE SUSQUEHANNA RIVER BELOW CONOWINGO DAM. ITALICIZED LIFE STAGES ARE CONSIDERED IMMOBILE. HABITAT GUILDS ARE SHOWN IN PARENTHESES.

|                                     | Jan | Feb | Mar   | Apr | May   | Jun | Jul | Aug   | Sep | Oct | Nov  | Dec |
|-------------------------------------|-----|-----|-------|-----|-------|-----|-----|-------|-----|-----|------|-----|
| American Shad                       | Jui | 100 | IVIGI |     | 1.1uj | oun | oui | 11 mg | Sep | 000 | 1107 | 200 |
| Spawning                            |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry                                 |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles                           |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults                              |     |     |       |     |       |     |     |       |     |     |      |     |
| Hickory Shad                        |     |     |       |     |       |     |     |       |     |     |      |     |
| Spawning (Deep-Slow)                |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry(Shallow-Slow)                   |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles (Deep-Slow)               |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults (Deep-Fast)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Blueback Herring                    |     |     |       |     |       |     |     |       |     |     |      |     |
| Spawning (Deep-Slow)                |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry (Shallow-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles (Shallow-Slow)            |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults (Deep-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Alewife                             |     |     |       | _   |       |     |     |       |     |     |      |     |
| Spawning (Deep-Slow)                |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry (Shallow-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles (Deep-Slow)               |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults (Shallow-Slow)               |     |     |       |     |       |     |     |       |     |     |      |     |
| White Perch                         |     |     |       |     |       |     |     |       |     |     |      |     |
| Spawning (Shallow-Fast, Deep-Fast)  |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry (Shallow-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles (Shallow-Slow, Deep-Slow) |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults (Deep-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Yellow Perch                        |     |     |       |     |       |     |     |       |     |     |      |     |
| Spawning (Deep-Slow)                |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry (Shallow-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles (Deep-Slow)               |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults (Deep-Slow)                  |     |     |       |     |       |     |     |       |     |     |      |     |
| Striped Bass                        |     |     |       |     |       |     |     |       |     |     |      |     |
| Spawning                            |     |     |       |     |       |     |     |       |     |     |      |     |
| Fry                                 |     |     |       |     |       |     |     |       |     |     |      |     |
| Juveniles                           |     |     |       |     |       |     |     |       |     |     |      |     |
| Adults                              |     |     |       |     |       |     |     |       |     |     |      |     |

|                                            | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Largemouth Bass                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Shallow-Slow, Deep-Slow)         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Shallow-Slow, Deep-Slow)              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles (Shallow-Slow, Deep-Slow)        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Smallmouth Bass                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                        |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Walleye                                    |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Deep-Fast)                       |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Deep-Slow)                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles (Deep-Slow)                      |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Shortnose sturgeon                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                        |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Atlantic sturgeon                          |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Deep-Fast)                       |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Deep-Slow, Deep-Fast)                 |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults (Deep-Slow, Deep-Fast)    |     |     |     |     |     |     |     |     |     |     |     |     |
| American eel                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Elver (Shallow-Slow, Deep-Slow, Deep-Fast) |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow (Shallow-Slow,Deep-Slow,Deep-Fast)  |     |     |     |     |     |     |     |     |     |     |     |     |
| Silver (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Alewife floater                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults/juveniles                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Eastern elliptio                           |     | 1   |     |     |     |     |     |     |     | 1   | 1   |     |
| Adults/juveniles                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Fingernail clams                           | 1   | 1   | 1   |     |     |     |     |     | 1   | 1   | 1   |     |
| Adults                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Ephemeroptera-Plecoptera-Trichoptera       |     |     |     |     |     |     |     |     |     |     |     |     |
|                                            |     |     |     |     |     |     |     |     |     |     |     |     |
| all life stages                            |     |     |     |     |     |     |     |     |     |     |     |     |

### TABLE 3.2.2-1: SOURCES OF HABITAT SUITABILITY INDICES FOR SPECIES OF SPECIAL CONCERN AND HABITAT-BASED GUILDS

|                                    | HSC Source                       |                                         |                                    |
|------------------------------------|----------------------------------|-----------------------------------------|------------------------------------|
| Species                            | Velocity                         | Depth                                   | Substrate                          |
| American shad <sup>1, 2, 3</sup>   |                                  | -                                       |                                    |
| Spawning                           | Stier and Crance 1985.           | Stier and Crance 1985.                  | ASMFC 2009.                        |
| Fry                                | Stier and Crance 1985.           | Stier and Crance 1985.                  | Stier and Crance 1985.             |
| Juvenile                           | Stier and Crance 1985.           | Ross et al 1993. Greene et al. 2009.    | Stier and Crance 1985.             |
| Adult                              | Stier and Crance 1985.           | Stier and Crance 1985.                  | Stier and Crance 1985.             |
| Shortnose Sturgeon <sup>4</sup>    |                                  |                                         |                                    |
| Spawning                           | Crance, J.H. 1986.               | Crance, J.H. 1986.                      | Crance, J.H. 1986.                 |
| Fry                                | Crance, J.H. 1986.               | Crance, J.H. 1986.                      | Crance, J.H. 1986.                 |
| Juvenile                           | Crance, J.H. 1986.               | Crance, J.H. 1986.                      | Crance, J.H. 1986.                 |
| Adult                              | Crance, J.H. 1986.               | Crance, J.H. 1986.                      | Crance, J.H. 1986.                 |
| Striped bass <sup>5</sup>          |                                  |                                         |                                    |
| Spawning                           | Crance, J.H. 1984.               | Crance, J.H. 1984.                      | Crance, J.H. 1984.                 |
| Fry                                | Crance, J.H. 1984.               | Crance, J.H. 1984.                      | Crance, J.H. 1984.                 |
| Juvenile                           | Crance, J.H. 1984.               | Crance, J.H. 1984.                      | Crance, J.H. 1984.                 |
| Adult                              | Crance, J.H. 1984.               | Crance, J.H. 1984.                      | Crance, J.H. 1984.                 |
| Smallmouth bass <sup>6, 7, 8</sup> | Aadland and Kuitunen. 2006.      | Aadland and Kuitunen. 2006.             | Aadland and Kuitunen. 2006.        |
| Adult                              | North Carolina Department of     | Angermeier (1987), Ross et al (1987),   | North Carolina Department of Water |
|                                    | Water Resources, RMC (1992);     | Todd and Rabeni (1989)                  | Resources, RMC (1992)              |
| Juvenile                           | North Carolina Department of     | North Carolina Department of Water      | North Carolina Department of Water |
|                                    | Water Resources, RMC (1992)      | Resources, RMC (1992)                   | Resources, RMC (1992)              |
| Fry                                | North Carolina Department of     | North Carolina Department of Water      | North Carolina Department of Water |
|                                    | Water Resources, RMC (1992)      | Resources, RMC (1992)                   | Resources, RMC (1992)              |
| Spawning                           | North Carolina Department of     | North Carolina Department of Water      | North Carolina Department of Water |
| 0                                  | Water Resources, RMC (1992)      | Resources, RMC (1992)                   | Resources, RMC (1992)              |
| Shallow-slow guild <sup>9</sup>    |                                  |                                         |                                    |
| (< 2 ft, < 1 ft/sec)               | Leonard and Orth (1988); Aadland | (1993); Normandeau (2000); Progress Ene | rgy (2003); DTA (2005)             |
| Shallow-fast guild <sup>9</sup>    |                                  |                                         |                                    |
| (< 2  ft, > 1  ft/sec)             | Aadland (1993); Normandeau (200  | 00); Progress Energy (2003); DTA (2005) |                                    |
| Deep-slow <sup>9</sup>             |                                  |                                         |                                    |
| (> 2  ft, < 1  ft/sec)             | Aadland (1993); Normandeau (200  | 00); Progress Energy (2003); DTA (2005) |                                    |
| Deep-fast <sup>9</sup>             |                                  |                                         |                                    |
| (> 2 ft, > 1 ft/sec)               |                                  | 00); Progress Energy (2003); DTA (2005) |                                    |
| EPT <sup>10</sup>                  | Gore et al. 2001                 |                                         |                                    |

1) Stier, D.J., and J.H. Crance. 1985. Habitat suitability index models and instream flow suitability curves: American shad. United States Fish and Wildlife Service Biological Report 82(10.88). 34pp.

2) Ross, R.M., T.W.W. Backman, and R.M.Bennett. 1993. Evaluation of habitat suitability index models for riverine life satges of American shad, with proposed models for premigratory juveniles. U.S.Fish and Wildlife Service Bilogical Report 14.

3) Atlantic States Marine Fisheries Commission.2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Habitat Management Series No.9, Washington, D.C.

4) Crance, J.H. 1986. Habitat suitability information: Shortnose sturgeon. U.S. Fish Wildl. Serv. Biol. Rep. FWS/OBS-82/10.129. 31pp.

5) Crance, J.H. 1984. Habitat suitability index models and instream flow suitability curves: Inland stocks of striped bass. U.S. Fish Wildl. Serv. FWS/OBS-82/10.85. 63pp.

6) Aadland, L.P. and A. Kuitunen. 2006. Habitat suitability criteria for stream fishes and mussels of Minnesota. Division of Ecological Services, Special Publication No. 62. Minnesota Department of Natural Resources, St. Paul, MN

7) Original habitat suitability curves for smallmouth bass (Edwards *et al.* 1983; FWS/OBS-82/10.36) were modified in consultation with NCDWR for IFIM study in Pigeon River, NC (RMC 1992). RMC.1992. Results of an incremental flow study in the bypassed reach at the Walters Hydroelectric Project, Pigeon River, North Carolina. Prepared for Carolina Power and Light Company, Raleigh, NC.

8) Angermeier, P. L. 1987. Spatiotemporal variation in habitat selection by fishes in small Illinois streams. 52–60. in W. J. Matthews and D. C. Heins, editors. Community and evolutionary ecology of North American stream fish. University of Oklahoma Press, Norman.

Ross, S. T., J. A. Baker, and K. E. Clark. 1987. Microhabitat partitioning of southeastern stream fishes: Temporal and spatial predictability. In: Matthews, W. J. and D. C. Heins (eds.). Symposium on the Evolutionary and Community Ecology of North American Stream Fishes. University of Oklahoma Press, p. 4251.

Todd, B.L. and C.F. Rabeni. 1989. Movement and habitat use by stream dwelling smallmouth bass. Transaction of the American Fisheries Society 118:229-242.

9) Leonard, P.M. and D.J. Orth. 1988. Use of habitat guilds of fishes to determine instream flow requirements. North American Journal of Fisheries Management 8:399-409.

Aadland, L.P. 1993. Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13:790-806.

Normandeau Associates,Inc. 2000.An instream flow study in support of relicensing of the Piney Hydroelectric Station FERC Project No.309. Prepared for Foster Wheeler Environmental Corporation, Langhorne, PA and Sithe Pennsylvania Holdings LLC, Johnstown,PA

Progress Energy. 2003. Pee Dee River instream flow study (FERC No. 2206).

DTA. 2005. Duke Power Catawba-Wateree relicensing (FERC No.2232) Instream flow study report.

10) Gore, J.A., J.B. Layzer, and J.Mead. Macroinvertebrate instream flow studies after 20 years: a role in stream management and restoration. Regul. Rivers: Res. Mgmt. 17:527-542.

#### TABLE 3.2.3-1: SUBSTRATE CLASSIFICATION SYSTEM. CLASSIFICATIONS BASED ON PREVIOUS IFIM STUDIES AND THE PROFESSIONAL JUDGMENT OF EXELON AND STAKEHOLDER BIOLOGISTS.

| Code | Substrate Type   | Size Class (metric) | Size Class (English) |
|------|------------------|---------------------|----------------------|
| 1    | Detritus/Organic | NA                  | NA                   |
| 2    | Mud/soft clay    | NA                  | NA                   |
| 3    | Silt             | < 0.062 mm          | < 0.00244 in         |
| 4    | Sand             | 0.062 - 2 mm        | 0.00244 - 0.0787 in  |
| 5    | Gravel           | 2 - 64 mm           | 0.0787 - 2.52 in     |
| 6    | Cobble/rubble    | 64 - 250 mm         | 2.52 - 9.84 in       |
| 7    | Boulder          | 250 - 4000 mm       | 9.84 - 157.5 in      |
| 8    | Bedrock          | NA                  | NA                   |

| <b>Range</b> (+/-) | Percentage of Nodes within<br>Range |
|--------------------|-------------------------------------|
| 0.15 ft            | 72                                  |
| 0.20 ft            | 85                                  |
| 0.25 ft            | 93                                  |
| 0.30 ft            | 96                                  |
| 0.50 ft            | 100                                 |

### TABLE 4.2.1-1: HYDRAULIC MODEL CALIBRATION (40,000 CFS) RESULTS

# TABLE 4.2.1-2: HYDRAULIC MODEL CALIBRATION (5,000 CFS, 20,000 CFS, 60,000CFS AND 80,000 CFS) RESULTS

|                      | Site 2           | Site 3           | Site 4  |
|----------------------|------------------|------------------|---------|
|                      | Calibration      |                  | 5110 4  |
| Observed WSE         | 13.10            | 9.24             | 5.38    |
| (ft)                 | 15.10            | 9.24             | 5.50    |
|                      |                  |                  |         |
| Predicted WSE        | 12.85            | 9.15             | 5.28    |
| (ft)                 |                  |                  |         |
| Difference           | -0.25            | -0.09            | -0.10   |
|                      | Calibration =    | 20 000 cfs       |         |
| Observed WSE         | 15.08            | 10.76            | 7.22    |
| (ft)                 | 15.00            | 10.70            | 1.22    |
| × /                  |                  |                  |         |
| Predicted WSE        | 14.99            | 10.69            | 7.31    |
| (ft)                 |                  |                  |         |
| Difference           | -0.09            | -0.07            | 0.09    |
|                      | Calibration =    | = 60,000 cfs     |         |
| Observed WSE         | 17.88            | 13.60            | 10.09   |
| (ft)                 |                  |                  |         |
| Predicted WSE        | 18.01            | 13.68            | 10.23   |
| (ft)                 | 10.01            | 13.00            | 10.23   |
|                      |                  |                  |         |
| Difference           | 0.13             | 0.08             | 0.14    |
|                      | Calibration =    | 80,000 cfs       |         |
| Observed WSE         | 19.23            | 15.05            | 11.28   |
| (ft)                 |                  |                  |         |
| Predicted WSE        | 19.25            | 14.80            | 11.38   |
| (ft)                 | 17.25            | 17.00            | 11.50   |
|                      |                  |                  |         |
| Difference           | 0.02             | 0.07             | 0.10    |
| Refer to Figure 3.3. | 1-2 to see water | level monitor lo | cations |
|                      |                  |                  |         |

# TABLE 4.3-1: PERCENTAGE OF PEAK WUA RELATIVE TO TOTAL WETTED AREA

| Species/Life Stage  | Maximum<br>WUA Flow<br>(cfs) | Habitat Area at<br>Maximum WUA<br>Flow (ft <sup>2</sup> ) | Total Wetted Area<br>at Maximum WUA<br>Flow (ft <sup>2</sup> ) | % of Available<br>Habitat at Max<br>WUA Flow |
|---------------------|------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|
| American Shad:      |                              | Flow (It )                                                |                                                                | WOA Flow                                     |
| Spawning & Inc.     | 40,000                       | 24,052,704                                                | 72,189,772                                                     | 33.3                                         |
| Fry                 | 30,000                       | 17,990,435                                                | 68,985,301                                                     | 26.1                                         |
| Juvenile            | <u>10</u> ,000               | 21,651,763                                                | 67,344,789                                                     | <u>32.2</u>                                  |
| Adult               | 40,000                       | 26,204,622                                                | 72,189,772                                                     | 36.3                                         |
| Shortnose Sturgeon: |                              |                                                           |                                                                |                                              |
| Spawning & Inc.     | 50,000                       | 14,048,270                                                | 73,143,811                                                     | 19.2                                         |
| Fry                 | 30,000                       | 848,538                                                   | 68,985,301                                                     | 1.2                                          |
| Juvenile            | 30,000                       | 1,431,622                                                 | 68,985,301                                                     | 2.1                                          |
| Adult               | 30,000                       | 1,431,622                                                 | 68,985,301                                                     | 2.1                                          |
| Striped Bass:       |                              |                                                           |                                                                |                                              |
| Spawning & Inc.     | 50,000                       | 56,216,898                                                | 73,143,811                                                     | 76.9                                         |
| Fry                 | 50,000                       | 55,545,960                                                | 73,143,811                                                     | 75.9                                         |
| Juvenile            | 40,000                       | 30,036,145                                                | 72,189,772                                                     | 41.6                                         |
| Adult               | 80,000                       | 63,530,991                                                | 75,027,993                                                     | 84.7                                         |
| Smallmouth Bass:    |                              |                                                           |                                                                |                                              |
| Spawning & Inc.     | 5,000                        | 1,141,787                                                 | 66,071,508                                                     | 1.7                                          |
| Fry                 | 2,000*                       | 3,611,296                                                 | 64,268,929                                                     | 5.6                                          |
| Juvenile            | 5,000                        | 26,005,058                                                | 66,071,508                                                     | 39.4                                         |
| Adult               | 15,000                       | 36,373,846                                                | 68,088,618                                                     | 53.4                                         |
| Macroinvertebrates  |                              |                                                           |                                                                |                                              |
| Ephemeroptera       | 5,000                        | 6,052,996                                                 | 66,071,508                                                     | 9.2                                          |
| Plecoptera          | 5,000                        | 4,432,285                                                 | 66,071,508                                                     | 6.7                                          |
| Trichoptera         | 10,000                       | 12,751,836                                                | 67,344,789                                                     | 18.9                                         |
| Habitat Guilds      |                              |                                                           |                                                                |                                              |
| Shallow Slow        | 2,000*                       | 29,171,737                                                | 64,268,929                                                     | 45.4                                         |
| Shallow Fast        | 2,000*                       | 1,079,340                                                 | 64,268,929                                                     | 1.7                                          |
| Deep Slow           | 5,000                        | 34,257,996                                                | 66,071,508                                                     | 51.8                                         |
| Deep Fast           | 20,000                       | 1,219,290                                                 | 68,985,301                                                     | 1.8                                          |

\*Indicates that the flow range was limited by the lowest or highest production run flow, thus the true flow range providing this habitat falls outside of the modeled flows and is greater than shown.

| Substrate Type            | Code | Size Class (metric) | Size Class (English) | Shield's<br>Parameter<br>(θ <sub>c</sub> ) | Estimated<br>D <sub>50</sub> (mm) | τ <sub>c</sub><br>(dynes/cm²) | τ <sub>c</sub> (N/m²) | τ <sub>c</sub><br>(lb/ft²) |
|---------------------------|------|---------------------|----------------------|--------------------------------------------|-----------------------------------|-------------------------------|-----------------------|----------------------------|
| Detritus/Organic          | 1    | NA                  | NA                   | NA                                         | NA                                | NA                            | NA                    | NA                         |
| Mud/soft clay             | 2    | NA                  | NA                   | NA                                         | NA                                | NA                            | NA                    | NA                         |
| Silt                      | 3    | < 0.062 mm          | < 0.00244 in         | 0.25                                       | 0.016                             | 0.65                          | 0.065                 | 0.0014                     |
| Sand                      | 4    | 0.062 - 2 mm        | 0.00244 - 0.0787 in  | 0.109                                      | 0.062                             | 1.09                          | 0.109                 | 0.0023                     |
| Gravel                    | 5    | 2 - 64 mm           | 0.0787 - 2.52 in     | 0.039                                      | 2                                 | 12.6                          | 1.26                  | 0.026                      |
| Cobble/rubble             | 6    | 64 - 250 mm         | 2.52 - 9.84 in       | 0.052                                      | 64                                | 534                           | 53.4                  | 1.11                       |
| Boulder                   | 7    | 250 – 4,000 mm      | 9.84 - 157.5 in      | 0.054                                      | 250                               | 2,186                         | 219                   | 4.56                       |
| Bedrock - US of Robert I. | 8a   | 64-4,000 mm*        | 2.52 - 157.5 in      | 0.054                                      | 213                               | 1,862                         | 186                   | 3.89                       |
| Bedrock - DS of Robert I. | 8b   | 2-4,000 mm**        | 0.787 - 157.5 in     | 0.054                                      | 191                               | 1,671                         | 167                   | 3.49                       |

### TABLE 4.3.3-1: MUSSEL SUBSTRATE CODES AND CORRESPONDING CRITICAL SHEAR STRESS VALUES<sup>17</sup>.

\* For D<sub>50</sub> estimations only, bedrock upstream of Robert Island was assumed to contain substrate ranging from cobble/rubble to boulders

\*\* For D<sub>50</sub> estimations only, bedrock downstream of Robert Island was assumed to contain substrate ranging from gravel to boulders

<sup>&</sup>lt;sup>17</sup> Field observations and local knowledge indicate that non-dominant substrates are slightly finer in tidally-influenced bedrock-dominated areas than non-tidally influenced bedrock-dominated areas, thus they were broken into two categories for the mussel analysis only..

| Species/Life Stage             | Months<br>Present | Flow at<br>Maximum<br>WUA (cfs) | Flow Range<br>Providing 90%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 80%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 70%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 60%<br>of Maximum<br>WUA (cfs) |
|--------------------------------|-------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| American Shad:                 | Tresent           |                                 | WOR (cls)                                              |                                                        | WOR (CIS)                                              | WOR (CIS)                                              |
| Spawning & Inc.                | Apr-Jun           | 40,000                          | 24,200 - 61,325                                        | 18,144 - 72,765                                        | 14,472 - 82,757                                        | 11,801 - 86,000*                                       |
| Fry                            | May-Jul           | 30,000                          | 14,716 - 43,771                                        | 10,703 - 55,000                                        | 7,744 - 67,028                                         | 5,513 - 80,335                                         |
| Juvenile                       | Jul-Nov           | <del>5,000</del> 10,000         | 4,011 – 29,062                                         | 2,670 - 42,383                                         | <u>2,000*</u> – <u>52,641</u>                          | $2,000* - \frac{65,469}{2}$                            |
| Adult                          | Apr-Jun           | 40,000                          | 25,090 - 69,495                                        | 18,332 - 84,715                                        | 13,861 - 86,000*                                       | 10,166 – 86,000*                                       |
| Shortnose Sturgeon:            |                   |                                 |                                                        |                                                        |                                                        |                                                        |
| Spawning & Inc.                | Apr-May           | 50,000                          | 24,234 - 86,000*                                       | 16,997 - 86,000*                                       | 13,008 - 86,000*                                       | 9,872 - 86,000*                                        |
| Fry                            | May-Jul           | 30,000                          | 16,917 – 62,164                                        | 11,835 - 79,017                                        | 8,546 - 86,000*                                        | 6,424 - 86,000*                                        |
| Juvenile                       | All               | 30,000                          | 14,068 - 54,906                                        | 9,240 - 77,199                                         | 6,228 - 86,000*                                        | 4,078 - 86,000*                                        |
| Adult                          | All               | 30,000                          | 14,068 - 54,906                                        | 9,240 - 77,199                                         | 6,228 - 86,000*                                        | 4,078 - 86,000*                                        |
| Striped Bass:                  |                   | ,                               | ,                                                      | , ,                                                    | , ,                                                    | , ,                                                    |
| Spawning & Inc.                | Apr-Jun           | 50,000                          | 32,730 - 77,550                                        | 25,977 - 86,000*                                       | 20,450 - 86,000*                                       | 16,272 - 86,000*                                       |
| Fry                            | Apr-Jul           | 50,000                          | 34,705 - 76,746                                        | 27,846 - 86,000*                                       | 22,977 - 86,000*                                       | 18,547 - 86,000*                                       |
| Juvenile                       | Jun-Dec           | 40,000                          | 20,968 - 64,890                                        | 12,777 – 76,387                                        | 7,961 - 86,000*                                        | 5,290 - 86,000*                                        |
| Adult                          | All               | 80,000                          | 38,584 - 86,000*                                       | 28,570 - 86,000*                                       | 21,450 - 86,000*                                       | 16,057 - 86,000*                                       |
| Smallmouth Bass:               |                   |                                 |                                                        |                                                        |                                                        |                                                        |
| Spawning & Inc.                | May-Jun           | 5,000                           | 2,000*-8,262                                           | 2,000*-10,853                                          | 2,000*-13,430                                          | 2,000*-16,725                                          |
| Fry                            | Jun-Jul           | 2,000*                          | 2,000*-2,556                                           | 2,000*-3,111                                           | 2,000*-3,778                                           | 2,000*-4,703                                           |
| Juvenile                       | Aug-Dec           | 5,000                           | 2,000*-10,552                                          | 2,000*-14,474                                          | 2,000*-18,051                                          | 2,000*-21,757                                          |
| Adult                          | All               | 15,000                          | 6,737 – 24,531                                         | 4,623 - 33,522                                         | 3,127 - 44,491                                         | 2,000*-58,145                                          |
| Macroinvertebrates             |                   |                                 |                                                        |                                                        |                                                        |                                                        |
| Ephemeroptera (Mayfly)         | All               | 5,000                           | 3,190 - 7,823                                          | 2,469 - 9,340                                          | 2,000*-11,168                                          | 2,000*-13,235                                          |
| Plecoptera (Stonefly)          | All               | 5,000                           | 2,000* - 8,067                                         | 2,000*-10,404                                          | 2,000*-13,217                                          | 2,000*-16,828                                          |
| Trichoptera (Caddisfly)        | All               | 10,000                          | 4,289 - 17,762                                         | 3,038 - 23,884                                         | 2,000*-29,890                                          | 2,000*-36,612                                          |
| Habitat Guilds                 |                   |                                 |                                                        |                                                        |                                                        |                                                        |
| Shallow Slow                   | All               | 2,000*                          | 2,000*-2,726                                           | 2,000*-3,452                                           | 2,000*-4,098                                           | 2,000* - 4,740                                         |
| Shallow Fast                   | Apr-Jun           | 2,000*                          | 2,000*-3,143                                           | 2,000* - 4,007                                         | 2,000*-4,743                                           | 2,000*-5,921                                           |
| Deep Slow                      | All               | 5,000                           | 2,703 - 8,574                                          | 2,000*-10,428                                          | 2,000*-12,565                                          | 2,000*-14,702                                          |
| Deep Fast                      | All               | 20,000                          | 14,376 - 22,424                                        | 12,866 - 24,848                                        | 11,355 – 27,271                                        | 9,888 - 26,695                                         |
| *Indicates that the flow range |                   | •                               | highest production run                                 | flow, thus the true flow                               | range providing this ha                                | bitat falls outside of                                 |
| the modeled flows and is grea  | ter than show     | vn.                             |                                                        |                                                        |                                                        |                                                        |

### TABLE 5.1-1: FLOWS PROVIDING PERCENTAGES OF MAXIMUM WEIGHTED USABLE AREA (WUA)

| Species/Life Stage | Months<br>Present | Maximum<br>WUA<br>Flow (cfs) | Maximum<br>WUA (ft <sup>2</sup> ) | 3,500<br>cfs  | 5,000<br>cfs  | 7,500<br>cfs  | 10,000<br>cfs  | 15,000<br>cfs | 20,000<br>cfs | 40,000<br>cfs | 60,000<br>cfs | 70,000<br>cfs | 80,000<br>cfs | 86,000<br>cfs |
|--------------------|-------------------|------------------------------|-----------------------------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| American Shad      |                   |                              |                                   |               |               |               |                |               |               |               |               |               |               |               |
| Spawning & Inc.    | Apr-Jun           | 40,000                       | 24,052,704                        | 17.2%         | 26.3%         | 40.8%         | 53.3%          | 72.0%         | 84.7%         | 100.0%        | 91.1%         | 82.8%         | 72.8%         | 66.7%         |
| Fry                | May-Jul           | 30,000                       | 17,990,453                        | 48.9%         | 57.6%         | 69.1%         | 78.2%          | 90.7%         | 97.5%         | 93.4%         | 75.6%         | 67.6%         | 60.2%         | 56.1%         |
| Juvenile           | Jul-Nov           | <u>10</u> ,000               | 21,651,763                        | <u>87.8</u> % | <u>94.2</u> % | <u>98.4</u> % | <u>100.0</u> % | <u>99.7</u> % | <u>97.3</u> % | <u>82.5</u> % | <u>64.0</u> % | <u>56.7</u> % | <u>49.9</u> % | <u>46.0</u> % |
| Adult              | Apr-Jun           | 40,000                       | 26,204,622                        | 35.2%         | 41.4%         | 51.1%         | 59.6%          | 73.1%         | 83.5%         | 100.0%        | 95.1%         | 89.7%         | 83.3%         | 79.1%         |
| Shortnose Sturgeon |                   | -                            |                                   |               |               |               |                |               |               | -             | -             | -             |               |               |
| Spawning & Inc.    | Apr-May           | 50,000                       | 14,048,270                        | 24.1%         | 34.3%         | 49.0%         | 60.6%          | 76.2%         | 85.7%         | 99.5%         | 99.0%         | 96.6%         | 93.2%         | 90.6%         |
| Fry                | May-Jul           | 30,000                       | 848,538                           | 41.7%         | 52.1%         | 65.9%         | 75.7%          | 87.5%         | 94.0%         | 98.9%         | 91.3%         | 85.4%         | 79.4%         | 77.1%         |
| Juvenile           | All               | 30,000                       | 1,431,622                         | 56.8%         | 65.2%         | 75.0%         | 82.2%          | 91.8%         | 96.7%         | 96.7%         | 87.7%         | 83.4%         | 78.7%         | 76.6%         |
| Adult              | All               | 30,000                       | 1,431,622                         | 56.8%         | 65.2%         | 75.0%         | 82.2%          | 91.8%         | 96.7%         | 96.7%         | 87.7%         | 83.4%         | 78.7%         | 76.6%         |
| Striped bass       |                   |                              |                                   |               |               |               |                |               |               | -             |               |               |               |               |
| Spawning & Inc.    | Apr-Jun           | 50,000                       | 56,216,898                        | 19.1%         | 24.9%         | 33.8%         | 42.1%          | 56.9%         | 69.2%         | 97.2%         | 97.9%         | 93.3%         | 88.9%         | 84.0%         |
| Fry                | Apr-Jul           | 50,000                       | 55,545,960                        | 13.2%         | 18.4%         | 26.9%         | 35.2%          | 50.5%         | 63.9%         | 96.3%         | 98.3%         | 93.8%         | 88.2%         | 84.6%         |
| Juvenile           | Jun-Dec           | 40,000                       | 30,036,145                        | 49.8%         | 58.9%         | 68.8%         | 75.4%          | 83.7%         | 89.3%         | 100.0%        | 93.9%         | 85.9%         | 76.6%         | 71.0%         |
| Adult              | All               | 80,000                       | 63,530,991                        | 18.9%         | 25.7%         | 35.9%         | 44.5%          | 57.9%         | 68.0%         | 91.3%         | 98.8%         | 99.7%         | 100.0%        | 99.9%         |
| Smallmouth bass    |                   |                              |                                   |               |               |               |                |               |               |               |               |               |               |               |
| Spawning & Inc.    | May-Jun           | 5,000                        | 1,141,787                         | 98.4%         | 100.0%        | 92.9%         | 83.3%          | 63.9%         | 52.6%         | 37.1%         | 29.4%         | 26.2%         | 23.8%         | 22.4%         |
| Fry                | Jun-Jul           | 2,000*                       | 3,611,296                         | 73.0%         | 56.8%         | 42.4%         | 35.4%          | 27.6%         | 24.0%         | 28.7%         | 25.6%         | 24.2%         | 22.2%         | 22.1%         |
| Juvenile           | Aug-Dec           | 5,000                        | 26,005,058                        | 99.5%         | 100.0%        | 96.7%         | 91.4%          | 78.7%         | 64.5%         | 23.3%         | 14.1%         | 13.2%         | 12.2%         | 11.7%         |
| Adult              | All               | 15,000                       | 36,373,846                        | 72.9%         | 82.4%         | 93.3%         | 98.9%          | 100.0%        | 95.4%         | 73.6%         | 58.7%         | 52.5%         | 46.7%         | 43.6%         |
| Macroinvertebrates |                   |                              |                                   |               |               |               |                |               |               |               |               |               |               |               |
| Ephemeroptera      | All               | 5,000                        | 6,052,996                         | 94.3%         | 100.0%        | 92.1%         | 75.7%          | 51.5%         | 39.2%         | 25.1%         | 18.8%         | 16.2%         | 14.4%         | 13.4%         |
| Plecoptera         | All               | 5,000                        | 4,432,285                         | 99.4%         | 100.0%        | 92.5%         | 81.4%          | 63.7%         | 53.7%         | 36.5%         | 26.6%         | 23.1%         | 20.4%         | 19.2%         |
| Trichoptera        | All               | 10,000                       | 12,751,836                        | 85.2%         | 94.3%         | 100.0%        | 99.9%          | 94.4%         | 86.5%         | 55.0%         | 34.6%         | 28.7%         | 24.9%         | 23.1%         |
| Habitat Guilds     |                   |                              |                                   |               |               |               |                |               |               |               |               |               |               |               |
| Shallow-Slow       | All               | 2,000*                       | 29,171,737                        | 79.3%         | 55.9%         | 27.7%         | 15.6%          | 8.3%          | 7.1%          | 9.8%          | 6.5%          | 5.4%          | 4.5%          | 3.8%          |
| Shallow-Fast       | Apr-Jun           | 2,000*                       | 1,079,340                         | 86.9%         | 66.5%         | 48.8%         | 33.9%          | 19.0%         | 15.0%         | 8.5%          | 7.3%          | 5.6%          | 4.1%          | 4.2%          |
| Deep-Slow          | All               | 5,000                        | 34,257,996                        | 95.4%         | 100.0%        | 96.0%         | 82.0%          | 58.6%         | 41.9%         | 18.9%         | 18.2%         | 16.8%         | 15.5%         | 15.2%         |
| Deep-Fast          | All               | 20,000                       | 1,219,290                         | 6.0%          | 14.4%         | 38.2%         | 61.0%          | 94.1%         | 100.0%        | 26.7%         | 6.6%          | 5.8%          | 6.0%          | 5.9%          |
|                    |                   |                              | :                                 | * Indicate    | s that the f  | flow range    | was limited    | d by the lov  | vest produc   | ction run flo | w             |               |               |               |

### TABLE 5.1-2: PERCENTAGE OF THE MAXIMUM WEIGHTED USABLE AREA (WUA) FOR VARIOUS FLOWS

| Species/Life  | Flow at     | Flow Range Providing | Flow Range Providing          | Flow Range Providing           | Flow Range Providing | Median Monthly         |
|---------------|-------------|----------------------|-------------------------------|--------------------------------|----------------------|------------------------|
| Stage         | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA            | 70% of Maximum WUA             | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|               | (cfs)       | (cfs)                | (cfs)                         | (cfs)                          | (cfs)                |                        |
| Striped Bass  |             |                      |                               |                                |                      |                        |
| Adult         | 80,000      | 38,584-86,000*       | 28,570-86,000*                | 21,450-86,000*                 | 16,057-86,000*       | 27,732                 |
| Smallmouth Bo | ass         |                      |                               |                                |                      |                        |
| Adult         | 15,000      | 6,737-24,531         | 4,623-33,522                  | 3,127-44,491                   | 2,000*-58,145        | 27,732                 |
| Macroinverteb | prates      |                      |                               |                                |                      |                        |
| Caddisfly     | 7,500       | 4,289-17,762         | 3,038-23,884                  | 2,150-29,890                   | 2,000*-36,612        | 27,732                 |
| Guilds        |             |                      |                               |                                |                      |                        |
| Shallow-Slow  | 2,000*      | 2,000*-2,726         | 2,000*-3452                   | 2,000*-4,098                   | 2,000*-4,740         | 27,732                 |
| Deep-Slow     | 5,000       | 2,703-8,574          | 2,000*-10428                  | 2,000*-12,565                  | 2,000*-14,702        | 27,732                 |
|               |             | *Indicates that the  | flow range was limited by the | e lowest or highest production | n run flow           |                        |

### TABLE 5.1.1-1: SELECT JANUARY SPECIES/LIFE STAGES

### TABLE 5.1.2-1: SELECT FEBRUARY SPECIES/LIFE STAGES

| Species/Life<br>Stage | Maximum WUA                                                                             | Flow Range Providing<br>90% of Maximum WUA<br>(cfs) | Flow Range Providing<br>80% of Maximum WUA<br>(cfs) | Flow Range Providing<br>70% of Maximum WUA<br>(cfs) | Flow Range Providing<br>60% of Maximum WUA<br>(cfs) | Median Monthly<br>Unregulated Flow (cfs) |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------|--|--|
| Striped Bass          | (03)                                                                                    |                                                     |                                                     |                                                     |                                                     |                                          |  |  |
| Adult                 | 80,000                                                                                  | 38,584-86,000*                                      | 28,570-86,000*                                      | 21,450-86,000*                                      | 16,057-86,000*                                      | 32,617                                   |  |  |
| Smallmouth Bo         | 155                                                                                     |                                                     |                                                     |                                                     |                                                     |                                          |  |  |
| Adult                 | 15,000                                                                                  | 6,737-24,531                                        | 4,623-33,522                                        | 3,127-44,491                                        | 2,000*-58,145                                       | 32,617                                   |  |  |
| Macroinverteb         | rates                                                                                   |                                                     |                                                     |                                                     |                                                     |                                          |  |  |
| Caddisfly             | 7,500                                                                                   | 4,289-17,762                                        | 3,038-23,884                                        | 2,150-29,890                                        | 2,000*-36,612                                       | 32,617                                   |  |  |
| Guilds                |                                                                                         |                                                     |                                                     |                                                     |                                                     |                                          |  |  |
| Shallow-Slow          | 2,000*                                                                                  | 2,000*-2,726                                        | 2,000*-3452                                         | 2,000*-4,098                                        | 2,000*-4,740                                        | 32,617                                   |  |  |
| Deep-Slow             | 5,000                                                                                   | 2,703-8,574                                         | 2,000*-10428                                        | 2,000*-12,565                                       | 2,000*-14,702                                       | 32,617                                   |  |  |
|                       | *Indicates that the flow range was limited by the lowest or highest production run flow |                                                     |                                                     |                                                     |                                                     |                                          |  |  |

| Species/Life   | Flow at     | Flow Range Providing | Flow Range Providing | Flow Range Providing | Flow Range Providing | Median Monthly         |
|----------------|-------------|----------------------|----------------------|----------------------|----------------------|------------------------|
| Stage          | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA   | 70% of Maximum WUA   | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|                | (cfs)       | (cfs)                | (cfs)                | (cfs)                | (cfs)                |                        |
| Striped Bass   |             |                      |                      |                      |                      |                        |
| Adult          | 80,000      | 38,584-86,000*       | 28,570-86,000*       | 21,450-86,000*       | 16,057-86,000*       | 61,744                 |
| Smallmouth Ba  | ISS         |                      |                      |                      |                      |                        |
| Adult          | 15,000      | 6,737-24,531         | 4,623-33,522         | 3,127-44,491         | 2,000*-58,145        | 61,744                 |
| Macroinvertebi | rates       |                      |                      |                      |                      |                        |
| Caddisfly      | 7,500       | 4,289-17,762         | 3,038-23,884         | 2,150-29,890         | 2,000*-36,612        | 61,744                 |
| Guilds         |             |                      |                      |                      |                      |                        |
| Shallow-Slow   | 2,000*      | 2,000*-2,726         | 2,000*-3452          | 2,000*-4,098         | 2,000*-4,740         | 61,744                 |
| Deep-Slow      | 5,000       | 2,703-8,574          | 2,000*-10428         | 2,000*-12,565        | 2,000*-14,702        | 61,744                 |

### TABLE 5.1.3-1: SELECT MARCH SPECIES/LIFE STAGES

| Species/Life    | Flow at     | Flow Range Providing | Flow Range Providing          | Flow Range Providing           | Flow Range Providing | Median Monthly         |
|-----------------|-------------|----------------------|-------------------------------|--------------------------------|----------------------|------------------------|
| Stage           | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA            | 70% of Maximum WUA             | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|                 | (cfs)       | (cfs)                | (cfs)                         | (cfs)                          | (cfs)                |                        |
| American Shad   |             |                      |                               |                                |                      |                        |
| Spawning        | 40,000      | 24,200-61,325        | 18,144-72,765                 | 14,472-82,757                  | 11,801-86,000*       | 63,752                 |
| Adult           | 40,000      | 25,090-69,495        | 18,332-84,715                 | 13,861-86,000*                 | 10,166-86,000*       | 63,752                 |
| Shortnose Sturg | ieon        |                      |                               |                                |                      |                        |
| Spawning        | 50,000      | 24,234-86,000*       | 16,997-86,000*                | 13,008-86,000*                 | 9,872-86,000*        | 63,752                 |
| Striped Bass    |             |                      |                               |                                |                      |                        |
| Spawning        | 50,000      | 32,730-77,550        | 25,977-86,000*                | 20,450-86,000*                 | 16,272-86,000*       | 63,752                 |
| Fry             | 50,000      | 34,705-76,746        | 27,846-86,000*                | 22,977-86,000*                 | 18,547-86,000*       | 63,752                 |
| Adult           | 80,000      | 38,584-86,000*       | 28,570-86,000*                | 21,450-86,000*                 | 16,057-86,000*       | 63,752                 |
| Smallmouth Bas  | SS          |                      |                               |                                |                      |                        |
| Adult           | 15,000      | 6,737-24,531         | 4,623-33,522                  | 3,127-44,491                   | 2,000*-58,145        | 63,752                 |
| Macroinvertebr  | ates        |                      |                               |                                |                      |                        |
| Caddisfly       | 7,500       | 4,289-17,762         | 3,038-23,884                  | 2,150-29,890                   | 2,000*-36,612        | 63,752                 |
| Guilds          |             |                      |                               |                                |                      |                        |
| Shallow-Slow    | 2,000*      | 2,000*-2,726         | 2,000*-3452                   | 2,000*-4,098                   | 2,000*-4,740         | 63,752                 |
| Deep-Slow       | 5,000       | 2,703-8,574          | 2,000*-10428                  | 2,000*-12,565                  | 2,000*-14,702        | 63,752                 |
|                 |             | *Indicates that the  | flow range was limited by the | e lowest or highest production | n run flow           | •                      |

### TABLE 5.1.4-1: SELECT APRIL SPECIES/LIFE STAGES

| Species/Life     | Flow at     | Flow Range Providing | Flow Range Providing          | Flow Range Providing           | Flow Range Providing | Median Monthly         |
|------------------|-------------|----------------------|-------------------------------|--------------------------------|----------------------|------------------------|
| Stage            | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA            | 70% of Maximum WUA             | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|                  | (cfs)       | (cfs)                | (cfs)                         | (cfs)                          | (cfs)                |                        |
| American Shad    |             |                      |                               |                                |                      |                        |
| Spawning         | 40,000      | 24,200-61,325        | 18,144-72,765                 | 14,472-82,757                  | 11,801-86,000*       | 38,768                 |
| Fry              | 30,000      | 14,716-43,771        | 10,703-55,000                 | 7,744-67,028                   | 5,513-80,335         | 38,768                 |
| Adult            | 40,000      | 25,090-69,495        | 18,332-84,715                 | 13,861-86,000*                 | 10,166-86,000*       | 38,768                 |
| Shortnose Sturge | eon         |                      |                               |                                |                      |                        |
| Spawning         | 50,000      | 24,234-86,000*       | 16,997-86,000*                | 13,008-86,000*                 | 9,872-86,000*        | 38,768                 |
| Striped Bass     |             |                      |                               |                                |                      |                        |
| Spawning         | 50,000      | 32,730-77,550        | 25,977-86,000*                | 20,450-86,000*                 | 16,272-86,000*       | 38,768                 |
| Fry              | 50,000      | 34,705-76,746        | 27,846-86,000*                | 22,977-86,000*                 | 18,547-86,000*       | 38,768                 |
| Adult            | 80,000      | 38,584-86,000*       | 28,570-86,000*                | 21,450-86,000*                 | 16,057-86,000*       | 38,768                 |
| Smallmouth Bass  | S           |                      |                               |                                |                      |                        |
| Adult            | 15,000      | 6,737-24,531         | 4,623-33,522                  | 3,127-44,491                   | 2,000*-58,145        | 38,768                 |
| Macroinvertebra  | ates        |                      |                               |                                |                      |                        |
| Caddisfly        | 7,500       | 4,289-17,762         | 3,038-23,884                  | 2,150-29,890                   | 2,000*-36,612        | 38,768                 |
| Guilds           |             |                      |                               |                                |                      |                        |
| Shallow-Slow     | 2,000*      | 2,000*-2,726         | 2,000*-3452                   | 2,000*-4,098                   | 2,000*-4,740         | 38,768                 |
| Deep-Slow        | 5,000       | 2,703-8,574          | 2,000*-10428                  | 2,000*-12,565                  | 2,000*-14,702        | 38,768                 |
|                  |             | *Indicates that the  | flow range was limited by the | e lowest or highest production | run flow             |                        |

| Species/Life    | Flow at     | Flow Range Providing | Flow Range Providing          | Flow Range Providing           | Flow Range Providing | Median Monthly         |
|-----------------|-------------|----------------------|-------------------------------|--------------------------------|----------------------|------------------------|
| Stage           | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA            | 70% of Maximum WUA             | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|                 | (cfs)       | (cfs)                | (cfs)                         | (cfs)                          | (cfs)                |                        |
| American Shad   |             |                      |                               |                                |                      |                        |
| Spawning        | 40,000      | 24,200-61,325        | 18,144-72,765                 | 14,472-82,757                  | 11,801-86,000*       | 20,661                 |
| Fry             | 30,000      | 14,716-43,771        | 10,703-55,000                 | 7,744-67,028                   | 5,513-80,335         | 20,661                 |
| Adult           | 40,000      | 25,090-69,495        | 18,332-84,715                 | 13,861-86,000*                 | 10,166-86,000*       | 20,661                 |
| Striped Bass    |             |                      |                               |                                |                      |                        |
| Spawning        | 50,000      | 32,730-77,550        | 25,977-86,000*                | 20,450-86,000*                 | 16,272-86,000*       | 20,661                 |
| Fry             | 50,000      | 34,705-76,746        | 27,846-86,000*                | 22,977-86,000*                 | 18,547-86,000*       | 20,661                 |
| Juvenile        | 40,000      | 20,968-64,890        | 12,777-76387                  | 7,961-86,000*                  | 5,290-86,000*        | 20,661                 |
| Adult           | 80,000      | 38,584-86,000*       | 28,570-86,000*                | 21,450-86,000*                 | 16,057-86,000*       | 20,661                 |
| Smallmouth Bas  | 55          |                      |                               |                                |                      |                        |
| Adult           | 15,000      | 6,737-24,531         | 4,623-33,522                  | 3,127-44,491                   | 2,000*-58,145        | 20,661                 |
| Macroinvertebro | ates        |                      |                               |                                |                      |                        |
| Caddisfly       | 7,500       | 4,289-17,762         | 3,038-23,884                  | 2,150-29,890                   | 2,000*-36,612        | 20,661                 |
| Guilds          |             |                      |                               |                                |                      |                        |
| Shallow-Slow    | 2,000*      | 2,000*-2,726         | 2,000*-3452                   | 2,000*-4,098                   | 2,000*-4,740         | 20,661                 |
| Deep-Slow       | 5,000       | 2,703-8,574          | 2,000*-10428                  | 2,000*-12,565                  | 2,000*-14,702        | 20,661                 |
|                 |             | *Indicates that the  | flow range was limited by the | e lowest or highest production | n run flow           |                        |

### TABLE 5.1.6-1: SELECT JUNE SPECIES/LIFE STAGES

### TABLE 5.1.7-1: SELECT JULY SPECIES/LIFE STAGES

| Species/Life   | Flow at Maximum               | Flow Range Providing  | Flow Range Providing         | Flow Range Providing         | Flow Range Providing  | Median Monthly   |
|----------------|-------------------------------|-----------------------|------------------------------|------------------------------|-----------------------|------------------|
| Stage          | WUA (cfs)                     | 90% of Maximum WUA    | 80% of Maximum WUA           | 70% of Maximum WUA           | 60% of Maximum WUA    | Unregulated Flow |
|                |                               | (cfs)                 | (cfs)                        | (cfs)                        | (cfs)                 | (cfs)            |
| American Shad  |                               |                       |                              |                              |                       |                  |
| Fry            | 30,000                        | 14,716-43,771         | 10,703-55,000                | 7,744-67,028                 | 5,513-80,335          | 13,045           |
| Juvenile       | <del>5,000<u>10,000</u></del> | <u>4,011-29,652</u>   | <u>2,670-42,383</u>          | 2,000*- <u>52,641</u>        | 2,000*- <u>65,469</u> | 13,045           |
| Striped Bass   |                               |                       |                              |                              |                       |                  |
| Fry            | 50,000                        | 34,705-76,746         | 27,846-86,000*               | 22,977-86,000*               | 18,547-86,000*        | 13,045           |
| Juvenile       | 40,000                        | 20,968-64,890         | 12,777-76387                 | 7,961-86,000*                | 5,290-86,000*         | 13,045           |
| Adult          | 80,000                        | 38,584-86,000*        | 28,570-86,000*               | 21,450-86,000*               | 16,057-86,000*        | 13,045           |
| Smallmouth Bas | \$\$                          |                       |                              |                              |                       |                  |
| Adult          | 15,000                        | 6,737-24,531          | 4,623-33,522                 | 3,127-44,491                 | 2,000*-58,145         | 13,045           |
| Macroinvertebr | rates                         |                       |                              |                              |                       |                  |
| Caddisfly      | 7,500                         | 4,289-17,762          | 3,038-23,884                 | 2,150-29,890                 | 2,000*-36,612         | 13,045           |
| Guilds         |                               |                       |                              |                              |                       |                  |
| Shallow-Slow   | 2,000*                        | 2,000*-2,726          | 2,000*-3452                  | 2,000*-4,098                 | 2,000*-4,740          | 13,045           |
| Deep-Slow      | 5,000                         | 2,703-8,574           | 2,000*-10428                 | 2,000*-12,565                | 2,000*-14,702         | 13,045           |
|                |                               | *Indicates that the f | low range was limited by the | lowest or highest production | run flow              |                  |

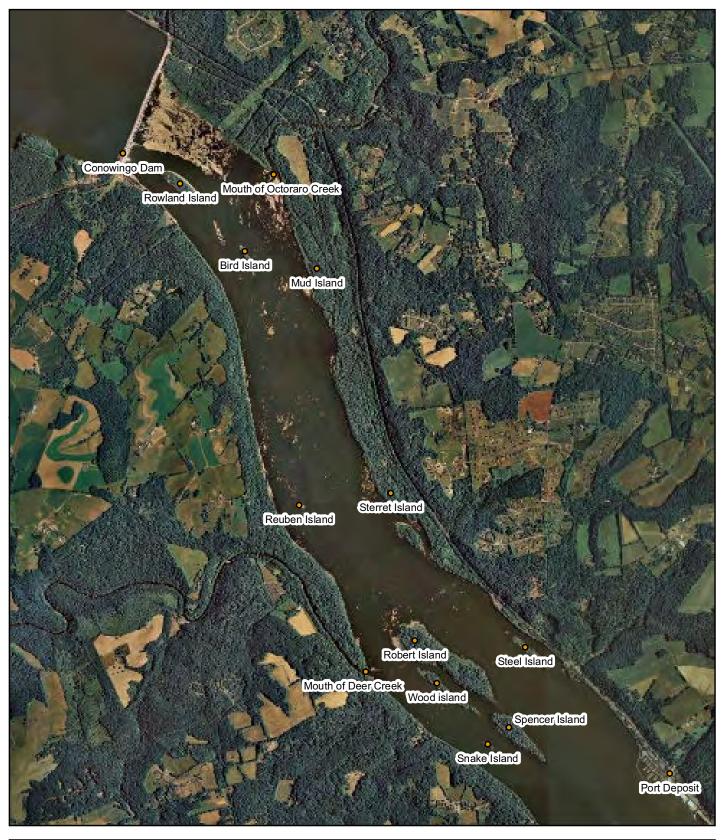
| Species/Life<br>Stage |                     | Flow Range Providing<br>90% of Maximum WUA<br>(cfs) | Flow Range Providing<br>80% of Maximum WUA<br>(cfs) | Flow Range Providing<br>70% of Maximum WUA<br>(cfs) | Flow Range Providing<br>60% of Maximum WUA<br>(cfs) | Median Monthly<br>Unregulated Flow<br>(cfs) |
|-----------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| American Shad         |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | <u>10,000</u> 5,000 | <u>4,011-29,652</u>                                 | <u>2,670-42,383</u>                                 | <u>2,000*-52,641</u>                                | <u>2,000*-65,469</u>                                | 9,201                                       |
| Striped Bass          |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 40,000              | 20,968-64,890                                       | 12,777-76387                                        | 7,961-86,000*                                       | 5,290-86,000*                                       | 9,201                                       |
| Adult                 | 80,000              | 38,584-86,000*                                      | 28,570-86,000*                                      | 21,450-86,000*                                      | 16,057-86,000*                                      | 9,201                                       |
| Smallmouth Ba         | SS                  |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 5,000               | 2,000*-10,552                                       | 2,000*-14,474                                       | 2,000*-18,051                                       | 2,000*-21,757                                       | 9,201                                       |
| Adult                 | 15,000              | 6,737-24,531                                        | 4,623-33,522                                        | 3,127-44,491                                        | 2,000*-58,145                                       | 9,201                                       |
| Macroinvertebr        | rates               |                                                     |                                                     |                                                     |                                                     |                                             |
| Caddisfly             | 7,500               | 4,289-17,762                                        | 3,038-23,884                                        | 2,150-29,890                                        | 2,000*-36,612                                       | 9,201                                       |
| Guilds                |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Shallow-Slow          | 2,000*              | 2,000*-2,726                                        | 2,000*-3452                                         | 2,000*-4,098                                        | 2,000*-4,740                                        | 9,201                                       |
| Deep-Slow             | 5,000               | 2,703-8,574                                         | 2,000*-10428                                        | 2,000*-12,565                                       | 2,000*-14,702                                       | 9,201                                       |

### TABLE 5.1.8-1: SELECT AUGUST SPECIES/LIFE STAGES

| Species/Life<br>Stage |                     | Flow Range Providing<br>90% of Maximum WUA<br>(cfs) | Flow Range Providing<br>80% of Maximum WUA<br>(cfs) | Flow Range Providing<br>70% of Maximum WUA<br>(cfs) | Flow Range Providing<br>60% of Maximum WUA<br>(cfs) | Median Monthly<br>Unregulated Flow<br>(cfs) |
|-----------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| American Shad         | d                   |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | <u>10,000</u> 5,000 | <u>4,011-29,652</u>                                 | <u>2,670-42,383</u>                                 | <u>2,000*-52,641</u>                                | <u>2,000*-65,469</u>                                | 7,995                                       |
| Striped Bass          |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 40,000              | 20,968-64,890                                       | 12,777-76387                                        | 7,961-86,000*                                       | 5,290-86,000*                                       | 7,995                                       |
| Adult                 | 80,000              | 38,584-86,000*                                      | 28,570-86,000*                                      | 21,450-86,000*                                      | 16,057-86,000*                                      | 7,995                                       |
| Smallmouth Bo         | ass                 |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 5,000               | 2,000*-10,552                                       | 2,000*-14,474                                       | 2,000*-18,051                                       | 2,000*-21,757                                       | 7,995                                       |
| Adult                 | 15,000              | 6,737-24,531                                        | 4,623-33,522                                        | 3,127-44,491                                        | 2,000*-58,145                                       | 7,995                                       |
| Macroinverteb         | orates              |                                                     |                                                     |                                                     |                                                     |                                             |
| Caddisfly             | 7,500               | 4,289-17,762                                        | 3,038-23,884                                        | 2,150-29,890                                        | 2,000*-36,612                                       | 7,995                                       |
| Guilds                |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Shallow-Slow          | 2,000*              | 2,000*-2,726                                        | 2,000*-3452                                         | 2,000*-4,098                                        | 2,000*-4,740                                        | 7,995                                       |
| Deep-Slow             | 5,000               | 2,703-8,574                                         | 2,000*-10428                                        | 2,000*-12,565                                       | 2,000*-14,702                                       | 7,995                                       |
|                       |                     | *Indicates that the f                               | low range was limited by the                        | lowest or highest production                        | run flow                                            | 1                                           |

### TABLE 5.1.9-1: SELECT SEPTEMBER SPECIES/LIFE STAGES

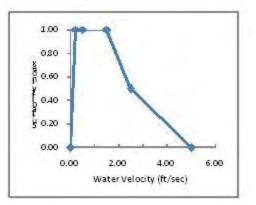
| Species/Life<br>Stage |                     | Flow Range Providing<br>90% of Maximum WUA<br>(cfs) | Flow Range Providing<br>80% of Maximum WUA<br>(cfs) | Flow Range Providing<br>70% of Maximum WUA<br>(cfs) | Flow Range Providing<br>60% of Maximum WUA<br>(cfs) | Median Monthly<br>Unregulated Flow<br>(cfs) |
|-----------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| American Shad         |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | <u>10,000</u> 5,000 | <u>4,011-29,652</u>                                 | 2,670-42,383                                        | <u>2,000*-52,641</u>                                | <u>2,000*-65,469</u>                                | 9,845                                       |
| Striped Bass          |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 40,000              | 20,968-64,890                                       | 12,777-76387                                        | 7,961-86,000*                                       | 5,290-86,000*                                       | 9,845                                       |
| Adult                 | 80,000              | 38,584-86,000*                                      | 28,570-86,000*                                      | 21,450-86,000*                                      | 16,057-86,000*                                      | 9,845                                       |
| Smallmouth Ba         | ISS                 |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 5,000               | 2,000*-10,552                                       | 2,000*-14,474                                       | 2,000*-18,051                                       | 2,000*-21,757                                       | 9,845                                       |
| Adult                 | 15,000              | 6,737-24,531                                        | 4,623-33,522                                        | 3,127-44,491                                        | 2,000*-58,145                                       | 9,845                                       |
| Macroinverteb         | rates               |                                                     |                                                     |                                                     |                                                     |                                             |
| Caddisfly             | 7,500               | 4,289-17,762                                        | 3,038-23,884                                        | 2,150-29,890                                        | 2,000*-36,612                                       | 9,845                                       |
| Guilds                |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Shallow-Slow          | 2,000*              | 2,000*-2,726                                        | 2,000*-3452                                         | 2,000*-4,098                                        | 2,000*-4,740                                        | 9,845                                       |
| Deep-Slow             | 5,000               | 2,703-8,574                                         | 2,000*-10428                                        | 2,000*-12,565                                       | 2,000*-14,702                                       | 9,845                                       |
|                       |                     | *Indicates that the f                               | low range was limited by the                        | lowest or highest production                        | run flow                                            |                                             |


### TABLE 5.1.10-1: SELECT OCTOBER SPECIES/LIFE STAGES

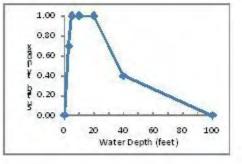
| Species/Life<br>Stage |                     | Flow Range Providing<br>90% of Maximum WUA<br>(cfs) | Flow Range Providing<br>80% of Maximum WUA<br>(cfs) | Flow Range Providing<br>70% of Maximum WUA<br>(cfs) | Flow Range Providing<br>60% of Maximum WUA<br>(cfs) | Median Monthly<br>Unregulated Flow<br>(cfs) |
|-----------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| American Shad         |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | <u>10,000</u> 5,000 | <u>4,011-29,652</u>                                 | <u>2,670-42,383</u>                                 | <u>2,000*-52,641</u>                                | <u>2,000*-65,469</u>                                | 22,927                                      |
| Striped Bass          |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 40,000              | 20,968-64,890                                       | 12,777-76387                                        | 7,961-86,000*                                       | 5,290-86,000*                                       | 22,927                                      |
| Adult                 | 80,000              | 38,584-86,000*                                      | 28,570-86,000*                                      | 21,450-86,000*                                      | 16,057-86,000*                                      | 22,927                                      |
| Smallmouth Ba         | SS                  |                                                     |                                                     |                                                     |                                                     |                                             |
| Juvenile              | 5,000               | 2,000*-10,552                                       | 2,000*-14,474                                       | 2,000*-18,051                                       | 2,000*-21,757                                       | 22,927                                      |
| Adult                 | 15,000              | 6,737-24,531                                        | 4,623-33,522                                        | 3,127-44,491                                        | 2,000*-58,145                                       | 22,927                                      |
| Macroinvertebr        | ates                |                                                     |                                                     |                                                     |                                                     |                                             |
| Caddisfly             | 7,500               | 4,289-17,762                                        | 3,038-23,884                                        | 2,150-29,890                                        | 2,000*-36,612                                       | 22,927                                      |
| Guilds                |                     |                                                     |                                                     |                                                     |                                                     |                                             |
| Shallow-Slow          | 2,000*              | 2,000*-2,726                                        | 2,000*-3452                                         | 2,000*-4,098                                        | 2,000*-4,740                                        | 22,927                                      |
| Deep-Slow             | 5,000               | 2,703-8,574                                         | 2,000*-10428                                        | 2,000*-12,565                                       | 2,000*-14,702                                       | 22,927                                      |

### TABLE 5.1.11-1: SELECT NOVEMBER SPECIES/LIFE STAGES

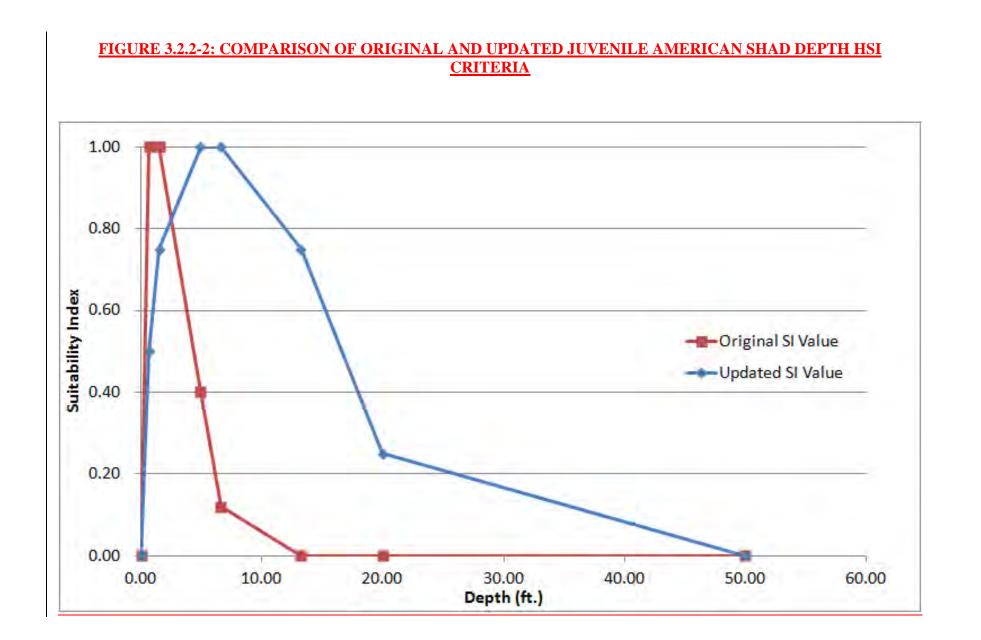
| Species/Life   | Flow at     | Flow Range Providing | Flow Range Providing                          | Flow Range Providing | Flow Range Providing | Median Monthly         |
|----------------|-------------|----------------------|-----------------------------------------------|----------------------|----------------------|------------------------|
| Stage          | Maximum WUA | 90% of Maximum WUA   | 80% of Maximum WUA                            | 70% of Maximum WUA   | 60% of Maximum WUA   | Unregulated Flow (cfs) |
|                | (cfs)       | (cfs)                | (cfs)                                         | (cfs)                | (cfs)                |                        |
| Striped Bass   |             |                      |                                               |                      |                      |                        |
| Juvenile       | 40,000      | 20,968-64,890        | 12,777-76387                                  | 7,961-86,000*        | 5,290-86,000*        | 30,672                 |
| Adult          | 80,000      | 38,584-86,000*       | 28,570-86,000*                                | 21,450-86,000*       | 16,057-86,000*       | 30,672                 |
| Smallmouth Bas | SS          |                      |                                               |                      |                      |                        |
| Juvenile       | 5,000       | 2,000*-10,552        | 2,000*-14,474                                 | 2,000*-18,051        | 2,000*-21,757        | 30,672                 |
| Adult          | 15,000      | 6,737-24,531         | 4,623-33,522                                  | 3,127-44,491         | 2,000*-58,145        | 30,672                 |
| Macroinvertebr | ates        |                      |                                               |                      |                      |                        |
| Caddisfly      | 7,500       | 4,289-17,762         | 3,038-23,884                                  | 2,150-29,890         | 2,000*-36,612        | 30,672                 |
| Guilds         |             |                      |                                               |                      |                      |                        |
| Shallow-Slow   | 2,000*      | 2,000*-2,726         | 2,000*-3452                                   | 2,000*-4,098         | 2,000*-4,740         | 30,672                 |
| Deep-Slow      | 5,000       | 2,703-8,574          | 2,000*-10428                                  | 2,000*-12,565        | 2,000*-14,702        | 30,672                 |
| Deep-Slow      | 5,000       |                      | 2,000*-10428<br>flow range was limited by the |                      |                      |                        |


### TABLE 5.1.12-1: SELECT DECEMBER SPECIES/LIFE STAGES




|   | Exel  | <u> აn</u> . |   | CONOWINGO | ERATION COMPANY, LLC<br>HYDROELECTRIC PROJECT<br>ROJECT NO. 405 | Figure 3.1-1<br>IFIM Study Area Map. Study Reach Extends<br>From Conowingo Dam to Downstream Tip of<br>Spencer Island |
|---|-------|--------------|---|-----------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|   |       |              | A |           |                                                                 | 1 inch = 0.56 miles                                                                                                   |
| 0 | 1,750 | 3,500        |   | 7,000     | 10,500<br>Feet                                                  | Copyright © 2009 Exelon Generation Company. All rights reserved.                                                      |

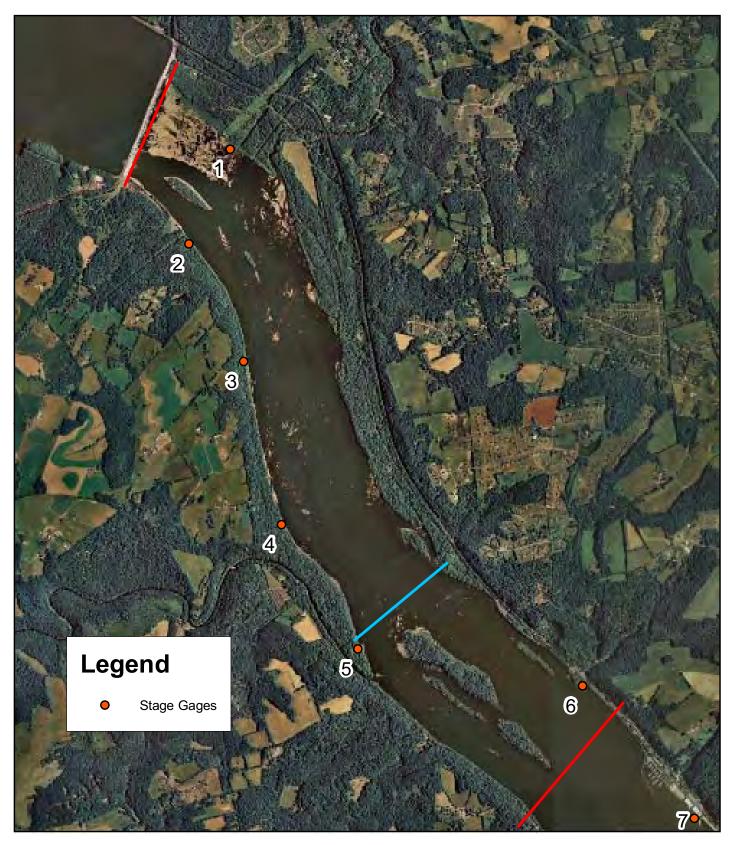
# FIGURE 3.2.2-1: SHORTNOSE STURGEON, JUVENILE, HSI CURVES FOR DEPTH, VELOCITY AND SUBSTRATE


| Proposed Final    |      |  |  |  |  |  |
|-------------------|------|--|--|--|--|--|
| Velocity SI Value |      |  |  |  |  |  |
| 0.00              | 0.00 |  |  |  |  |  |
| 0.20              | 1.00 |  |  |  |  |  |
| 0.50              | 1.00 |  |  |  |  |  |
| 1.50              | 1.00 |  |  |  |  |  |
| 2.50              | 0.50 |  |  |  |  |  |
| 5.00              | 0.00 |  |  |  |  |  |
|                   |      |  |  |  |  |  |



| Proposed Final |          |  |  |  |  |  |
|----------------|----------|--|--|--|--|--|
| Depth          | SI Value |  |  |  |  |  |
| 0.00           | 0.00     |  |  |  |  |  |
| 3.00           | 0.70     |  |  |  |  |  |
| 5.00           | 1.00     |  |  |  |  |  |
| 10.00          | 1.00     |  |  |  |  |  |
| 20.00          | 1.00     |  |  |  |  |  |
| 40.00          | 0.40     |  |  |  |  |  |
| 100.00         | 0.00     |  |  |  |  |  |




|      | Final    |                  |                 |
|------|----------|------------------|-----------------|
| Code | SI Value | Туре             | 1.00            |
| 1    | 0.00     | Detritus/Organic | 0.30 -          |
| 2    | 0.40     | Mud/soft clay    | X               |
| з    | 0.00     | Silt             | Ro.60 -         |
| 4    | 1.00     | Sand             | ¥ 0.40 -        |
| 5    | 1.00     | Gravel           | 8<br>.0.20 -    |
| 6    | 0.60     | Cobble/rubble    | 30.20           |
| 7    | 0.10     | Boulder          | 0.00            |
| 8    | 0.00     | Bedrock          | 1 2 3 4 5 6 7 8 |
|      |          |                  | Substrate Code  |
|      |          |                  |                 |



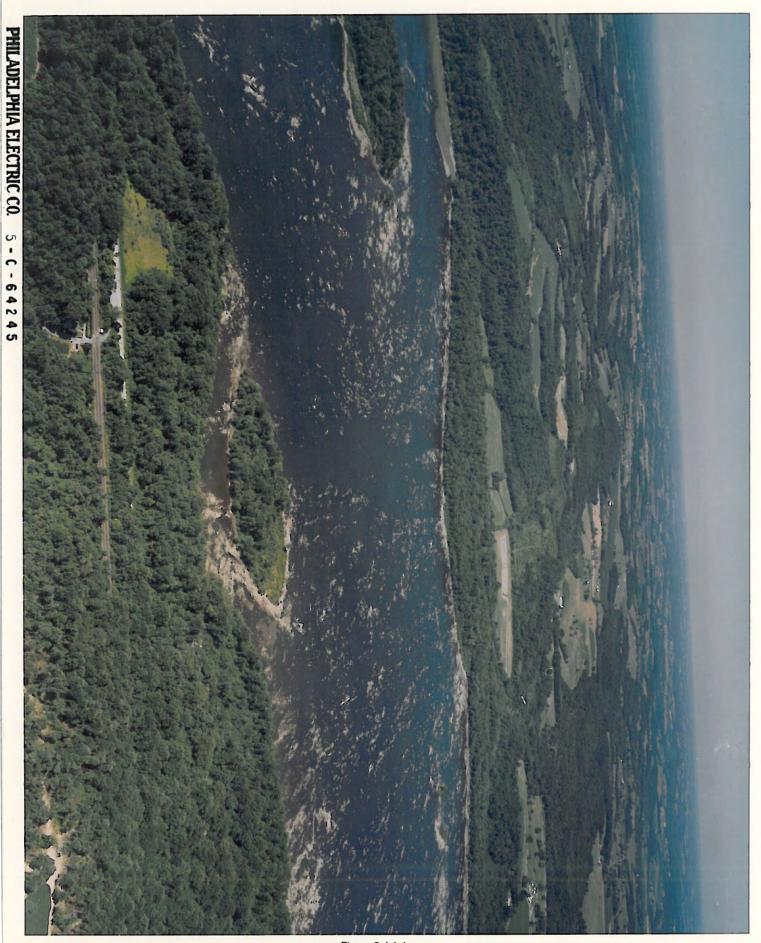
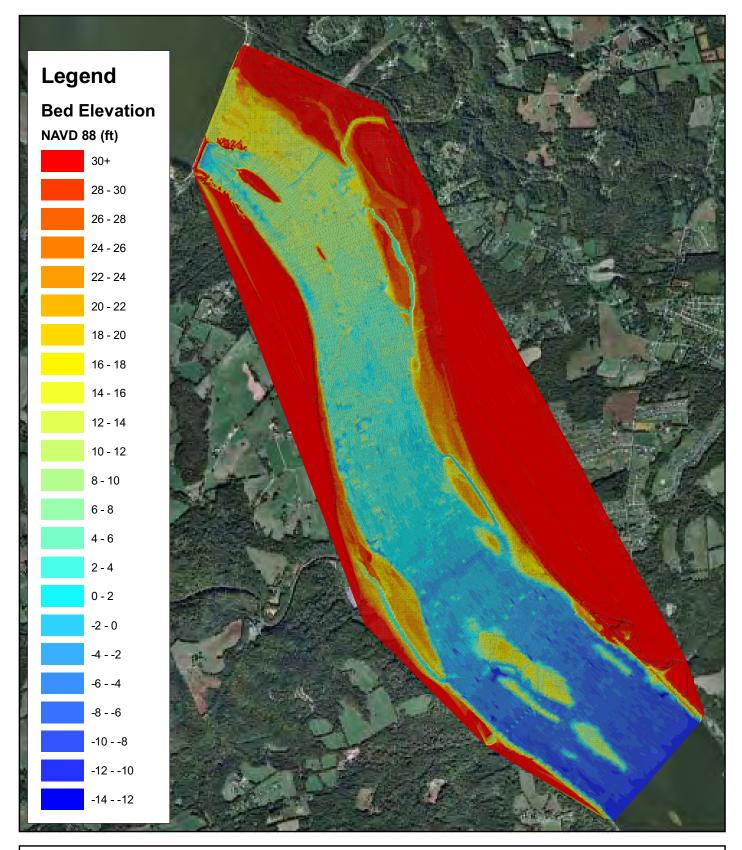
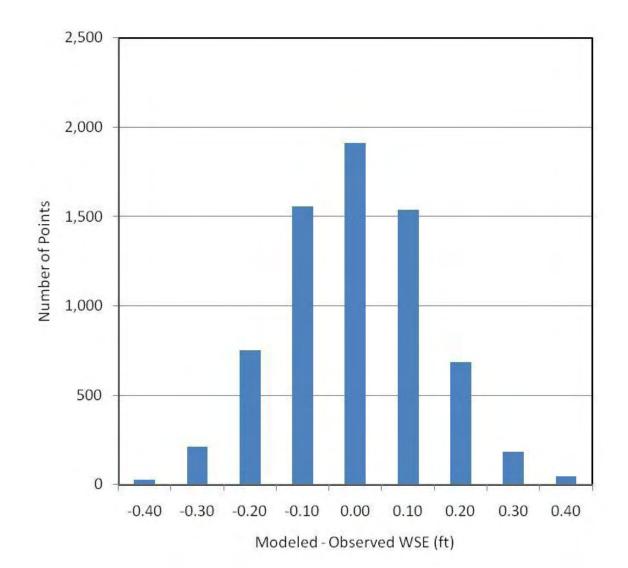
#### 

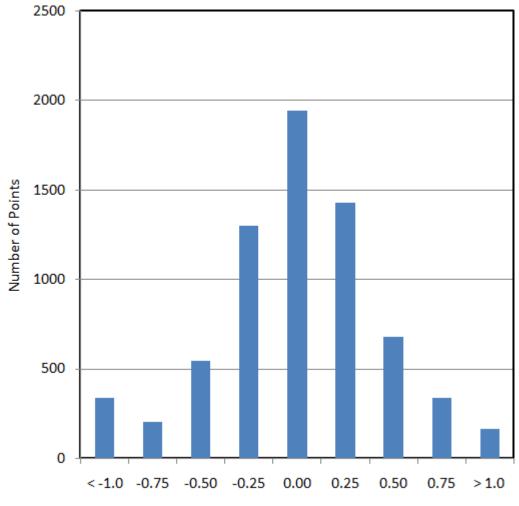


|   | Exelo | n.    | CONOWINGO H        | RATION COMPANY, LI<br>YDROELECTRIC PROJECT<br>DJECT NO. 405 | LC Figure 3.3.1-1<br>Bathymetric data collection transects       |
|---|-------|-------|--------------------|-------------------------------------------------------------|------------------------------------------------------------------|
|   |       |       | 1 inch = 0.5 miles |                                                             |                                                                  |
| 0 | 1,750 | 3,500 | 7,000              | 10,500                                                      | Copyright © 2009 Exelon Generation Company. All rights reserved. |



|   | Exelon. |       | N | EXELON GENERATION COMPANY, LLC<br>CONOWINGO HYDROELECTRIC PROJECT<br>PROJECT NO. 405 |                |         | Figure 3.3.1-2<br>Stage Gages Below Conowingo Dam. The<br>Blue Line Indicates The Approximate Tidal<br>Boundaries. |
|---|---------|-------|---|--------------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------|
|   |         |       |   |                                                                                      |                | 1 inch  | = 0.56 miles                                                                                                       |
| 0 | 1,700   | 3,400 |   | 6,800                                                                                | 10,200<br>Feet | Copyrig | ht © 2009 Exelon Generation Company. All rights reserved.                                                          |

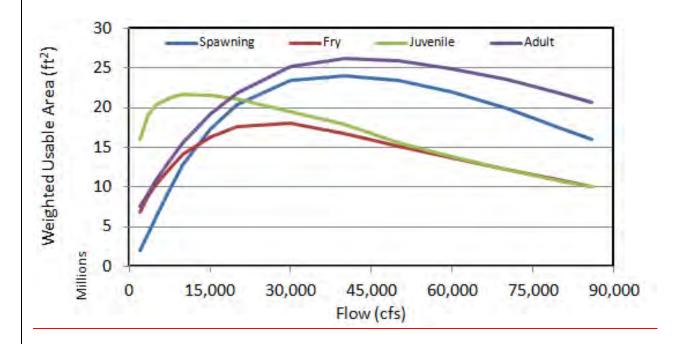




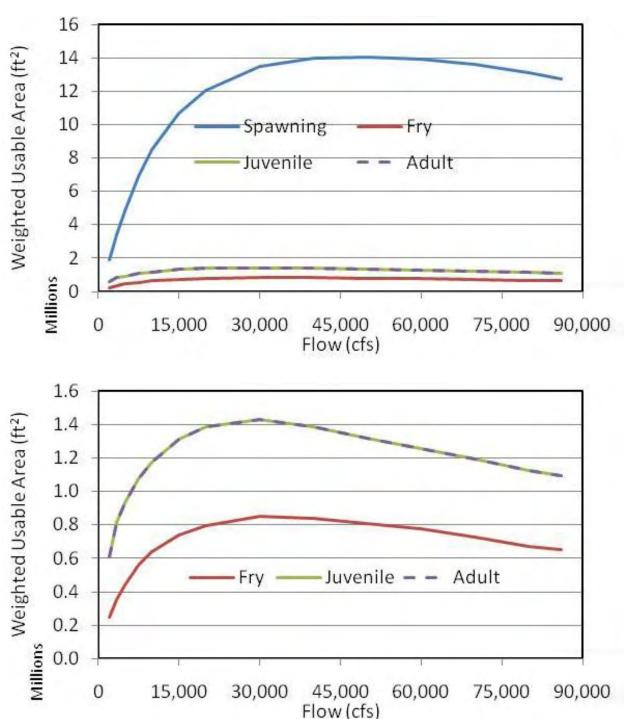


Figure 3.4.1-1



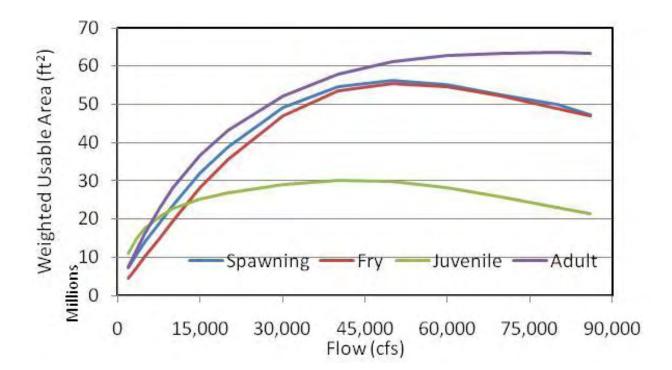
|   | Exelon. |       |   | EXELON GENERATION COMPANY, LLC<br>CONOWINGO HYDROELECTRIC PROJECT<br>PROJECT NO. 405 |                |          | Figure 4.1-1<br>Bathymetric and Topographic<br>Map of the Study Reach |
|---|---------|-------|---|--------------------------------------------------------------------------------------|----------------|----------|-----------------------------------------------------------------------|
|   |         |       | Δ |                                                                                      |                | 1 inch : | = 0.55 miles                                                          |
| 0 | 1,750   | 3,500 |   | 7,000                                                                                | 10,500<br>Feet | Copyrig  | ht © 2009 Exelon Generation Company. All rights reserved.             |




#### FIGURE 4.2.1-1: HISTOGRAM SHOWING MODEL CALIBRATION ERROR DISTRIBUTION OF 6935 CALIBRATION POINTS

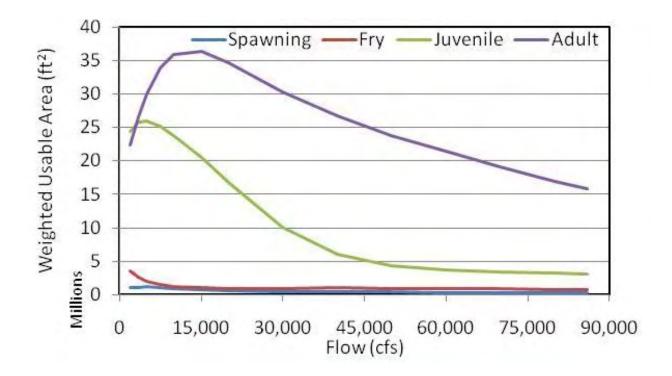


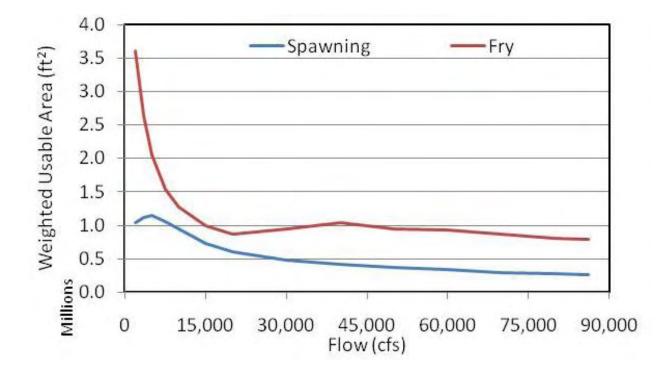

### FIGURE 4.2.1-2: HISTOGRAM SHOWING VELOCITY ERROR DISTRIBUTION OF 6935 CALIBRATION POINTS

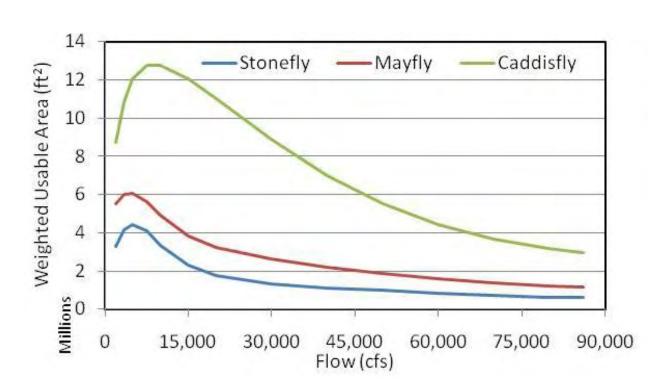

Velocity Error (Modeled - Observed) (ft/s)

# FIGURE 4.3.1.1-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY, JUVENILE AND ADULT LIFE STAGES OF AMERICAN SHAD.

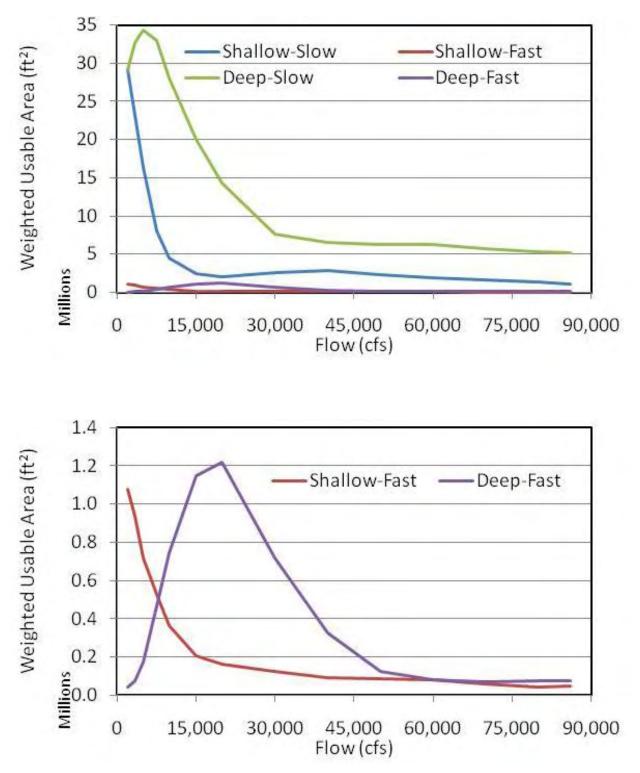






# FIGURE 4.3.1.2-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY, JUVENILE AND ADULT LIFE STAGES OF SHORTNOSE STURGEON.




# FIGURE 4.3.1.3-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY, JUVENILE AND ADULT LIFE STAGES OF STRIPED BASS.


# FIGURE 4.3.1.4-1: WUA CURVES FOR THE SPAWNING & INCUBATION, FRY, JUVENILE AND ADULT LIFE STAGES OF SMALLMOUTH BASS.







### FIGURE 4.3.1.5-1: WUA CURVES FOR EPHEMEROPTERA (MAYFLIES), PLECOPTERA (STONEFLIES), AND TRICHOPTERA (CADDISFLIES).



## FIGURE 4.3.1.6-1: WUA CURVES FOR THE SHALLOW-SLOW, SHALLOW-FAST, DEEP-SLOW, AND DEEP-FAST HABITAT GUILDS.

#### FIGURE 4.3.2.1-1: AMERICAN SHAD PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)

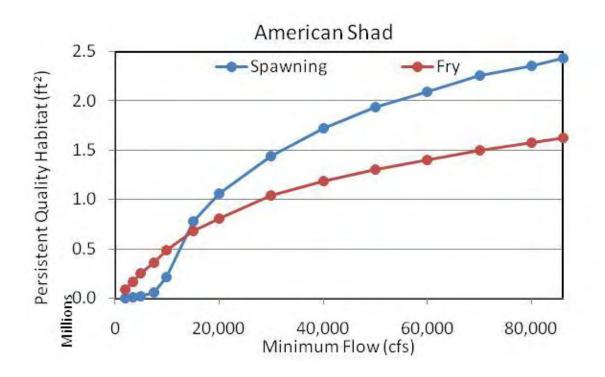
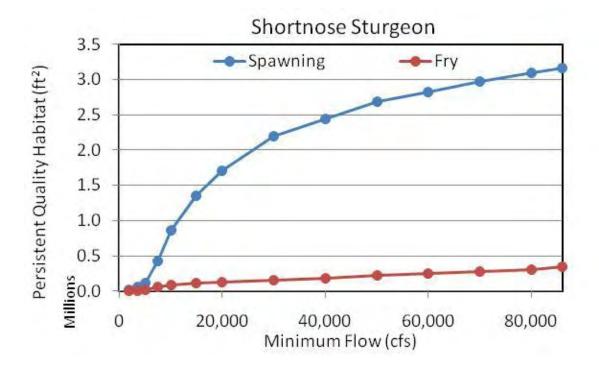
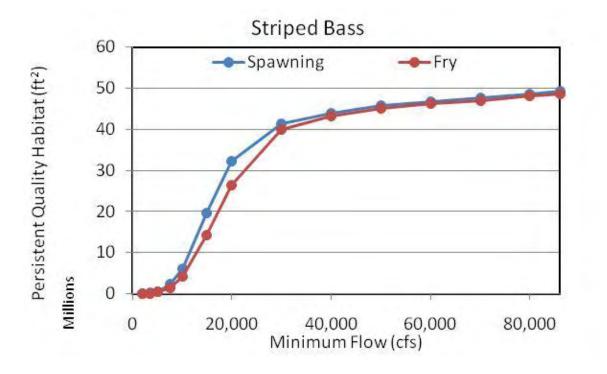
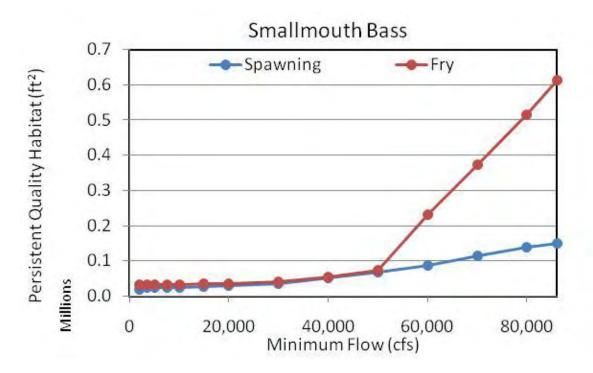
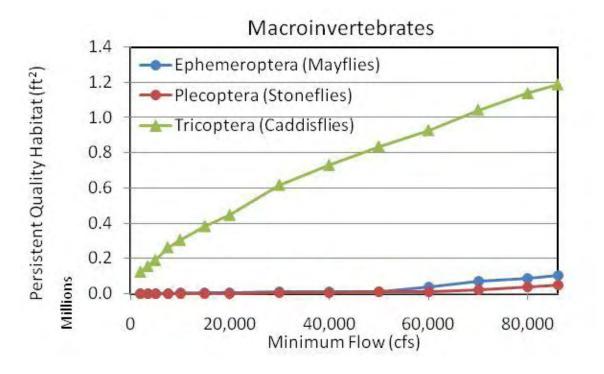
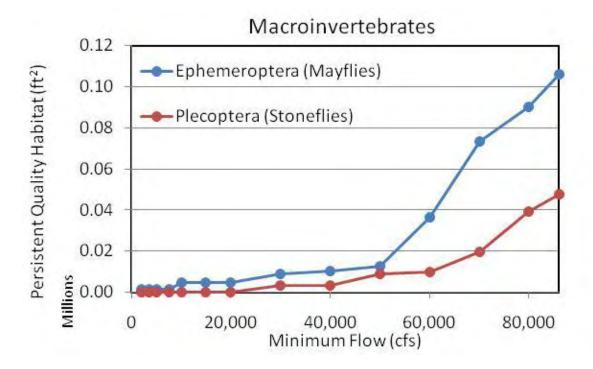




FIGURE 4.3.2.2-1: SHORTNOSE STURGEON PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



#### FIGURE 4.3.2.3-1: STRIPED BASS PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



FIGURE 4.3.2.4-1: SMALLMOUTH BASS PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



#### FIGURE 4.3.2.5-1: MACROINVERTEBRATE PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



# FIGURE 4.3.2.5-2: MAYFLY AND STONEFLY PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



#### FIGURE 4.3.2.6-1: SHALLOW-FAST AND SHALLOW-SLOW GUILD PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)

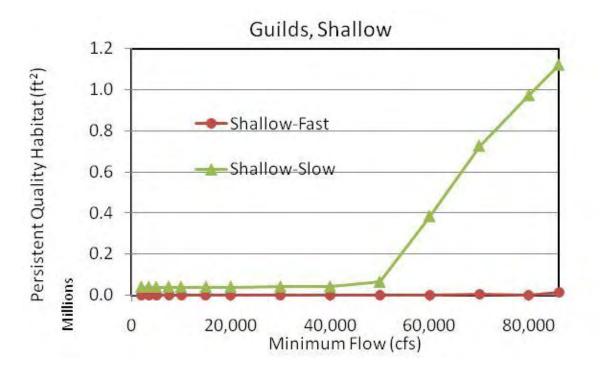
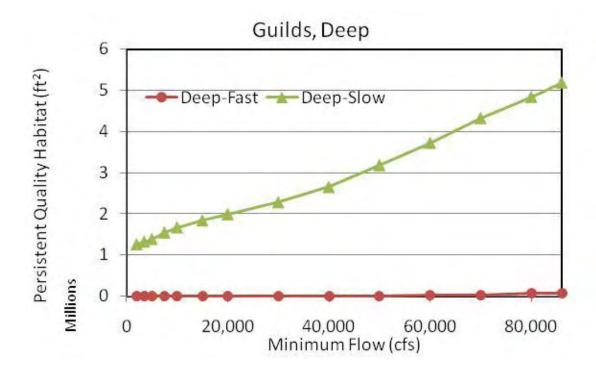
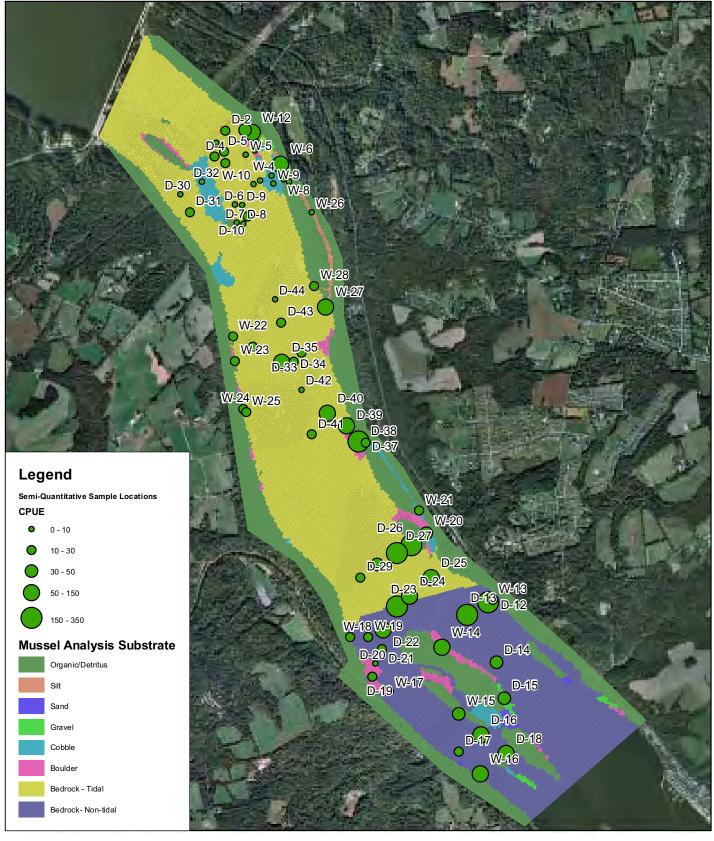
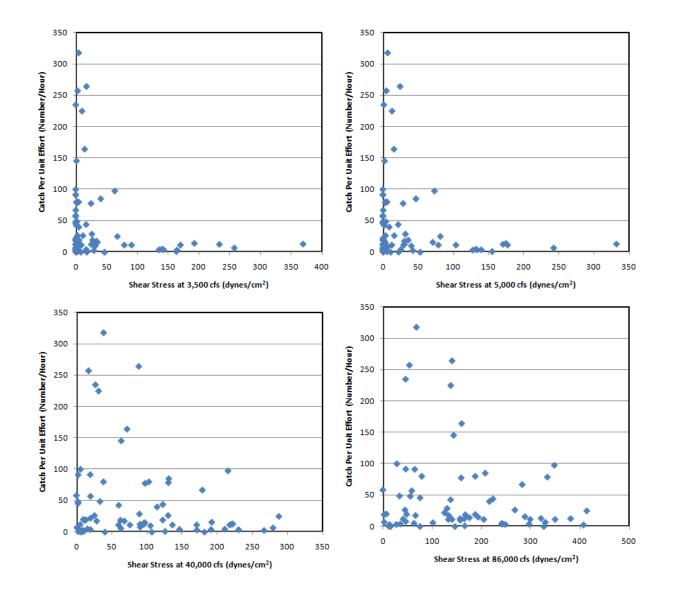
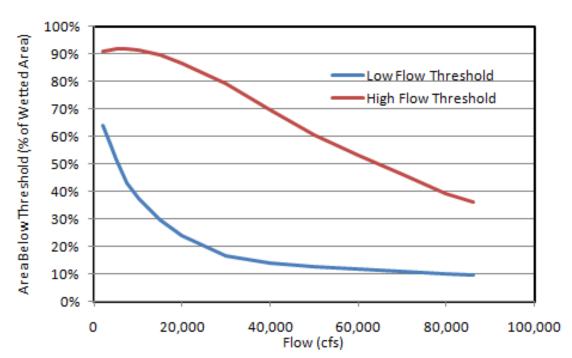
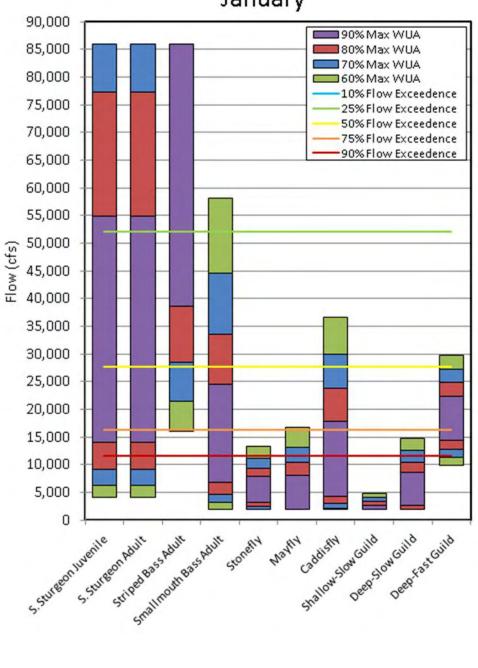






FIGURE 4.3.2.6-2: DEEP-FAST AND DEEP-SLOW GUILD PERSISTENT QUALITY HABITAT VERSUS MINIMUM FLOWS PAIRED WITH FULL GENERATION (86,000 CFS)



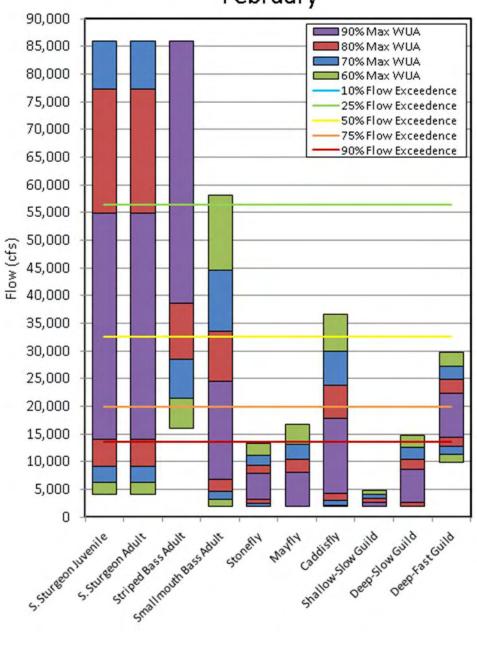



|   | Exelo | n. N  | CONOWINGO HYI       | ATION COMPANY, LL<br>DROELECTRIC PROJECT<br>JECT NO. 405 | -C Figure 4.3.3-1<br>Mussel semi-quantitative survey<br>locations mapped with riverbed<br>substrate. |
|---|-------|-------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1 |       | — A   | 1 inch = 0.52 miles |                                                          |                                                                                                      |
| 0 | 1,875 | 3,750 | 7,500               | 11,250                                                   | opyright © 2009 Exelon Generation Company. All rights reserved.                                      |



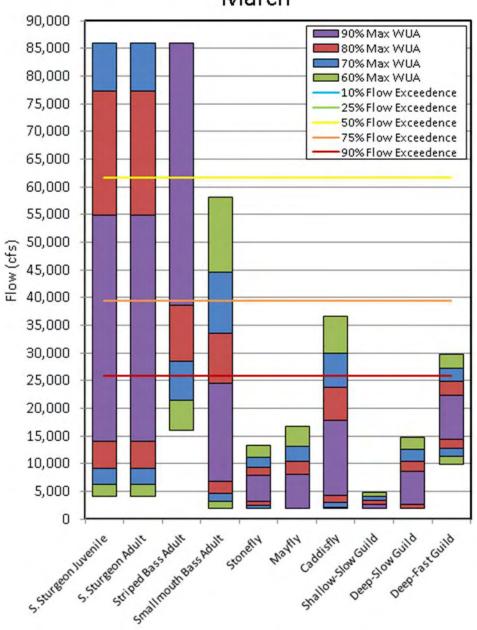

#### FIGURE 4.3.3-2: MUSSEL SEMI-QUANTITATIVE SURVEY LOCATIONS' CATCH-PER-UNIT-EFFORT (NUMBER OF MUSSELS PER HOUR) VS. SHEAR STRESS AT 3,500 CFS, 5,000 CFS, 40,000 CFS AND 86,000 CFS.




#### FIGURE 4.3.3-3: PERCENTAGE OF WETTED STUDY AREA THAT DOES NOT EXCEED THE MUSSEL LOW-FLOW THRESHOLD (20 DYNES/CM<sup>2</sup>) AND HIGH-FLOW THRESHOLD (150 DYNES/CM<sup>2</sup>).

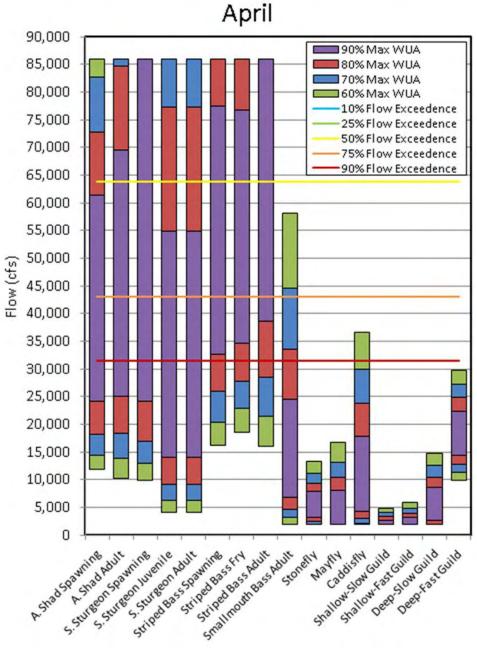
#### FIGURE 5.1.1-1: JANUARY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



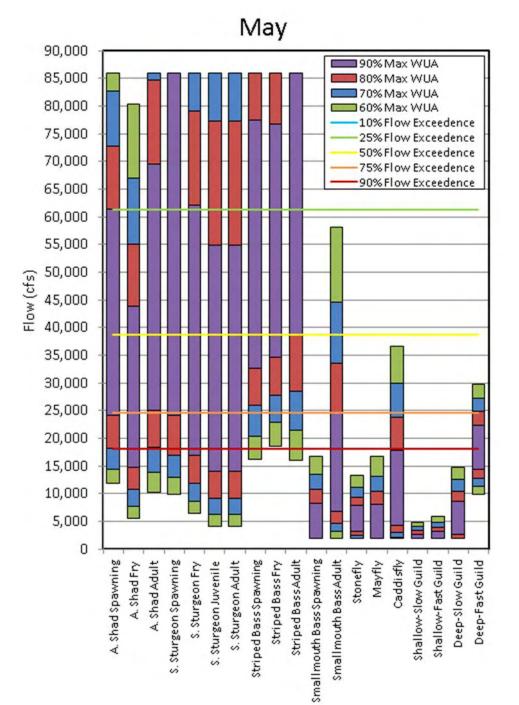

January

#### FIGURE 5.1.2-1: FEBRUARY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



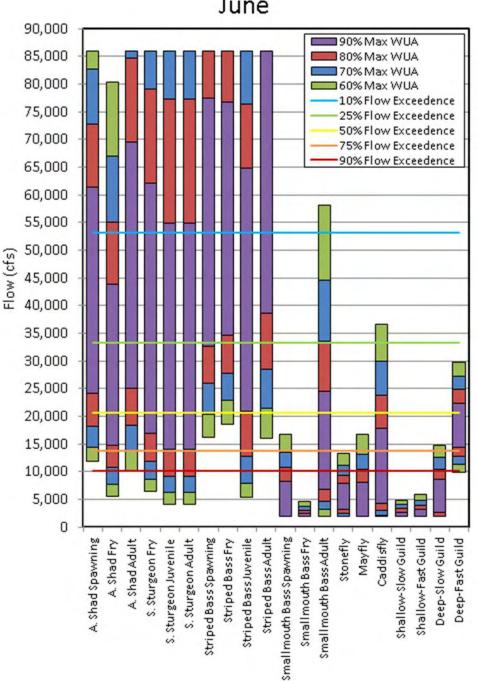

February

#### FIGURE 5.1.3-1: MARCH FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



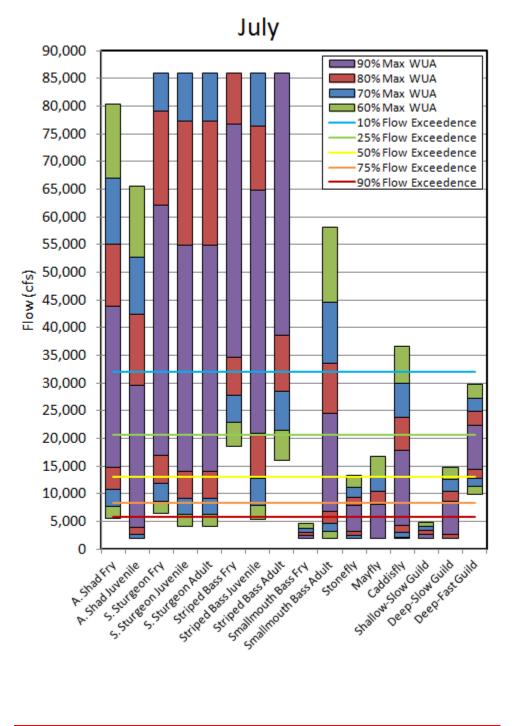

March

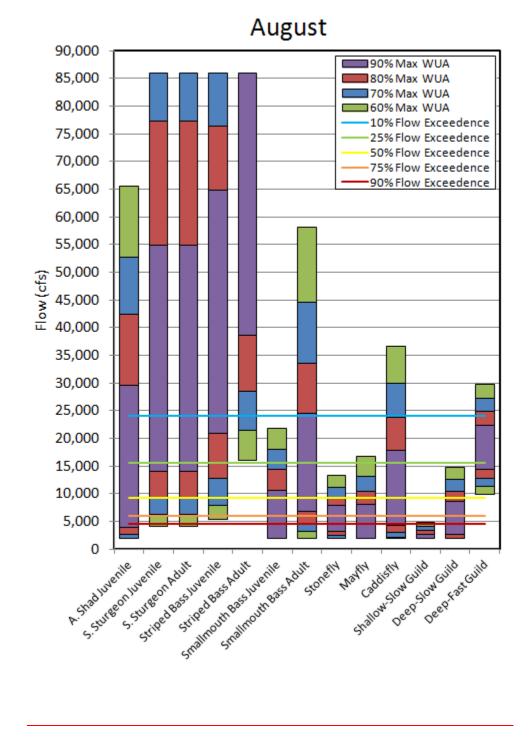
#### FIGURE 5.1.4-1: APRIL FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



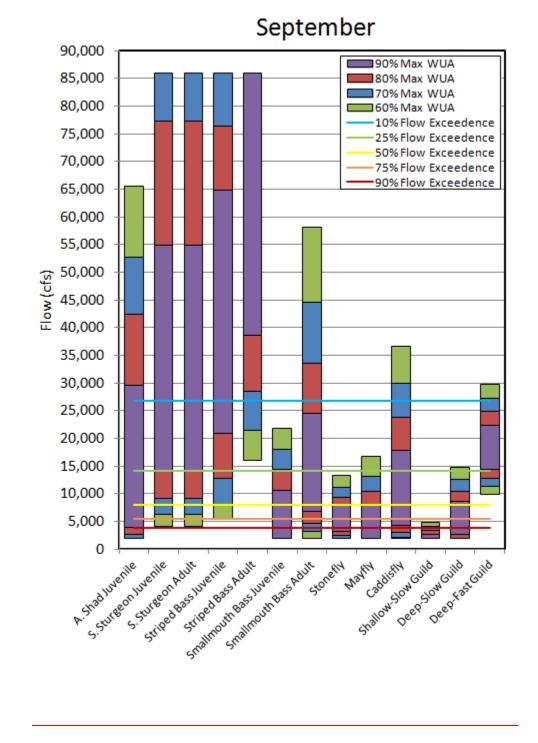

#### FIGURE 5.1.5-1: MAY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



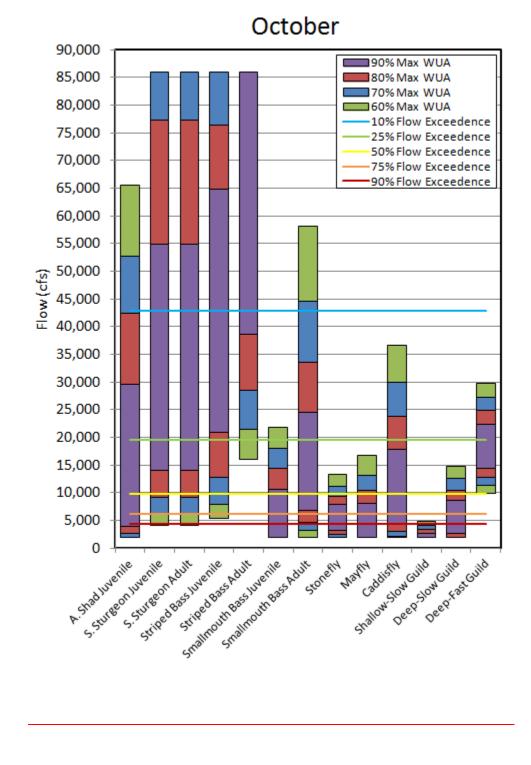

102


#### FIGURE 5.1.6-1: JUNE FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF **RECORD WY 1934-2009.**



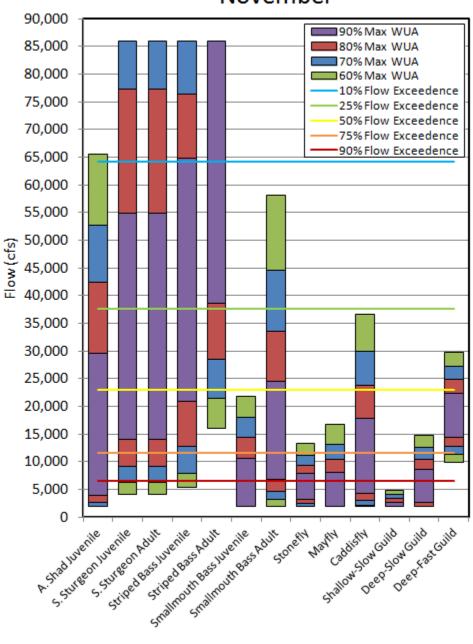

June

#### FIGURE 5.1.7-1: JULY FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



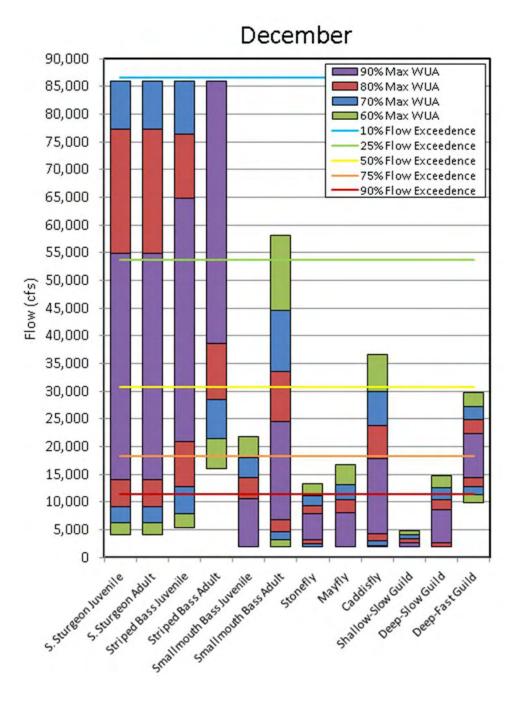



#### FIGURE 5.1.8-1: AUGUST FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.




#### FIGURE 5.1.9-1: SEPTEMBER FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.




#### FIGURE 5.1.10-1: OCTOBER FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.

#### FIGURE 5.1.11-1: NOVEMBER FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD WY 1934-2009.



November

#### FIGURE 5.1.12-1: DECEMBER FLOW VS. HABITAT COMPARISON. FLOW EXCEEDANCES ARE FROM CONOWINGO ESTIMATED UNREGULATED FLOWS, PERIOD OF RECORD 1934-2009.



109

### APPENDIX A- HABITAT SUITABILITY INDICES CONSULTATION



### **MEMORANDUM**

December 9, 2010

**TO:** Larry Miller (USFWS), Andy Shiels (PFBC), Mike Hendricks (PFBC), Jim Richenderfer (SRBC), Andrew Dehoff (SRBC), Julie Crocker (NOAA), Shawn Seaman (MDNR), Bob Sadzinski (MDNR), Steve Schreiner (Versar Inc.), Bill Richkus (Versar Inc.), Jim Spontak (PaDEP), Janet Norman (USFWS), Jeremy Miller (PaDEP), John Smith (FERC), Mark Bryer (The Nature Conservancy), John Seebach (American Rivers), Don Pugh (American Rivers), Keith Whiteford (MDNR), Tyler Shenk (SRBC), John Balay (SRBC), Josh Treneski (PFBC), Matt Ashton (MDNR), Jessica Pruden (NMFS)

FROM: Gomez and Sullivan Engineers

Re: Proposed Final Habitat Suitability Criteria Selection for the Instream Flow Habitat Assessment below Conowingo Dam (RSP 3.16). Conowingo Hydroelectric Project, FERC No. 405, Relicensing.

#### **INTRODUCTION**

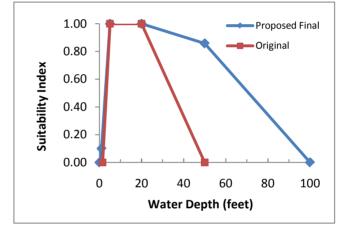
On August 19, 2010, Exelon sponsored a meeting with the stakeholders to discuss the initial habitat suitability curves, periodicity chart and habitat assignment guilds. Subsequently, further changes were made to specific curves after discussions with sub-groups. Specifically, the additional changes were made to the striped bass, shortnose sturgeon and smallmouth bass curves. This purpose of this memo is present to the group the proposed final periodicity table, habitat guild assignment and habitat suitability criteria for target species to be analyzed within the Instream Flow Habitat Assessment Study for the Conowingo Hydroelectric Project.

#### PROPOSED FINAL HABITAT SUITABILITY CURVES

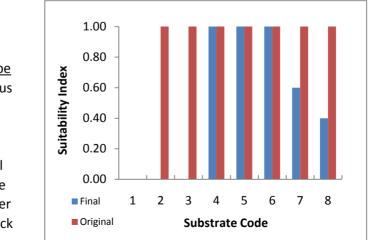
There were several modifications proposed at the August meeting to the individual HSI curves of American shad, shortnose sturgeon, striped bass and smallmouth bass as well as the removal of the mussels and community macroinvertebrate curves from the analysis. The analysis of the mussels will be incorporated into the hydraulic analysis. The mussel habitat analysis will rely on output from the 2-dimensional hydraulic model, which is the basis for the instream flow study. Specifically, modeled hydraulic parameters, such as bottom shear stress, depth, and average column velocity, will be analyzed for specific areas of interest (i.e., known mussel bed locations) in the study reach, to determine the habitat impacts of the existing and alternative flow regimes.

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), or EPT, curves were added to take the place of the community macroinvertebrate curve, as was discussed at the meeting. The EPT curves were developed from Gore et al. 2001. The Gore (2001) document provides a correlation between habitat suitability criteria for fish and the diversity of the macroinvertabrate community. The paper developed habitat suitability criteria for the EPT community that is commonly used during instream flow evaluations.

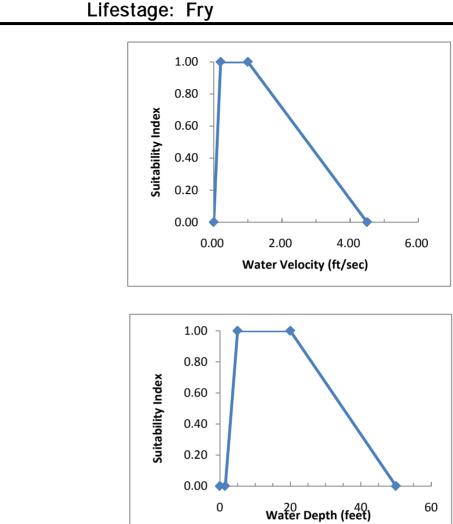
Further changes to the striped bass curves were made following discussions with Bob Sadzinski and Eric Durell of MDNR. The shortnose sturgeon curves were modified after a conference call with Don Pugh (American Rivers) and Jessica Pruden (NMFS). Smallmouth bass curves were further modified after information was provided by Mike Hendricks (PFBC). All of the information provided during the August 19 meeting and the subsequent discussions has been used to develop curves for the current analysis. Any changes made since the meeting are plotted on the same graph as the original curve so that the group can view the changes.


The appendices at the end of this memo provide a proposed final set of habitat suitability criteria, habitat guild assignment and periodicity table for review. All references used in the development of the curves are provided in Appendix D. Please review the information and respond with comments by December 24, 2010.

Appendix A- Revised Habitat Suitability Criteria


### Species: American Shad Lifestage: Spawning

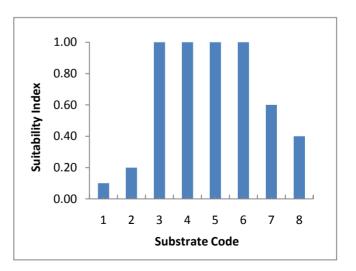
|                   | 1.00                    |
|-------------------|-------------------------|
| ×                 | 0.80 -                  |
| Suitability Index | 0.60 -                  |
| ability           | 0.40 -                  |
| Suit              | 0.20 -                  |
|                   | 0.00                    |
|                   | 0.00 2.00 4.00 6.00     |
|                   | Water Velocity (ft/sec) |


| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.30            | 0.00            |
| 1.00            | 1.00            |
| 3.00            | 1.00            |
| 4.30            | 0.00            |



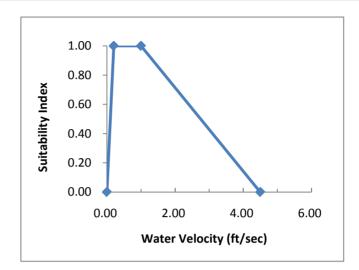
| Proposed Final |                 | Original     |                 |
|----------------|-----------------|--------------|-----------------|
| <u>Depth</u>   | <u>SI Value</u> | <u>Depth</u> | <u>SI Value</u> |
| 0.00           | 0.00            | 1.50         | 0.00            |
| 1.00           | 0.10            | 5.00         | 1.00            |
| 5.00           | 1.00            | 20.00        | 1.00            |
| 20.00          | 1.00            | 50.00        | 0.00            |
| 50.00          | 0.86            |              |                 |
| 100.00         | 0.00            |              |                 |
|                |                 |              |                 |



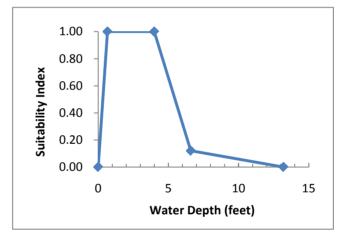

|             | Final           | Original        |             |
|-------------|-----------------|-----------------|-------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u> |
| 1           | 0.00            | 0.00            | Detritus    |
| 2           | 0.00            | 1.00            | Mud         |
| 3           | 0.00            | 1.00            | Silt        |
| 4           | 1.00            | 1.00            | Sand        |
| 5           | 1.00            | 1.00            | Gravel      |
| 6           | 1.00            | 1.00            | Cobble      |
| 7           | 0.60            | 1.00            | Boulder     |
| 8           | 0.40            | 1.00            | Bedrock     |



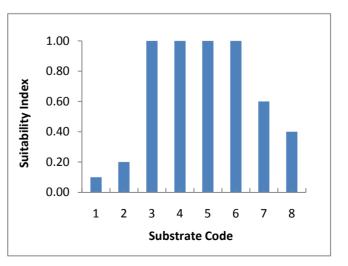
| Species: | Ameri  | can Shad |
|----------|--------|----------|
| Life     | stage: | Fry      |


| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.20            | 1.00            |
| 1.00            | 1.00            |
| 4.50            | 0.00            |
|                 |                 |

| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.50         | 0.00            |
| 5.00         | 1.00            |
| 20.00        | 1.00            |
| 50.00        | 0.00            |

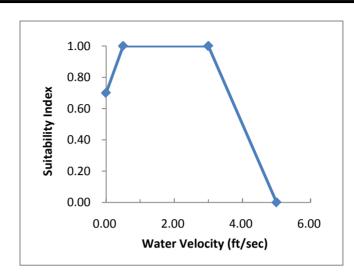


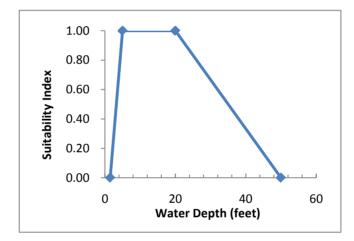

| <u>Code</u> | <u>SI Value</u> | Туре             |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |


### Species: American Shad Lifestage: Juvenile



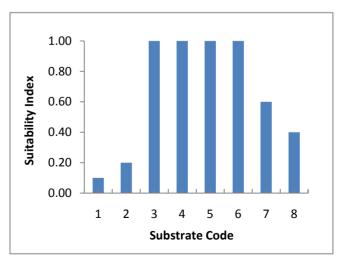
| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.20            | 1.00            |
| 1.00            | 1.00            |
| 4.50            | 0.00            |





| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 0.66         | 1.00            |
| 3.99         | 1.00            |
| 6.60         | 0.12            |
| 13.20        | 0.00            |



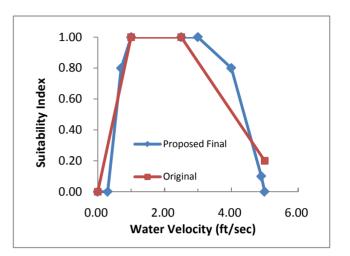
| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |
|             |                 |                  |

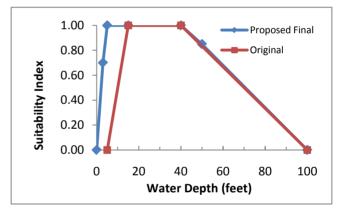

### Species: American Shad Lifestage: Adult





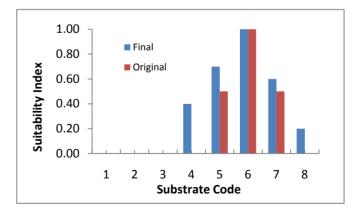
| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.70            |
| 0.50            | 1.00            |
| 3.00            | 1.00            |
| 5.00            | 0.00            |


| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.50         | 0.00            |
| 5.00         | 1.00            |
| 20.00        | 1.00            |
| 50.00        | 0.00            |



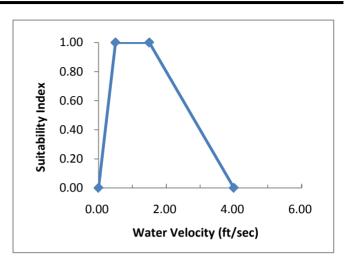

| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |
|             |                 |                  |

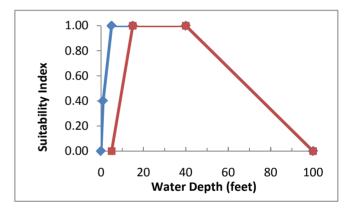
### Species: Shortnose Sturgeon Lifestage: Spawning


| Propos          | ed Final        | Orig            | inal            |
|-----------------|-----------------|-----------------|-----------------|
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |
| 0.00            | 0.00            | 0.00            | 0.00            |
| 0.30            | 0.00            | 1.00            | 1.00            |
| 0.70            | 0.80            | 2.50            | 1.00            |
| 1.00            | 1.00            | 5.00            | 0.20            |
| 2.50            | 1.00            |                 |                 |
| 3.00            | 1.00            |                 |                 |
| 4.00            | 0.80            |                 |                 |
| 4.90            | 0.10            |                 |                 |
| 5.00            | 0.00            |                 |                 |

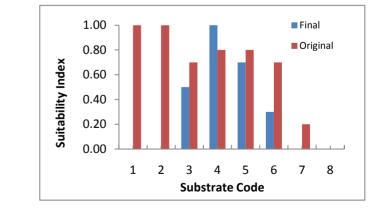





| Proposed Final |                 | Original     |          |
|----------------|-----------------|--------------|----------|
| Depth          | <u>SI Value</u> | <u>Depth</u> | SI Value |
| 0.00           | 0.00            | 5.00         | 0.00     |
| 3.00           | 0.70            | 15.00        | 1.00     |
| 5.00           | 1.00            | 40.00        | 1.00     |
| 15.00          | 1.00            | 100.00       | 0.00     |
| 40.00          | 1.00            |              |          |
| 50.00          | 0.85            |              |          |
| 100.00         | 0.00            |              |          |


|             | Final           | Original        |                  |
|-------------|-----------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | 0.00            | Detritus/Organic |
| 2           | 0.00            | 0.00            | Mud/soft clay    |
| 3           | 0.00            | 0.00            | Silt             |
| 4           | 0.40            | 0.00            | Sand             |
| 5           | 0.70            | 0.50            | Gravel           |
| 6           | 1.00            | 1.00            | Cobble/rubble    |
| 7           | 0.60            | 0.50            | Boulder          |
| 8           | 0.20            | 0.00            | Bedrock          |
|             |                 |                 |                  |




### Species: Shortnose Sturgeon Lifestage: Fry

| <u>SI Value</u> |
|-----------------|
| 0.00            |
| 1.00            |
| 1.00            |
| 0.00            |
|                 |





| Proposed Final |                 | <u>Original</u> |          |  |
|----------------|-----------------|-----------------|----------|--|
| <u>Depth</u>   | <u>SI Value</u> | <u>Depth</u>    | SI Value |  |
| 0.00           | 0.00            | 5.00            | 0.00     |  |
| 1.00           | 0.40            | 15.00           | 1.00     |  |
| 5.00           | 1.00            | 40.00           | 1.00     |  |
| 15.00          | 1.00            | 100.00          | 0.00     |  |
| 40.00          | 1.00            |                 |          |  |
| 100.00         | 0.00            |                 |          |  |



| <u>Code</u><br>1<br>2<br>3<br>4<br>5<br>6<br>7 | Final<br><u>SI Value</u><br>0.00<br>0.00<br>0.50<br>1.00<br>0.70<br>0.30<br>0.00 | Original<br><u>SI Value</u><br>1.00<br>1.00<br>0.70<br>0.80<br>0.80<br>0.70<br>0.20<br>0.20 | <u>Type</u><br>Detritus/Organic<br>Mud/soft clay<br>Silt<br>Sand<br>Gravel<br>Cobble/rubble<br>Boulder |
|------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 7<br>8                                         | 0.00                                                                             | 0.20                                                                                        | Bedrock                                                                                                |
|                                                |                                                                                  |                                                                                             |                                                                                                        |

### Species: Shortnose Sturgeon Lifestage: Juveniles

| Proposed Final  |                 | Original        |                 |
|-----------------|-----------------|-----------------|-----------------|
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |
| 0.00            | 0.00            | 0.00            | 0.00            |
| 0.20            | 1.00            | 0.50            | 1.00            |
| 0.50            | 1.00            | 2.50            | 1.00            |
| 1.50            | 1.00            | 5.00            | 0.00            |
| 2.50            | 0.50            |                 |                 |
| 5.00            | 0.00            |                 |                 |

Original

<u>Depth</u>

5.00

10.00

40.00

100.00

SI Value

0.00

1.00

1.00

0.00

**Proposed Final** 

SI Value

0.00

0.70

1.00

1.00

1.00

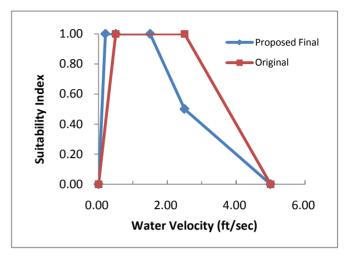
0.40

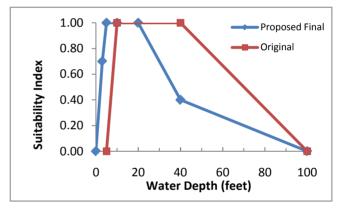
0.00

<u>Depth</u>

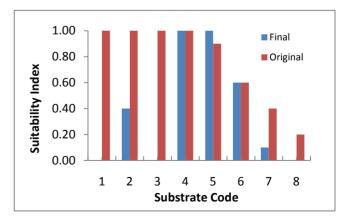
0.00

3.00


5.00

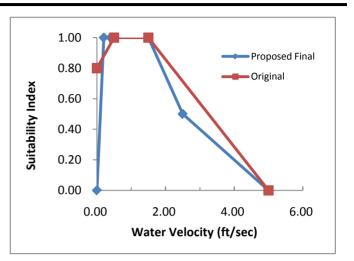

10.00

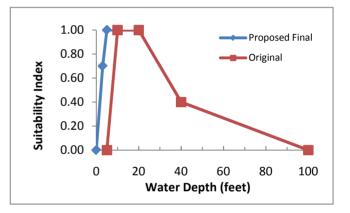
20.00


40.00

100.00



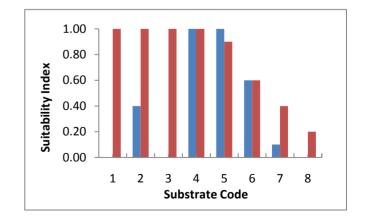




|             | Final           | Original        |                  |
|-------------|-----------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | 1.00            | Detritus/Organic |
| 2           | 0.40            | 1.00            | Mud/soft clay    |
| 3           | 0.00            | 1.00            | Silt             |
| 4           | 1.00            | 1.00            | Sand             |
| 5           | 1.00            | 0.90            | Gravel           |
| 6           | 0.60            | 0.60            | Cobble/rubble    |
| 7           | 0.10            | 0.40            | Boulder          |
| 8           | 0.00            | 0.20            | Bedrock          |



### Species: Shortnose Sturgeon Lifestage: Adults

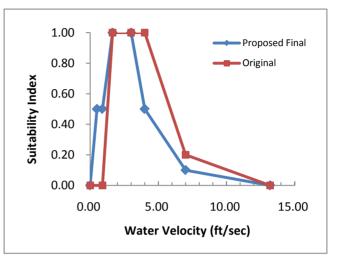
| Propos          | ed Final        | Origi           | inal            |  |
|-----------------|-----------------|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 0.00            | 0.00            | 0.80            |  |
| 0.20            | 1.00            | 0.50            | 1.00            |  |
| 0.40            | 1.00            | 1.50            | 1.00            |  |
| 0.50            | 1.00            | 5.00            | 0.00            |  |
| 1.50            | 1.00            |                 |                 |  |
| 2.50            | 0.50            |                 |                 |  |
| 5.00            | 0.00            |                 |                 |  |
|                 |                 |                 |                 |  |



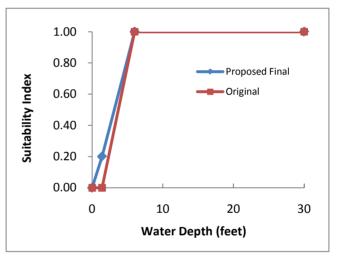



| <u>SI Value</u> | <u>Depth</u>                                 | <u>SI Value</u>                                                                                                                                       |
|-----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00            | 5.00                                         | 0.00                                                                                                                                                  |
| 0.70            | 10.00                                        | 1.00                                                                                                                                                  |
| 1.00            | 20.00                                        | 1.00                                                                                                                                                  |
| 1.00            | 40.00                                        | 0.40                                                                                                                                                  |
| 1.00            | 100.00                                       | 0.00                                                                                                                                                  |
| 0.40            |                                              |                                                                                                                                                       |
| 0.00            |                                              |                                                                                                                                                       |
|                 | 0.00<br>0.70<br>1.00<br>1.00<br>1.00<br>0.40 | 0.00         5.00           0.70         10.00           1.00         20.00           1.00         40.00           1.00         100.00           0.40 |

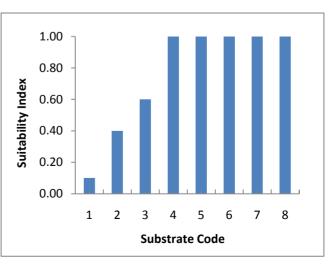
Original


**Proposed Final** 



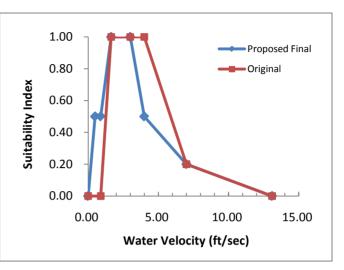

|             | Final           | Original        |                  |
|-------------|-----------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | 1.00            | Detritus/Organic |
| 2           | 0.40            | 1.00            | Mud/soft clay    |
| 3           | 0.00            | 1.00            | Silt             |
| 4           | 1.00            | 1.00            | Sand             |
| 5           | 1.00            | 0.90            | Gravel           |
| 6           | 0.60            | 0.60            | Cobble/rubble    |
| 7           | 0.10            | 0.40            | Boulder          |
| 8           | 0.00            | 0.20            | Bedrock          |
|             |                 |                 |                  |

### Species: Striped Bass Lifestage: Spawning

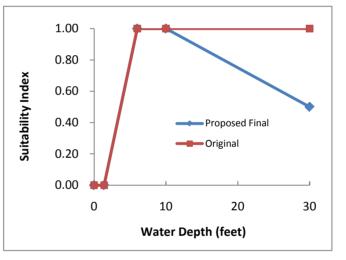

| Proposed Final  |                 | Original        |                 |
|-----------------|-----------------|-----------------|-----------------|
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |
| 0.00            | 0.00            | 0.00            | 0.00            |
| 0.50            | 0.50            | 0.90            | 0.00            |
| 0.90            | 0.50            | 1.64            | 1.00            |
| 1.64            | 1.00            | 3.00            | 1.00            |
| 3.00            | 1.00            | 4.00            | 1.00            |
| 4.00            | 0.50            | 7.00            | 0.20            |
| 7.00            | 0.10            | 13.20           | 0.00            |
| 13.20           | 0.00            |                 |                 |



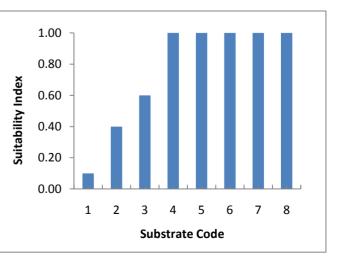
| Proposed Final |          | Original     |                 |
|----------------|----------|--------------|-----------------|
| <u>Depth</u>   | SI Value | <u>Depth</u> | <u>SI Value</u> |
| 0.00           | 0.00     | 0.0          | 0.00            |
| 1.40           | 0.20     | 1.4          | 0.00            |
| 6.00           | 1.00     | 6.0          | 1.00            |
| 30.0           | 1.00     | 30.0         | 1.00            |
|                |          |              |                 |




| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |  |
|-------------|-----------------|------------------|--|
| 1           | 0.1             | Detritus/Organic |  |
| 2           | 0.4             | Mud/Soft Clay    |  |
| 3           | 0.6             | Silt             |  |
| 4           | 1.0             | Sand             |  |
| 5           | 1.0             | Gravel           |  |
| 6           | 1.0             | Cobble           |  |
| 7           | 1.0             | Boulder          |  |
| 8           | 1.0             | Bedrock          |  |
|             |                 |                  |  |

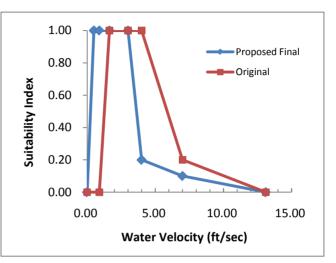



### Species: Striped Bass Lifestage: Fry

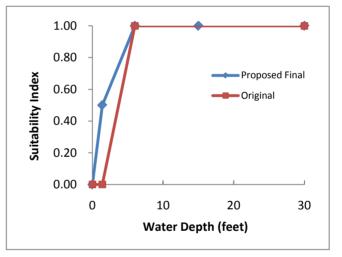

| Propose         | nd Final        | Original        |                 |
|-----------------|-----------------|-----------------|-----------------|
| Propose         | eu Fillai       | Original        |                 |
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |
| 0.00            | 0.00            | 0.00            | 0.00            |
| 0.50            | 0.50            | 0.90            | 0.00            |
| 0.90            | 0.50            | 1.64            | 1.00            |
| 1.64            | 1.00            | 3.00            | 1.00            |
| 3.00            | 1.00            | 4.00            | 1.00            |
| 4.00            | 0.50            | 7.00            | 0.20            |
| 7.00            | 0.20            | 13.10           | 0.00            |
| 13.10           | 0.00            |                 |                 |



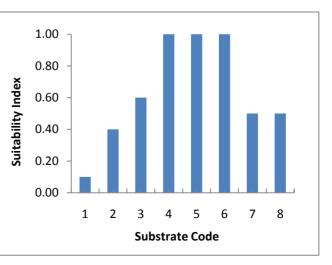
| Proposed Final |          | Original     |                 |
|----------------|----------|--------------|-----------------|
| <u>Depth</u>   | SI Value | <u>Depth</u> | <u>SI Value</u> |
| 0.00           | 0.00     | 0.0          | 0.00            |
| 1.40           | 0.00     | 1.4          | 0.00            |
| 6.00           | 1.00     | 6.0          | 1.00            |
| 10.0           | 1.00     | 10.0         | 1.00            |
| 30.0           | 0.50     | 30.0         | 1.00            |
|                |          |              |                 |




| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.1             | Detritus/Organic |
| 2           | 0.4             | Mud/Soft Clay    |
| 3           | 0.6             | Silt             |
| 4           | 1.0             | Sand             |
| 5           | 1.0             | Gravel           |
| 6           | 1.0             | Cobble           |
| 7           | 1.0             | Boulder          |
| 8           | 1.0             | Bedrock          |

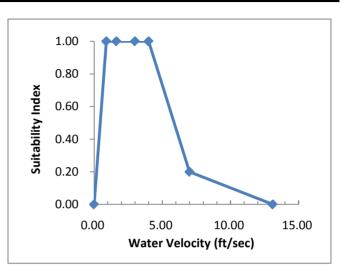



### Species: Striped Bass Lifestage: Juvenile

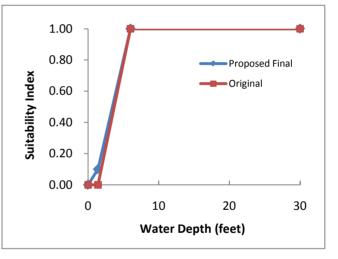

| Proposed Final  |                 | Original        |                 |
|-----------------|-----------------|-----------------|-----------------|
| <u>Velocity</u> | <u>SI Value</u> | <u>Velocity</u> | <u>SI Value</u> |
| 0.00            | 0.00            | 0.00            | 0.00            |
| 0.50            | 1.00            | 0.90            | 0.00            |
| 0.90            | 1.00            | 1.64            | 1.00            |
| 1.64            | 1.00            | 3.00            | 1.00            |
| 3.00            | 1.00            | 4.00            | 1.00            |
| 4.00            | 0.20            | 7.00            | 0.20            |
| 7.00            | 0.10            | 13.10           | 0.00            |
| 13.10           | 0.00            |                 |                 |



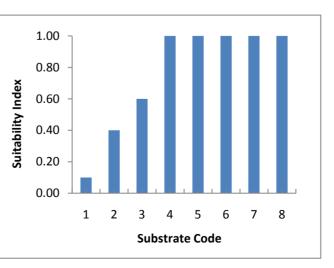
| Proposed Final |                 | Original     |                 |  |
|----------------|-----------------|--------------|-----------------|--|
| <u>Depth</u>   | <u>SI Value</u> | <u>Depth</u> | <u>SI Value</u> |  |
| 0.00           | 0.00            | 0.0          | 0.00            |  |
| 1.40           | 0.50            | 1.4          | 0.00            |  |
| 6.00           | 1.00            | 6.0          | 1.00            |  |
| 15.0           | 1.00            | 30.0         | 1.00            |  |
| 30.0           | 1.00            |              |                 |  |

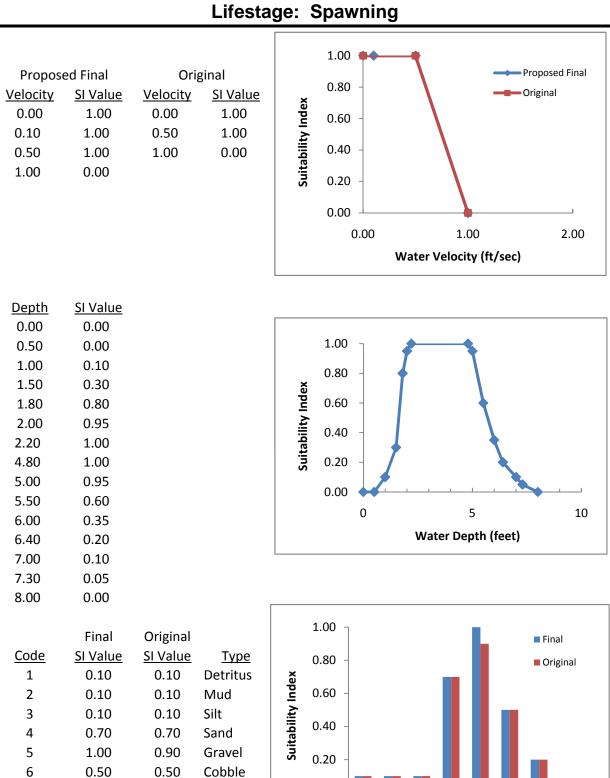



| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.1             | Detritus/Organic |
| 2           | 0.4             | Mud/Soft Clay    |
| 3           | 0.6             | Silt             |
| 4           | 1.0             | Sand             |
| 5           | 1.0             | Gravel           |
| 6           | 1.0             | Cobble           |
| 7           | 0.5             | Boulder          |
| 8           | 0.5             | Bedrock          |




### Species: Striped Bass Lifestage: Adult


| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.90            | 1.00            |
| 1.64            | 1.00            |
| 3.00            | 1.00            |
| 4.00            | 1.00            |
| 7.00            | 0.20            |
| 13.10           | 0.00            |
|                 |                 |




| Proposed Final |          | Original     |                 |
|----------------|----------|--------------|-----------------|
| <u>Depth</u>   | SI Value | <u>Depth</u> | <u>SI Value</u> |
| 0.00           | 0.00     | 0.0          | 0.00            |
| 1.40           | 0.10     | 1.4          | 0.00            |
| 6.00           | 1.00     | 6.0          | 1.00            |
| 30.0           | 1.00     | 30.0         | 1.00            |
| 30.0           | 1.00     | 30.0         | 1.00            |



| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.1             | Detritus/Organic |
| 2           | 0.4             | Mud/Soft Clay    |
| 3           | 0.6             | Silt             |
| 4           | 1.0             | Sand             |
| 5           | 1.0             | Gravel           |
| 6           | 1.0             | Cobble           |
| 7           | 1.0             | Boulder          |
| 8           | 1.0             | Bedrock          |
|             |                 |                  |





# Species: Smallmouth Bass

0.00

1

2

3

4

Substrate Code

5

6

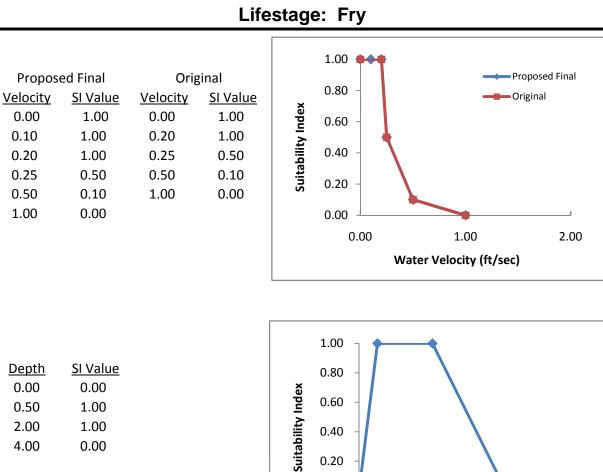
7

8

7

8

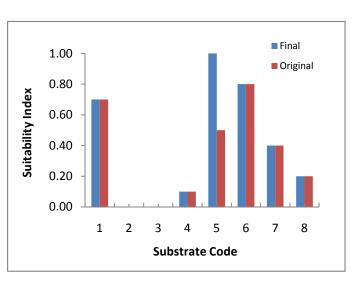
0.20


0.00

0.20

0.00

Boulder


Bedrock

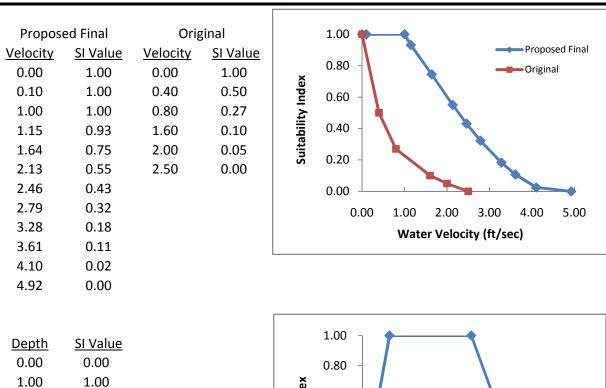


0.00

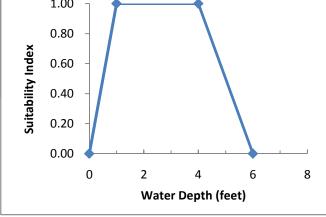
0

## Species: Smallmouth Bass




2

Water Depth (feet)


4

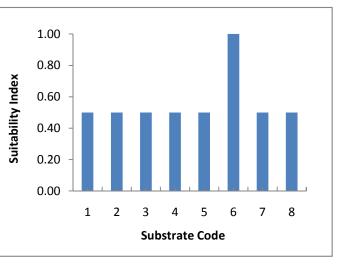
6

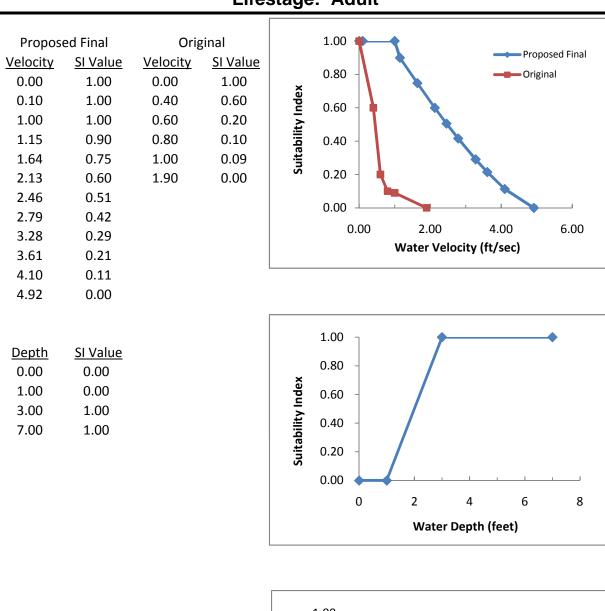
|             | Final           | Original        |             |
|-------------|-----------------|-----------------|-------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u> |
| 1           | 0.70            | 0.70            | Detritus    |
| 2           | 0.00            | 0.00            | Mud         |
| 3           | 0.00            | 0.00            | Silt        |
| 4           | 0.10            | 0.10            | Sand        |
| 5           | 1.00            | 0.50            | Gravel      |
| 6           | 0.80            | 0.80            | Cobble      |
| 7           | 0.40            | 0.40            | Boulder     |
| 8           | 0.20            | 0.20            | Bedrock     |
|             |                 |                 |             |



### Species: Smallmouth Bass Lifestage: Juvenile

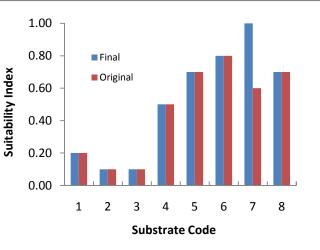



| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |  |
|-------------|-----------------|------------------|--|
| 1           | 0.50            | Detritus/Organic |  |
| 2           | 0.50            | Mud/soft clay    |  |
| 3           | 0.50            | Silt             |  |
| 4           | 0.50            | Sand             |  |
| 5           | 0.50            | Gravel           |  |
| 6           | 1.00            | Cobble/rubble    |  |
| 7           | 0.50            | Boulder          |  |
| 8           | 0.50            | Bedrock          |  |

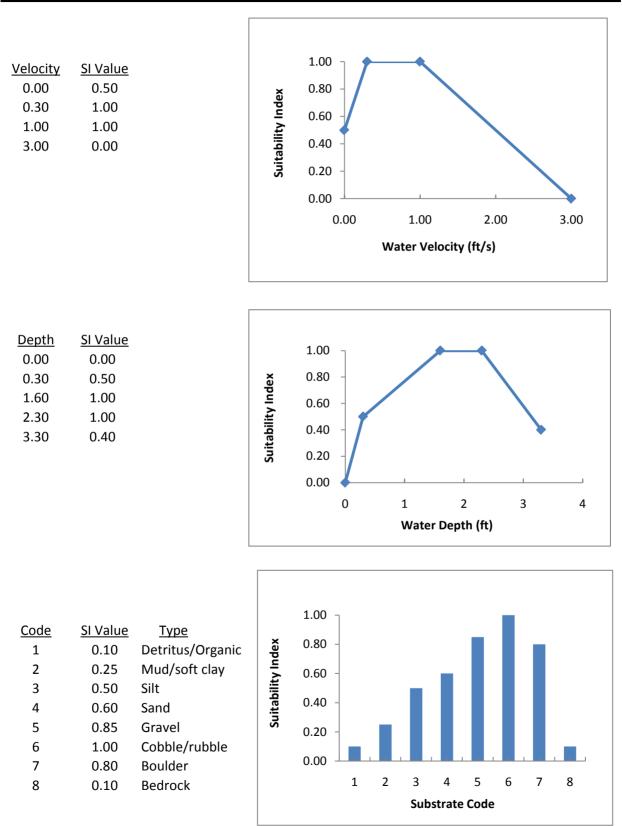

4.00

6.00

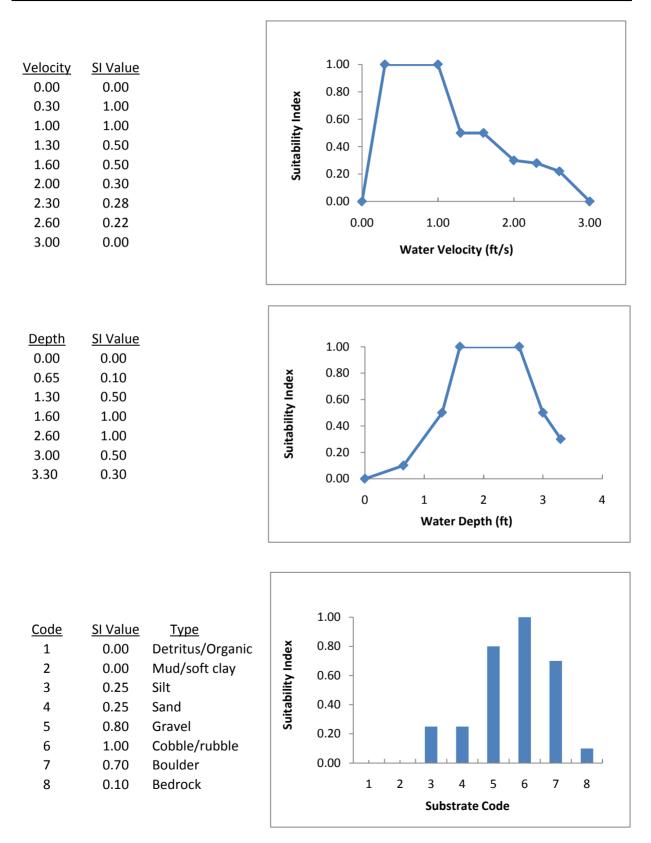
1.00


0.00

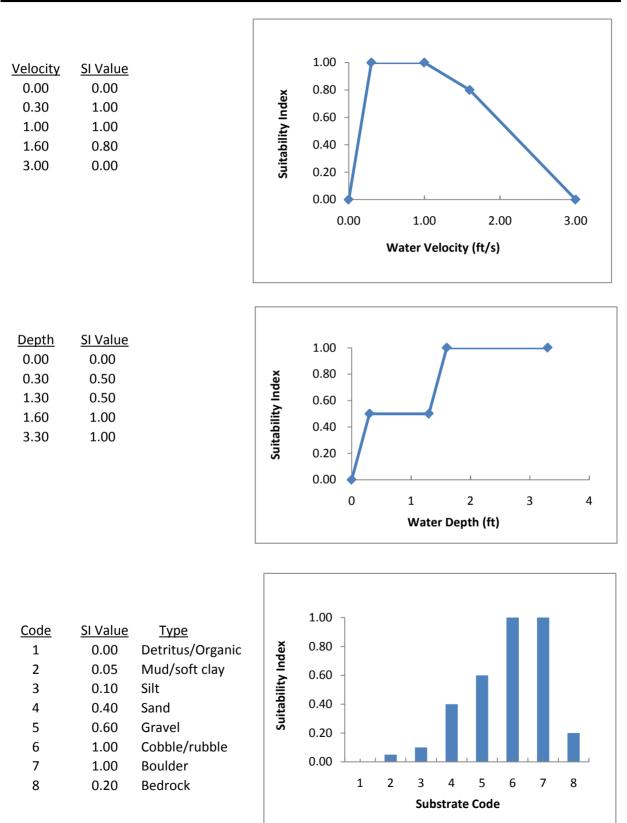




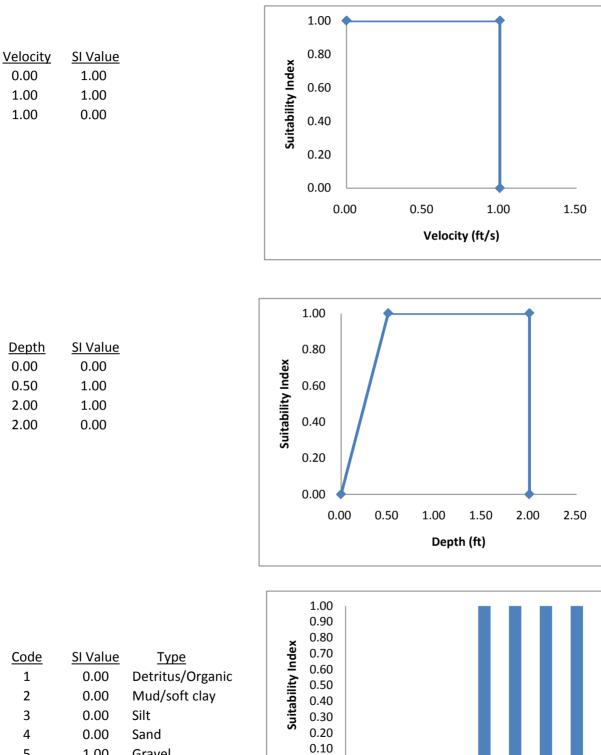

### Species: Smallmouth Bass Lifestage: Adult


|             | Final           | Original        |             |
|-------------|-----------------|-----------------|-------------|
| <u>Code</u> | <u>SI Value</u> | <u>SI Value</u> | <u>Type</u> |
| 1           | 0.20            | 0.20            | Detritus    |
| 2           | 0.10            | 0.10            | Mud         |
| 3           | 0.10            | 0.10            | Silt        |
| 4           | 0.50            | 0.50            | Sand        |
| 5           | 0.70            | 0.70            | Gravel      |
| 6           | 0.80            | 0.80            | Cobble      |
| 7           | 1.00            | 0.60            | Boulder     |
| 8           | 0.70            | 0.70            | Bedrock     |
|             |                 |                 |             |




### Species: Ephemeroptera (Mayflies) Lifestage: Community Diversity -Large River




### Species: Plecoptera (Stoneflies) Lifestage: Community Diversity -Large River



## Species: Tricoptera (Caddisflies) Lifestage: Community Diversity -Large River







| 3 | 0.00 | Silt          |
|---|------|---------------|
| 4 | 0.00 | Sand          |
| 5 | 1.00 | Gravel        |
| 6 | 1.00 | Cobble/rubble |
| 7 | 1.00 | Boulder       |
| 8 | 1.00 | Bedrock       |

0.00

1.00

1.00

0.00

0.50

2.00

2.00

1

2

0.00

2

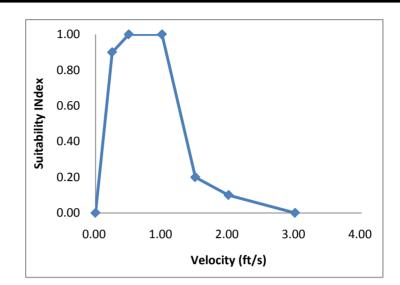
3

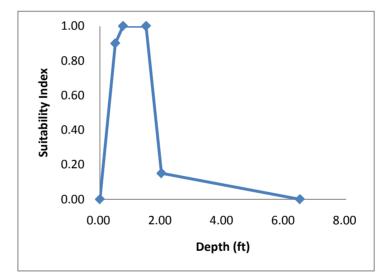
1

5

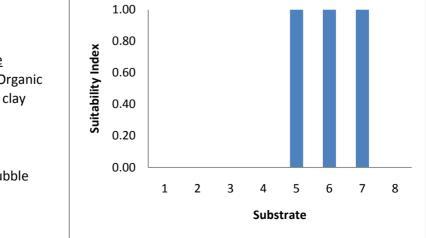
Substrate

4

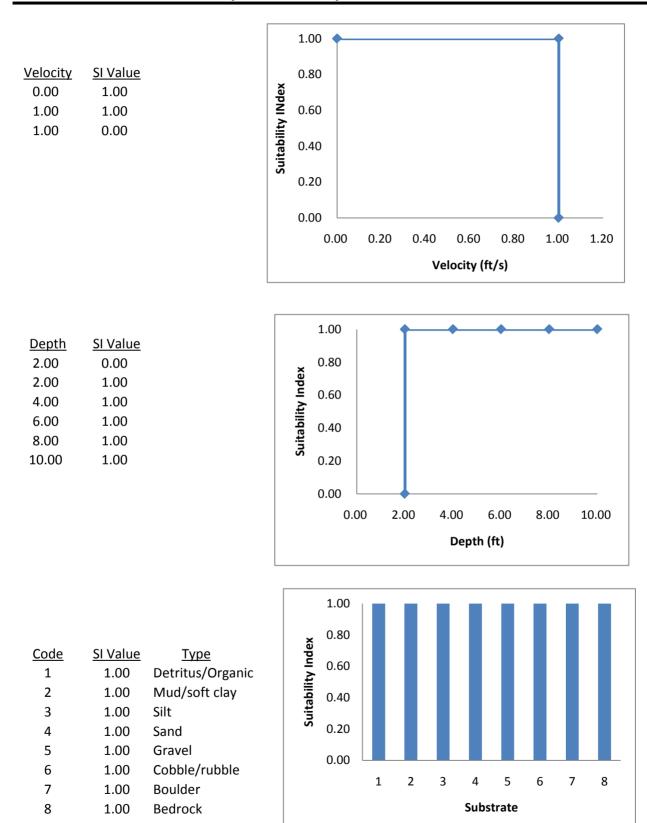

6


7

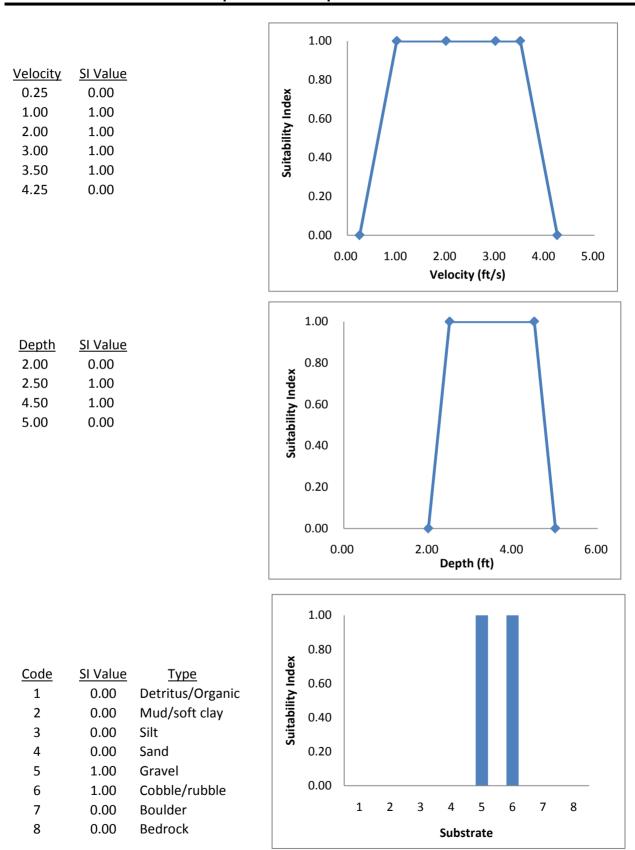
8


# Species: Shallow-Fast Guild

| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.25            | 0.90            |
| 0.50            | 1.00            |
| 1.00            | 1.00            |
| 1.50            | 0.20            |
| 2.00            | 0.10            |
| 3.00            | 0.00            |
|                 |                 |







| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 0.50         | 0.90            |
| 0.75         | 1.00            |
| 1.50         | 1.00            |
| 2.00         | 0.15            |
| 6.50         | 0.00            |



| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |  |
|-------------|-----------------|------------------|--|
| 1           | 0.00            | Detritus/Organic |  |
| 2           | 0.00            | Mud/soft clay    |  |
| 3           | 0.00            | Silt             |  |
| 4           | 0.00            | Sand             |  |
| 5           | 1.00            | Gravel           |  |
| 6           | 1.00            | Cobble/rubble    |  |
| 7           | 1.00            | Boulder          |  |
| 8           | 0.00            | Bedrock          |  |
|             |                 |                  |  |



Species: Deep-Slow Guild



## Species: Deep-Fast Guild

Appendix B- Revised Periodicity Table

|                  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| American shad    |     |     |     |     | v   |     |     | 8   | -   |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Hickory shad     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Blueback herring |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Alewife          |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| White perch      |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow perch     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Striped bass     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |

|                                      | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Largemouth bass                      |     |     |     |     |     |     |     |     | -   |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Smallmouth bass                      |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Walleye                              |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Shortnose sturgeon                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Atlantic sturgeon                    |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults                     |     |     |     |     |     |     |     |     |     |     |     |     |
| American eel                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Elver                                |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Silver                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Alewife floater                      |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults/juveniles                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Eastern elliptio                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults/juveniles                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                             |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Fingernail clams                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae                      |     |     |     |     |     |     |     |     |     |     |     |     |
| Ephemeroptera-Plecoptera-Trichoptera |     |     |     |     |     |     |     |     |     |     |     |     |
| all life stages                      |     |     |     |     |     |     |     |     |     |     |     |     |

## Appendix C- Revised Habitat Guild Assignment Table

|                      |                    | Habita               | t Guild          |                  |
|----------------------|--------------------|----------------------|------------------|------------------|
|                      | Shallow-slow       | Shallow-fast         | Deep slow        | Deep-fast        |
| Species              | (< 2 ft, < 1 ft/s) | (< 2  ft, > 1  ft/s) | (>2 ft, <1 ft/s) | (>2 ft, >1 ft/s) |
| American shad*       | F, J               |                      | J                | A, S             |
| Hickory shad         | F                  |                      | J, S             | А                |
| Blueback herring     | F, J               |                      | A, S             |                  |
| Alewife              | F, J               |                      | A, S             |                  |
| White perch          | F, J               | S                    | A, J             | S                |
| Yellow perch         | F                  |                      | A, J, S          |                  |
| Striped bass *       | F, J, S            |                      | F, J, S          | A, S             |
| Largemouth bass      | F, J, S            |                      | A, F, J, S       |                  |
| Smallmouth bass *    | F                  |                      | A, F, J, S       |                  |
| Walleye              |                    |                      | A, J, F          | S                |
| Shortnose sturgeon * | F                  | F                    | A, J, F          | A, F, J, S       |
| Atlantic sturgeon    |                    |                      | A, J, F          | A, F, J, S       |
| American eel         | J                  |                      | A, J             | J                |
| EPT**                | V                  | V                    | V                | V                |

## A=Adult, J=Juvenile, F=Fry, S=Spawning

\*Species of special concern for instream flow assessment. \*\* Ephemeroptera-Plecoptera-Trichoptera

## **Appendix D- HSI References**

- Aadland, L.P. 1993. Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13:790-806.
- Aadland, L.P. and A. Kuitunen. 2006. Habitat suitability criteria for stream fishes and mussels of Minnesota. Division of Ecological Services, Special Publication No. 62. Minnesota Department of Natural Resources, St. Paul, MN.
- Angermeier, P. L. 1987. Spatiotemporal variation in habitat selection by fishes in small Illinois streams.
   52–60. in W. J. Matthews and D. C. Heins, editors. Community and evolutionary ecology of North American stream fish. University of Oklahoma Press, Norman.
- Atlantic States Marine Fisheries Commission.2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Habitat Management Series No.9, Washington, D.C.
- Crance, J.H. 1986. Habitat suitability information: Shortnose sturgeon. U.S. Fish Wildl. Serv. Biol. Rep. FWS/OBS-82/10.129. 31pp.
- Crance, J.H. 1984. Habitat suitability index models and instream flow suitability curves: Inland stocks of striped bass. U.S. Fish Wildl. Serv. FWS/OBS-82/10.85. 63pp.
- DTA. 2005. Duke Power Catawba-Wateree relicensing (FERC No.2232) Instream flow study report.
- Gore, J.A., J.B. Layzer, and J.Mead. Macroinvertebrate instream flow studies after 20 years: a role in stream management and restoration. Regul. Rivers: Res. Mgmt. 17:527-542.
- Kieffer, M., B. Kynard. Spawning of Connecticut River Shortnose Sturgeon: Migration, Homing, Timing, Adult Demography, Suitability Windows, Sites and Habitat, Failures, and the Effect of River Regulation on Spawning Success. In press.
- Kynard, B., D. Pugh, T. Parker, and M. Kieffer. Spawning of shortnose sturgeon in an artificial stream: adult behavior and early life history. In press.
- Kynard, B., M. Horgan, M. Kieffer, and D. Seibel. 2000. Habitats used by shortnose sturgeon in two Massachusetts rivers, with notes on estuarine Atlantic sturgeon: a hierarchical approach. Transactions of the American Fisheries Society 129: 487 – 503.
- Leonard, P.M. and D.J. Orth. 1988. Use of habitat guilds of fishes to determine instream flow requirements. North American Journal of Fisheries Management 8:399-409.
- Normandeau Associates, Inc. 2000. An instream flow study in support of relicensing of the Piney Hydroelectric Station FERC Project No.309. Prepared for Foster Wheeler Environmental Corporation, Langhorne, PA and Sithe Pennsylvania Holdings LLC, Johnstown, PA.

Progress Energy. 2003. Pee Dee River instream flow study (FERC No. 2206).

- Richmond, A. M., and B. Kynard. 1995. Ontogenetic behavior of shortnose sturgeon, *Acipenser* brevirostrum. Copeia 1995:172–182.
- RMC.1992. Results of an incremental flow study in the bypassed reach at the Walters Hydroelectric Project, Pigeon River,, North Carolina. Prepared for Carolina Power and Light Company, Raleigh, NC.
- Ross, R.M.,T.W.W. Backman, and R.M.Bennett.1993. Evaluation of habitat suitability index models for riverine life satges of American shad, with proposed models for premigratory juveniles. U.S.Fish and Wildlife Service Bilogical Report 14.
- Ross, S. T., J. A. Baker, and K. E. Clark. 1987. Microhabitat partitioning of southeastern stream fishes: Temporal and spatial predictability. In: Matthews, W. J. and D. C. Heins (eds.). Symposium on the Evolutionary and Community Ecology of North American Stream Fishes. University of Oklahoma Press, p. 4251.
- Seibel, D. 1991. Habitat selection, movements, and response to illumination by shortnose sturgeon in the Connecticut River. Master's thesis. University of Massachusetts, Amherst.
- Stier, D.J., and J.H. Crance. 1985. Habitat suitability index models and instream flow suitability curves: American shad. United States Fish and Wildlife Service Biological Report 82(10.88). 34pp.
- Todd, B.L. and C.F. Rabeni. 1989. Movement and habitat use by stream dwelling smallmouth bass. Transaction of the American Fisheries Society 118:229-242.

# **Exel**<sup>th</sup>

## CONOWINGO HYDROELECTRIC PROJECT (FERC No. 405)

Meeting Agenda to Discuss Habitat Suitability Criteria Selection for the Instream Flow Habitat Assessment below Conowingo Dam (RSP 3.16)

#### Thursday August 19, 2010 10:30 am to 12:30 pm Conowingo Project Visitors Center, Darlington, MD Teleconference Participation: 1-866-763-1619, Code 4531781#

| 1. | Verify target species and life stages                      | 1:00 - 1:15 |
|----|------------------------------------------------------------|-------------|
| 2. | Discuss periodicity chart                                  | 1:15 – 1:30 |
| 3. | Discuss habitat guilds                                     | 1:30 - 1:45 |
| 4. | Discuss selection of species of concern                    | 1:45 – 2:00 |
| 5. | Review and Come to Agreement on Habitat Suitability Curves | 2:00 - 3:00 |



# **MEMORANDUM**

July 13, 2010

**TO:** Larry Miller (USFWS), Andy Shiels (PFBC), Mike Hendricks (PFBC), Jim Richenderfer (SRBC), Andrew Dehoff (SRBC), Julie Crocker (NOAA), Shawn Seaman (MDNR), Bob Sadzinski (MDNR), Steve Schreiner (Versar Inc.), Bill Richkus (Versar Inc.), Jim Spontak (PaDEP), Janet Norman (USFWS), Jeremy Miller (PaDEP), John Smith (FERC), Mark Bryer (The Nature Conservancy), John Seebach (American Rivers), Don Pugh (American Rivers)

FROM: Colleen Hicks, Exelon Power

#### Re: Habitat Suitability Criteria Selection for the Instream Flow Habitat Assessment below Conowingo Dam (RSP 3.16). Conowingo Hydroelectric Project, FERC No. 405, Relicensing.

#### **INTRODUCTION**

This memo's purpose is to initiate the consultation process with resource agencies to select appropriate habitat suitability criteria for target species to be analyzed within the Instream Flow Habitat Assessment Study for the Conowingo Hydroelectric Project. The following sections describe the habitat suitability criteria selection methodology proposed by Exelon. This information is being provided so that it can be reviewed by resource agencies and subsequently discussed in order to finalize selection of habitat suitability criteria. Exelon is proposing a review period for resource agencies, followed by a meeting the week of August16<sup>th</sup> with the goal of finalizing the habitat suitability criteria at that time.

### HABITAT SUITABILITY CRITERIA

As part of the Integrated Licensing Process (ILP) study scoping process, resource agencies proposed the following target fish species for analysis in the study: American shad, hickory shad, blueback herring, alewife, white perch, striped bass, yellow perch, walleye, largemouth bass, smallmouth bass, shortnose sturgeon, Atlantic sturgeon and American eel. In addition, macroinvertebrates, mussels, and aquatic plants were proposed for analysis.

Habitat suitability criteria for this study will rely upon pre-existing literature and the professional judgment of resource agency and Exelon biologists. In the case of mussels, site-specific data (i.e., depth, velocity, and substrate) will be collected during the mussel surveys conducted as part of Conowingo RSP 3.19-Freshwater Mussel Characterization Study below Conowingo Dam, and used to corroborate the mussel habitat suitability criteria described below.

Exelon is proposing that the Instream Flow Habitat Assessment Study examine the relationships between aquatic habitat and river flow for several species of special concern (American shad, Striped bass, shortnose sturgeon, which will also act as a surrogate for Atlantic sturgeon, smallmouth bass, yellow lamp mussel, and green floater) and rely on habitat-based species guilds for examining project impacts on the remaining target species. This approach will allow for analysis of aquatic habitat available at a range of Conowingo Hydroelectric Project generation levels and Susquehanna River flows.

The IFIM Instream flow procedure provides a widely used tool for explicitly analyzing habitat availability for fishes and other biota as a function of flow regimes through the use of species-specific habitat suitability criteria. To facilitate decision making, such analyses are typically conducted only for a limited suite of evaluation species and life stages. Thus, the selection of appropriate habitat suitability criteria of the targeted species and life stages is typically an important determinant of the results of IFIM studies (Aadland 1993; Bowen *et al.* 1998). However, in species-rich communities typically inhabiting warmwater streams, decision making using species-specific models is more difficult (Bowen *et al.* 1998). One method for reducing the complexity of habitat requirements for a species-rich community and to overcome the above limitation is to aggregate species into habitat "guilds" (defined as a group of species that exploit the same class of environmental resources in a similar way). As such, habitat guilds are being proposed for use in the analysis of this study, along with the more focused analysis for species of special concern.

Several IFIM studies (*e.g.*, Bowen *et al.* 1998; Normandeau Associates 2000; Progress Energy 2004; DTA 2005) have utilized the habitat-based guild approach to show variation in aquatic habitat of organisms as a function of flow. Normandeau (2000) utilized this approach for the warm-water fish community inhabiting the Clarion River, PA with the concurrence of the Pennsylvania Fish and Boat Commission (PFBC).

Leonard and Orth (1988) and Aadland (1993) identified four primary habitat-use guilds that are proposed for use in this study. They are identified as follows:

- Shallow-fast (< 2 ft depth, > 1 ft/sec velocity) guild;
- Shallow-slow (< 2 ft depth, < 1 ft/sec) guild;
- Deep-fast (> 2 ft depth, > 1 ft/sec) ; and,
- Deep-slow (> 2 ft depth, < 1 ft/sec).

The following species have been identified as being of special concern:

- American shad: targeted for population enhancement in the Susquehanna River:
- Striped bass: important migratory species:
- Shortnose sturgeon: Rare, threatened, endangered species:
- Smallmouth bass: important resident species: and,
- Green floater and yellow lamp mussels: species are listed as endangered by the state of Maryland.
- Macroinvertebrates: important from a water quality and ecosystem perspective.

Appendix A provides literature sources used for habitat suitability curves for species of special concern and for each habitat-based guild. Appendix B provides the periodicity that selected species and life stage are expected to be below Conowingo Dam. Appendix C illustrates the habitat guild assignments for target species in the Project area. Appendix D shows the habitat suitability criteria proposed for use in the study. Should it become necessary, upon consultation or recommendation of resource agencies, these curves can be modified in advance of initiating habitat modeling. Modification of habitat suitability curves is a common practice in implementing an IFIM study. This may become necessary as new information becomes available or specific experience dictates modification of habitat suitability curves. For example, smallmouth bass habitat suitability curves were modified in consultation with resource agencies for an IFIM study conducted by RMC (1992) in Pigeon River, NC because additional information had become available since the initial habitat suitability criteria published by Edwards *et al* (1983). Please review the information included in this memo to develop habitat suitability criteria. Exelon is proposing to rely on the methodology described above, in addition to the professional expertise of resource agencies involved in this relicensing process. Solid selection criteria will greatly aid in the success of the study.

## Appendix A-Literature Sources for Habitat Suitability Curves

#### Sources of habitat suitability curves for species of special concern and habitat-based guilds.

|                                  |                                                             | HSC Source                                                      |                                                          |
|----------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
| Species                          | Velocity                                                    | Depth                                                           | Substrate                                                |
| American shad <sup>1, 2, 3</sup> |                                                             |                                                                 |                                                          |
| Spawning                         | Stier and Crance 1985.                                      | Stier and Crance 1985.                                          | ASMFC 2009.                                              |
| Fry                              | Stier and Crance 1985.                                      | Stier and Crance 1985.                                          | Stier and Crance 1985.                                   |
| Juvenile                         | Stier and Crance 1985.                                      | Ross et al 1993.                                                | Stier and Crance 1985.                                   |
| Adult 4                          | Stier and Crance 1985.                                      | Stier and Crance 1985.                                          | Stier and Crance 1985.                                   |
| Shortnose Sturgeon <sup>4</sup>  |                                                             |                                                                 |                                                          |
| Spawning                         | Crance, J.H. 1986.                                          | Crance, J.H. 1986.                                              | Crance, J.H. 1986.                                       |
| Fry                              | Crance, J.H. 1986.                                          | Crance, J.H. 1986.                                              | Crance, J.H. 1986.                                       |
| Juvenile                         | Crance, J.H. 1986.                                          | Crance, J.H. 1986.                                              | Crance, J.H. 1986.                                       |
| Adult                            | Crance, J.H. 1986.                                          | Crance, J.H. 1986.                                              | Crance, J.H. 1986.                                       |
| Striped bass <sup>5</sup>        |                                                             |                                                                 |                                                          |
| Spawning                         | Crance, J.H. 1984.                                          | Crance, J.H. 1984.                                              | Crance, J.H. 1984.                                       |
| Fry                              | Crance, J.H. 1984.                                          | Crance, J.H. 1984.                                              | Crance, J.H. 1984.                                       |
| Juvenile                         | Crance, J.H. 1984.                                          | Crance, J.H. 1984.                                              | Crance, J.H. 1984.                                       |
| Adult                            | Crance, J.H. 1984.                                          | Crance, J.H. 1984.                                              | Crance, J.H. 1984.                                       |
| Smallmouth bass <sup>6,7</sup>   | · · · · · · · · · · · · · · · · · · ·                       |                                                                 |                                                          |
| Adult                            | North Carolina Department of Water<br>Resources, RMC (1992) | Angermeier (1987), Ross et al (1987), Todd and<br>Rabeni (1989) | North Carolina Department of Water Resources, RMC (1992) |
| Juvenile                         | North Carolina Department of Water<br>Resources, RMC (1992) | North Carolina Department of Water Resources,<br>RMC (1992)     | North Carolina Department of Water Resources, RMC (1992) |
| Fry                              | North Carolina Department of Water<br>Resources, RMC (1992) | North Carolina Department of Water Resources,<br>RMC (1992)     | North Carolina Department of Water Resources, RMC (1992) |
| Spawning                         | North Carolina Department of Water<br>Resources, RMC (1992) | North Carolina Department of Water Resources,<br>RMC (1992)     | North Carolina Department of Water Resources, RMC (1992) |
| Yellow lamp mussel 8             | Normandeau (2008); Normandeau numero                        | us surveys                                                      |                                                          |
| Green floater <sup>8</sup>       | Normandeau (2008); Normandeau numero                        | us surveys                                                      |                                                          |
| Shallow-slow guild <sup>9</sup>  |                                                             |                                                                 |                                                          |
| (< 2 ft, < 1 ft/sec)             | Leonard and Orth (1988); Aadland (1993);                    | Normandeau (2000); Progress Energy (2003); DTA (200             | 05)                                                      |
| Shallow-fast guild <sup>9</sup>  |                                                             |                                                                 |                                                          |
| (< 2  ft, > 1  ft/sec)           | Aadland (1993); Normandeau (2000); Prog                     | gress Energy (2003); DTA (2005)                                 |                                                          |
| Deep-slow <sup>9</sup>           |                                                             |                                                                 |                                                          |
| (> 2  ft, < 1  ft/sec)           | Aadland (1993); Normandeau (2000); Prog                     | gress Energy (2003); DTA (2005)                                 |                                                          |
| Deep-fast <sup>9</sup>           |                                                             |                                                                 |                                                          |
| (> 2  ft, > 1  ft/sec)           | Aadland (1993); Normandeau (2000); Prog                     |                                                                 |                                                          |
| Macroinvertebrates 10            | DTA 2005; Substrate Codes modified by N                     | ormandeau based on numerous studies                             |                                                          |

1) Stier, D.J., and J.H. Crance. 1985. Habitat suitability index models and instream flow suitability curves: American shad. United States Fish and Wildlife Service Biological Report 82(10.88). 34pp.

2) Ross, R.M., T.W.W. Backman, and R.M.Bennett. 1993. Evaluation of habitat suitability index models for riverine life satges of American shad, with proposed models for premigratory juveniles. U.S.Fish and Wildlife Service Bilogical Report 14.

3) Atlantic States Marine Fisheries Commission.2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. Habitat Management Series No.9, Washington, D.C.

4) Crance, J.H. 1986. Habitat suitability information: Shortnose sturgeon. U.S. Fish Wildl. Serv. Biol. Rep. FWS/OBS-82/10.129. 31pp.

5) Crance, J.H. 1984. Habitat suitability index models and instream flow suitability curves: Inland stocks of striped bass. U.S. Fish Wildl. Serv. FWS/OBS-82/10.85. 63pp.

6) Original habitat suitability curves for smallmouth bass (Edwards *et al.* 1983; FWS/OBS-82/10.36) were modified in consultation with NCDWR for IFIM study in Pigeon River, NC (RMC 1992). RMC.1992. Results of an incremental flow study in the bypassed reach at the Walters Hydroelectric Project, Pigeon River,, North Carolina. Prepared for Carolina Power and Light Company, Raleigh, NC.

7) Angermeier, P. L. 1987. Spatiotemporal variation in habitat selection by fishes in small Illinois streams. 52–60. in W. J. Matthews and D. C. Heins, editors. Community and evolutionary ecology of North American stream fish. University of Oklahoma Press, Norman.

Ross, S. T., J. A. Baker, and K. E. Clark. 1987. Microhabitat partitioning of southeastern stream fishes: Temporal and spatial predictability. In: Matthews, W. J. and D. C. Heins (eds.).

Symposium on the Evolutionary and Community Ecology of North American Stream Fishes. University of Oklahoma Press, p. 4251.

Todd, B.L. and C.F. Rabeni. 1989. Movement and habitat use by stream dwelling smallmouth bass. Transaction of the American Fisheries Society 118:229-242.

8) Normandeau Associates, Inc. 2008. Preliminary mussel survey in the Susquehanna River in the vicinity of the proposed Bell Bend Nuclear Power Plant Site, Luzerne County, Pennsylvania.

9) Leonard, P.M. and D.J. Orth. 1988. Use of habitat guilds of fishes to determine instream flow requirements. North American Journal of Fisheries Management 8:399-409.

Aadland, L.P. 1993. Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management 13:790-806.

Normandeau Associates,Inc. 2000.An instream flow study in support of relicensing of the Piney Hydroelectric Station FERC Project No.309. Prepared for Foster Wheeler Environmental Corporation, Langhorne, PA and Sithe Pennsylvania Holdings LLC, Johnstown,PA

Progress Energy. 2003. Pee Dee River instream flow study (FERC No. 2206).

DTA. 2005. Duke Power Catawba-Wateree relicensing (FERC No.2232) Instream flow study report.

Appendix B-Periodicity Chart for Target Species

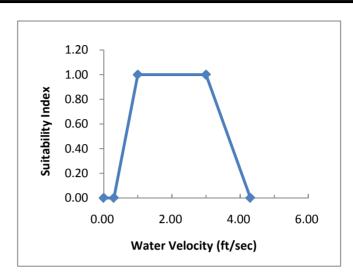
Seasonal Periodicity of Occurrence of Target Species in the Susquehanna River below Conowingo Dam

|                  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| American shad    |     |     |     |     |     |     |     | 0   |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Hickory shad     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Blueback herring |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Alewife          |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| White perch      |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow perch     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |
| Striped bass     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile         |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults           |     |     |     |     |     |     |     |     |     |     |     |     |

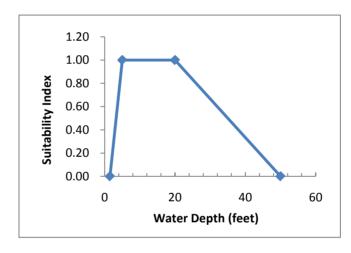
|                    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Largemouth bass    |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Smallmouth bass    |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Walleye            |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Shortnose sturgeon |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Atlantic sturgeon  |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning           |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| American eel       |     |     |     |     |     |     |     |     |     |     |     |     |
| Juvenile           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow lamp mussel |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae    |     |     |     |     |     |     |     |     |     |     |     |     |
| Green floater      |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae    |     |     |     |     |     |     |     |     |     |     |     |     |
| Eastern elliptio   | -   |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae    |     |     |     |     |     |     |     |     |     |     |     |     |
| Fingernail clams   |     | -   |     | •   |     | •   |     |     |     |     |     | •   |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults             |     |     |     |     |     |     |     |     |     |     |     |     |

|                    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Macroinvertebrates |     |     |     |     |     |     |     |     |     |     |     |     |
| All                |     |     |     |     |     |     |     |     |     |     |     |     |
| Aquatic Plants     |     |     |     |     |     |     |     |     |     |     |     |     |
| All                |     |     |     |     |     |     |     |     |     |     |     |     |

Appendix C-Habitat Guild Assignments for Target Species


|                      |                      | TT 1 '4              | 40.11                |                      |
|----------------------|----------------------|----------------------|----------------------|----------------------|
|                      |                      |                      | t Guild              |                      |
|                      | Shallow-slow         | Shallow-fast         | Deep slow            | Deep-fast            |
| Species              | (< 2  ft, < 1  ft/s) | (< 2  ft, > 1  ft/s) | (> 2  ft, < 1  ft/s) | (> 2  ft, > 1  ft/s) |
| American shad*       | F                    |                      | J                    | A, J, S              |
| Hickory shad         | F                    |                      | J, S                 | А                    |
| Blueback herring     | F                    |                      | A, J, S              |                      |
| Alewife              | F                    |                      | A, J, S              |                      |
| White perch          | J, F                 | S                    | A, J                 | S                    |
| Yellow perch         | F                    |                      | A, J, S              |                      |
| Striped bass *       |                      |                      |                      | A, J, F, S           |
| Largemouth bass      | J, S, F              |                      | A, J, F, S           |                      |
| Smallmouth bass *    | F                    |                      | A, J, F, S           |                      |
| Walleye              |                      |                      | A, J, F              | S                    |
| Shortnose sturgeon * |                      |                      | F                    | A, J, F, S           |
| Atlantic sturgeon    |                      |                      | F                    | A, J, F, S           |
| American eel         | J                    |                      | A, J                 | J                    |
| Macroinvertebrates   |                      |                      |                      |                      |
| All *                | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |
| Mussels              |                      |                      |                      |                      |
| Yellow lamp mussel * | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |
| Green floater *      | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |
| Eastern elliptio     | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |
| Fingernail clams     | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |
| Aquatic Plants       |                      |                      |                      |                      |
| All                  | $\checkmark$         | $\checkmark$         | $\checkmark$         | $\checkmark$         |

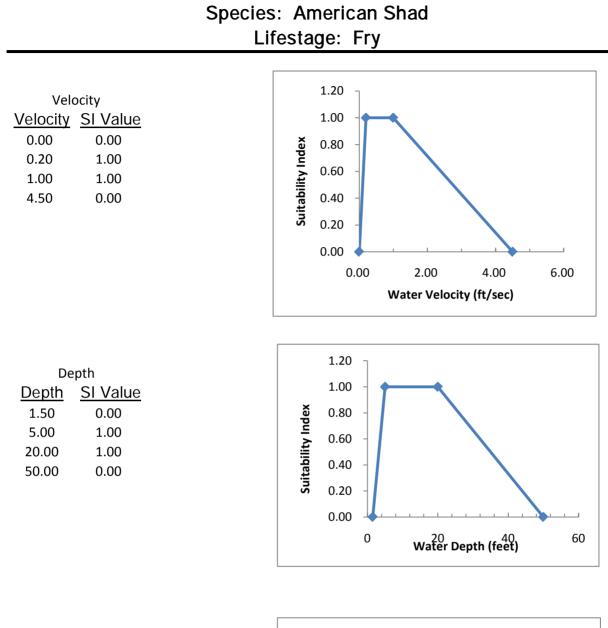
## Species and Habitat Guild Assignments A=Adult, J=Juvenile, F=Fry, S=Spawning


\*Species of special concern for instream flow assessment.

Appendix D-Proposed Habitat Suitability Criteria

# Species: American Shad Lifestage: Spawning

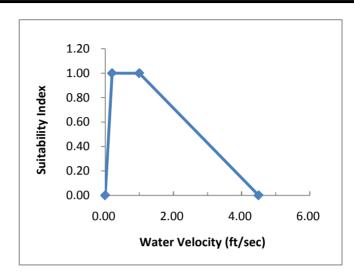



| Velocity        |          |  |  |
|-----------------|----------|--|--|
| <b>Velocity</b> | SI Value |  |  |
| 0.00            | 0.00     |  |  |
| 0.30            | 0.00     |  |  |
| 1.00            | 1.00     |  |  |
| 3.00            | 1.00     |  |  |
| 4.30            | 0.00     |  |  |

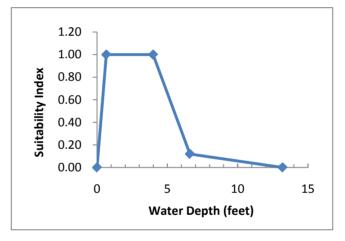


| Depth        |          |  |  |  |
|--------------|----------|--|--|--|
| <u>Depth</u> | SI Value |  |  |  |
| 1.50         | 0.00     |  |  |  |
| 5.00         | 1.00     |  |  |  |
| 20.00        | 1.00     |  |  |  |
| 50.00        | 0.00     |  |  |  |

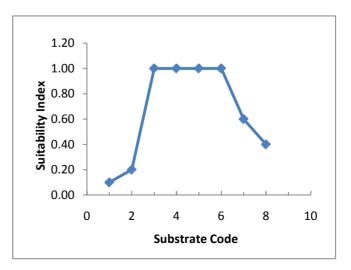
| ndex  | 1.00<br>0.80<br>0.60<br>0.40<br>0.20 | - | T | +   | • •      | • •  | <b>~</b> |    |
|-------|--------------------------------------|---|---|-----|----------|------|----------|----|
| lity  | 0.60                                 | - |   |     |          |      |          |    |
| itabi | 0.40                                 | - | 1 |     |          |      |          |    |
| Su    | 0.20                                 | - |   |     |          |      |          |    |
|       | 0.00                                 |   |   |     | <u> </u> |      |          |    |
|       |                                      | 0 | 2 |     | 4        | 6    | 8        | 10 |
|       |                                      |   |   | Sub | strate   | Codo |          |    |


| Substra     | te      |                  |
|-------------|---------|------------------|
| Substrate S | l Value | Type             |
| 1           | 0.00    | Detritus/Organic |
| 2           | 1.00    | Mud/soft clay    |
| 3           | 1.00    | Silt             |
| 4           | 1.00    | Sand             |
| 5           | 1.00    | Gravel           |
| 6           | 1.00    | Cobble/rubble    |
| 7           | 1.00    | Boulder          |
| 8           | 1.00    | Bedrock          |
|             |         |                  |



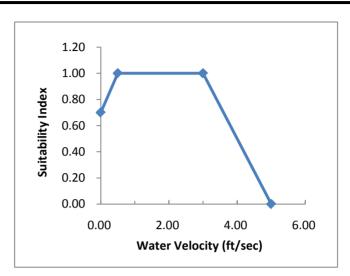

|      |                  | 1                 |      |   |     |     |        |            |  |
|------|------------------|-------------------|------|---|-----|-----|--------|------------|--|
|      |                  |                   | 1.20 | ٦ |     |     |        |            |  |
|      | _                |                   | 1.00 | - |     | 1   | •      |            |  |
| alue | <u>Type</u>      | ex                | 0.80 |   |     |     |        |            |  |
| 0    | Detritus/Organic | l nd              | 0.00 |   |     | /   |        |            |  |
| 0    | Mud/soft clay    | iť                | 0.60 | - |     |     |        |            |  |
| 0    | Silt             | Suitability Index | 0.40 | _ | /   |     |        |            |  |
| 0    | Sand             | Suit              | 0.20 |   |     |     |        |            |  |
| 0    | Gravel           |                   | 0.20 | 1 |     |     |        |            |  |
| 0    | Cobble           |                   | 0.00 |   | 1 1 |     |        | <u>. I</u> |  |
| 0    | Boulder          |                   |      | 0 | 2   |     | 4      | 6          |  |
| 0    | Bedrock          |                   |      |   |     | Sul | ostrat | te Code    |  |
|      |                  |                   |      |   |     |     |        |            |  |

| Substra            | te      |                  |
|--------------------|---------|------------------|
| <u>Substrate</u> S | I Value | Type             |
| 1                  | 0.10    | Detritus/Organic |
| 2                  | 0.20    | Mud/soft clay    |
| 3                  | 1.00    | Silt             |
| 4                  | 1.00    | Sand             |
| 5                  | 1.00    | Gravel           |
| 6                  | 1.00    | Cobble           |
| 7                  | 0.60    | Boulder          |
| 8                  | 0.40    | Bedrock          |

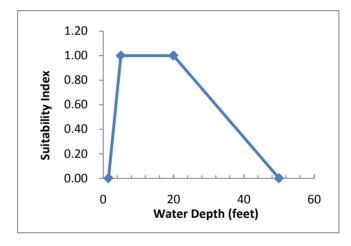

## Species: American Shad Lifestage: Juvenile



| Velocity        |          |  |  |
|-----------------|----------|--|--|
| <u>Velocity</u> | SI Value |  |  |
| 0.00            | 0.00     |  |  |
| 0.20            | 1.00     |  |  |
| 1.00            | 1.00     |  |  |
| 4.50            | 0.00     |  |  |




| Depth        |          |  |  |
|--------------|----------|--|--|
| <u>Depth</u> | SI Value |  |  |
| 0.00         | 0.00     |  |  |
| 0.66         | 1.00     |  |  |
| 3.99         | 1.00     |  |  |
| 6.60         | 0.12     |  |  |
| 13.20        | 0.00     |  |  |



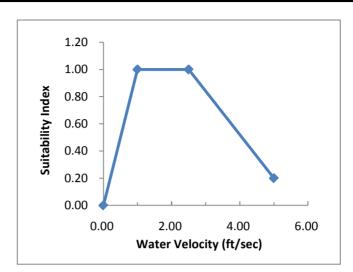

| Substra      | te    |                  |
|--------------|-------|------------------|
| Substrate SI | Value | Type             |
| 1            | 0.10  | Detritus/Organic |
| 2            | 0.20  | Mud/soft clay    |
| 3            | 1.00  | Silt             |
| 4            | 1.00  | Sand             |
| 5            | 1.00  | Gravel           |
| 6            | 1.00  | Cobble           |
| 7            | 0.60  | Boulder          |
| 8            | 0.40  | Bedrock          |
|              |       |                  |

## Species: American Shad Lifestage: Adult

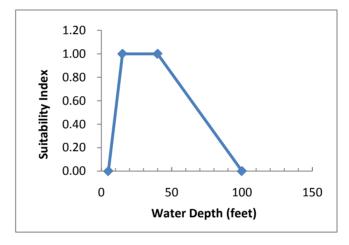


| Velocity        |          |  |  |
|-----------------|----------|--|--|
| <u>Velocity</u> | SI Value |  |  |
| 0.00            | 0.70     |  |  |
| 0.50            | 1.00     |  |  |
| 3.00            | 1.00     |  |  |
| 5.00            | 0.00     |  |  |



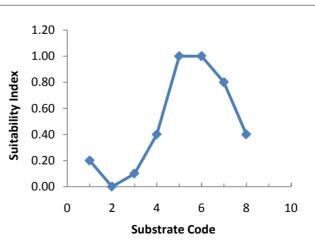

| Depth        |          |  |  |  |
|--------------|----------|--|--|--|
| <u>Depth</u> | SI Value |  |  |  |
| 1.50         | 0.00     |  |  |  |
| 5.00         | 1.00     |  |  |  |
| 20.00        | 1.00     |  |  |  |
| 50.00        | 0.00     |  |  |  |

|       |                   |      |   | Su | bstrate ( | Code |   |   |
|-------|-------------------|------|---|----|-----------|------|---|---|
|       |                   |      | 0 | 2  | 4         | 6    | 8 |   |
|       |                   | 0.00 |   |    | - I - I   |      | 1 | 1 |
|       | ີ້                | 0.20 | - |    |           |      |   |   |
|       | litab             | 0.40 | - |    |           | ·    |   |   |
| ау    | Suitability Index | 0.60 | - |    |           |      |   |   |
| ganic | nde               | 0.80 | - |    |           |      |   |   |
|       |                   | 1.00 | - | +  | ++        | -₹   |   |   |
|       |                   | 1.20 | 7 |    |           |      |   |   |
|       |                   |      |   |    |           |      |   |   |

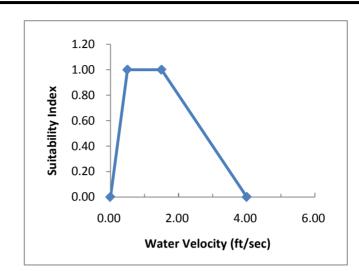

10

| Substra     | te      |                  |
|-------------|---------|------------------|
| Substrate S | I Value | <u>Type</u>      |
| 1           | 0.10    | Detritus/Organic |
| 2           | 0.20    | Mud/soft clay    |
| 3           | 1.00    | Silt             |
| 4           | 1.00    | Sand             |
| 5           | 1.00    | Gravel           |
| 6           | 1.00    | Cobble           |
| 7           | 0.60    | Boulder          |
| 8           | 0.40    | Bedrock          |
|             |         |                  |

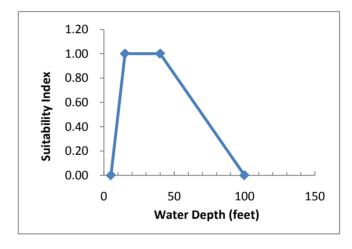
# Species: Shortnose Sturgeon Lifestage: Spawning




| Velocity        |          |  |  |  |
|-----------------|----------|--|--|--|
| <u>Velocity</u> | SI Value |  |  |  |
| 0.00            | 0.00     |  |  |  |
| 1.00            | 1.00     |  |  |  |
| 2.50            | 1.00     |  |  |  |
| 5.00            | 0.20     |  |  |  |

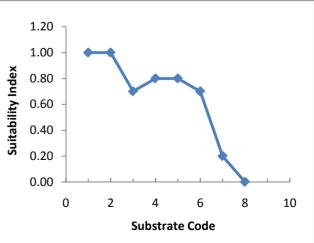



| Depth        |          |  |  |  |
|--------------|----------|--|--|--|
| <u>Depth</u> | SI Value |  |  |  |
| 5.00         | 0.00     |  |  |  |
| 15.00        | 1.00     |  |  |  |
| 40.00        | 1.00     |  |  |  |
| 100.00       | 0.00     |  |  |  |

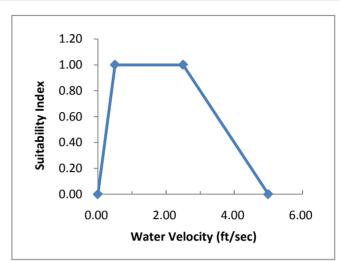

|                  |          |                  |                   | 1.20   |
|------------------|----------|------------------|-------------------|--------|
| Subst            | rate     |                  |                   | 1.00 - |
| <u>Substrate</u> | SI Value | <u>e Type</u>    | lex               | 0.80 - |
| 1                | 0.20     | Detritus/Organic |                   |        |
| 2                | 0.00     | Mud/soft clay    | Suitability Index | 0.60 - |
| 3                | 0.10     | Silt             | tabi              | 0.40 - |
| 4                | 0.40     | Sand             | Sui               | 0.20 - |
| 5                | 1.00     | Gravel           |                   |        |
| 6                | 1.00     | Cobble/rubble    |                   | 0.00   |
| 7                | 0.80     | Boulder          |                   | 0 2    |
| 8                | 0.40     | Bedrock          |                   |        |
|                  |          |                  |                   |        |

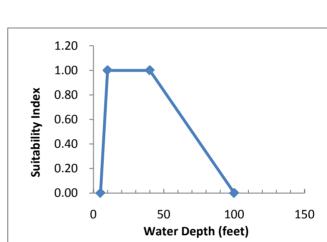


## Species: Shortnose Sturgeon Lifestage: Fry




| Velocity        |          |  |  |  |
|-----------------|----------|--|--|--|
| <u>Velocity</u> | SI Value |  |  |  |
| 0.00            | 0.00     |  |  |  |
| 0.50            | 1.00     |  |  |  |
| 1.50            | 1.00     |  |  |  |
| 4.00            | 0.00     |  |  |  |





| Depth        |          |  |  |  |
|--------------|----------|--|--|--|
| <u>Depth</u> | SI Value |  |  |  |
| 5.00         | 0.00     |  |  |  |
| 15.00        | 1.00     |  |  |  |
| 40.00        | 1.00     |  |  |  |
| 100.00       | 0.00     |  |  |  |

| Subs      | trate    |                  |
|-----------|----------|------------------|
| Substrate | SI Value | <u>e Type</u>    |
| 1         | 1.00     | Detritus/Organic |
| 2         | 1.00     | Mud/soft clay    |
| 3         | 0.70     | Silt             |
| 4         | 0.80     | Sand             |
| 5         | 0.80     | Gravel           |
| 6         | 0.70     | Cobble/rubble    |
| 7         | 0.20     | Boulder          |
| 8         | 0.00     | Bedrock          |
|           |          |                  |



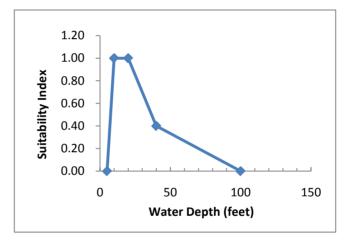
## Species: Shortnose Sturgeon Lifestage: Juveniles





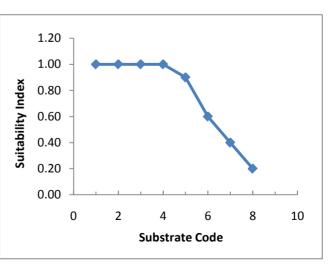
| Velocity        |          |  |  |  |
|-----------------|----------|--|--|--|
| <u>Velocity</u> | SI Value |  |  |  |
| 0.00            | 0.00     |  |  |  |
| 0.50            | 1.00     |  |  |  |
| 2.50            | 1.00     |  |  |  |
| 5.00            | 0.00     |  |  |  |

| Depth  |          |  |  |  |
|--------|----------|--|--|--|
| Depth  | SI Value |  |  |  |
| 5.00   | 0.00     |  |  |  |
| 10.00  | 1.00     |  |  |  |
| 40.00  | 1.00     |  |  |  |
| 100.00 | 0.00     |  |  |  |


| $\begin{array}{c} \begin{array}{c} 1.20\\ 1.00\\ \\ \text{us/Organic}\\ \text{soft clay} \end{array}$ |  |
|-------------------------------------------------------------------------------------------------------|--|
|                                                                                                       |  |

| Substra     | ate     |                  |
|-------------|---------|------------------|
| Substrate S | I Value | Туре             |
| 1           | 1.00    | Detritus/Organic |
| 2           | 1.00    | Mud/soft clay    |
| 3           | 1.00    | Silt             |
| 4           | 1.00    | Sand             |
| 5           | 0.90    | Gravel           |
| 6           | 0.60    | Cobble/rubble    |
| 7           | 0.40    | Boulder          |
| 8           | 0.20    | Bedrock          |

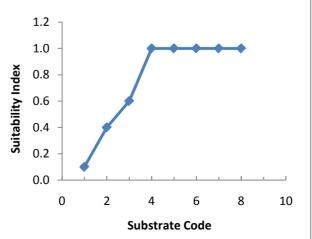
# Species: Shortnose Sturgeon Lifestage: Adults


|                   | 1.20 ] |             |               |      |
|-------------------|--------|-------------|---------------|------|
|                   | 1.00 - | -           |               |      |
| dex               | 0.80   |             |               |      |
| Suitability Index | 0.60 - |             |               |      |
| itabil            | 0.40 - |             | $\mathbf{i}$  |      |
| Sui               | 0.20 - |             |               |      |
|                   | 0.00   |             | · · · · · ·   | •'   |
|                   | 0.00   | 2.00        | 4.00          | 6.00 |
|                   |        | Water Veloc | city (ft/sec) |      |

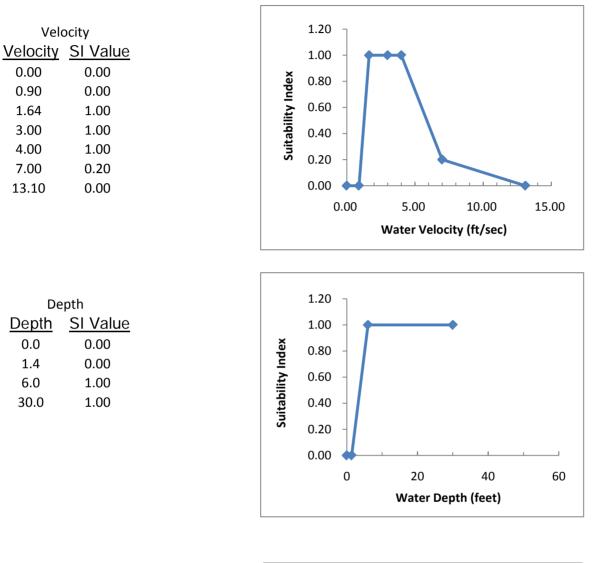
| Velocity |                 |  |  |
|----------|-----------------|--|--|
|          | <u>SI Value</u> |  |  |
| 0.00     | 0.80            |  |  |
| 0.50     | 1.00            |  |  |
| 1.50     | 1.00            |  |  |
| 5.00     | 0.00            |  |  |



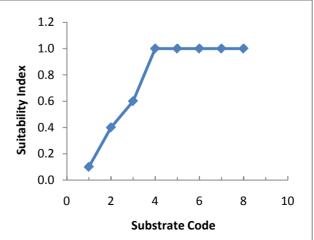
| Depth  |          |  |  |  |
|--------|----------|--|--|--|
| Depth  | SI Value |  |  |  |
| 5.00   | 0.00     |  |  |  |
| 10.00  | 1.00     |  |  |  |
| 20.00  | 1.00     |  |  |  |
| 40.00  | 0.40     |  |  |  |
| 100.00 | 0.00     |  |  |  |


| Substra            | te      |                  |
|--------------------|---------|------------------|
| <u>Substrate</u> S | l Value | Type             |
| 1                  | 1.00    | Detritus/Organic |
| 2                  | 1.00    | Mud/soft clay    |
| 3                  | 1.00    | Silt             |
| 4                  | 1.00    | Sand             |
| 5                  | 0.90    | Gravel           |
| 6                  | 0.60    | Cobble/rubble    |
| 7                  | 0.40    | Boulder          |
| 8                  | 0.20    | Bedrock          |
|                    |         | L                |




# Species: Striped Bass Lifestage: Spawning

| VelocitySI Value0.000.000.900.001.641.003.001.004.001.007.000.2013.200.00 | Suitability Index | 1.20<br>1.00<br>0.80<br>-<br>0.60<br>-<br>0.40<br>-<br>0.20<br>-<br>0.00 | 5.00<br>Water Veloc | 10.00<br>ity (ft/sec)   | 15.00 |
|---------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|---------------------|-------------------------|-------|
| Depth<br>Depth SI Value<br>0.0 0.00<br>1.4 0.00<br>6.0 1.00<br>30.0 1.00  | Suitability Index | 1.20<br>1.00<br>0.80<br>0.60<br>0.40<br>0.20<br>0.00<br>0                | 20<br>Water Dep     | 40<br><b>oth (feet)</b> | 60    |


| Substrat            | e     |                  |  |
|---------------------|-------|------------------|--|
| <u>Substrate</u> SI | Value | Type             |  |
| 1                   | 0.1   | Detritus/Organic |  |
| 2                   | 0.4   | Mud/Soft Clay    |  |
| 3                   | 0.6   | Silt             |  |
| 4                   | 1.0   | Sand             |  |
| 5                   | 1.0   | Gravel           |  |
| 6                   | 1.0   | Cobble           |  |
| 7                   | 1.0   | Boulder          |  |
| 8                   | 1.0   | Bedrock          |  |
|                     |       |                  |  |



# Species: Striped Bass Lifestage: Fry



| Substrat     | te    |                  |
|--------------|-------|------------------|
| Substrate SI | Value | <u>Type</u>      |
| 1            | 0.1   | Detritus/Organic |
| 2            | 0.4   | Mud/Soft Clay    |
| 3            | 0.6   | Silt             |
| 4            | 1.0   | Sand             |
| 5            | 1.0   | Gravel           |
| 6            | 1.0   | Cobble           |
| 7            | 1.0   | Boulder          |
| 8            | 1.0   | Bedrock          |
|              |       |                  |

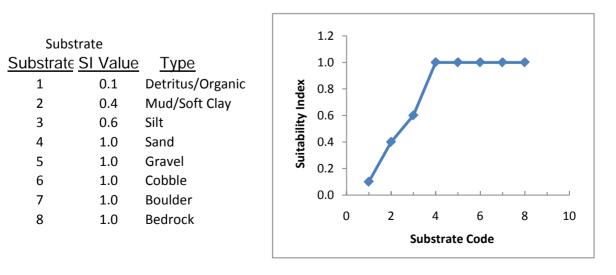


#### Species: Striped Bass Lifestage: Juvenile

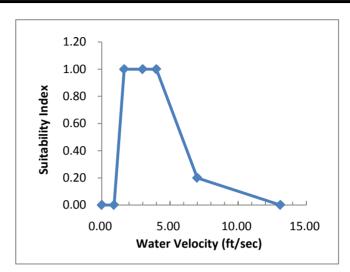


| D            |                 |
|--------------|-----------------|
| De           | epth            |
| <u>Depth</u> | <u>SI Value</u> |
| 0.0          | 0.00            |
| 1.4          | 0.00            |
| 6.0          | 1.00            |
| 30.0         | 1.00            |

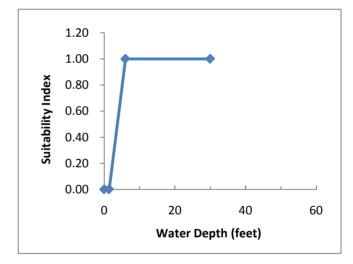
0.00


0.90

1.64

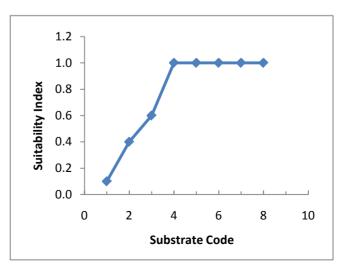

3.00

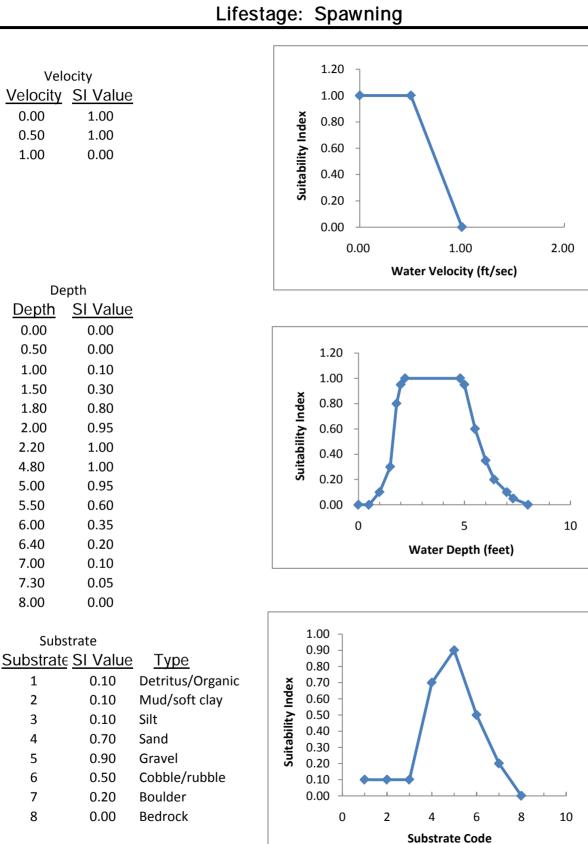
4.00


7.00

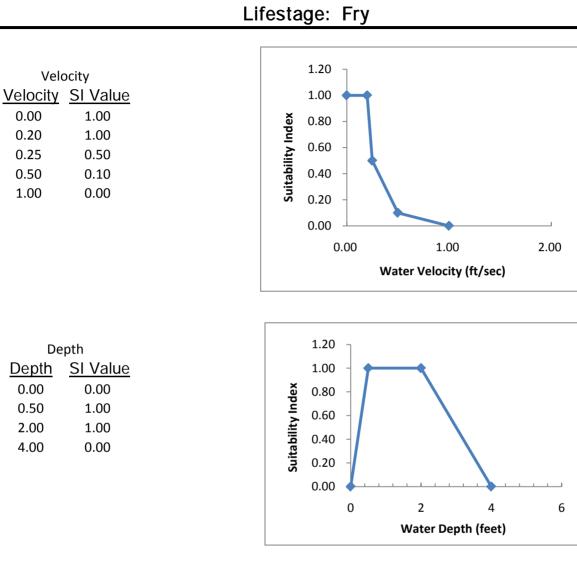


# Species: Striped Bass Lifestage: Adult





| Velocity        |          |  |
|-----------------|----------|--|
| <u>Velocity</u> | SI Value |  |
| 0.00            | 0.00     |  |
| 0.90            | 0.00     |  |
| 1.64            | 1.00     |  |
| 3.00            | 1.00     |  |
| 4.00            | 1.00     |  |
| 7.00            | 0.20     |  |
| 13.10           | 0.00     |  |
|                 |          |  |




| Depth        |          |  |
|--------------|----------|--|
| <u>Depth</u> | SI Value |  |
| 0.0          | 0.00     |  |
| 1.4          | 0.00     |  |
| 6.0          | 1.00     |  |
| 30.0         | 1.00     |  |

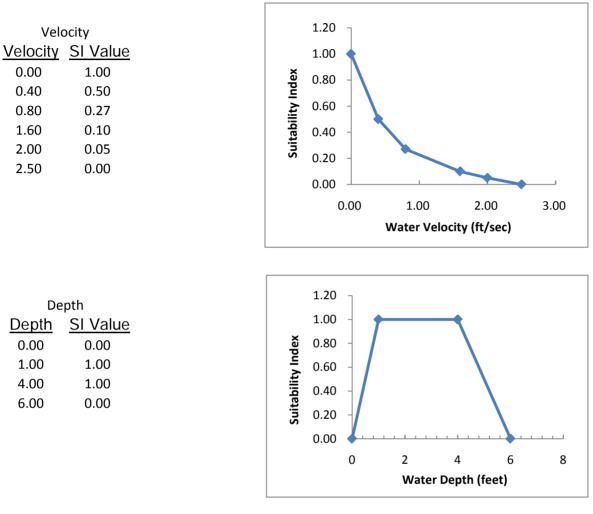
| Substrat     | e     |                  |
|--------------|-------|------------------|
| Substrate SI | Value | Type             |
| 1            | 0.1   | Detritus/Organic |
| 2            | 0.4   | Mud/Soft Clay    |
| 3            | 0.6   | Silt             |
| 4            | 1.0   | Sand             |
| 5            | 1.0   | Gravel           |
| 6            | 1.0   | Cobble           |
| 7            | 1.0   | Boulder          |
| 8            | 1.0   | Bedrock          |
|              |       |                  |





# Species: Smallmouth Bass




Species: Smallmouth Bass

| 2.00 | 1.00 |
|------|------|
| 4.00 | 0.00 |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |

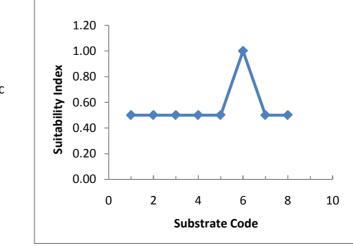
| /Organic<br>ft clay<br>rubble | Suitability Index | 0.90<br>0.80<br>-<br>0.70<br>-<br>0.60<br>-<br>0.50<br>-<br>0.40<br>-<br>0.30<br>-<br>0.20<br>-<br>0.10<br>-<br>0.00 |   | ]       |        |   |    |
|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|---|---------|--------|---|----|
|                               |                   | 0                                                                                                                    | 2 | 4       | 6      | 8 | 10 |
|                               |                   |                                                                                                                      | S | ubstrat | e Code |   |    |

| rate            |                                                                  |
|-----------------|------------------------------------------------------------------|
| <u>SI Value</u> | Type                                                             |
| 0.70            | Detritus/Organic                                                 |
| 0.00            | Mud/soft clay                                                    |
| 0.00            | Silt                                                             |
| 0.10            | Sand                                                             |
| 0.50            | Gravel                                                           |
| 0.80            | Cobble/rubble                                                    |
| 0.40            | Boulder                                                          |
| 0.20            | Bedrock                                                          |
|                 | SI Value<br>0.70<br>0.00<br>0.00<br>0.10<br>0.50<br>0.80<br>0.40 |

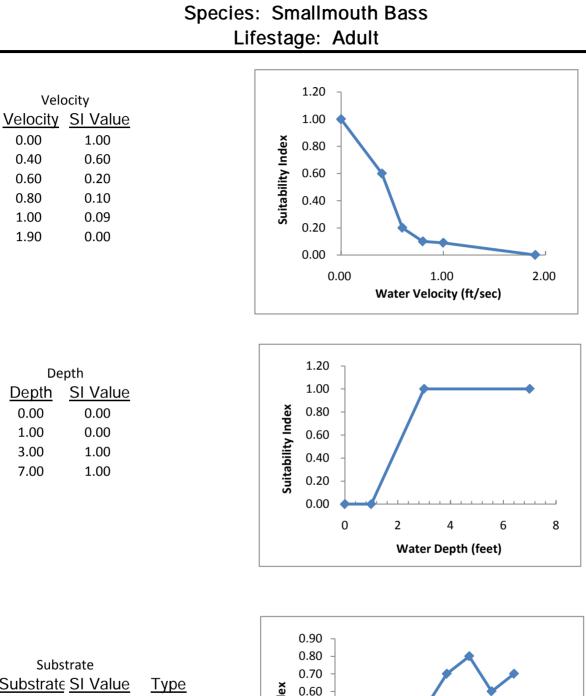
# Species: Smallmouth Bass Lifestage: Juvenile



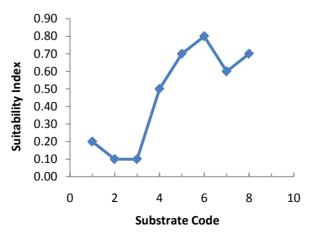
| Deptil       |          |  |
|--------------|----------|--|
| <u>Depth</u> | SI Value |  |
| 0.00         | 0.00     |  |
| 1.00         | 1.00     |  |
| 4.00         | 1.00     |  |
| 6.00         | 0.00     |  |
|              |          |  |

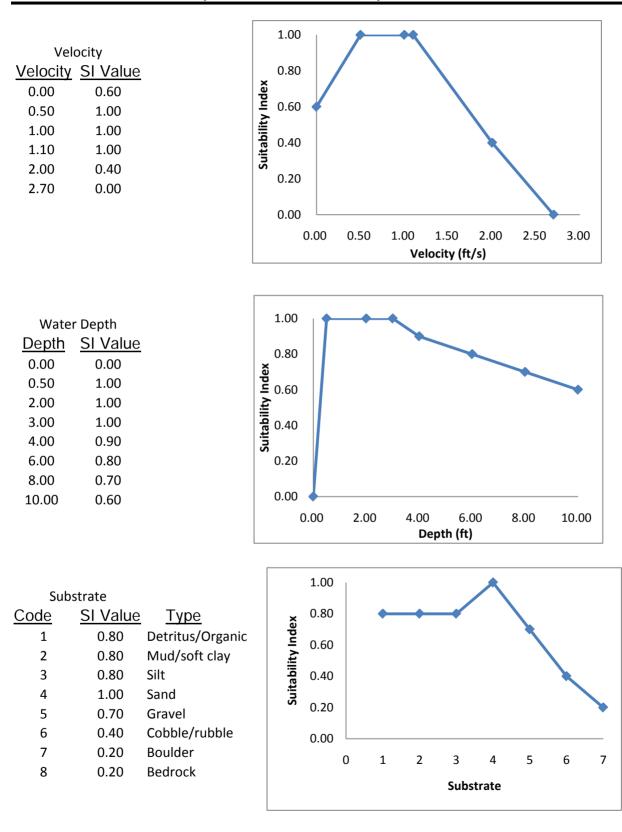

0.00

0.40


0.80

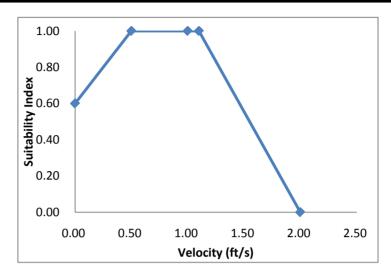
1.60

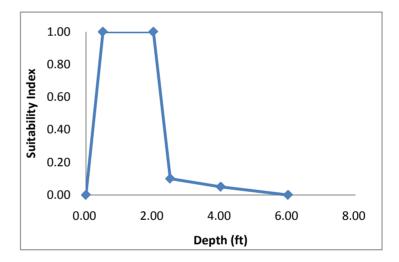

2.00




| Substra             | te    |                  |
|---------------------|-------|------------------|
| <u>Substrate</u> SI | Value | Type             |
| 1                   | 0.50  | Detritus/Organic |
| 2                   | 0.50  | Mud/soft clay    |
| 3                   | 0.50  | Silt             |
| 4                   | 0.50  | Sand             |
| 5                   | 0.50  | Gravel           |
| 6                   | 1.00  | Cobble/rubble    |
| 7                   | 0.50  | Boulder          |
| 8                   | 0.50  | Bedrock          |




| Subst            | rate     |                  |
|------------------|----------|------------------|
| <u>Substrate</u> | SI Value | <u>Type</u>      |
| 1                | 0.20     | Detritus/Organic |
| 2                | 0.10     | Mud/soft clay    |
| 3                | 0.10     | Silt             |
| 4                | 0.50     | Sand             |
| 5                | 0.70     | Gravel           |
| 6                | 0.80     | Cobble/rubble    |
| 7                | 0.60     | Boulder          |
| 8                | 0.70     | Bedrock          |






#### Species: Yellow Lamp Mussel







7

| Water | r Depth  |
|-------|----------|
| Depth | SI Value |
| 0.00  | 0.00     |
| 0.50  | 1.00     |
| 2.00  | 1.00     |
| 2.50  | 0.10     |
| 4.00  | 0.05     |
| 6.00  | 0.00     |

8

Velocity Velocity SI Value

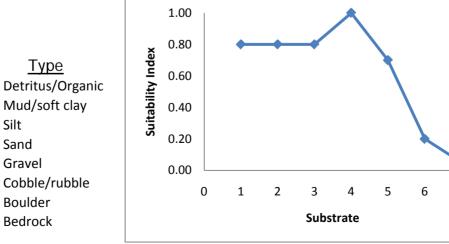
0.60

1.00

1.00

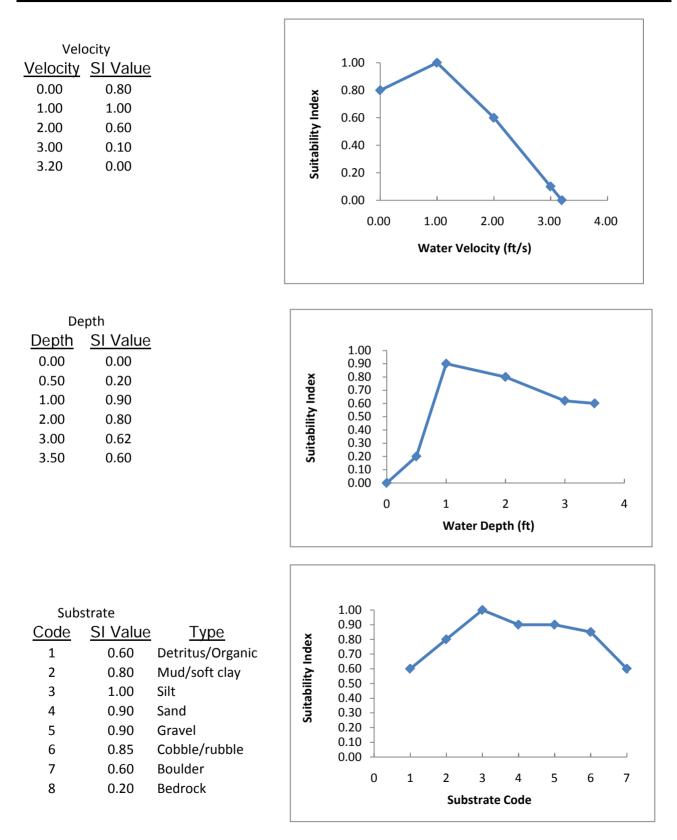
1.00

0.00

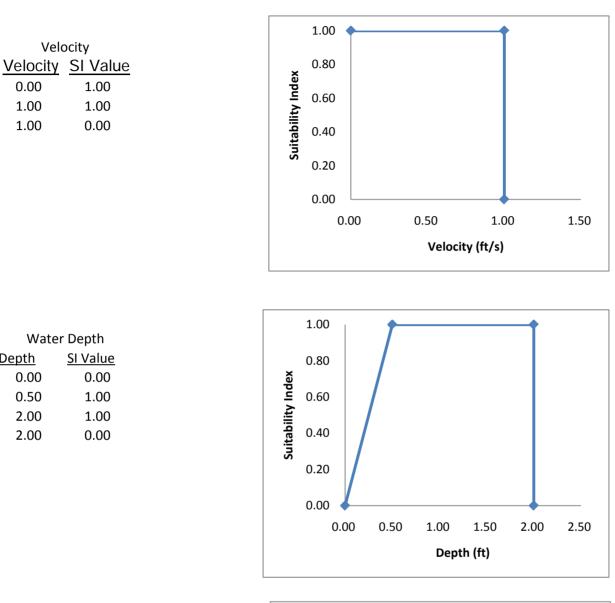

0.00

0.50

1.00


1.10

2.00




| Subs        | strate   |                  |          |
|-------------|----------|------------------|----------|
| <u>Code</u> | SI Value | <u>Type</u>      |          |
| 1           | 0.80     | Detritus/Organic | <u>}</u> |
| 2           | 0.80     | Mud/soft clay    | 19       |
| 3           | 0.80     | Silt             |          |
| 4           | 1.00     | Sand             |          |
| 5           | 0.70     | Gravel           |          |
| 6           | 0.20     | Cobble/rubble    |          |
| 7           | 0.05     | Boulder          |          |

#### Species: Macroinvertebrates Lifestage: Community Diversity -Large River



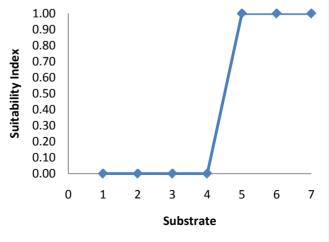
# Species: Shallow-Slow Guild



| Sub         | strate          |                  |
|-------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | Detritus/Organic |
| 2           | 0.00            | Mud/soft clay    |
| 3           | 0.00            | Silt             |
| 4           | 0.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble/rubble    |
| 7           | 1.00            | Boulder          |
| 8           | 1.00            | Bedrock          |

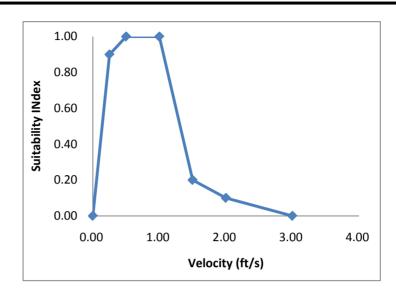
0.00

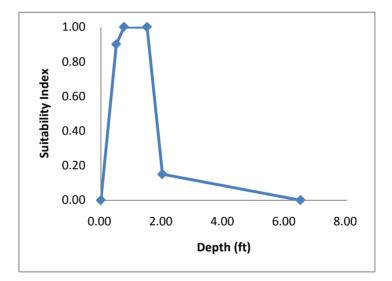
1.00


1.00

<u>Depth</u>

0.00


0.50


2.00



#### Species: Shallow-Fast Guild

| Velocity        |                 |  |  |
|-----------------|-----------------|--|--|
| <u>Velocity</u> | <u>SI Value</u> |  |  |
| 0.00            | 0.00            |  |  |
| 0.25            | 0.90            |  |  |
| 0.50            | 1.00            |  |  |
| 1.00            | 1.00            |  |  |
| 1.50            | 0.20            |  |  |
| 2.00            | 0.10            |  |  |
| 3.00            | 0.00            |  |  |
|                 |                 |  |  |





| Water Depth  |                 |  |
|--------------|-----------------|--|
| <u>Depth</u> | <u>SI Value</u> |  |
| 0.00         | 0.00            |  |
| 0.50         | 0.90            |  |
| 0.75         | 1.00            |  |
| 1.50         | 1.00            |  |
| 2.00         | 0.15            |  |
| 6.50         | 0.00            |  |

Substrate

SI Value

0.00

0.00

0.00

0.00

1.00

1.00

1.00

0.00

Silt

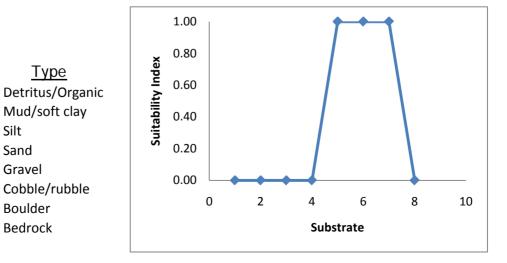
Sand

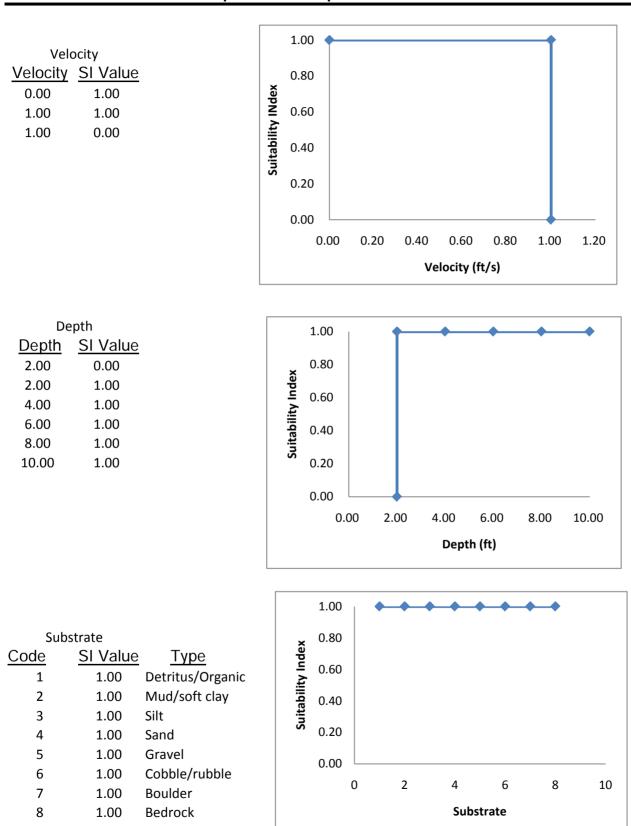
<u>Code</u>

1

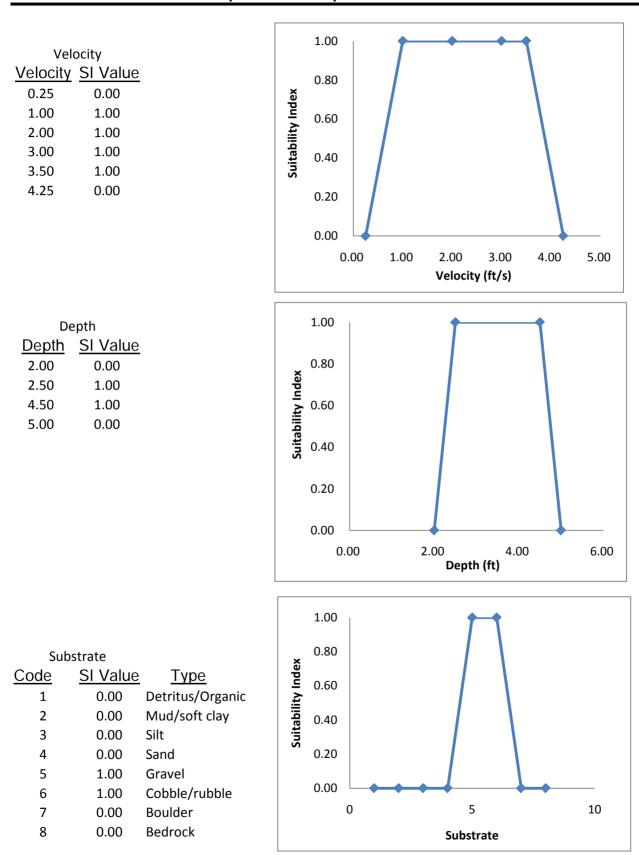
2

3


4


5

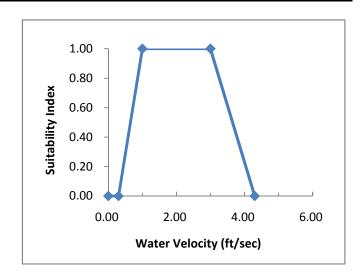
6


7

8



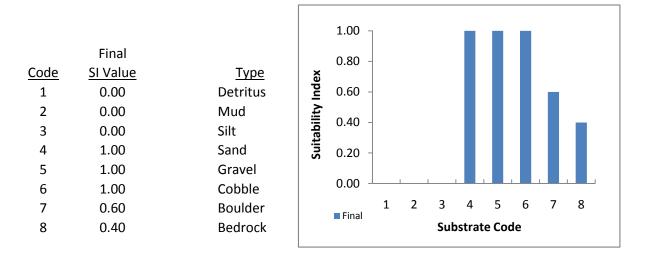


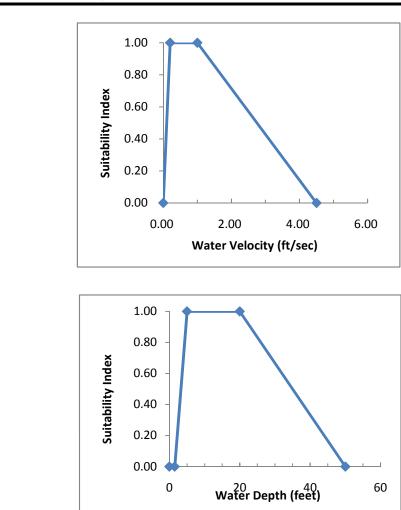

#### Species: Deep-Slow Guild



#### Species: Deep-Fast Guild

#### APPENDIX B-HABITAT SUITABILITY INDICES

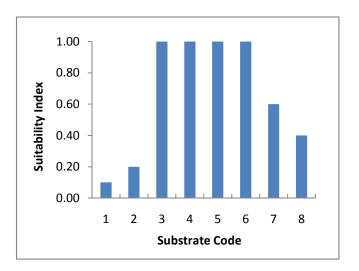

## Species: American Shad Lifestage: Spawning




|                   | 1.00 Proposed Final |
|-------------------|---------------------|
|                   | 0.80 -              |
| Suitability Index | 0.60 -              |
| oility            | 0.40 -              |
| uitak             | 0.20 -              |
|                   | 0.00                |
|                   | 0 20 40 60 80 100   |
|                   | Water Depth (feet)  |

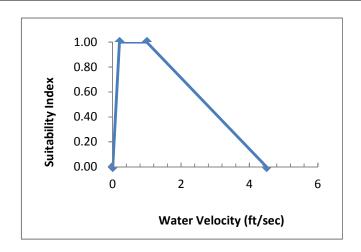
| <u>Velocity</u> | SI Value |
|-----------------|----------|
| 0.00            | 0.00     |
| 0.30            | 0.00     |
| 1.00            | 1.00     |
| 3.00            | 1.00     |
| 4.30            | 0.00     |

| Proposed Final |                 |  |
|----------------|-----------------|--|
| <u>Depth</u>   | <u>SI Value</u> |  |
| 0.00           | 0.00            |  |
| 1.00           | 0.10            |  |
| 5.00           | 1.00            |  |
| 20.00          | 1.00            |  |
| 50.00          | 0.86            |  |
| 100.00         | 0.00            |  |

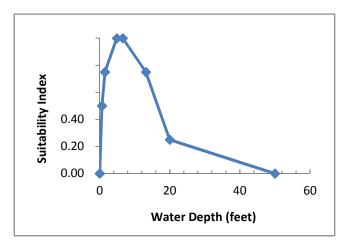




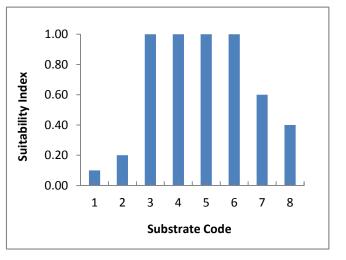

#### Species: American Shad Lifestage: Fry


| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.20            | 1.00            |
| 1.00            | 1.00            |
| 4.50            | 0.00            |

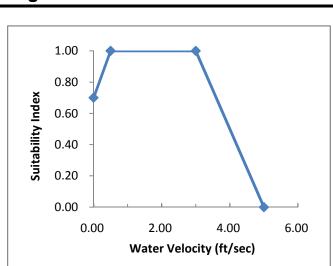
| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.50         | 0.00            |
| 5.00         | 1.00            |
| 20.00        | 1.00            |
| 50.00        | 0.00            |




| <u>Code</u> | <u>SI Value</u> | Туре             |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |


Species: American Shad Lifestage: Juvenile




| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.20            | 1.00            |
| 1.00            | 1.00            |
| 4.50            | 0.00            |



| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 0.66         | 0.50            |
| 1.50         | 0.75            |
| 4.90         | 1.00            |
| 6.60         | 1.00            |
| 13.20        | 0.75            |
| 20.00        | 0.25            |
| 50.00        | 0.00            |



| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |
|             |                 |                  |



# Species: American Shad Lifestage: Adult

|                   | 1.00 | ٦ ( | <b>—</b> •                  |    |
|-------------------|------|-----|-----------------------------|----|
|                   | 0.80 | -   |                             |    |
| Suitability Index | 0.60 | -   |                             |    |
| bilitv            | 0.40 | -   |                             |    |
| Suita             | 0.20 | -   |                             |    |
|                   | 0.00 |     |                             |    |
|                   |      | 0   | 20 40<br>Water Depth (feet) | 60 |

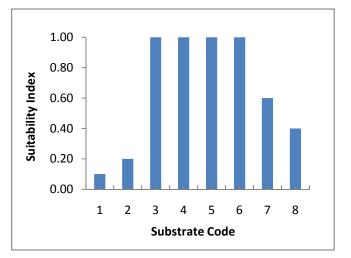
| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.50         | 0.00            |
| 5.00         | 1.00            |
| 20.00        | 1.00            |
| 50.00        | 0.00            |

<u>Velocity</u>

0.00

0.50

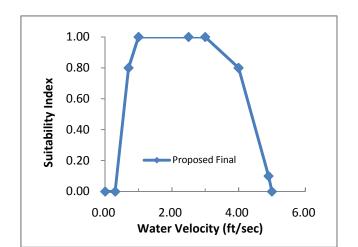
3.00

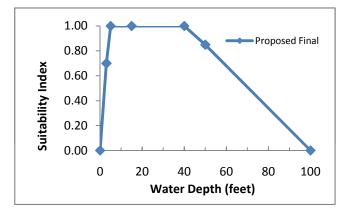

5.00

<u>SI Value</u>

0.70

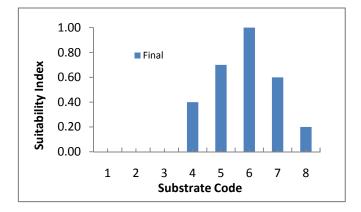
1.00


1.00




| <u>Code</u> | <u>SI Value</u> | Туре             |
|-------------|-----------------|------------------|
| 1           | 0.10            | Detritus/Organic |
| 2           | 0.20            | Mud/soft clay    |
| 3           | 1.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 1.00            | Cobble           |
| 7           | 0.60            | Boulder          |
| 8           | 0.40            | Bedrock          |
|             |                 |                  |

#### Species: Shortnose Sturgeon Lifestage: Spawning


| Proposed Final  |                 |  |
|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 0.00            |  |
| 0.30            | 0.00            |  |
| 0.70            | 0.80            |  |
| 1.00            | 1.00            |  |
| 2.50            | 1.00            |  |
| 3.00            | 1.00            |  |
| 4.00            | 0.80            |  |
| 4.90            | 0.10            |  |
| 5.00            | 0.00            |  |





| Proposed Final |                 |  |
|----------------|-----------------|--|
| <u>Depth</u>   | <u>SI Value</u> |  |
| 0.00           | 0.00            |  |
| 3.00           | 0.70            |  |
| 5.00           | 1.00            |  |
| 15.00          | 1.00            |  |
| 40.00          | 1.00            |  |
| 50.00          | 0.85            |  |
| 100.00         | 0.00            |  |

|             | Final           |                  |
|-------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | Detritus/Organic |
| 2           | 0.00            | Mud/soft clay    |
| 3           | 0.00            | Silt             |
| 4           | 0.40            | Sand             |
| 5           | 0.70            | Gravel           |
| 6           | 1.00            | Cobble/rubble    |
| 7           | 0.60            | Boulder          |
| 8           | 0.20            | Bedrock          |
|             |                 |                  |



#### Species: Shortnose Sturgeon Lifestage: Fry

| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.50            | 1.00            |
| 1.50            | 1.00            |
| 4.00            | 0.00            |

**Proposed Final** 

<u>SI Value</u>

0.00

0.40

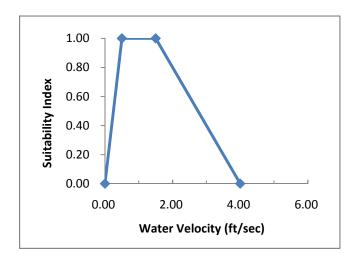
1.00

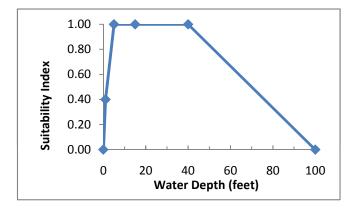
1.00

1.00

0.00

<u>Depth</u>


0.00

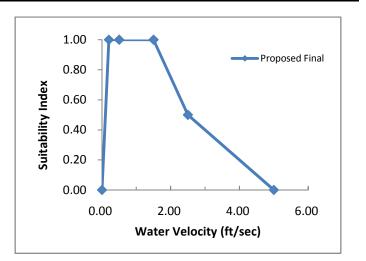

1.00

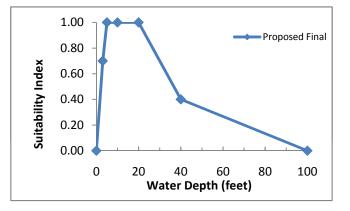
5.00

15.00

40.00



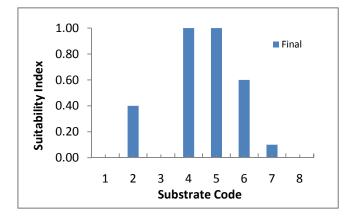




|             | Final           |                  |
|-------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | Detritus/Organic |
| 2           | 0.00            | Mud/soft clay    |
| 3           | 0.50            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 0.70            | Gravel           |
| 6           | 0.30            | Cobble/rubble    |
| 7           | 0.00            | Boulder          |
| 8           | 0.00            | Bedrock          |
|             |                 |                  |



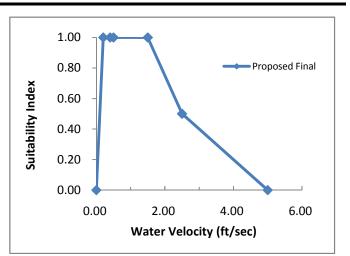
#### Species: Shortnose Sturgeon Lifestage: Juveniles

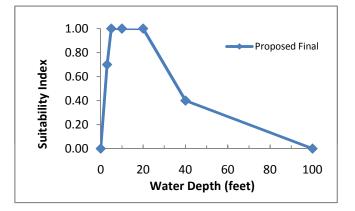
| Proposed Final  |                 |  |
|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 0.00            |  |
| 0.20            | 1.00            |  |
| 0.50            | 1.00            |  |
| 1.50            | 1.00            |  |
| 2.50            | 0.50            |  |
| 5.00            | 0.00            |  |
|                 |                 |  |





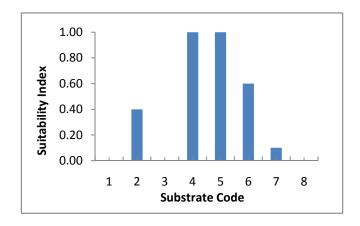

| •            |                 |
|--------------|-----------------|
| <u>Depth</u> | <u>SI Value</u> |
| 0.00         | 0.00            |
| 3.00         | 0.70            |
| 5.00         | 1.00            |
| 10.00        | 1.00            |
| 20.00        | 1.00            |
| 40.00        | 0.40            |
| 100.00       | 0.00            |
|              |                 |


Proposed Final


|             | Final           |                  |
|-------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | Type             |
| 1           | 0.00            | Detritus/Organic |
| 2           | 0.40            | Mud/soft clay    |
| 3           | 0.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 0.60            | Cobble/rubble    |
| 7           | 0.10            | Boulder          |
| 8           | 0.00            | Bedrock          |
|             |                 |                  |

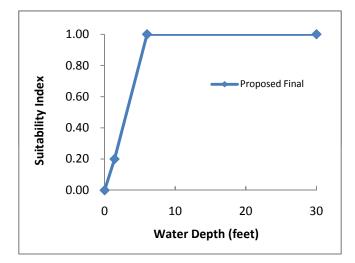


#### Species: Shortnose Sturgeon Lifestage: Adults


| Proposed Final  |                 |  |  |
|-----------------|-----------------|--|--|
| <u>Velocity</u> | <u>SI Value</u> |  |  |
| 0.00            | 0.00            |  |  |
| 0.20            | 1.00            |  |  |
| 0.40            | 1.00            |  |  |
| 0.50            | 1.00            |  |  |
| 1.50            | 1.00            |  |  |
| 2.50            | 0.50            |  |  |
| 5.00            | 0.00            |  |  |
|                 |                 |  |  |






| Proposed Final |                 |  |  |
|----------------|-----------------|--|--|
| <u>Depth</u>   | <u>SI Value</u> |  |  |
| 0.00           | 0.00            |  |  |
| 3.00           | 0.70            |  |  |
| 5.00           | 1.00            |  |  |
| 10.00          | 1.00            |  |  |
| 20.00          | 1.00            |  |  |
| 40.00          | 0.40            |  |  |
| 100.00         | 0.00            |  |  |

|             | Final           |                  |
|-------------|-----------------|------------------|
| <u>Code</u> | <u>SI Value</u> | <u>Type</u>      |
| 1           | 0.00            | Detritus/Organic |
| 2           | 0.40            | Mud/soft clay    |
| 3           | 0.00            | Silt             |
| 4           | 1.00            | Sand             |
| 5           | 1.00            | Gravel           |
| 6           | 0.60            | Cobble/rubble    |
| 7           | 0.10            | Boulder          |
| 8           | 0.00            | Bedrock          |
|             |                 |                  |



#### Species: Striped Bass Lifestage: Spawning

| Suitability Index | 1.00<br>0.80<br>-<br>0.60<br>-<br>0.40<br>-<br>0.20 |
|-------------------|-----------------------------------------------------|
|                   | 0.00 5.00 10.00 15.00                               |
|                   | Water Velocity (ft/sec)                             |



|                   | 1.00   |   |   |     |       |       |    |   |   |
|-------------------|--------|---|---|-----|-------|-------|----|---|---|
| ¥                 | 0.80 - |   |   |     |       |       |    |   |   |
| Suitability Index | 0.60 - |   |   |     |       |       |    |   |   |
| ability           | 0.40 - |   |   |     |       |       |    |   |   |
| Suit              | 0.20 - |   |   |     |       |       |    |   |   |
|                   | 0.00   |   |   |     |       |       |    |   |   |
|                   |        | 1 | 2 | 3   | 4     | 5     | 6  | 7 | 8 |
|                   |        |   |   | Sub | strat | e Coo | le |   |   |
|                   |        |   |   |     |       |       |    |   |   |

| Proposed Final  |                 |  |  |
|-----------------|-----------------|--|--|
| <u>Velocity</u> | <u>SI Value</u> |  |  |
| 0.00            | 0.00            |  |  |
| 0.50            | 0.50            |  |  |
| 0.90            | 0.50            |  |  |
| 1.64            | 1.00            |  |  |
| 3.00            | 1.00            |  |  |
| 4.00            | 0.50            |  |  |
| 7.00            | 0.10            |  |  |
| 13.20           | 0.00            |  |  |

| Proposed Final |                 |  |  |
|----------------|-----------------|--|--|
| <u>Depth</u>   | <u>SI Value</u> |  |  |
| 0.00           | 0.00            |  |  |
| 1.40           | 0.20            |  |  |
| 6.00           | 1.00            |  |  |
| 30.0           | 1.00            |  |  |
|                |                 |  |  |

<u>Code</u>

1

2

3

4

5

6

7

8

Туре

Silt

Sand

Gravel

Cobble

Boulder

Bedrock

Detritus/Organic

Mud/Soft Clay

SI Value

0.1

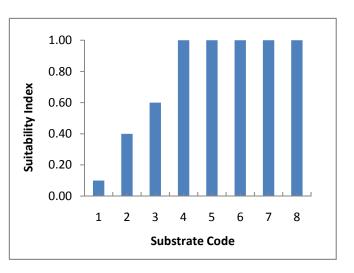
0.4

0.6

1.0

1.0

1.0

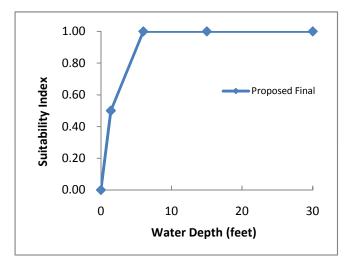

1.0

# Species: Striped Bass Lifestage: Fry

| Suitability Index | 1.00<br>0.80<br>0.60<br>0.40<br>0.20<br>0.00<br>0.00<br>5.00<br>10.00<br>15.00<br>Water Velocity (ft/sec) |  |
|-------------------|-----------------------------------------------------------------------------------------------------------|--|
| Suitability Index | 1.00<br>0.80<br>0.60<br>0.40<br>0.20<br>0.00<br>0 10 20 30                                                |  |

| Proposed Final  |                 |  |  |  |
|-----------------|-----------------|--|--|--|
| <u>Velocity</u> | <u>SI Value</u> |  |  |  |
| 0.00            | 0.00            |  |  |  |
| 0.50            | 0.50            |  |  |  |
| 0.90            | 0.50            |  |  |  |
| 1.64            | 1.00            |  |  |  |
| 3.00            | 1.00            |  |  |  |
| 4.00            | 0.50            |  |  |  |
| 7.00            | 0.20            |  |  |  |
| 13.10           | 0.00            |  |  |  |

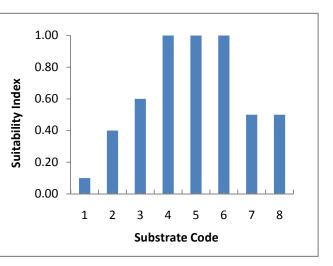
| Proposed Final |                 |  |  |
|----------------|-----------------|--|--|
| <u>Depth</u>   | <u>SI Value</u> |  |  |
| 0.00           | 0.00            |  |  |
| 1.40           | 0.00            |  |  |
| 6.00           | 1.00            |  |  |
| 10.0           | 1.00            |  |  |
| 30.0           | 0.50            |  |  |
|                |                 |  |  |




Water Depth (feet)

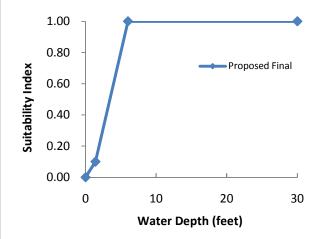
| <u>Code</u> | <u>SI Value</u> |               |
|-------------|-----------------|---------------|
| 1           | 0.1             |               |
| 2           | 0.4             | Mud/Soft Clay |
| 3           | 0.6             | Silt          |
| 4           | 1.0             | Sand          |
| 5           | 1.0             | Gravel        |
| 6           | 1.0             | Cobble        |
| 7           | 1.0             | Boulder       |
| 8           | 1.0             | Bedrock       |

#### Species: Striped Bass Lifestage: Juvenile


| 1.00 -<br>0.80 -<br>0.60 -<br>0.40 -<br>0.20 - |                                                | Prop                                              | osed Final                                |
|------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------|
|                                                |                                                | 10.00<br>city (ft/sec)                            | 15.00                                     |
|                                                | 0.80 -<br>0.60 -<br>0.40 -<br>0.20 -<br>0.00 - | 0.80 -<br>0.60 -<br>0.40 -<br>0.20 -<br>0.00 5.00 | 0.80 - Prop<br>0.60 -<br>0.40 -<br>0.20 - |



| Proposed Final  |                 |  |
|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 0.00            |  |
| 0.50            | 1.00            |  |
| 0.90            | 1.00            |  |
| 1.64            | 1.00            |  |
| 3.00            | 1.00            |  |
| 4.00            | 0.20            |  |
| 7.00            | 0.10            |  |
| 13.10           | 0.00            |  |


| Proposed Final |                 |  |
|----------------|-----------------|--|
| <u>Depth</u>   | <u>SI Value</u> |  |
| 0.00           | 0.00            |  |
| 1.40           | 0.50            |  |
| 6.00           | 1.00            |  |
| 15.0           | 1.00            |  |
| 30.0           | 1.00            |  |
|                |                 |  |

| Code<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | <u>SI Value</u><br>0.1<br>0.4<br>0.6<br>1.0<br>1.0<br>1.0<br>0.5 | <u>Type</u><br>Detritus/Organic<br>Mud/Soft Clay<br>Silt<br>Sand<br>Gravel<br>Cobble<br>Boulder |
|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ,                                       |                                                                  |                                                                                                 |
| 8                                       | 0.5                                                              | Bedrock                                                                                         |



#### **Species: Striped Bass** Lifestage: Adult

|                   | 1.00                    |
|-------------------|-------------------------|
| ×                 | 0.80 -                  |
| / Inde            | 0.60 -                  |
| Suitability Index | 0.40 -                  |
| Suit              | 0.20 -                  |
|                   | 0.00                    |
|                   | 0.00 5.00 10.00 15.00   |
|                   | Water Velocity (ft/sec) |



| Propos       | ed Final        |
|--------------|-----------------|
| <u>Depth</u> | <u>SI Value</u> |
| 0.00         | 0.00            |
| 1.40         | 0.10            |
| 6.00         | 1.00            |

<u>Velocity</u>

0.00

0.90

1.64

3.00

4.00

7.00

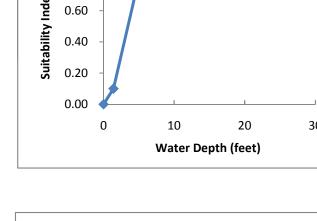
13.10

30.0

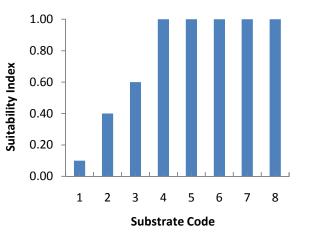
SI Value

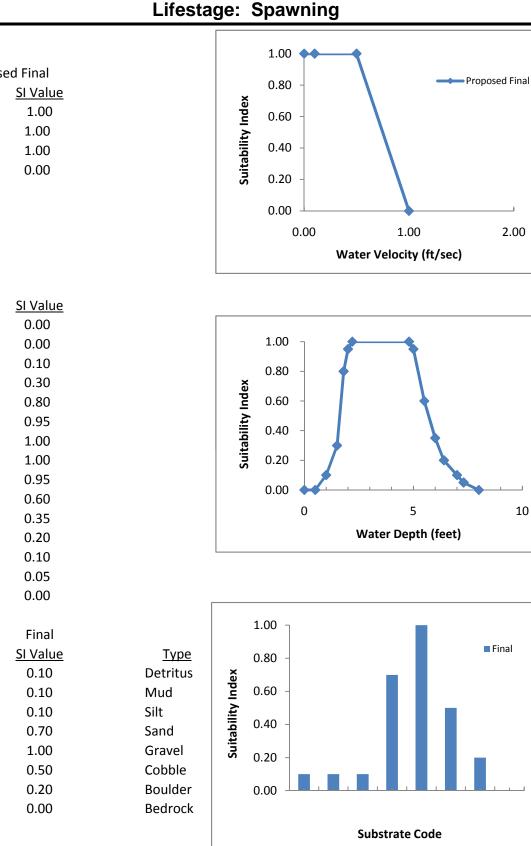
0.00

1.00


1.00

1.00


1.00


0.20

0.00



| Code | SI Value | Туре             |
|------|----------|------------------|
| 1    | 0.1      | Detritus/Organic |
| 2    | 0.4      | Mud/Soft Clay    |
| 3    | 0.6      | Silt             |
| 4    | 1.0      | Sand             |
| 5    | 1.0      | Gravel           |
| 6    | 1.0      | Cobble           |
| 7    | 1.0      | Boulder          |
| 8    | 1.0      | Bedrock          |
|      |          |                  |





#### **Species: Smallmouth Bass** Lifestage: Spawning

| Proposed Final |                 |  |
|----------------|-----------------|--|
| Velocity       | <u>SI Value</u> |  |
| 0.00           | 1.00            |  |
| 0.10           | 1.00            |  |
| 0.50           | 1.00            |  |
| 1.00           | 0.00            |  |

<u>Depth</u>

0.00

0.50

1.00

1.50

1.80

2.00

2.20

4.80

5.00

5.50

6.00

6.40

7.00

7.30

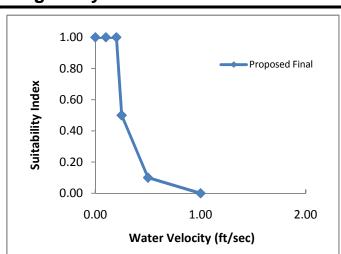
8.00

<u>Code</u>

1

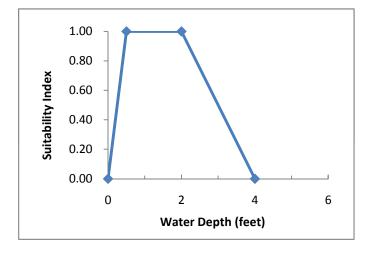
2

3

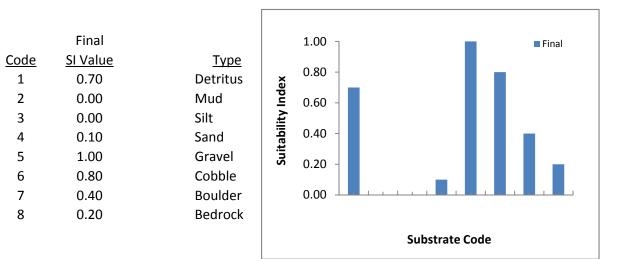

4

5

6


7

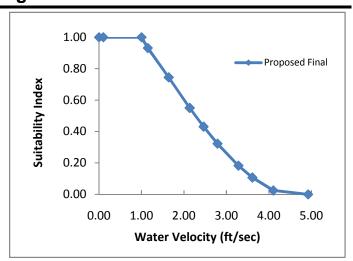
8

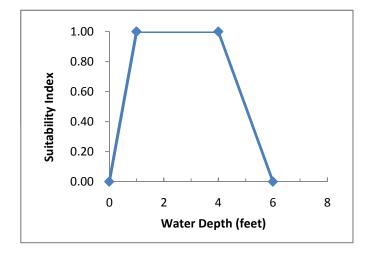



| Species: | Smallmouth  | n Bass |
|----------|-------------|--------|
| Lif      | estage: Fry |        |

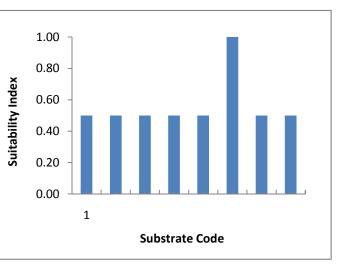
| Proposed Final  |                 |  |
|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 1.00            |  |
| 0.10            | 1.00            |  |
| 0.20            | 1.00            |  |
| 0.25            | 0.50            |  |
| 0.50            | 0.10            |  |
| 1.00            | 0.00            |  |




| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 0.50         | 1.00            |
| 2.00         | 1.00            |
| 4.00         | 0.00            |



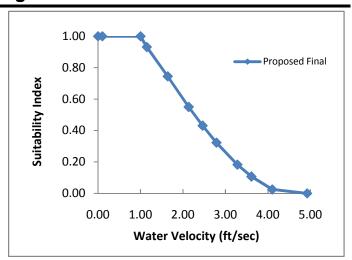

| Dropos          | d Final         |  |
|-----------------|-----------------|--|
| Proposed Final  |                 |  |
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 1.00            |  |
| 0.10            | 1.00            |  |
| 1.00            | 1.00            |  |
| 1.15            | 0.93            |  |
| 1.64            | 0.75            |  |
| 2.13            | 0.55            |  |
| 2.46            | 0.43            |  |
| 2.79            | 0.32            |  |
| 3.28            | 0.18            |  |
| 3.61            | 0.11            |  |
| 4.10            | 0.02            |  |
| 4.92            | 0.00            |  |
|                 |                 |  |

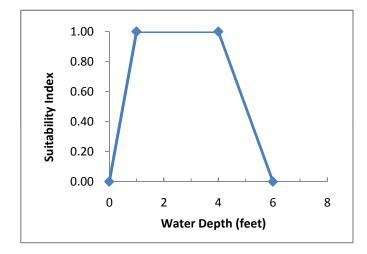

| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.00         | 1.00            |
| 4.00         | 1.00            |
| 6.00         | 0.00            |

#### Species: Smallmouth Bass Lifestage: Juvenile

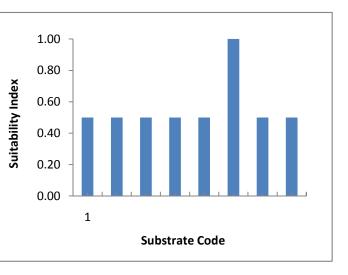


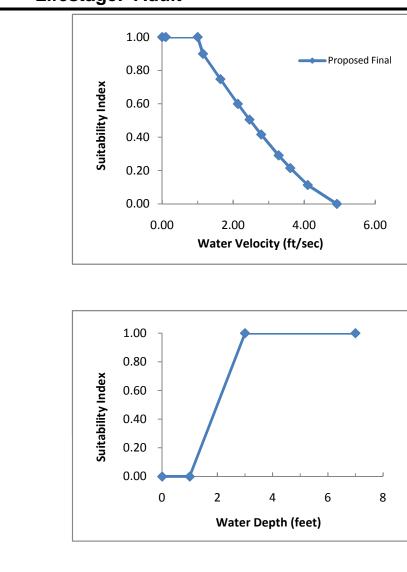



| <u>Code</u> | <u>SI Value</u> | Type             |
|-------------|-----------------|------------------|
| 1           | 0.50            | Detritus/Organic |
| 2           | 0.50            | Mud/soft clay    |
| 3           | 0.50            | Silt             |
| 4           | 0.50            | Sand             |
| 5           | 0.50            | Gravel           |
| 6           | 1.00            | Cobble/rubble    |
| 7           | 0.50            | Boulder          |
| 8           | 0.50            | Bedrock          |
|             |                 |                  |




| Droposod Final  |                 |  |  |  |
|-----------------|-----------------|--|--|--|
| Proposed Final  |                 |  |  |  |
| <u>Velocity</u> | <u>SI Value</u> |  |  |  |
| 0.00            | 1.00            |  |  |  |
| 0.10            | 1.00            |  |  |  |
| 1.00            | 1.00            |  |  |  |
| 1.15            | 0.93            |  |  |  |
| 1.64            | 0.75            |  |  |  |
| 2.13            | 0.55            |  |  |  |
| 2.46            | 0.43            |  |  |  |
| 2.79            | 0.32            |  |  |  |
| 3.28            | 0.18            |  |  |  |
| 3.61            | 0.11            |  |  |  |
| 4.10            | 0.02            |  |  |  |
| 4.92            | 0.00            |  |  |  |
|                 |                 |  |  |  |


| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.00         | 1.00            |
| 4.00         | 1.00            |
| 6.00         | 0.00            |


### Species: Smallmouth Bass Lifestage: Juvenile





| <u>Code</u> | <u>SI Value</u> | Туре             |
|-------------|-----------------|------------------|
| 1           | 0.50            | Detritus/Organic |
| 2           | 0.50            | Mud/soft clay    |
| 3           | 0.50            | Silt             |
| 4           | 0.50            | Sand             |
| 5           | 0.50            | Gravel           |
| 6           | 1.00            | Cobble/rubble    |
| 7           | 0.50            | Boulder          |
| 8           | 0.50            | Bedrock          |





#### Species: Smallmouth Bass Lifestage: Adult

| Proposed Final  |                 |  |
|-----------------|-----------------|--|
| <u>Velocity</u> | <u>SI Value</u> |  |
| 0.00            | 1.00            |  |
| 0.10            | 1.00            |  |
| 1.00            | 1.00            |  |
| 1.15            | 0.90            |  |
| 1.64            | 0.75            |  |
| 2.13            | 0.60            |  |
| 2.46            | 0.51            |  |
| 2.79            | 0.42            |  |
| 3.28            | 0.29            |  |
| 3.61            | 0.21            |  |
| 4.10            | 0.11            |  |
| 4.92            | 0.00            |  |
|                 |                 |  |
| Dauth           | CLValue         |  |

| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 1.00         | 0.00            |
| 3.00         | 1.00            |
| 7.00         | 1.00            |

Final

SI Value

0.20

0.10

0.10

0.50

0.70

0.80

1.00

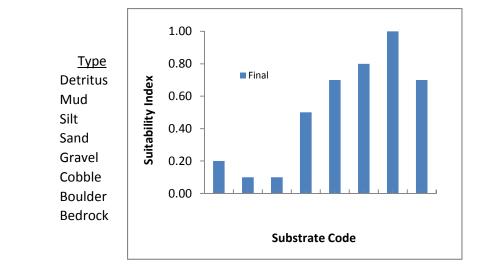
0.70

<u>Code</u>

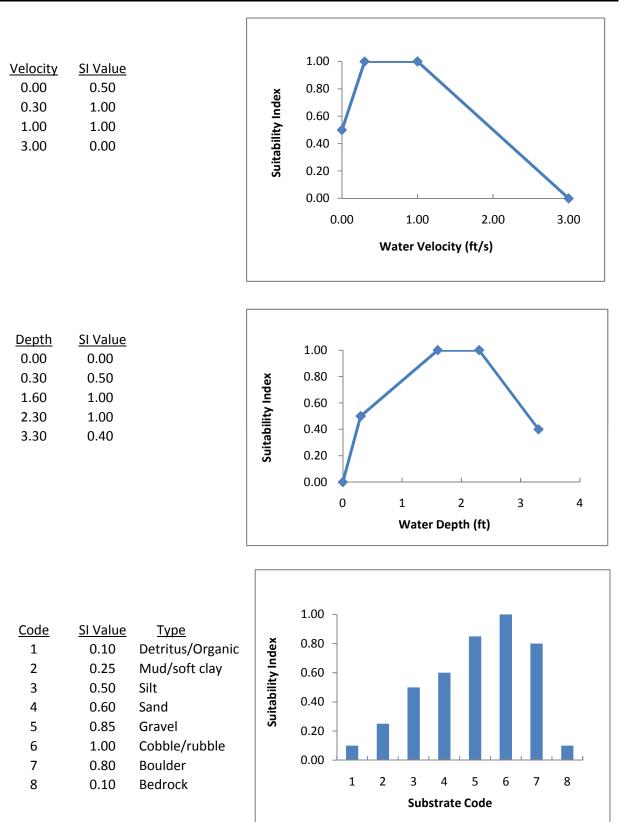
1

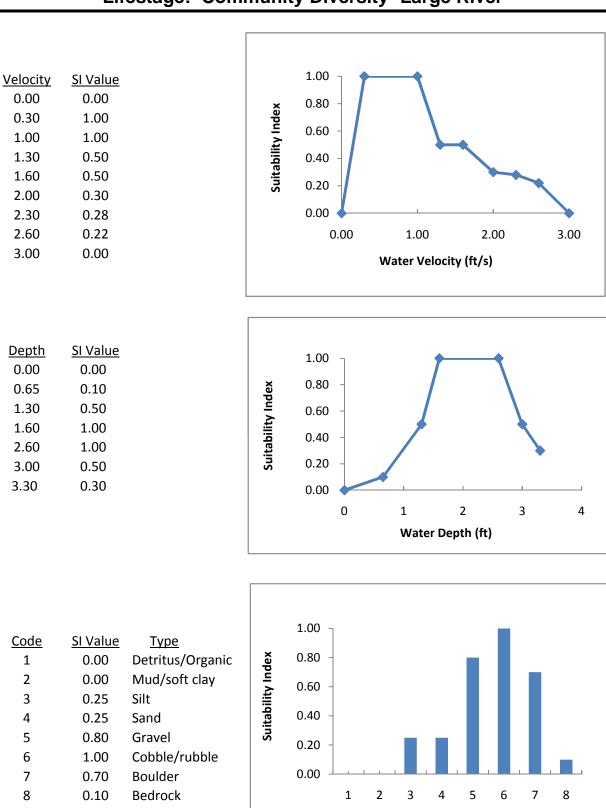
2

3


4

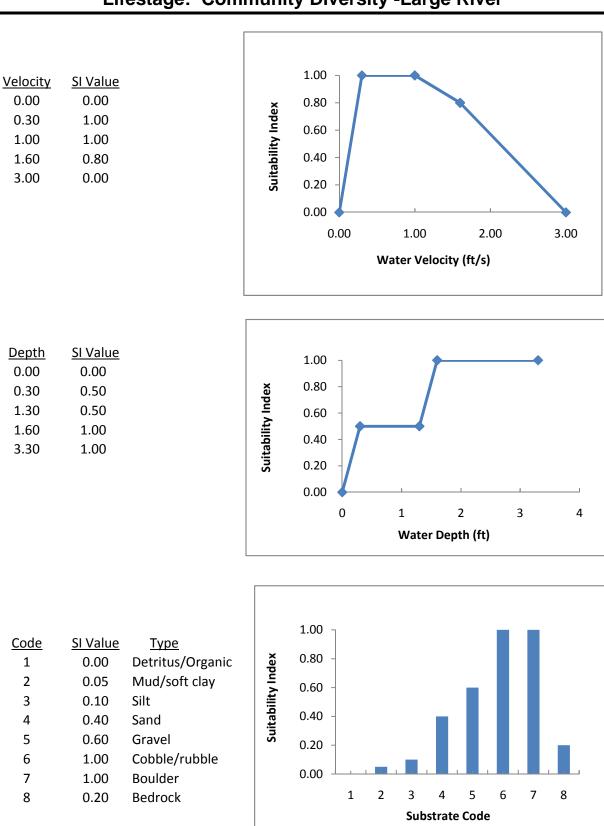
5


6


7

8




# Species: Ephemeroptera (Mayflies) Lifestage: Community Diversity -Large River





# Species: Plecoptera (Stoneflies) Lifestage: Community Diversity -Large River

**Substrate Code** 



# Species: Tricoptera (Caddisflies) Lifestage: Community Diversity -Large River



0.00

1.00

1.00

0.00

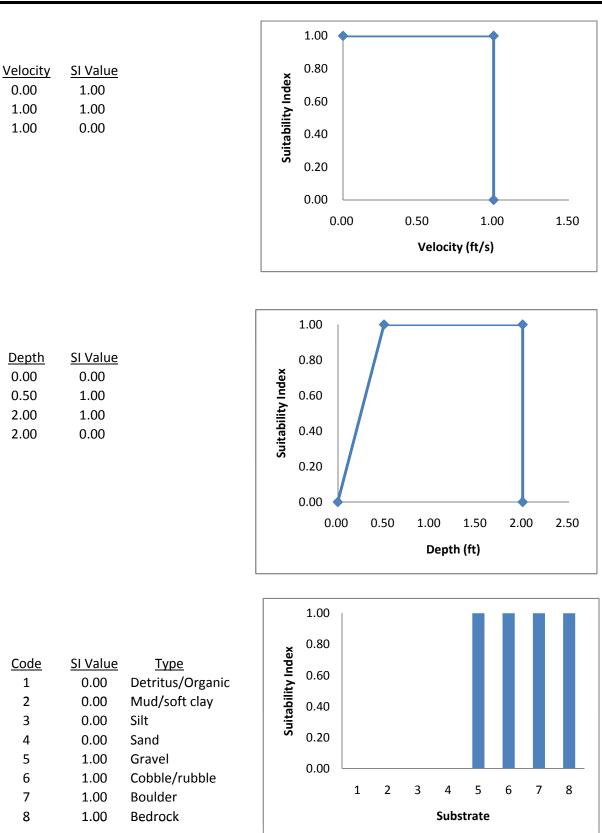
0.50

2.00

2.00

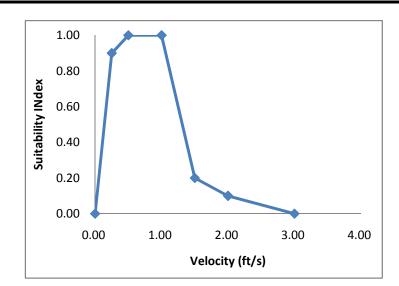
1 2

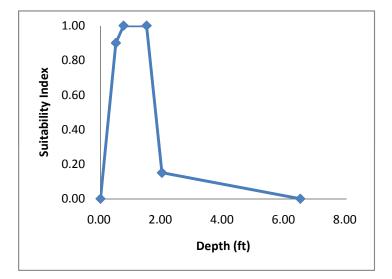
3


4

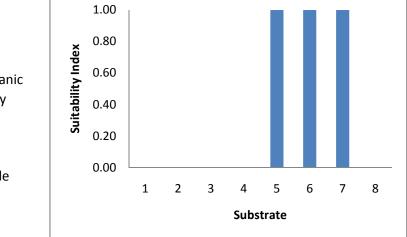
5

6


7

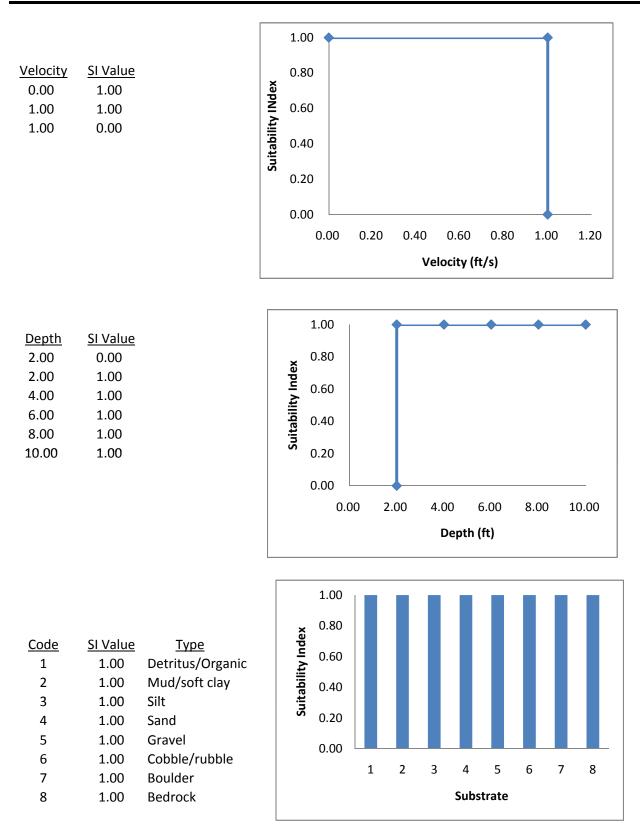

8

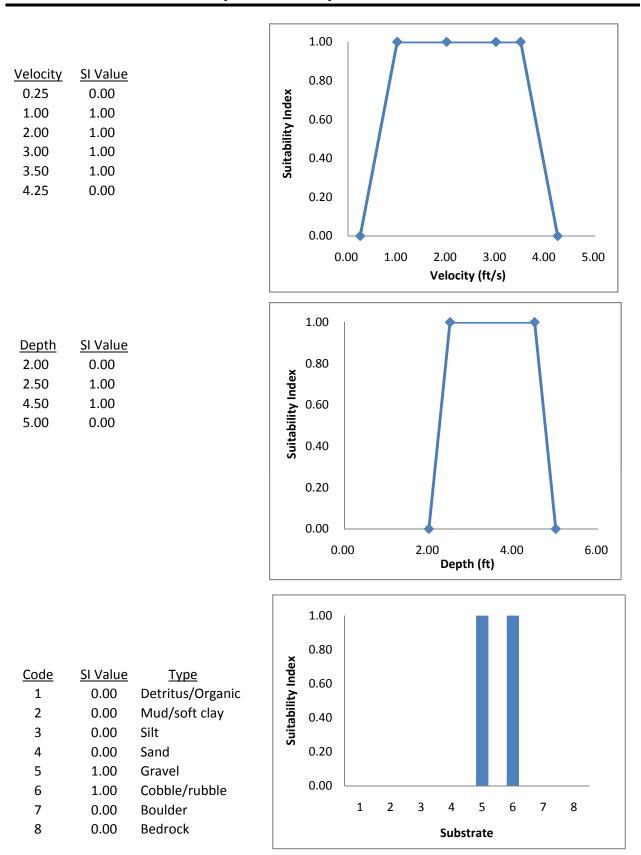



### Species: Shallow-Fast Guild

| <u>Velocity</u> | <u>SI Value</u> |
|-----------------|-----------------|
| 0.00            | 0.00            |
| 0.25            | 0.90            |
| 0.50            | 1.00            |
| 1.00            | 1.00            |
| 1.50            | 0.20            |
| 2.00            | 0.10            |
| 3.00            | 0.00            |
|                 |                 |

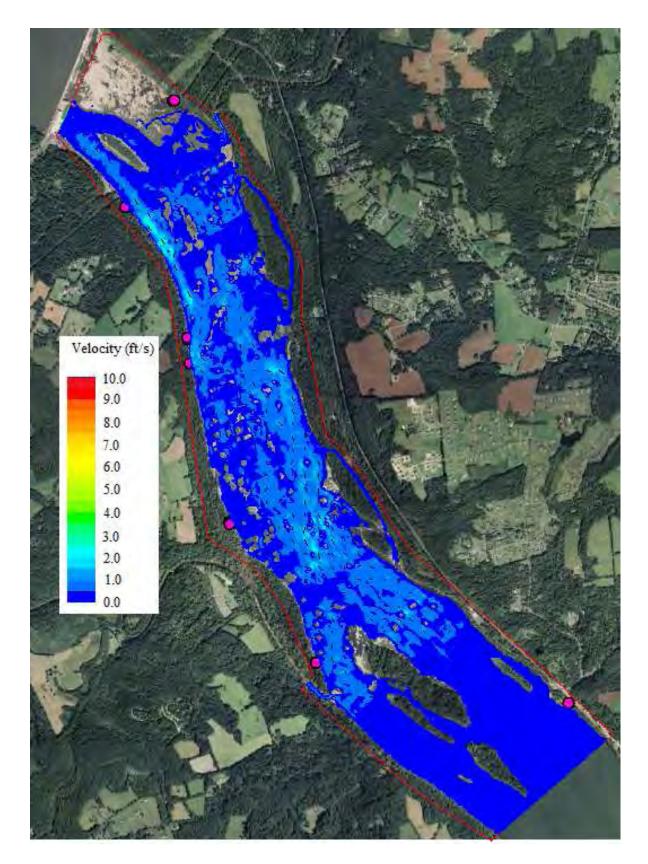


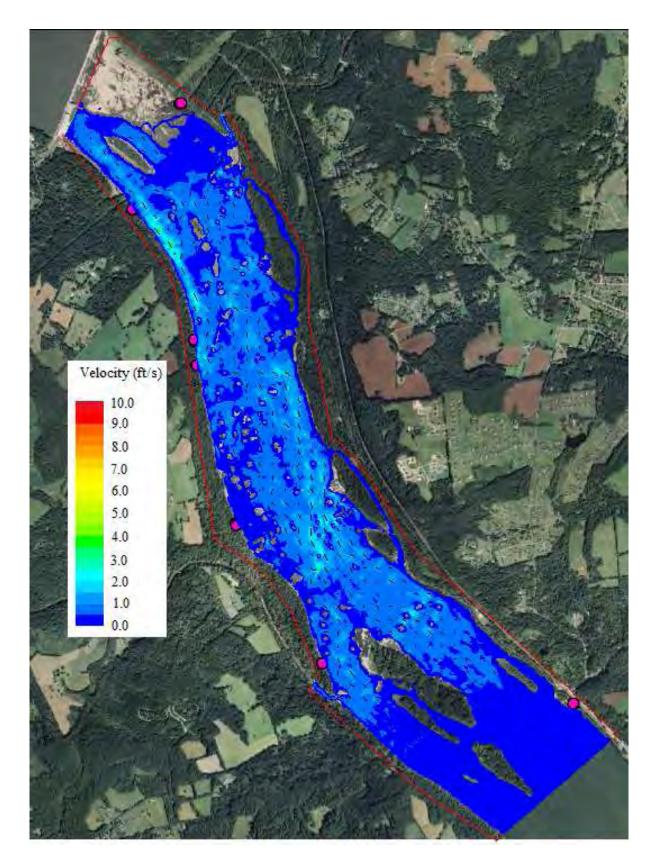




| <u>Depth</u> | <u>SI Value</u> |
|--------------|-----------------|
| 0.00         | 0.00            |
| 0.50         | 0.90            |
| 0.75         | 1.00            |
| 1.50         | 1.00            |
| 2.00         | 0.15            |
| 6.50         | 0.00            |

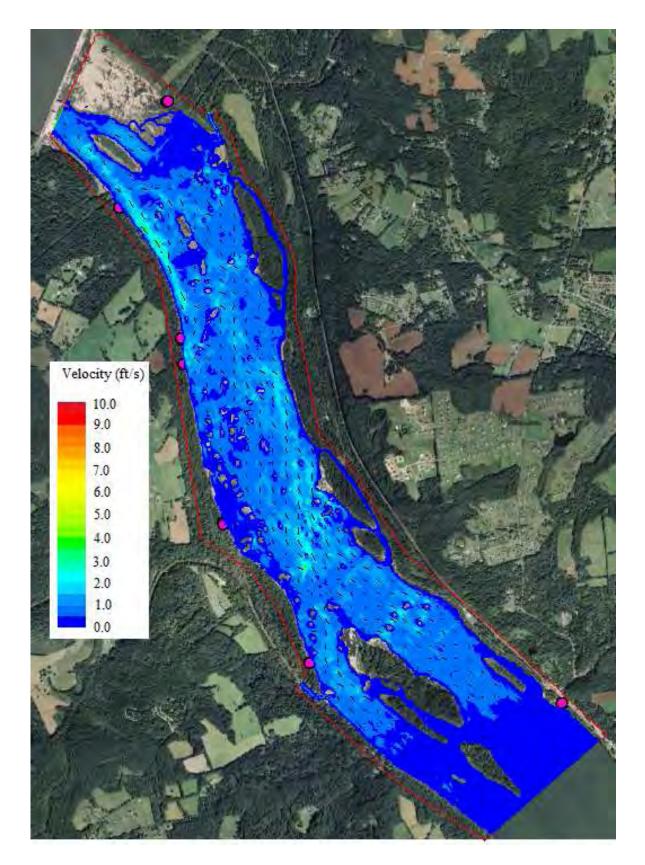


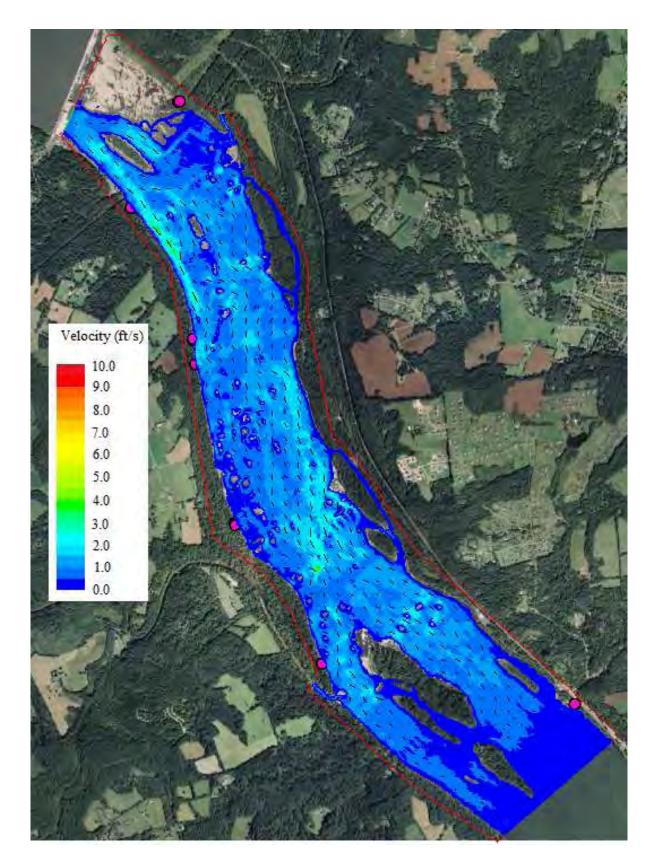
| <u>Code</u><br>1<br>2 | <u>SI Value</u><br>0.00<br>0.00 | <u>Type</u><br>Detritus/Organic<br>Mud/soft clay |
|-----------------------|---------------------------------|--------------------------------------------------|
| 3                     | 0.00                            | Silt                                             |
| 4                     | 0.00                            | Sand                                             |
| 5                     | 1.00                            | Gravel                                           |
| 6                     | 1.00                            | Cobble/rubble                                    |
| 7                     | 1.00                            | Boulder                                          |
| 8                     | 0.00                            | Bedrock                                          |



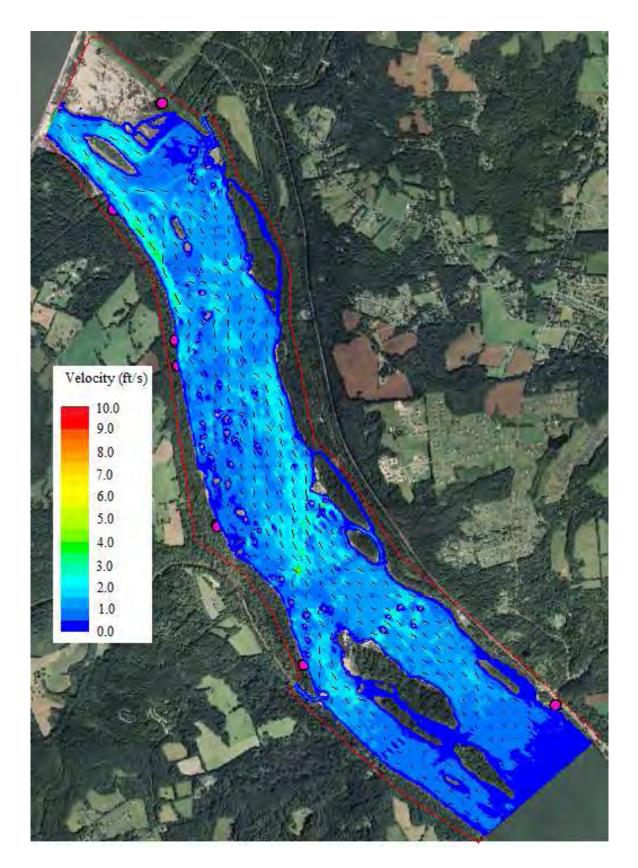





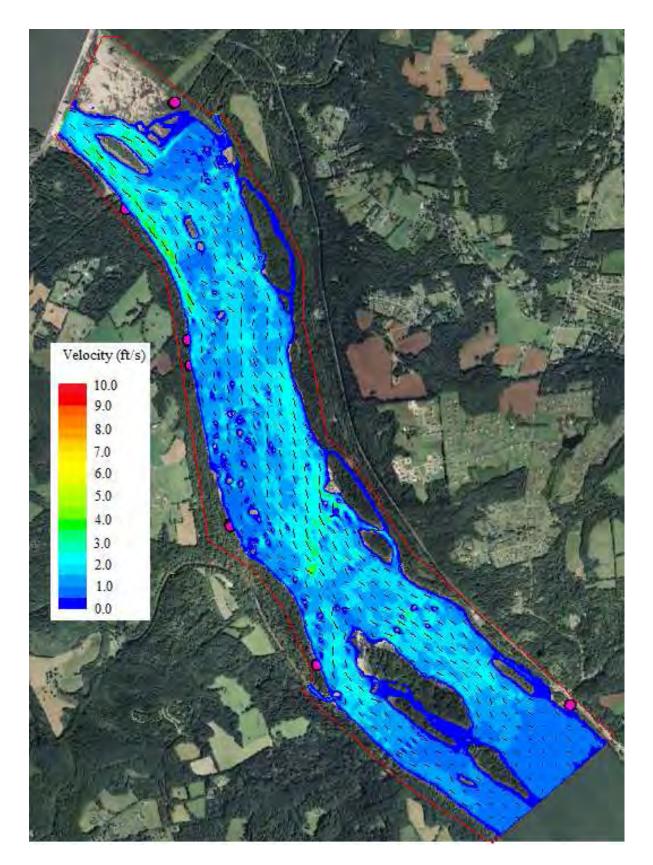


### **Species: Deep-Fast Guild**


#### APPENDIX C-WATER VELOCITY PLOTS FOR SIMULATION FLOWS

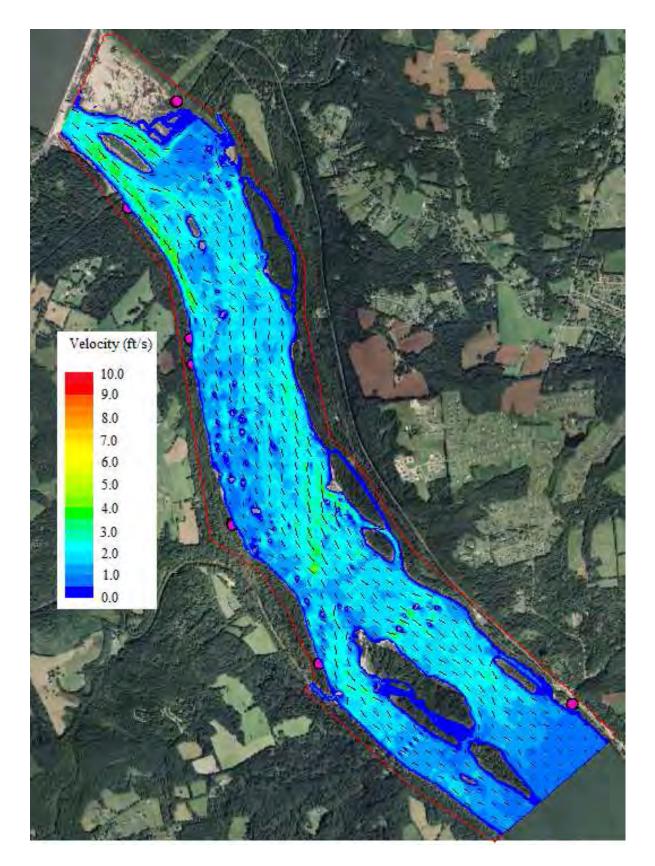


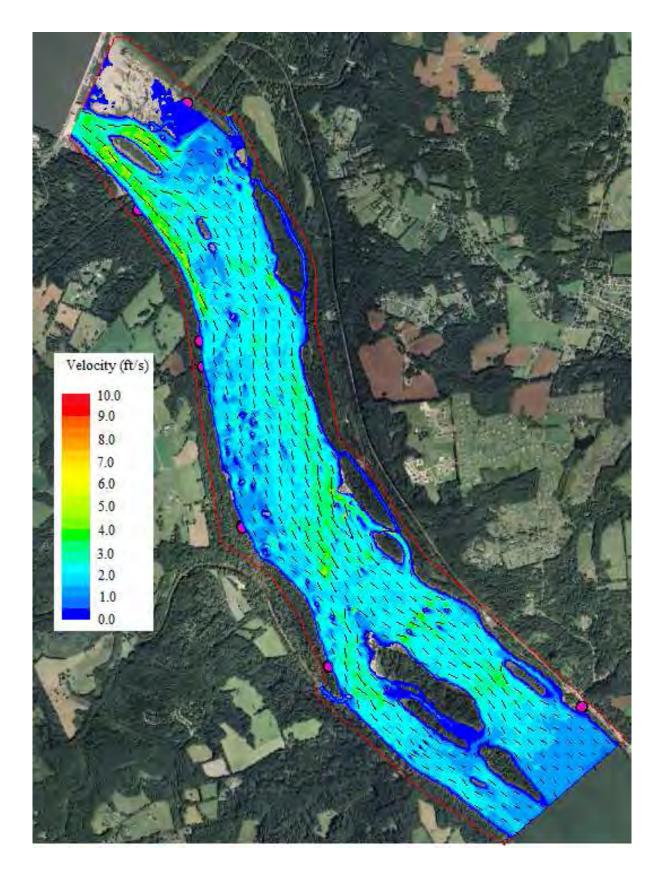


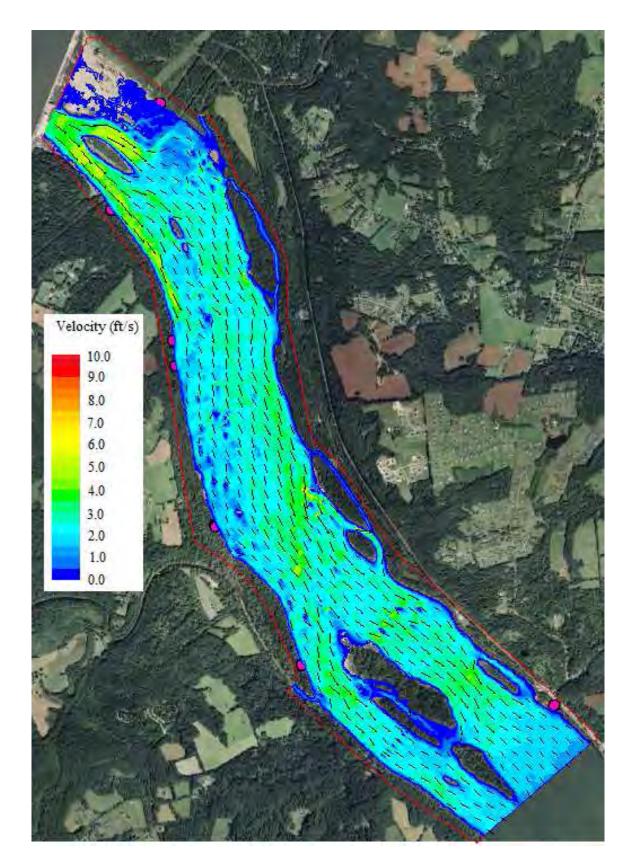

3,500 CFS

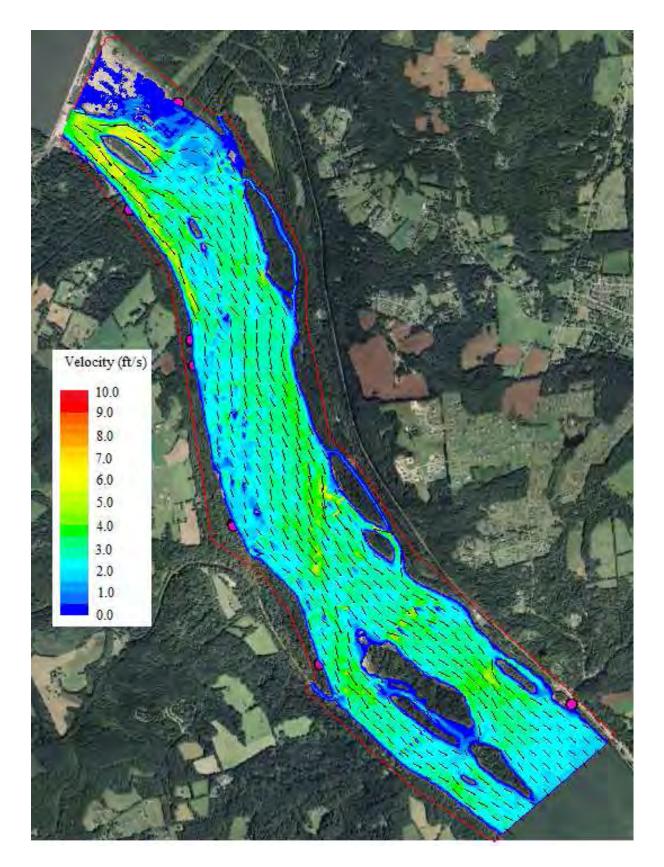


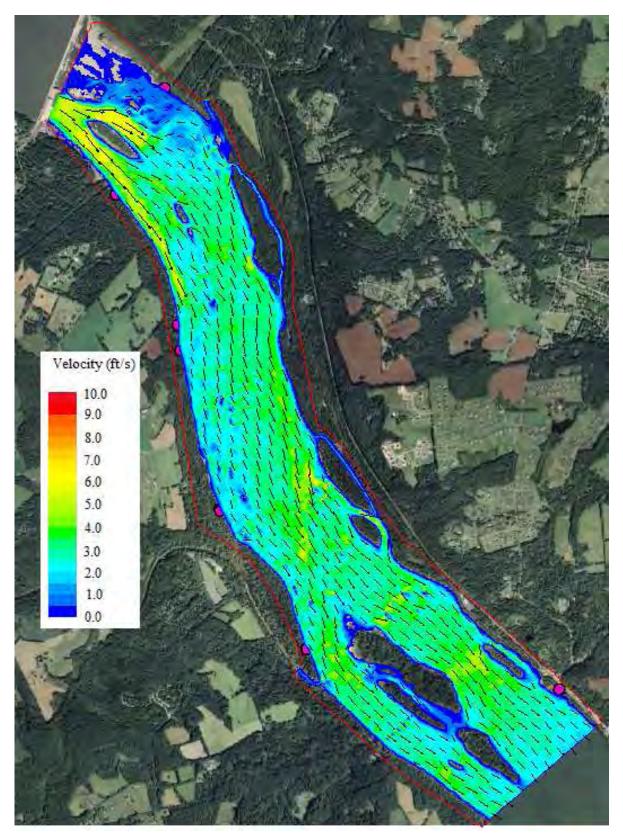




# 7,500 CFS

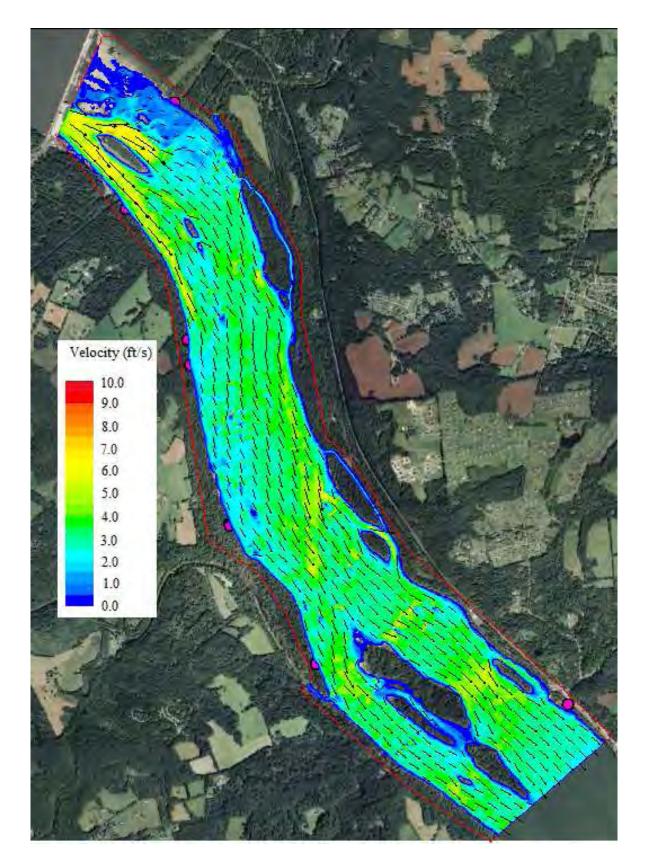


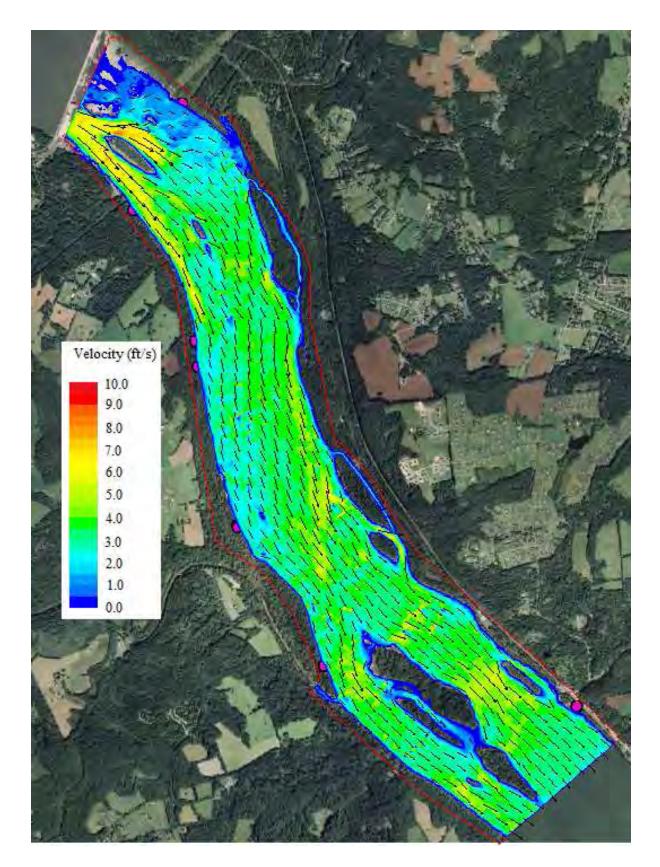


10,000 CFS

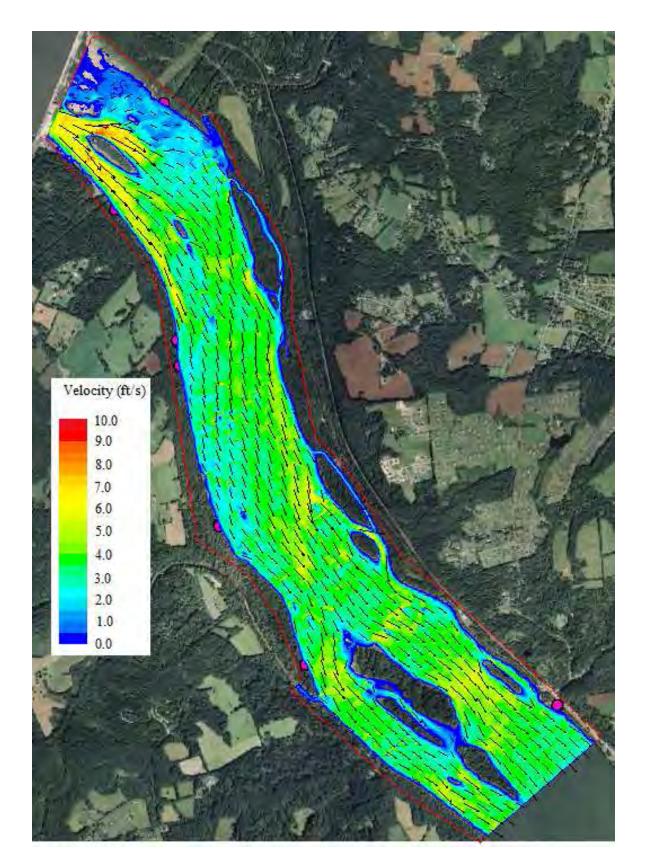




15,000 CFS

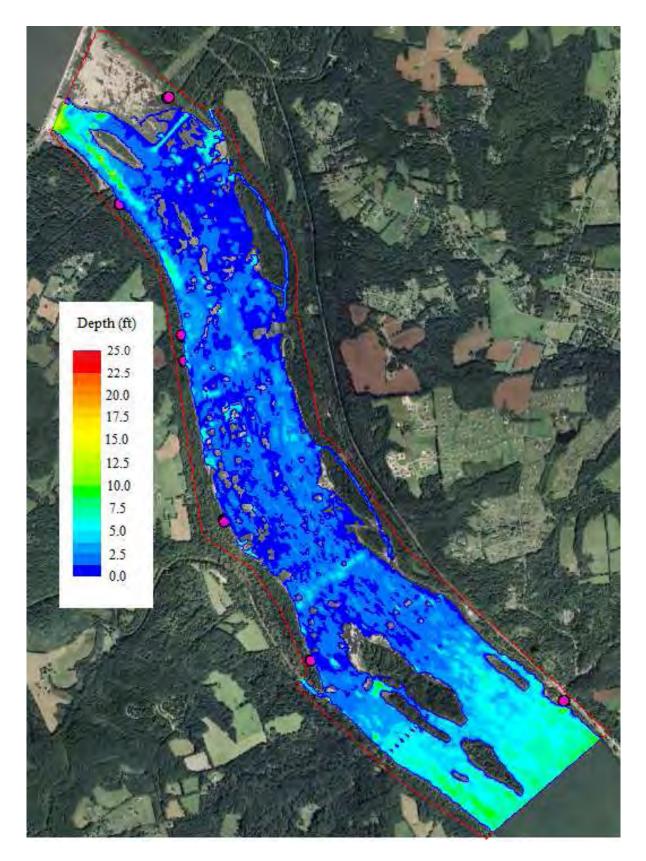


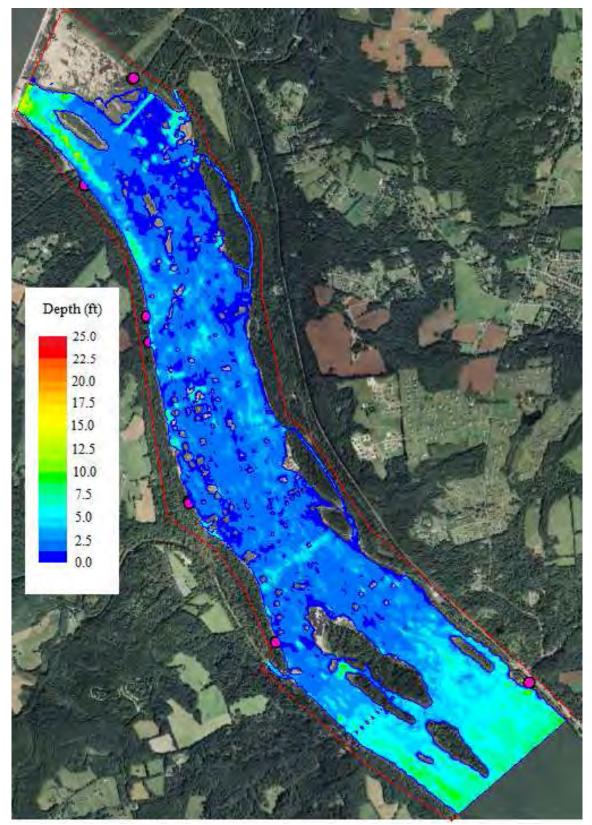


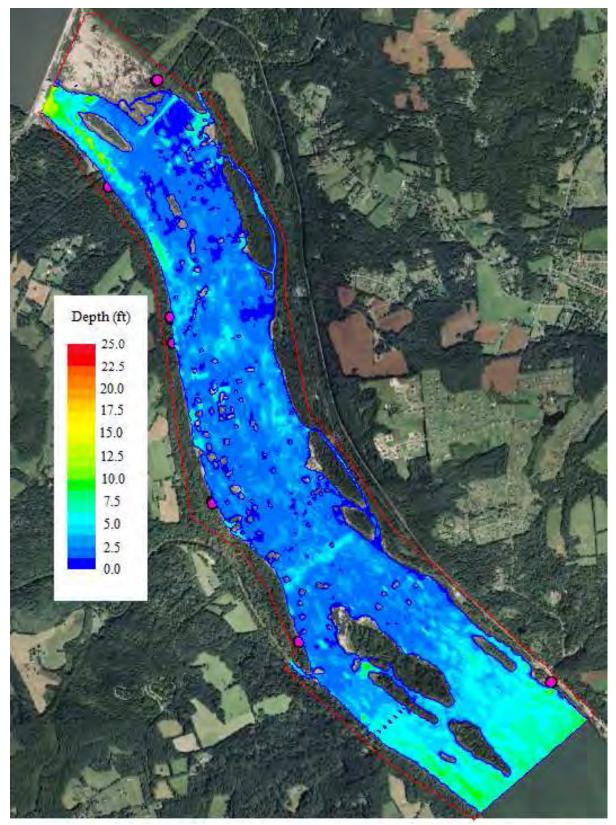





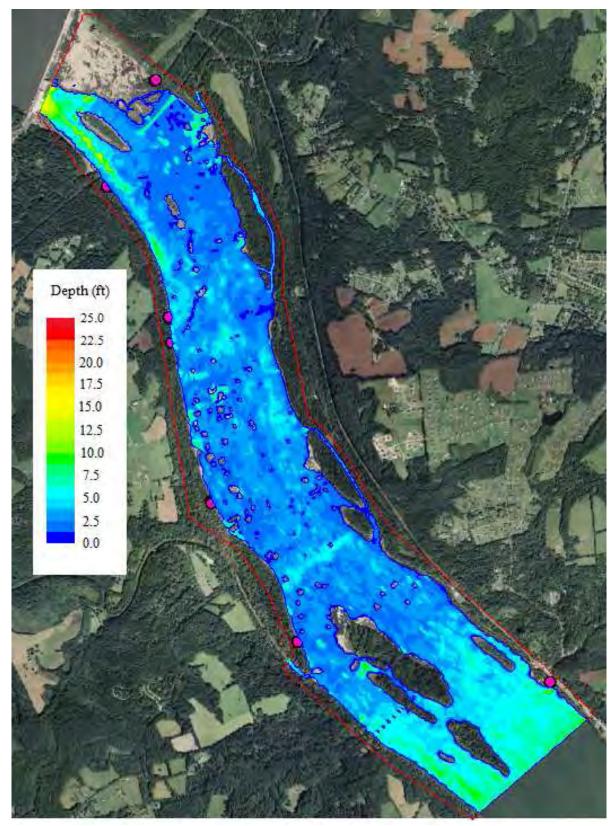


60,000 CFS



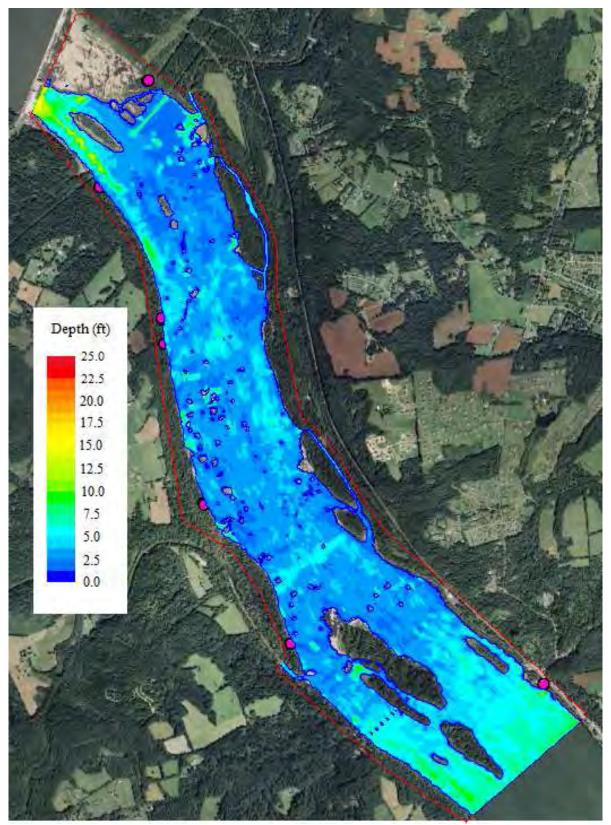


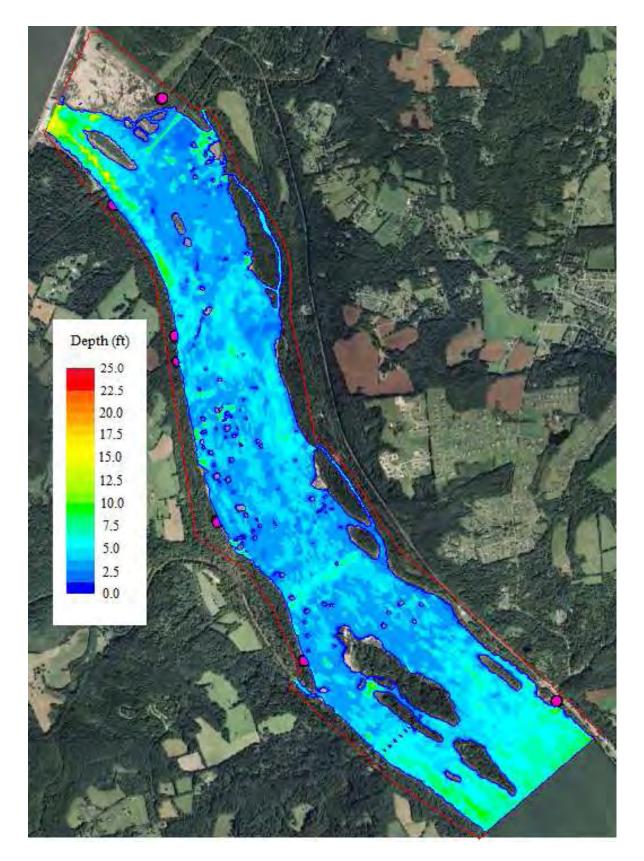

#### APPENDIX D-DEPTH PLOTS FOR SIMULATION FLOWS

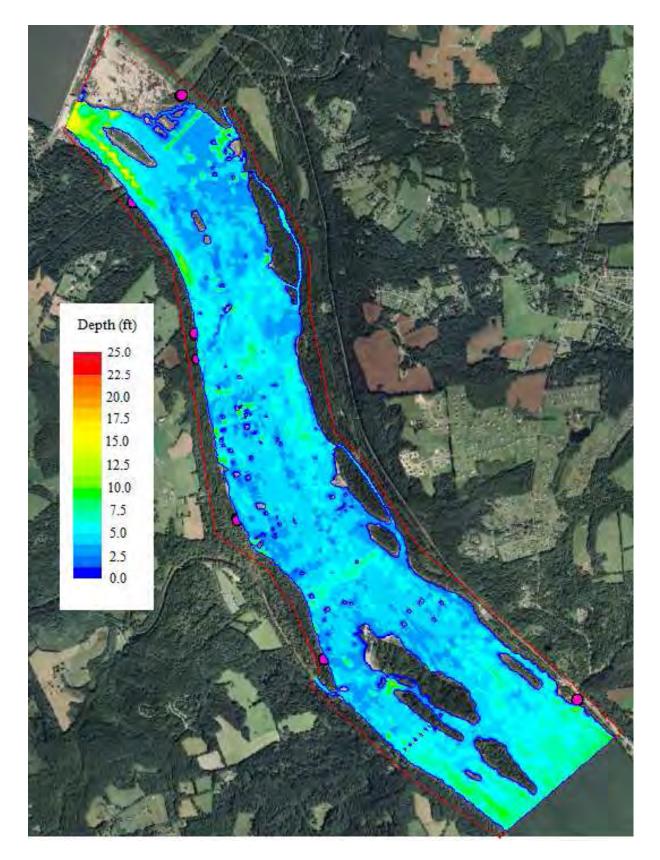


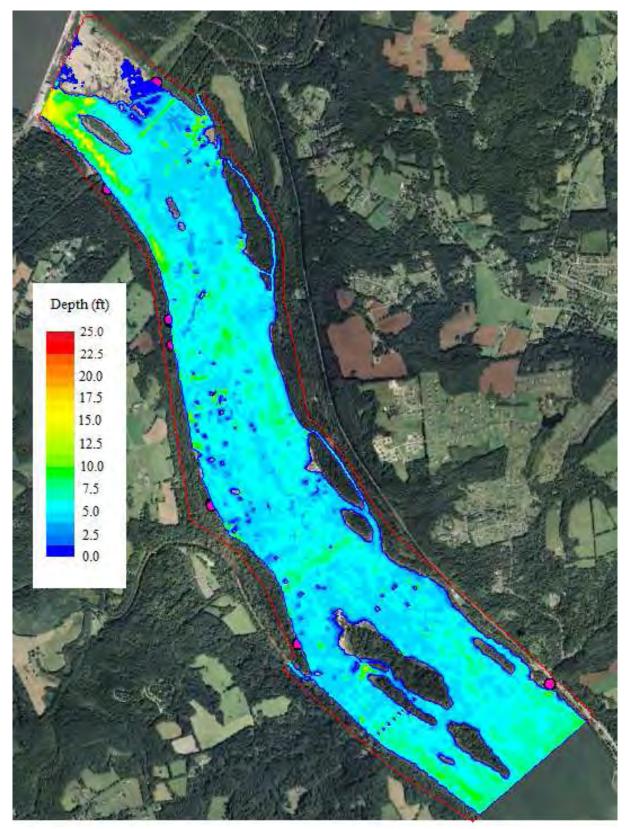




3,500 CFS

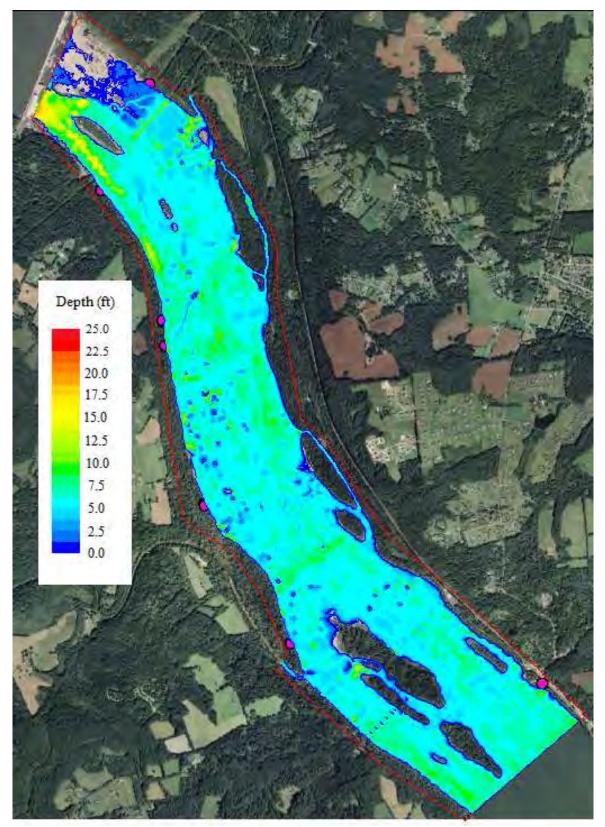



5,000 CFS

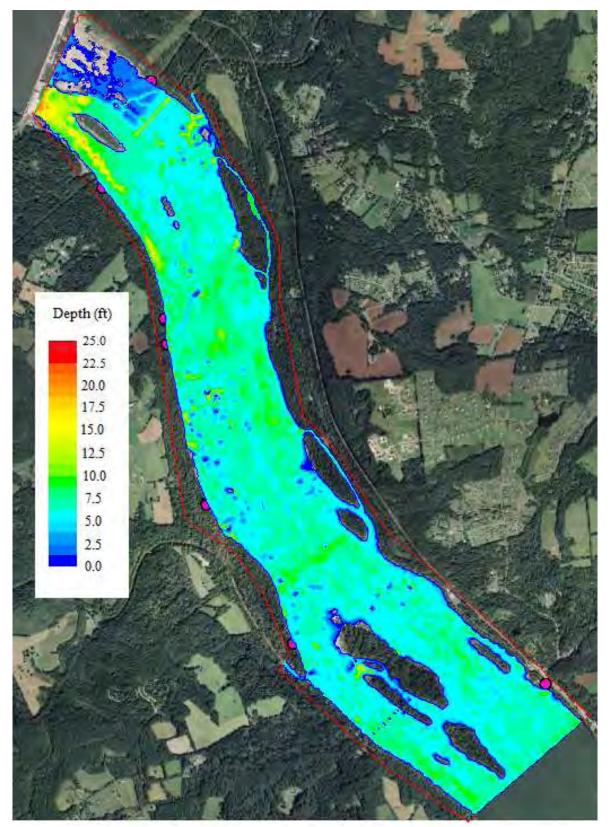




7,500 CFS

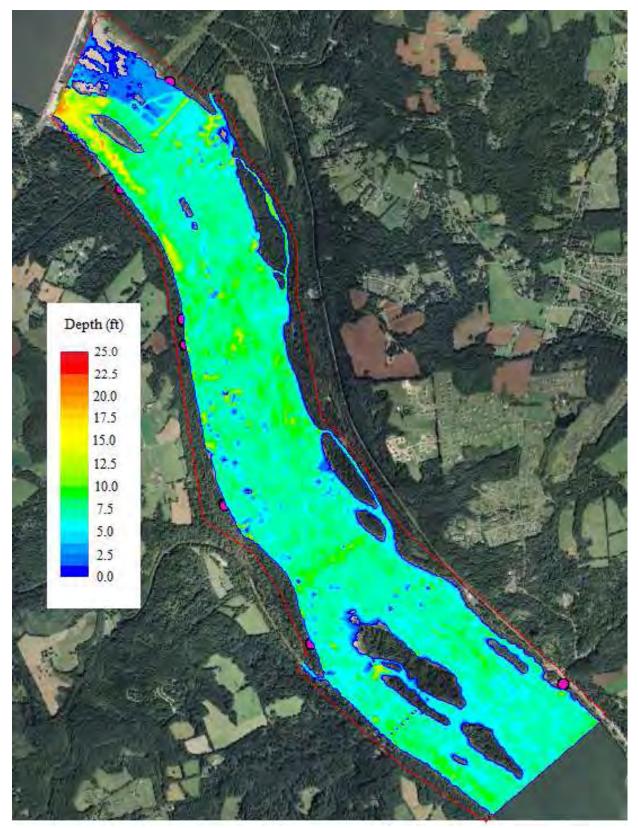



10,000 CFS

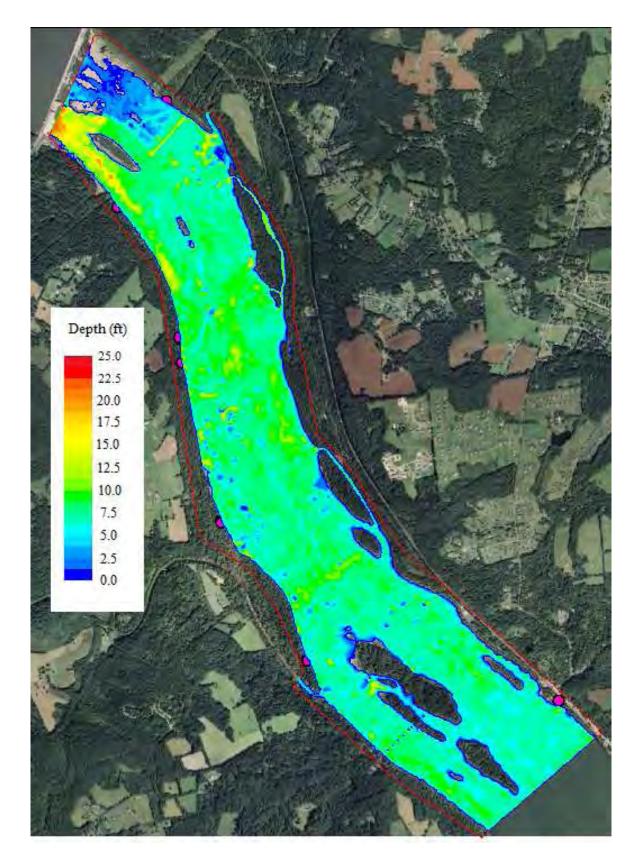


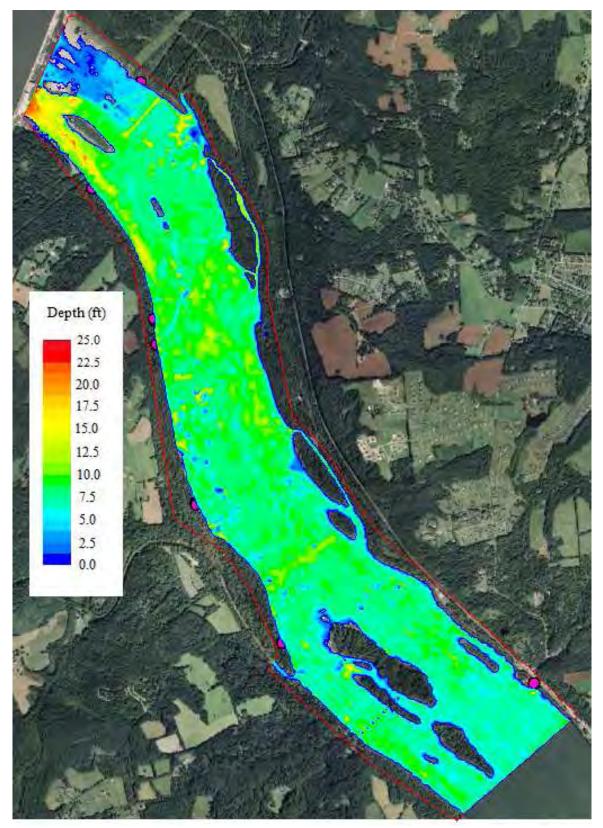




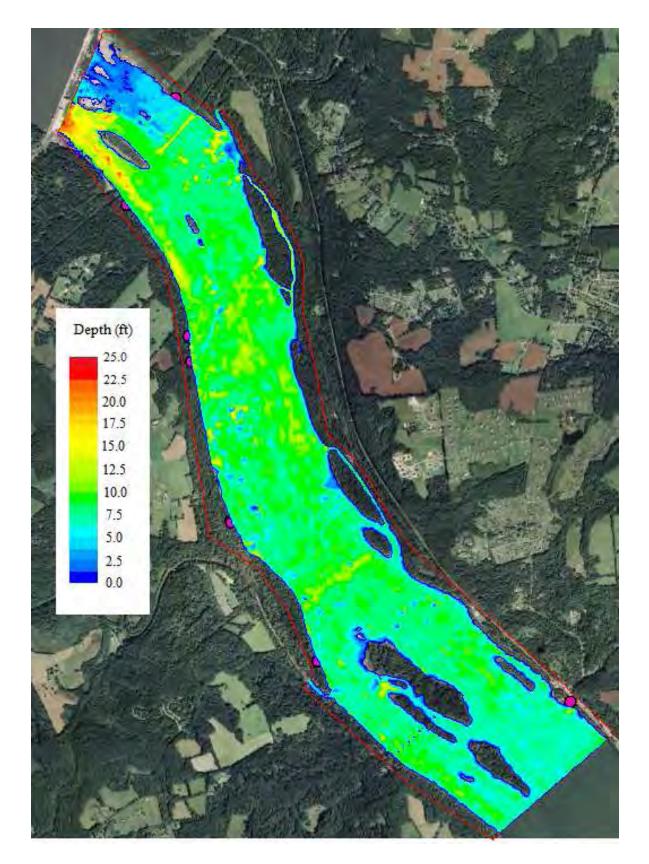


30,000 CFS



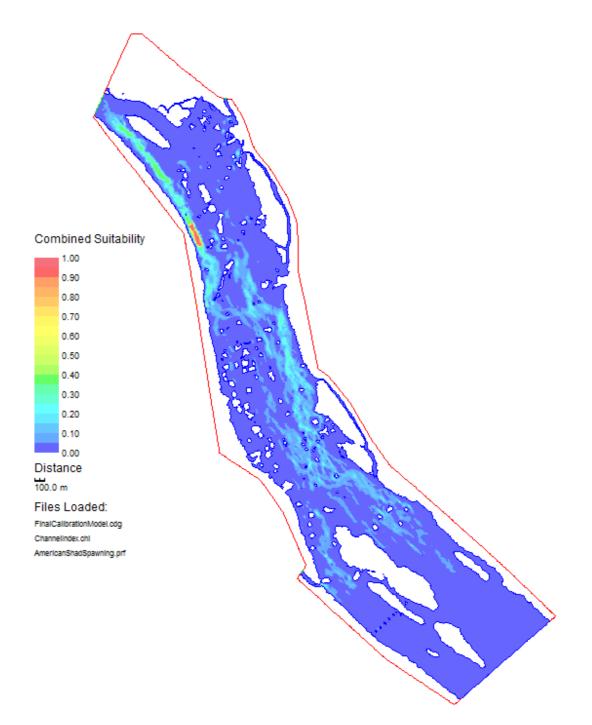

40,000 CFS




50,000 CFS

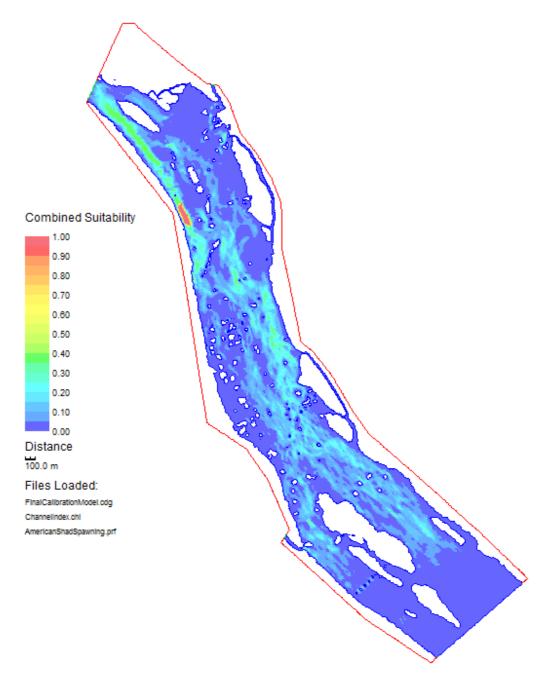



60,000 CFS

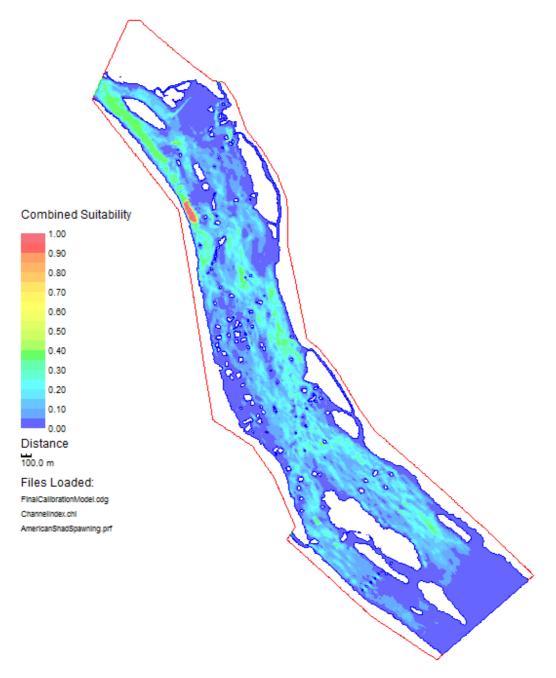




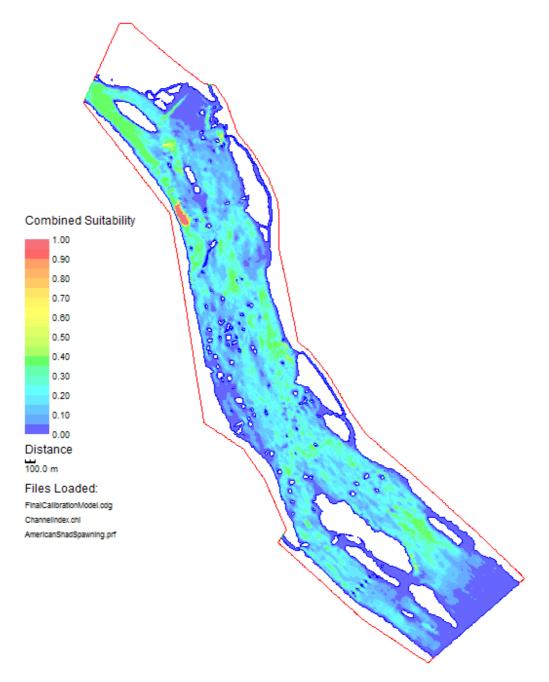

80,000 CFS



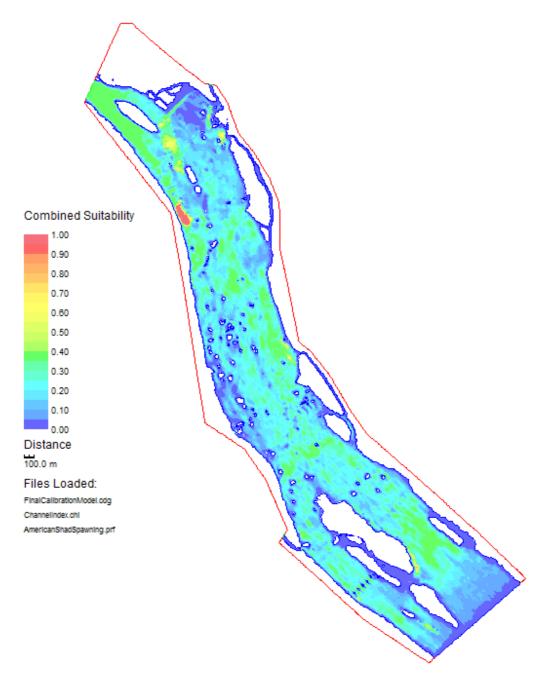

APPENDIX E-COMBINED SUITABILITY HABITAT MAPS FOR SIMULATION FLOWS



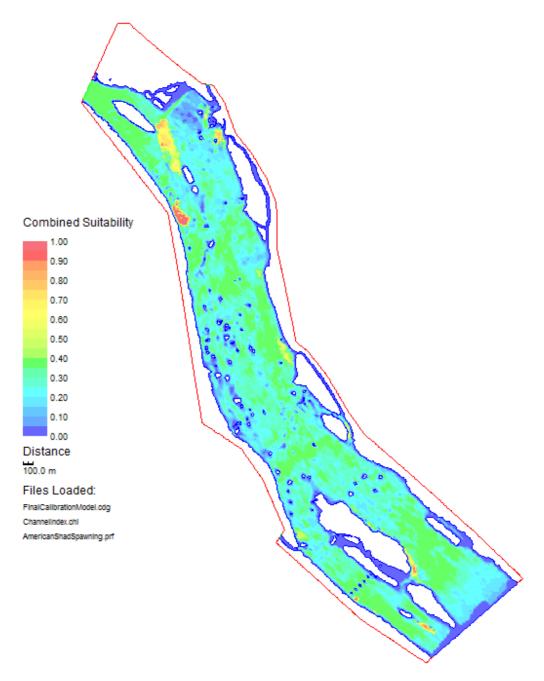

American Shad Spawning – 2,000 cfs


Appendix F-1

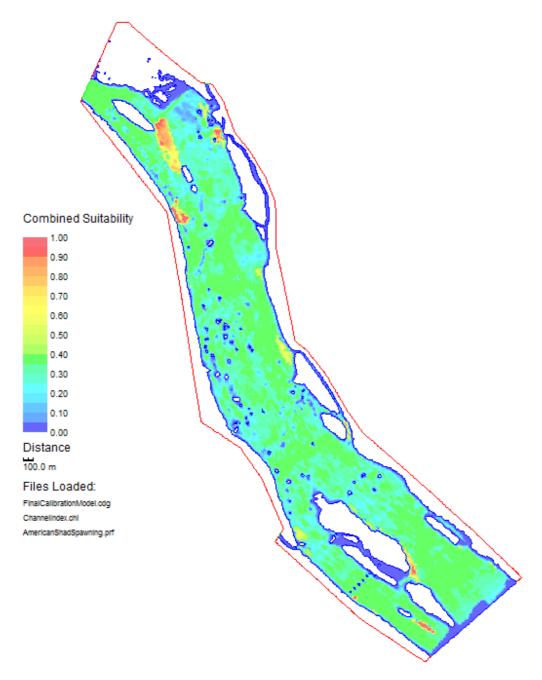



American Shad Spawning – 3,500 cfs

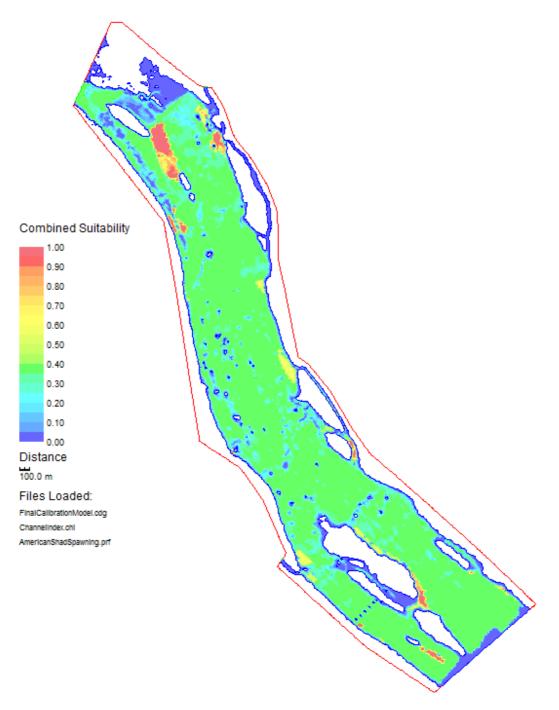



American Shad Spawning – 5,000 cfs

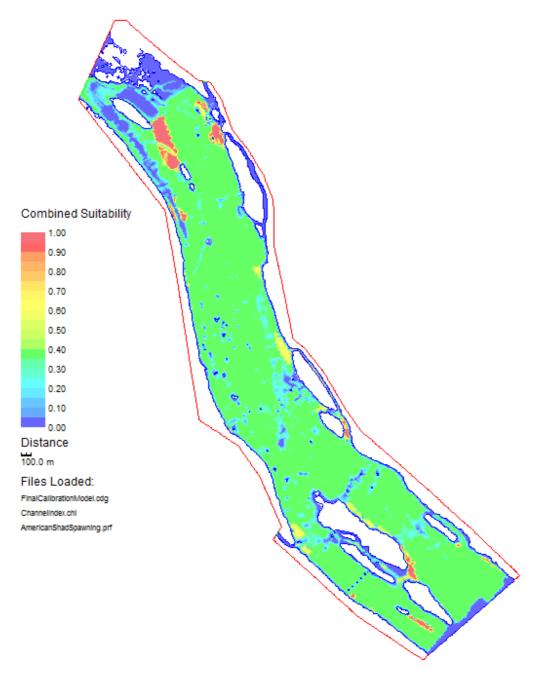



American Shad Spawning – 7,500 cfs

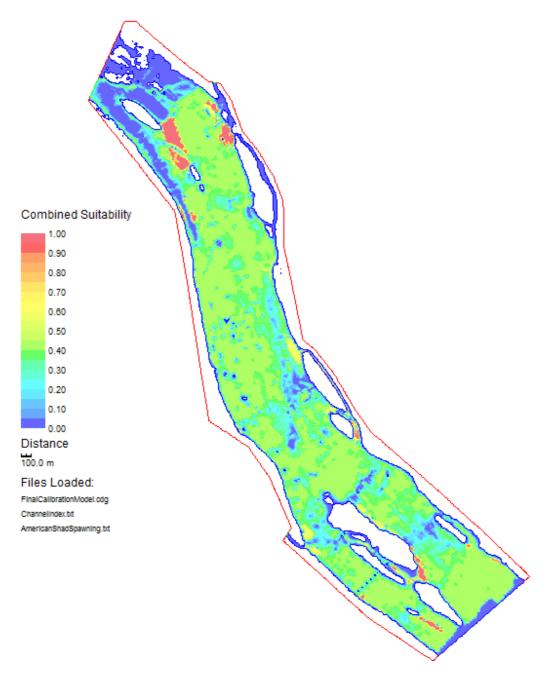



# American Shad Spawning – 10,000 cfs

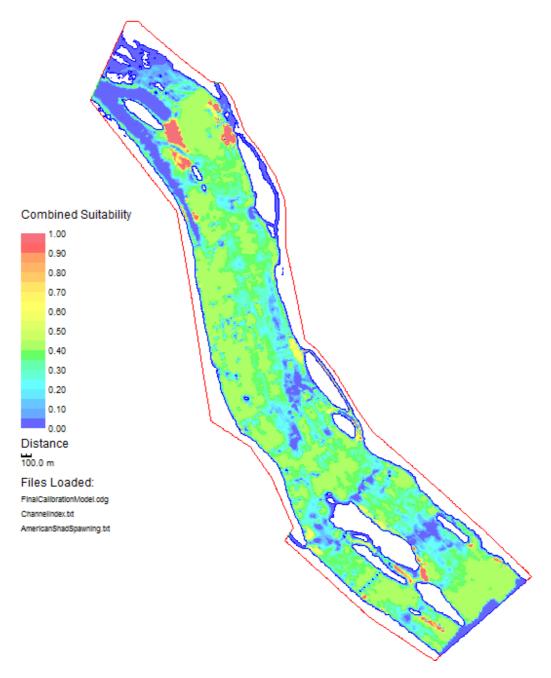



# American Shad Spawning – 15,000 cfs

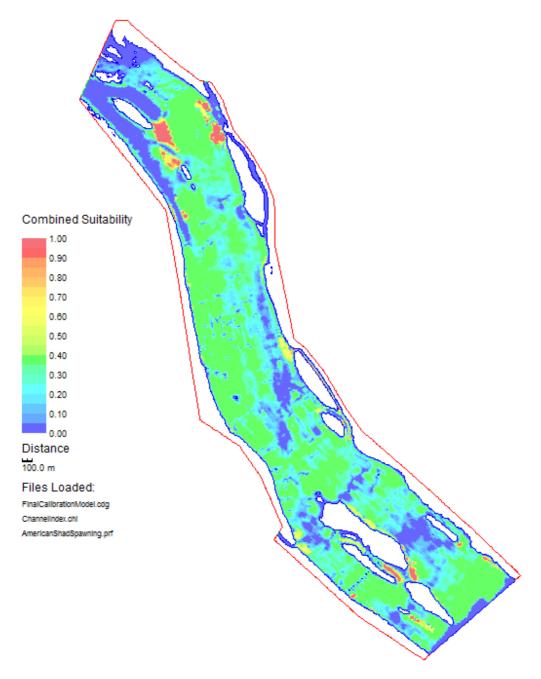



American Shad Spawning – 20,000 cfs

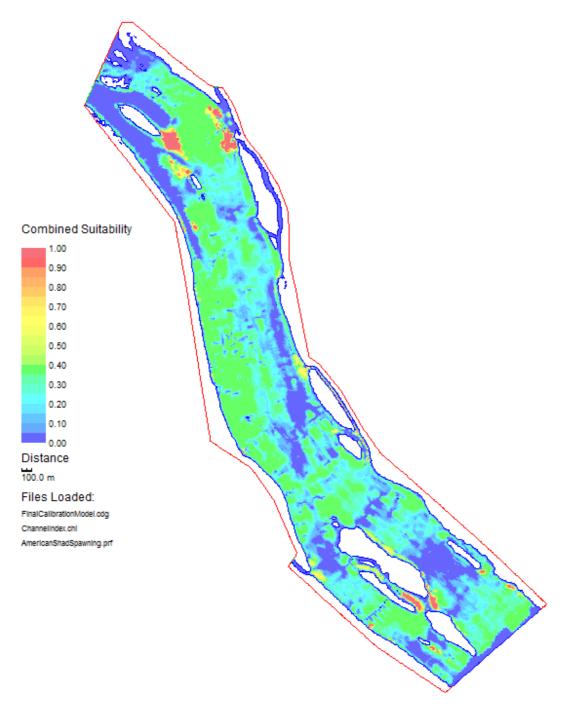



American Shad Spawning – 30,000 cfs

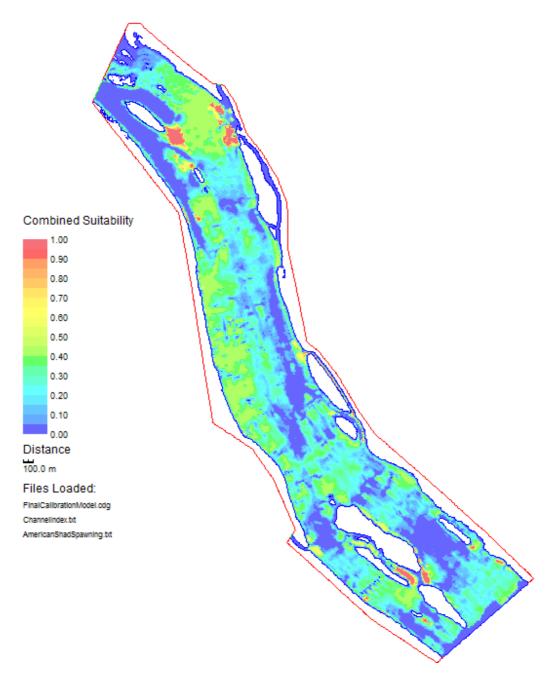



American Shad Spawning – 40,000 cfs

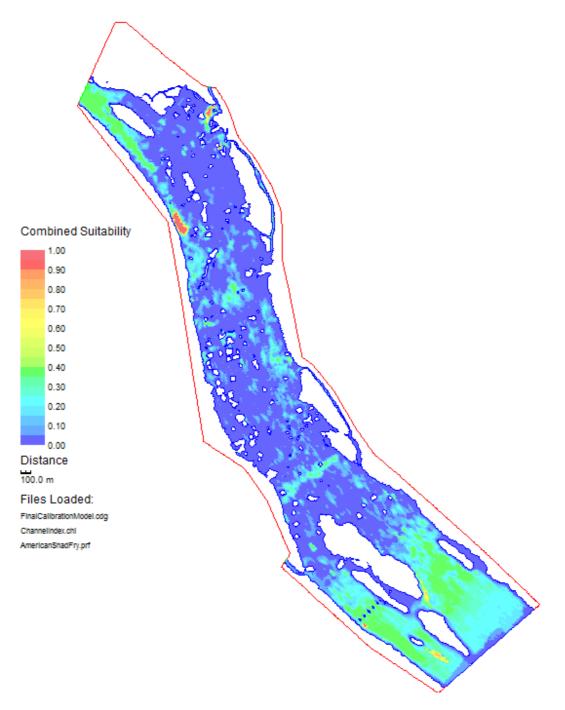



### American Shad Spawning – 50,000 cfs

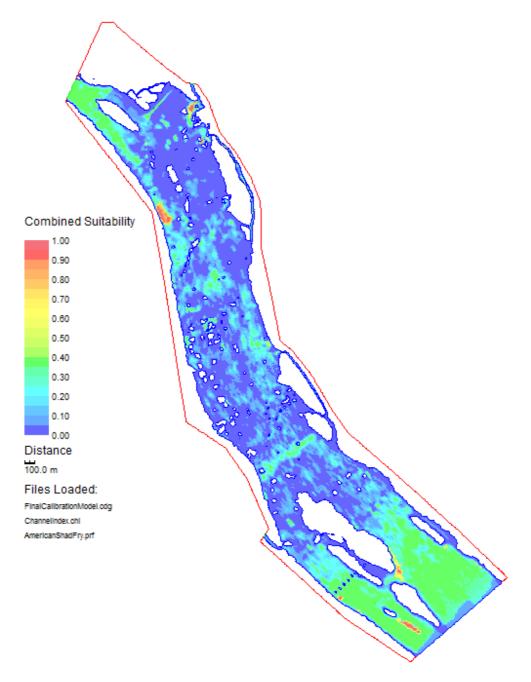



American Shad Spawning – 60,000 cfs

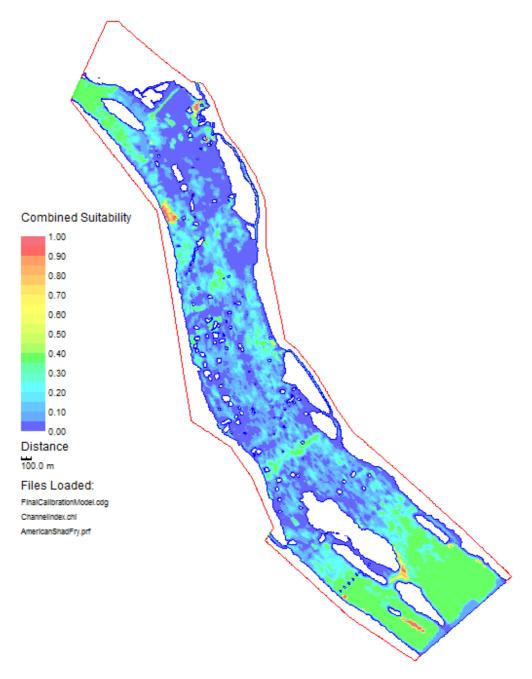



### American Shad Spawning – 70,000 cfs

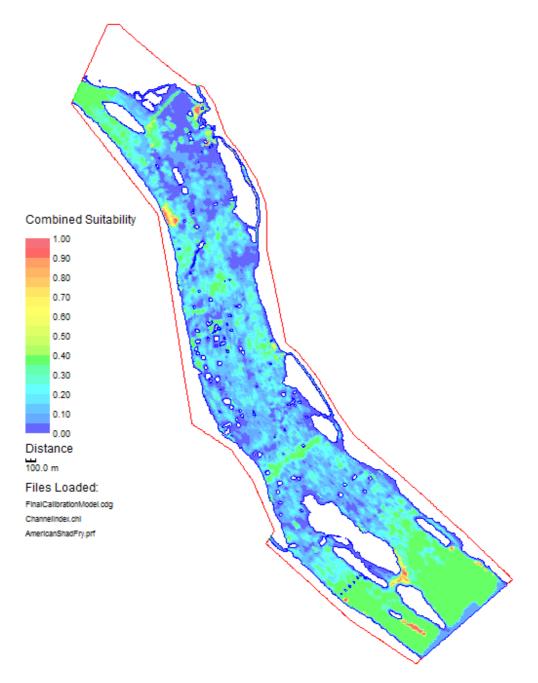



American Shad Spawning – 80,000 cfs

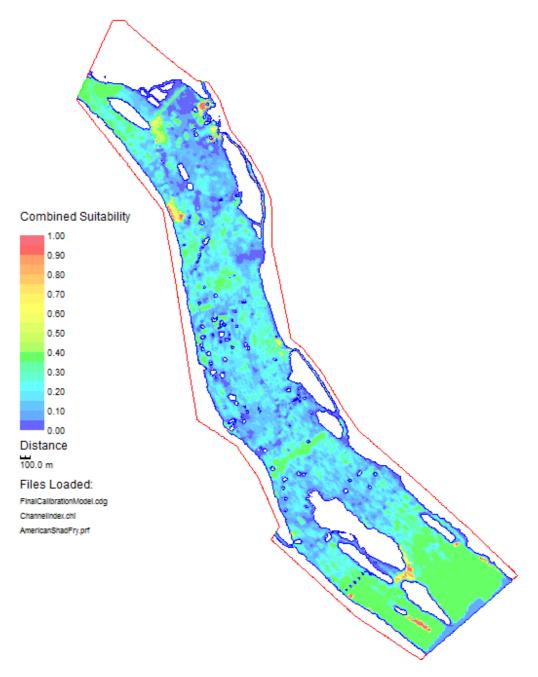



American Shad Spawning – 86,000 cfs

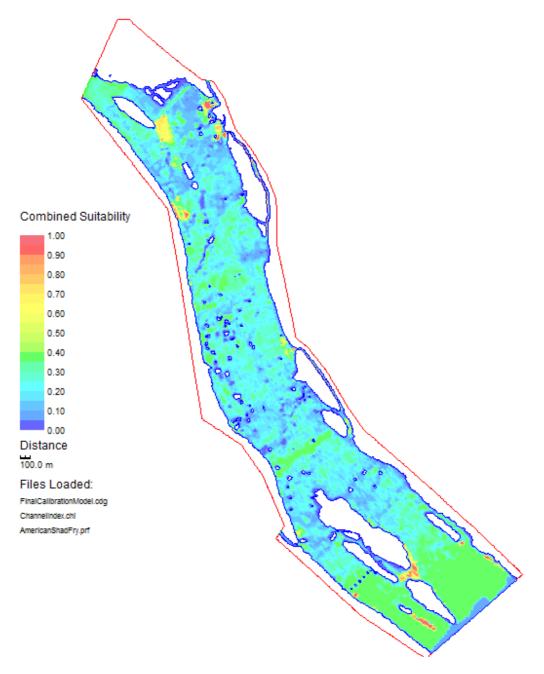



American Shad Fry – 2,000 cfs

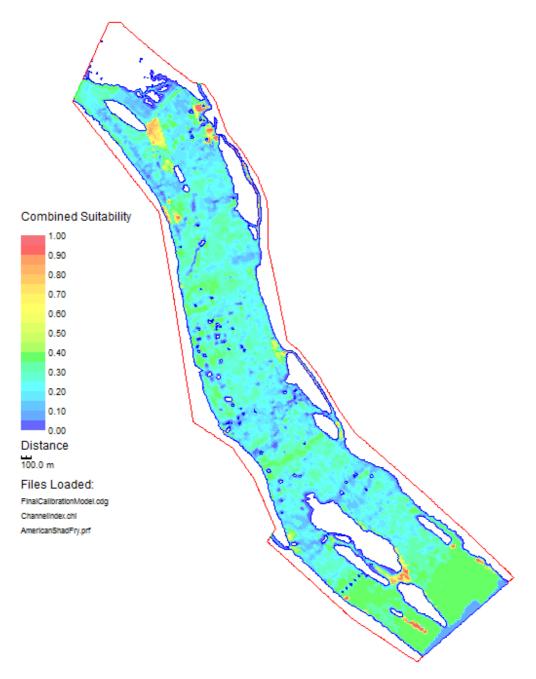



# American Shad Fry – 3,500 cfs

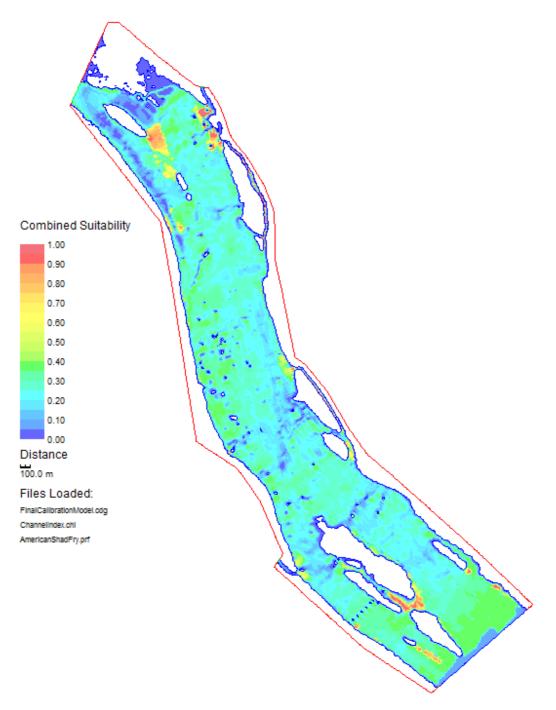



American Shad Fry – 5,000 cfs

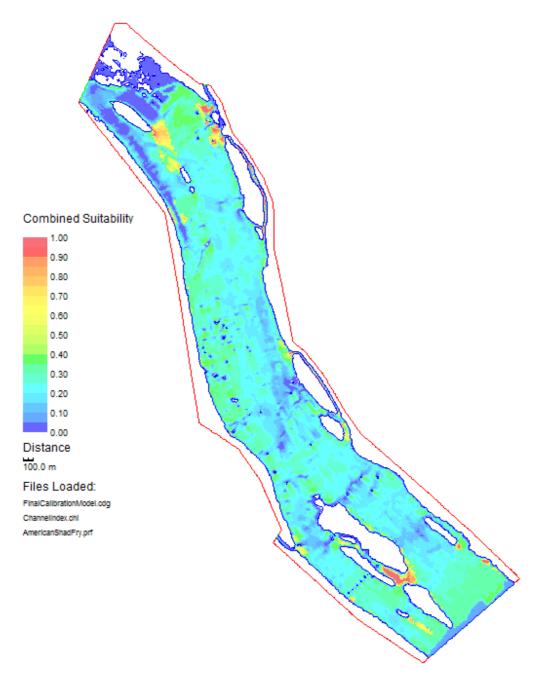



American Shad Fry – 7,500 cfs

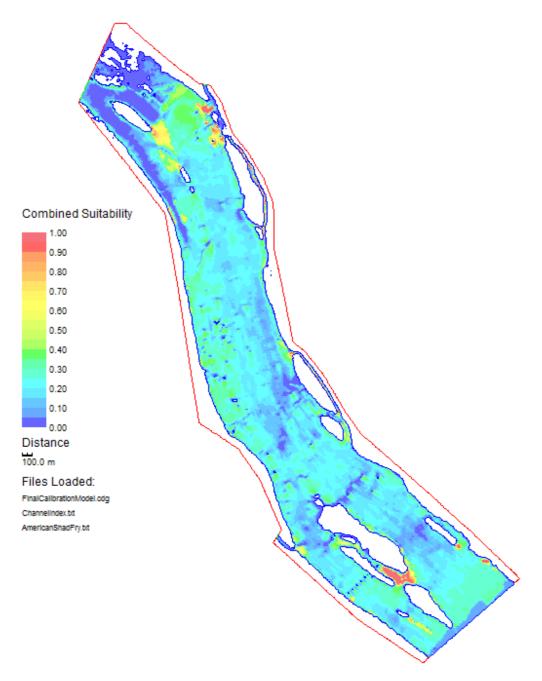



### American Shad Fry – 10,000 cfs

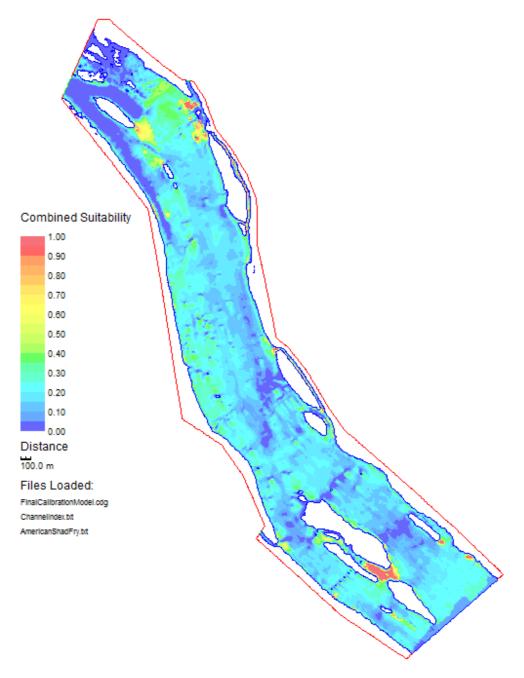



### American Shad Fry - 15,000 cfs

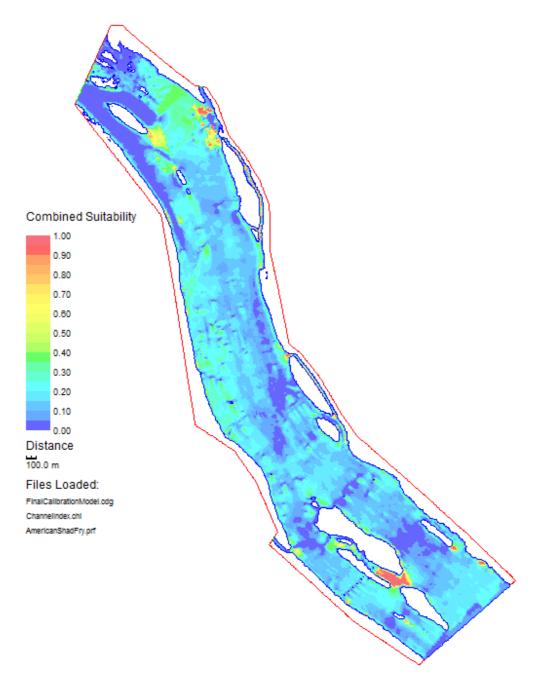



### American Shad Fry - 20,000 cfs

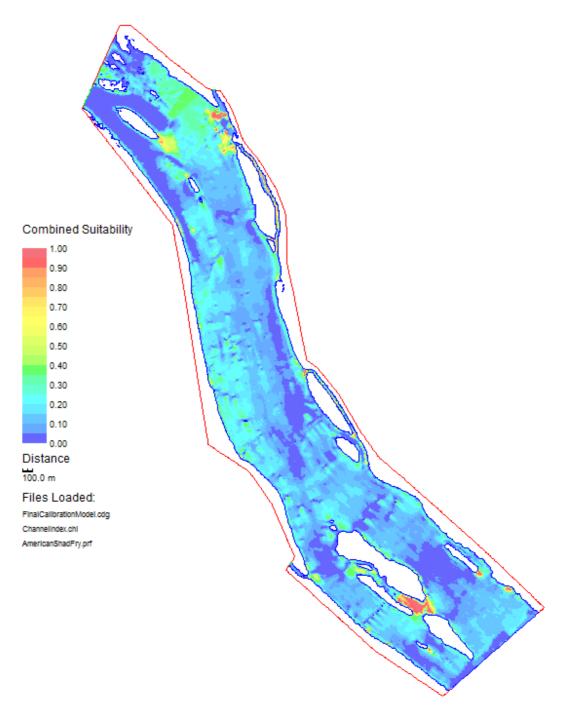



American Shad Fry – 30,000 cfs

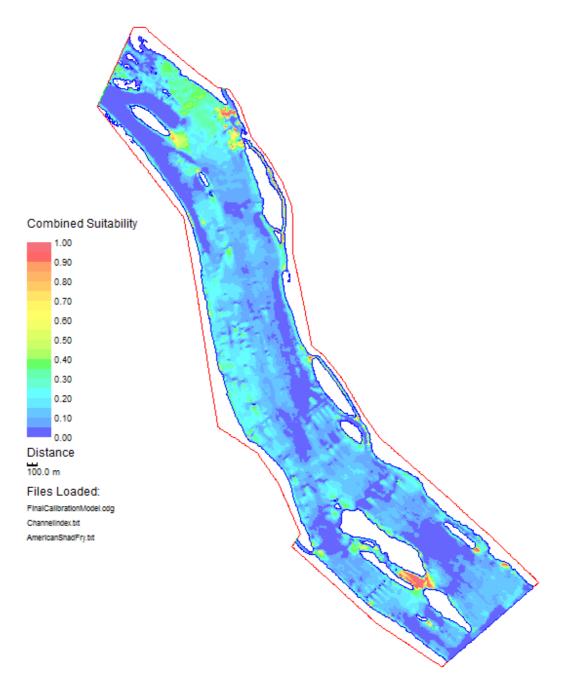



# American Shad Fry – 40,000 cfs

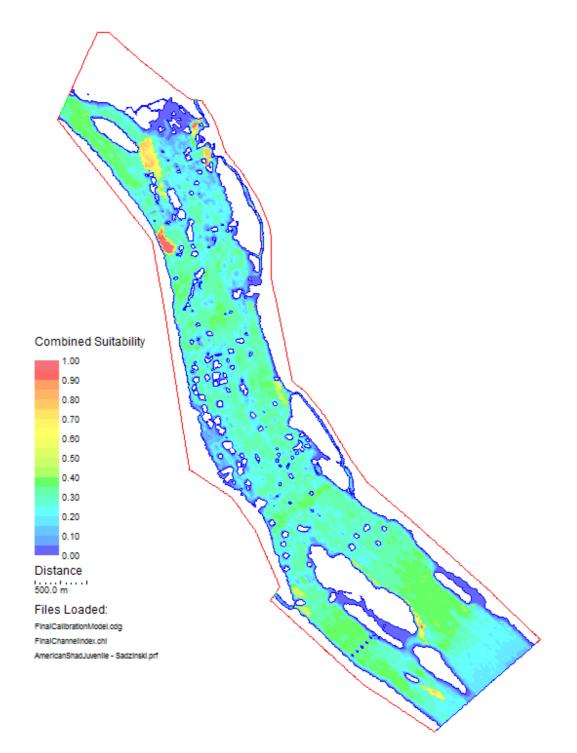



# American Shad Fry – 50,000 cfs

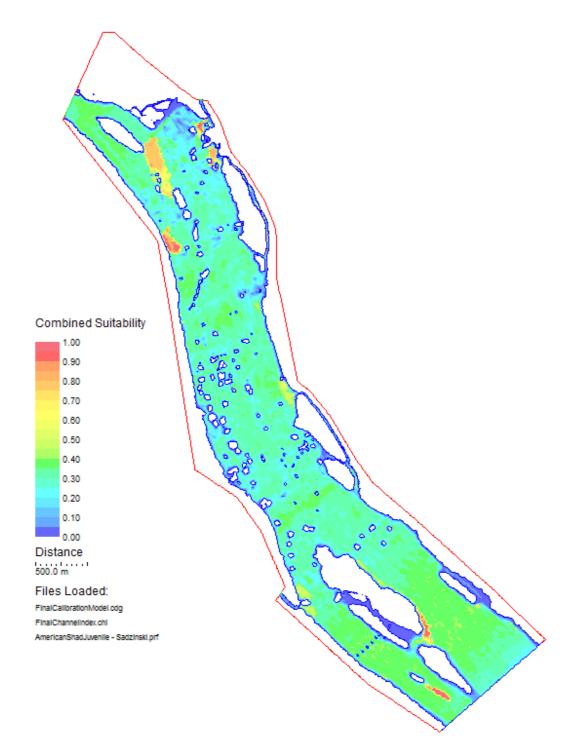



### American Shad Fry – 60,000 cfs




# American Shad Fry – 70,000 cfs

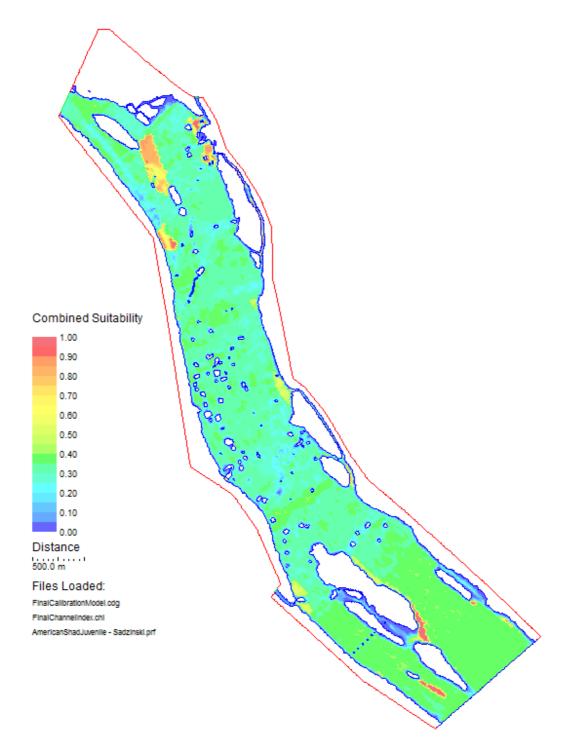



American Shad Fry – 80,000 cfs

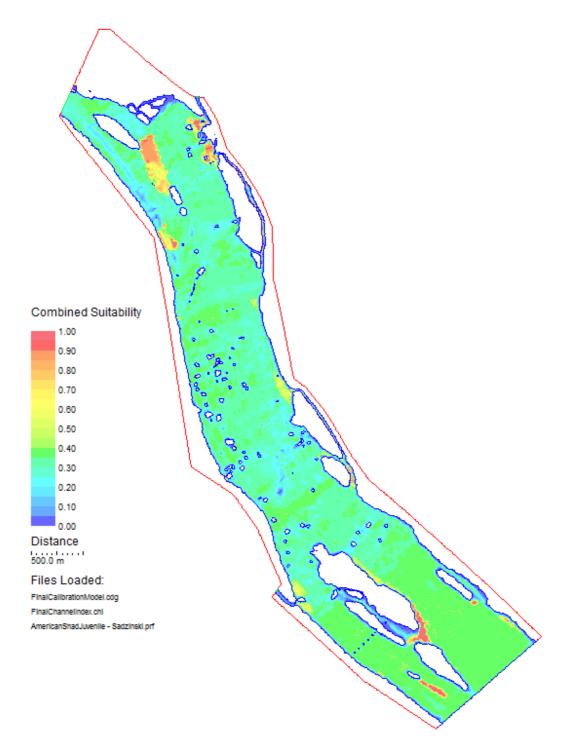


# American Shad Fry – 86,000 cfs

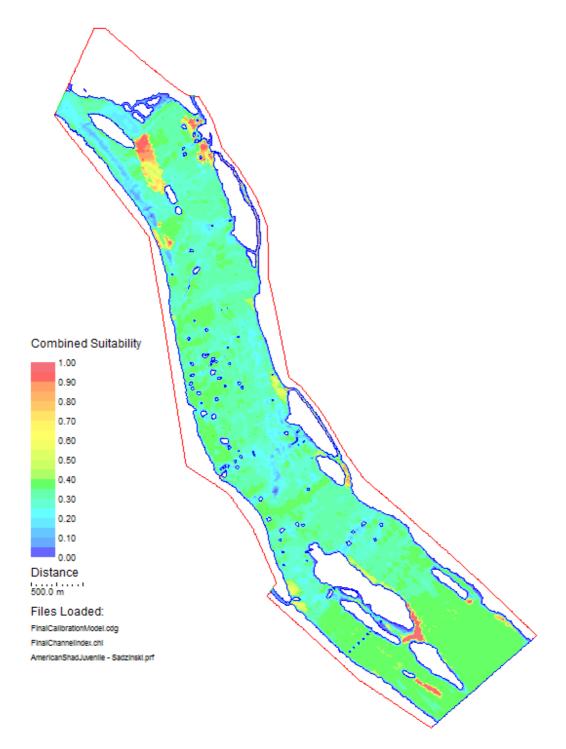



American Shad Juvenile – 2,000 cfs

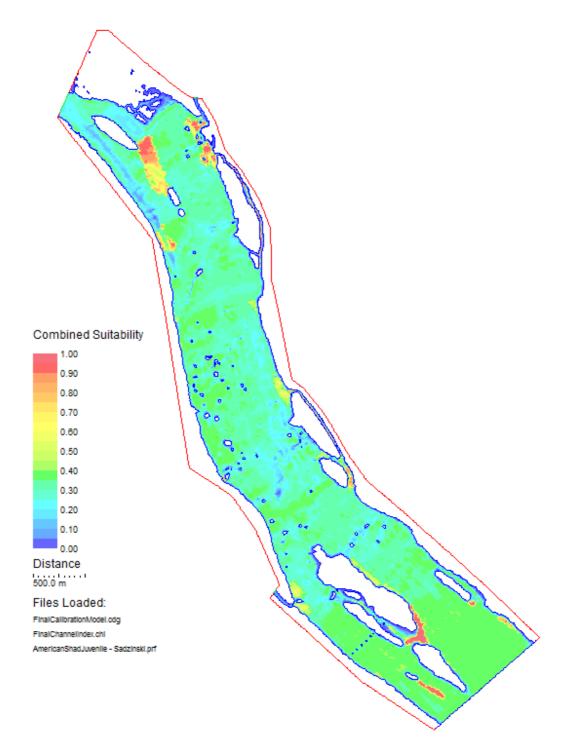



American Shad Juvenile – 3,500 cfs

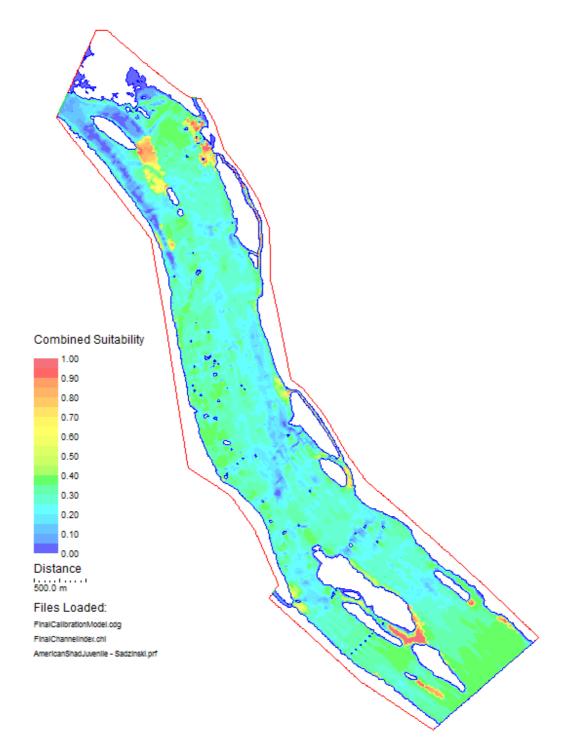



American Shad Juvenile – 5,000 cfs

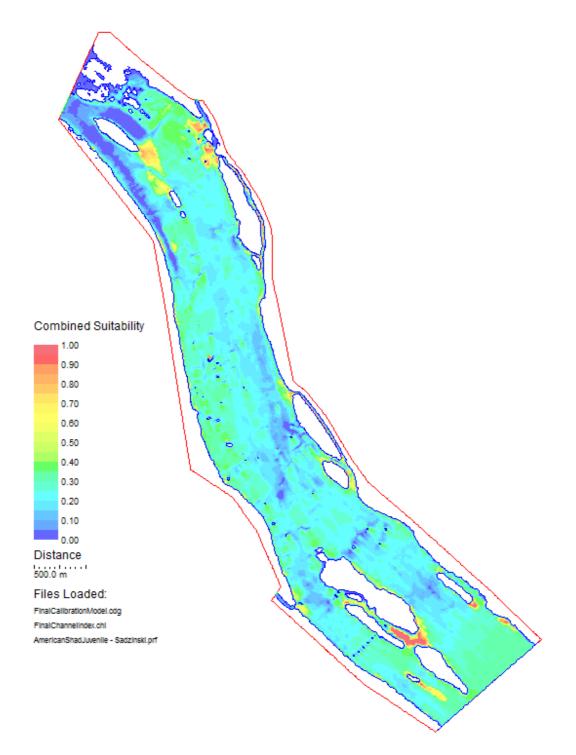



American Shad Juvenile – 7,500 cfs

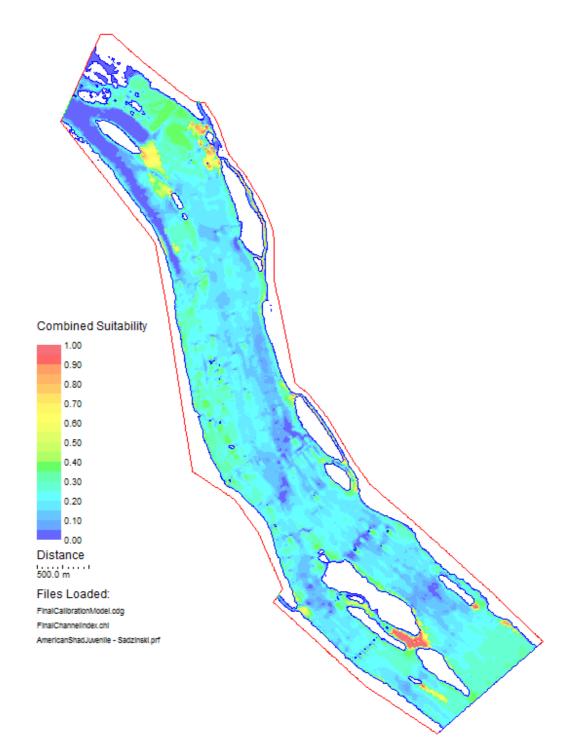



# American Shad Juvenile – 10,000 cfs

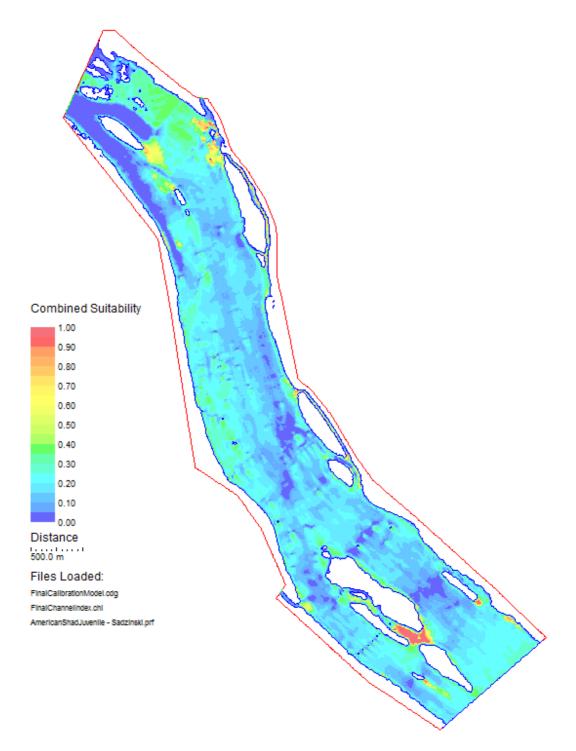



American Shad Juvenile – 15,000 cfs

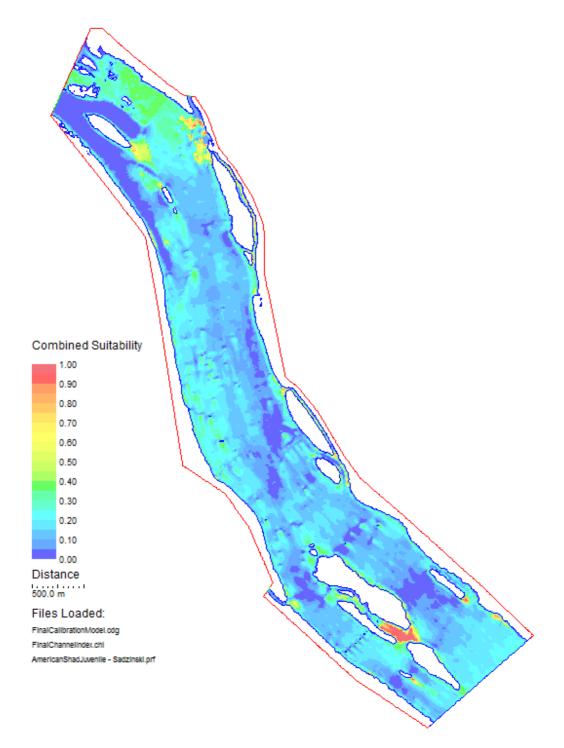



American Shad Juvenile – 20,000 cfs

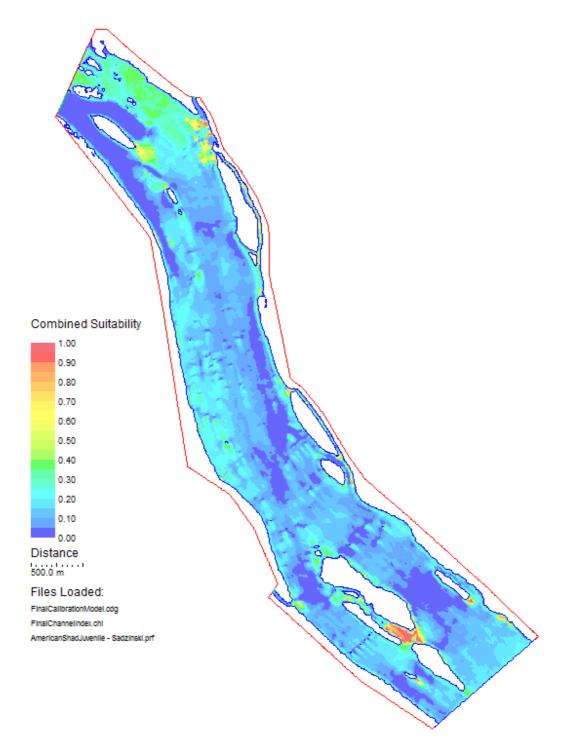



American Shad Juvenile – 30,000 cfs

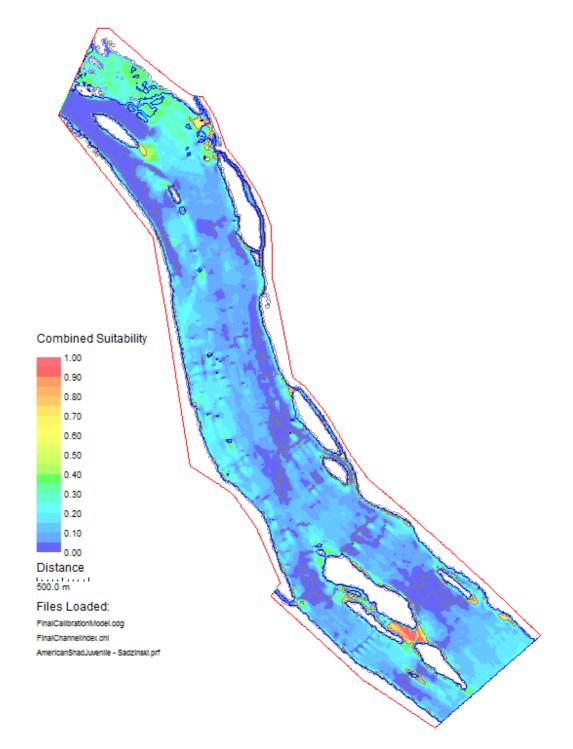



American Shad Juvenile – 40,000 cfs

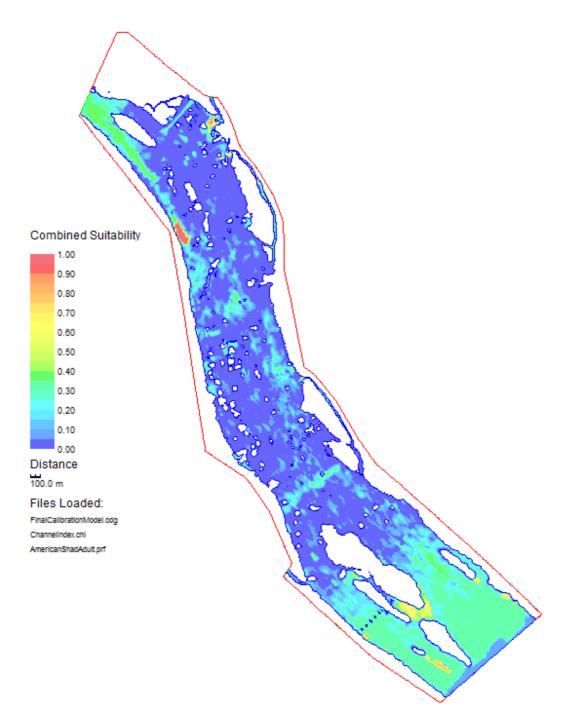



# American Shad Juvenile – 50,000 cfs

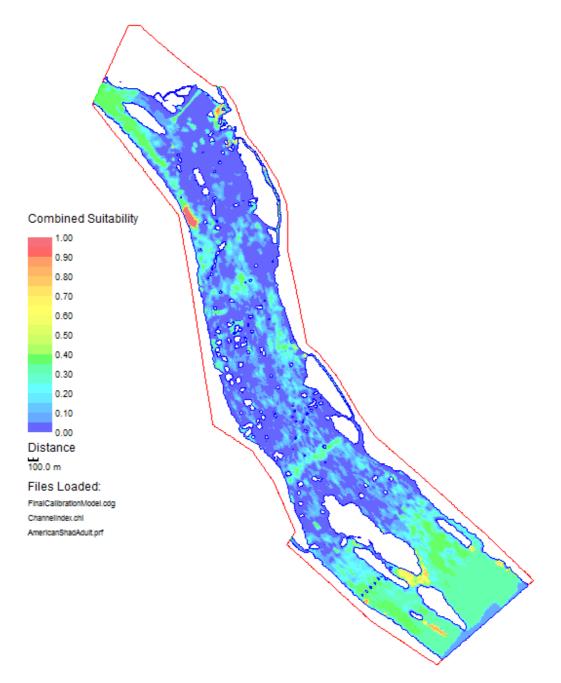



American Shad Juvenile – 60,000 cfs

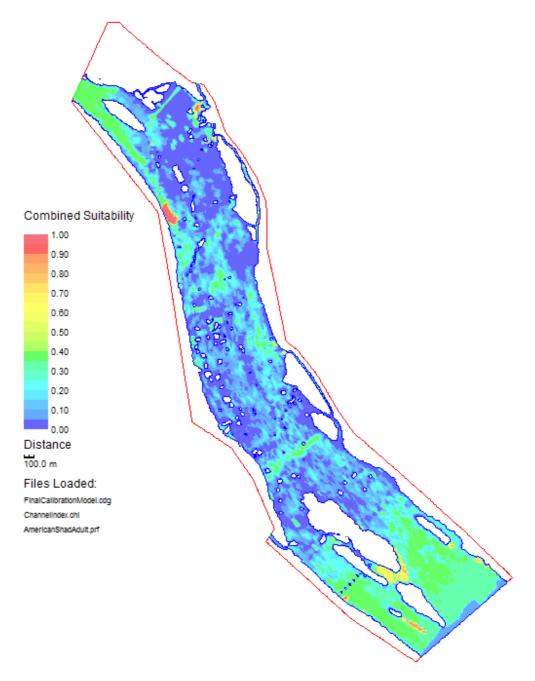



American Shad Juvenile – 70,000 cfs

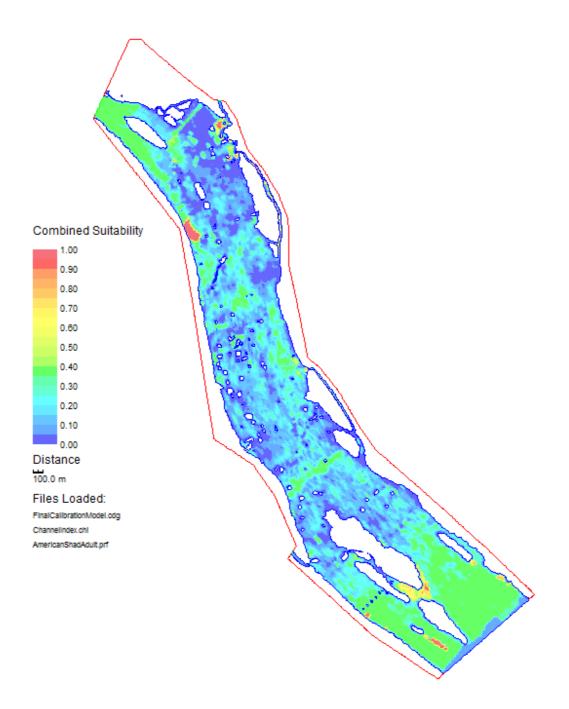



American Shad Juvenile – 80,000 cfs

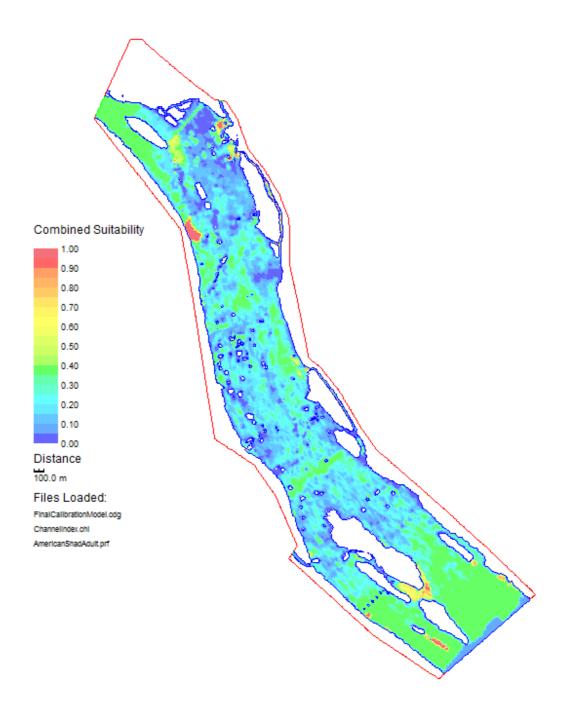



American Shad Juvenile – 86,000 cfs

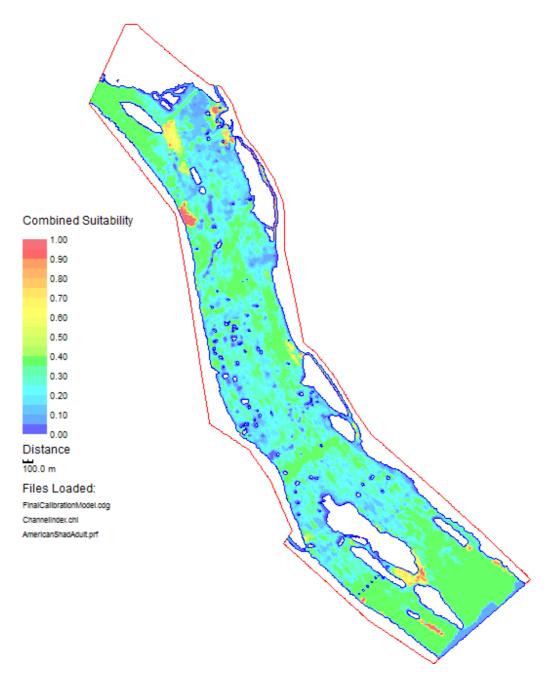



American Shad Adult – 2,000 cfs

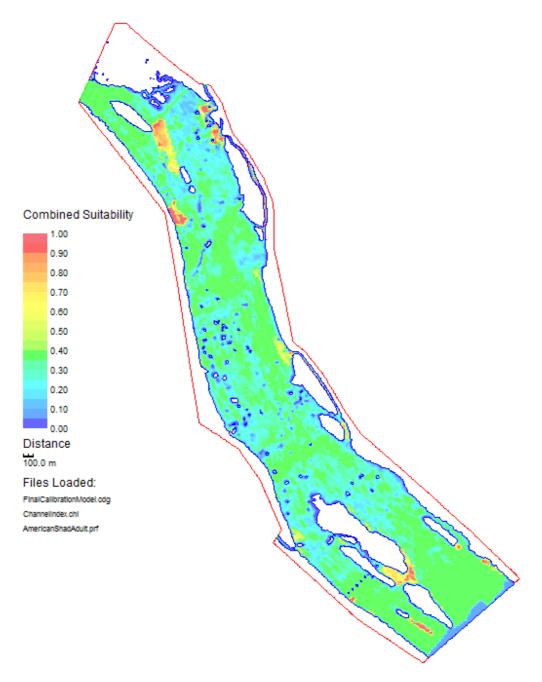



#### American Shad Adult – 3,500 cfs

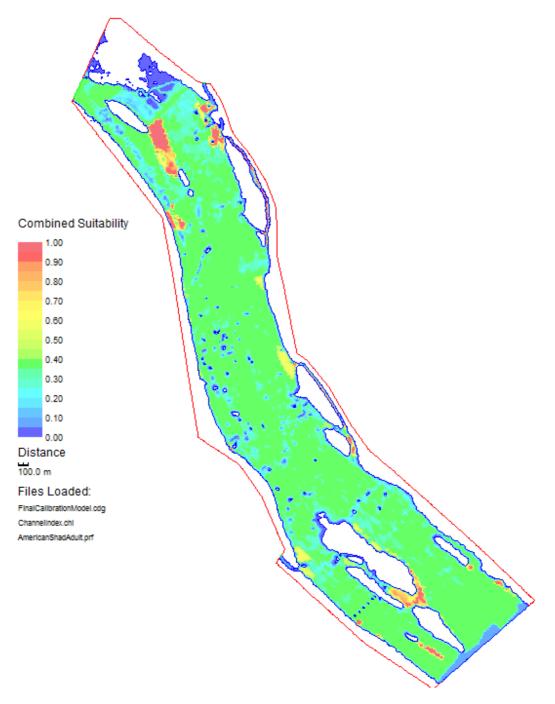



American Shad Adult – 5,000 cfs

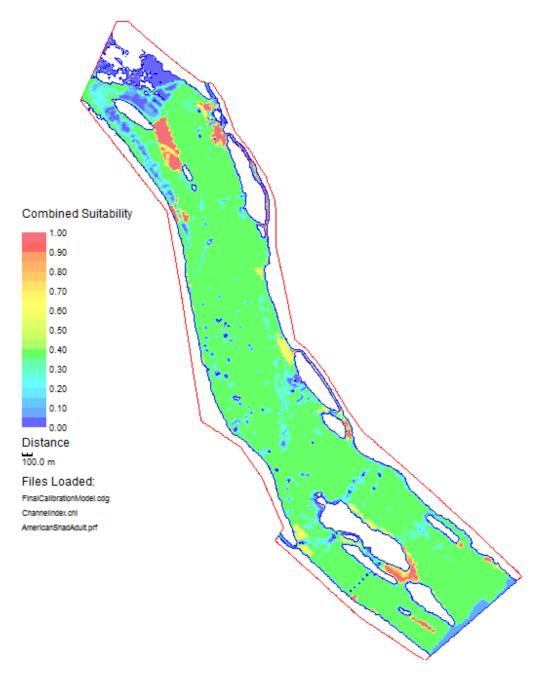



### American Shad Adult – 7,500 cfs

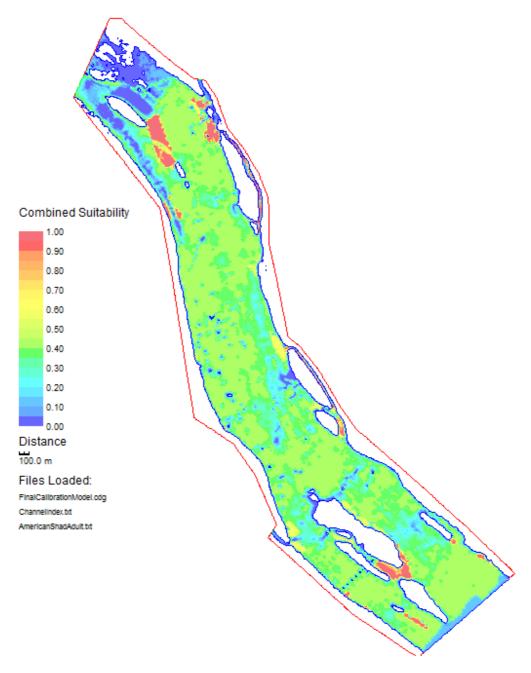



#### American Shad Adult – 10,000 cfs

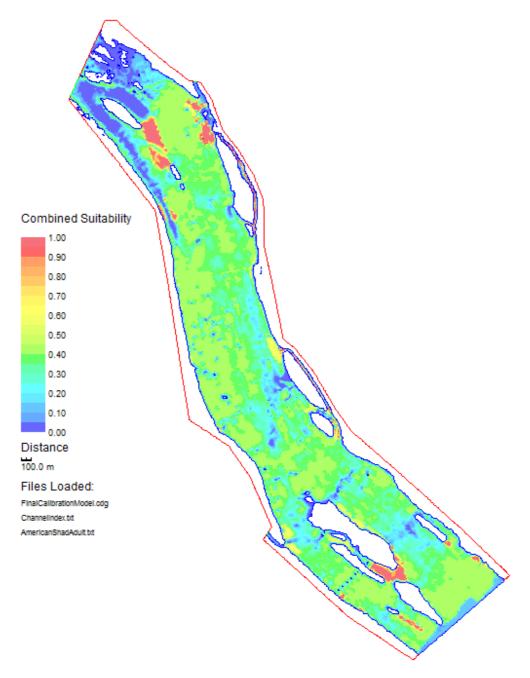



American Shad Adult – 15,000 cfs

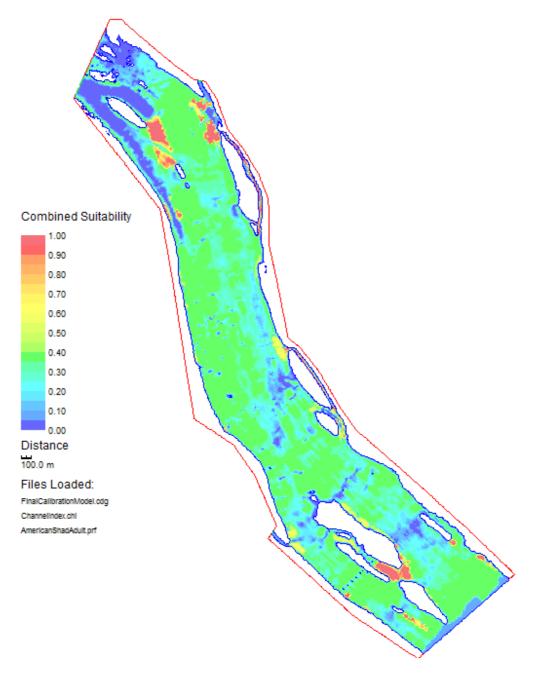



# American Shad Adult – 20,000 cfs

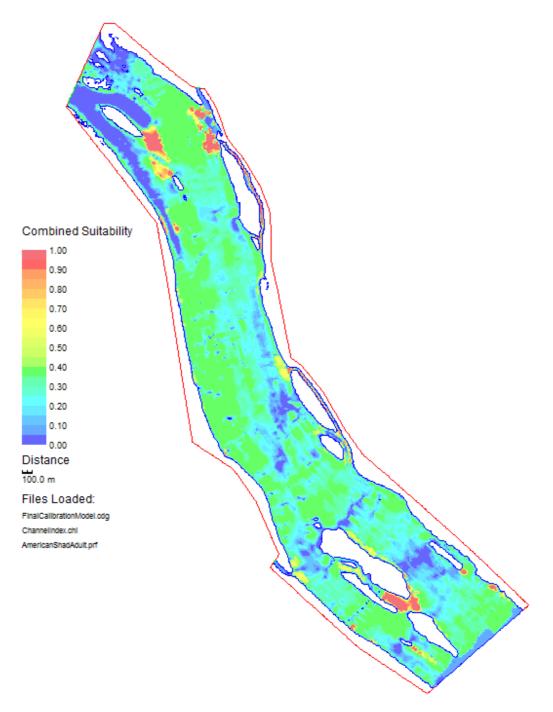



American Shad Adult – 30,000 cfs

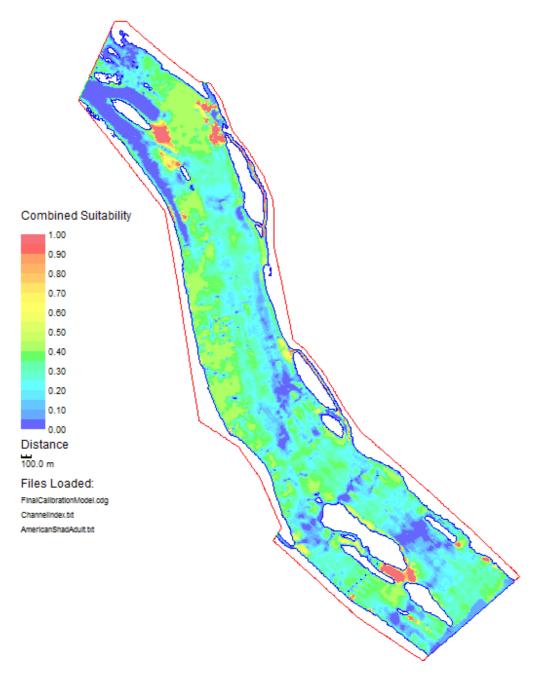



American Shad Adult – 40,000 cfs

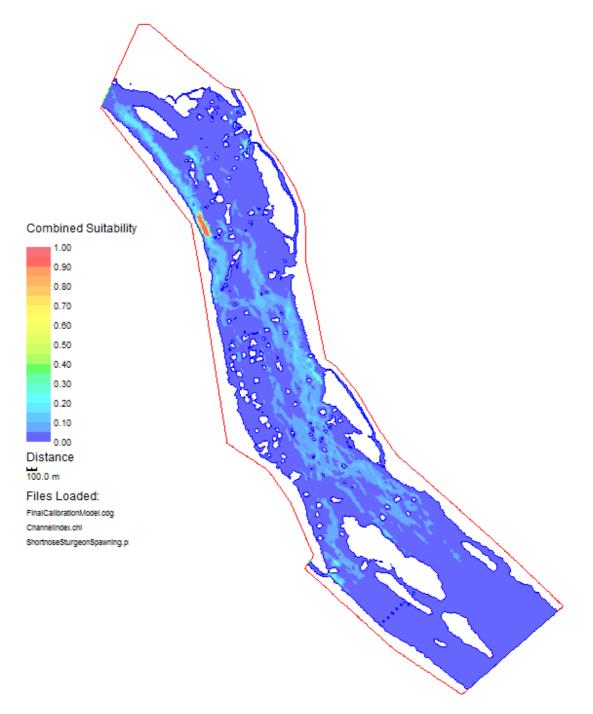



American Shad Adult – 50,000 cfs

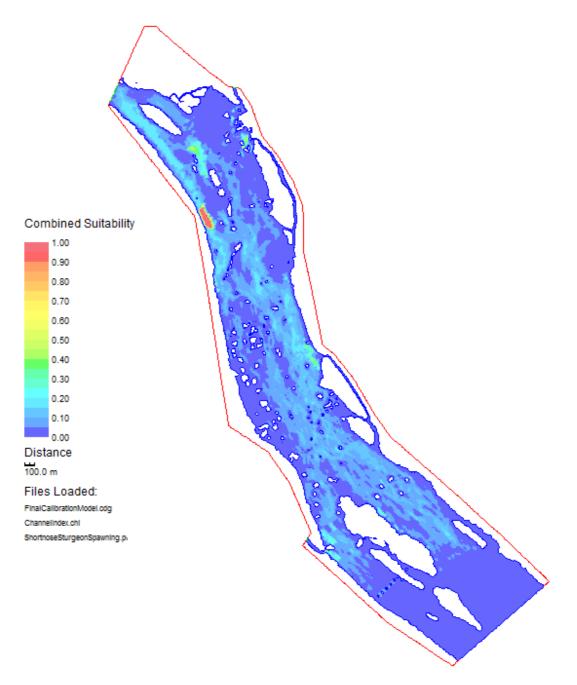



#### American Shad Adult – 60,000 cfs

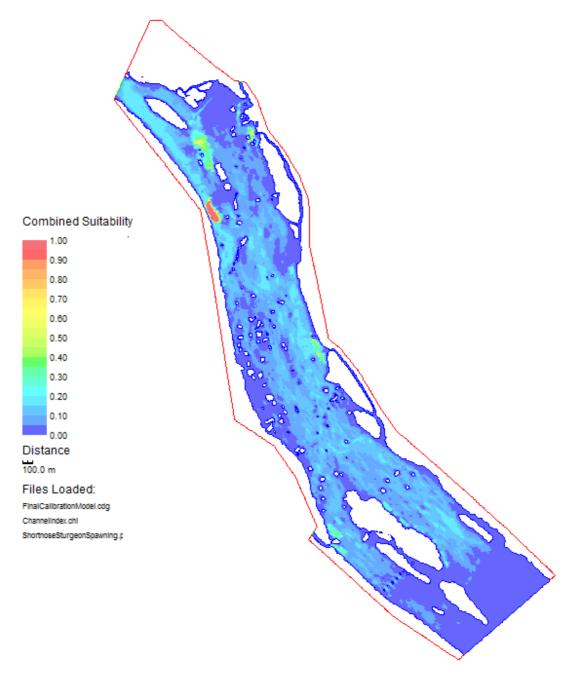



American Shad Adult – 70,000 cfs

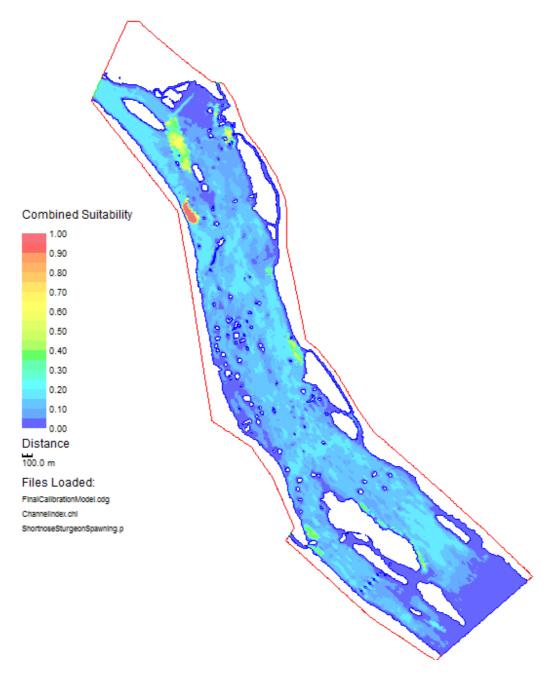



American Shad Adult – 80,000 cfs

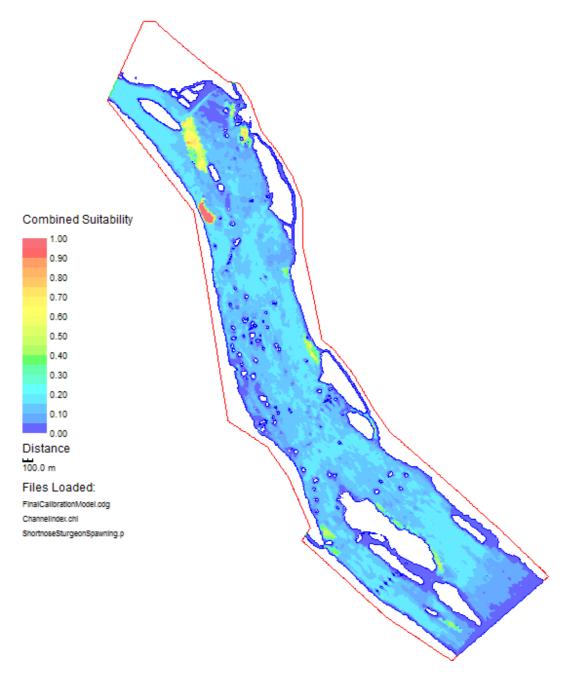



#### American Shad Adult – 86,000 cfs

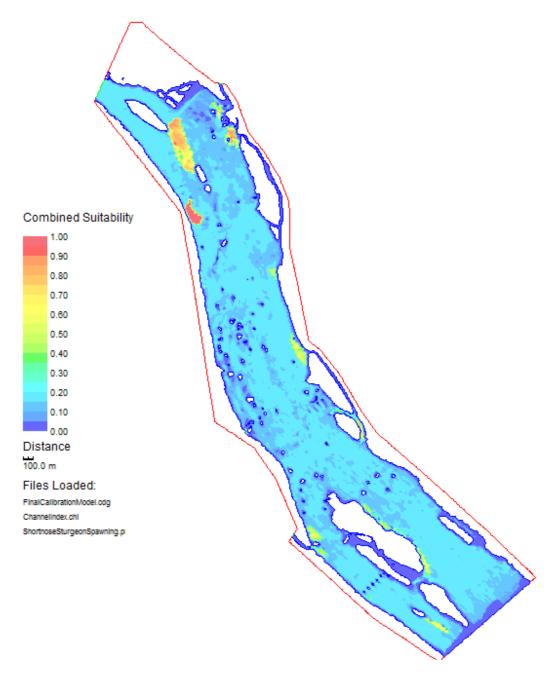



Shortnose Sturgeon Spawning – 2,000 cfs




# Shortnose Sturgeon Spawning – 3,500 cfs

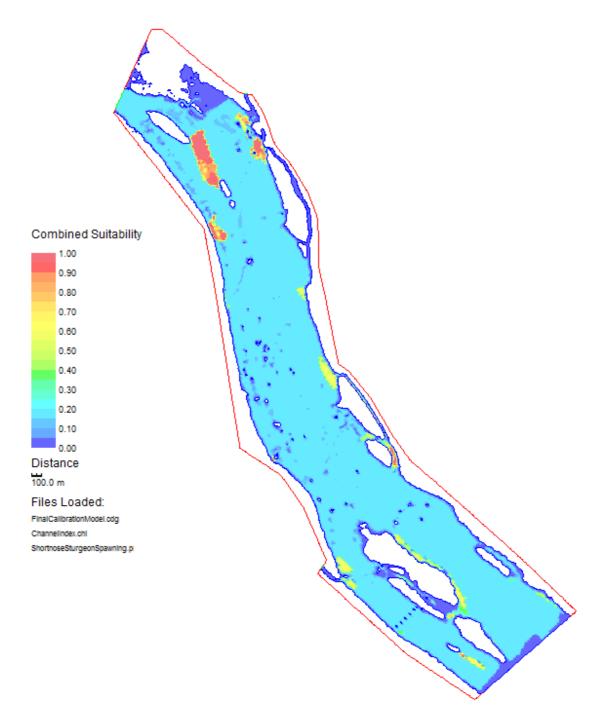



Shortnose Sturgeon Spawning – 5,000 cfs

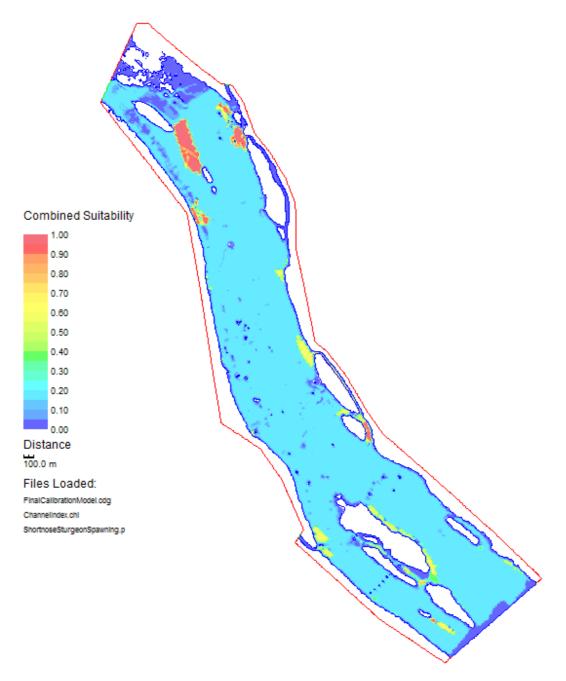


Shortnose Sturgeon Spawning – 7,500 cfs

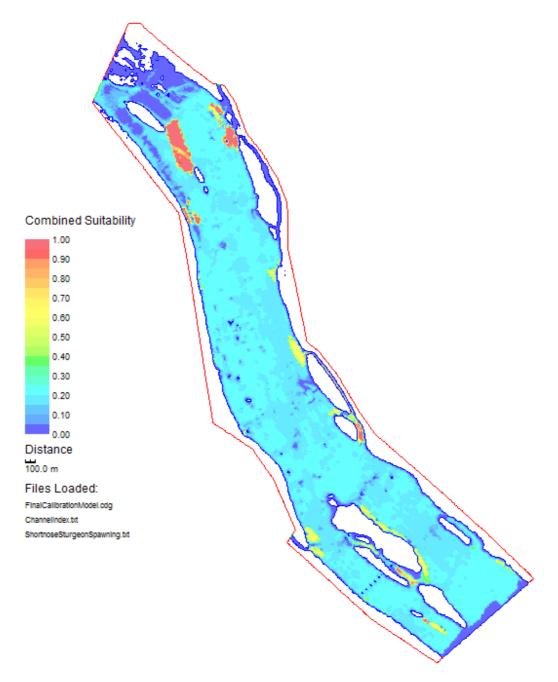



Shortnose Sturgeon Spawning – 10,000 cfs

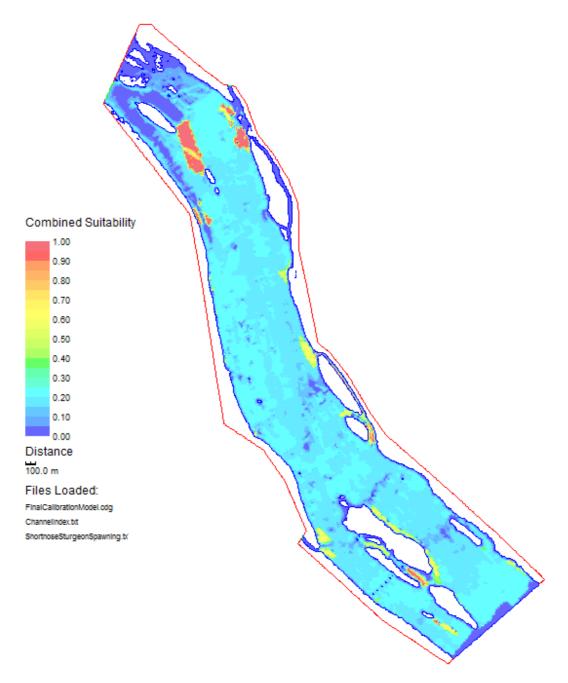



Shortnose Sturgeon Spawning – 15,000 cfs

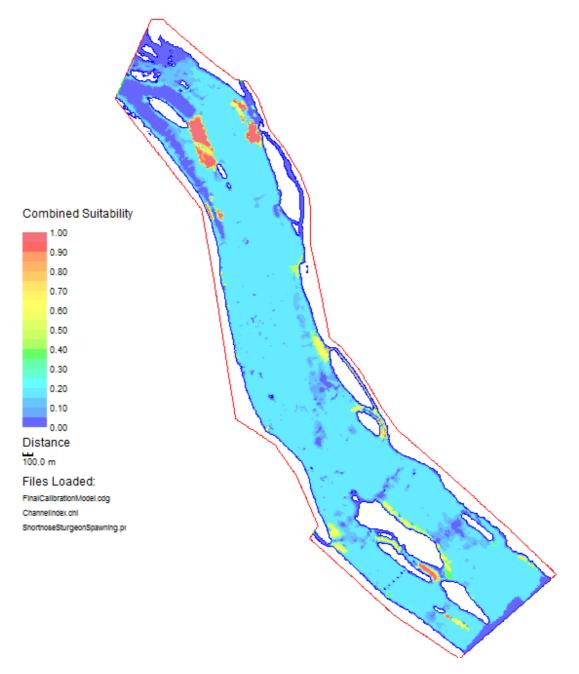



Shortnose Sturgeon Spawning – 20,000 cfs

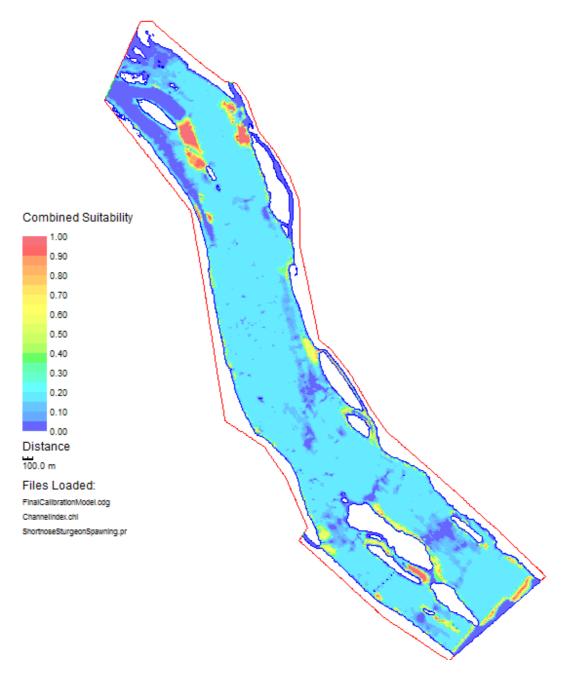



Shortnose Sturgeon Spawning – 30,000 cfs

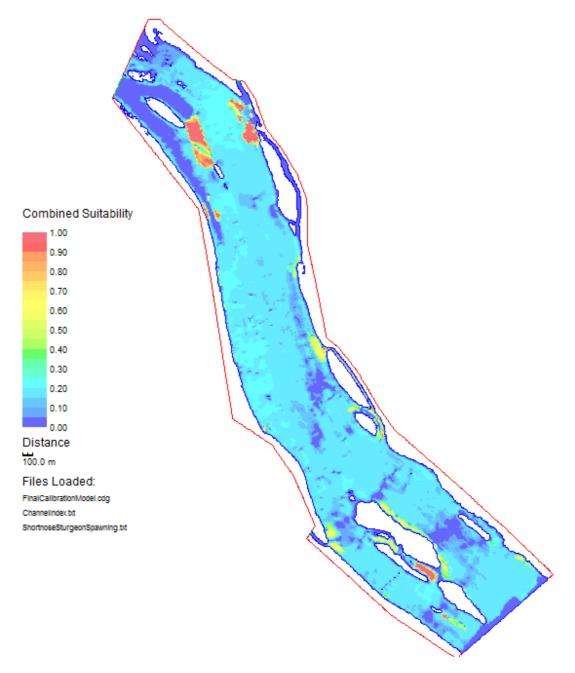



Shortnose Sturgeon Spawning – 40,000 cfs

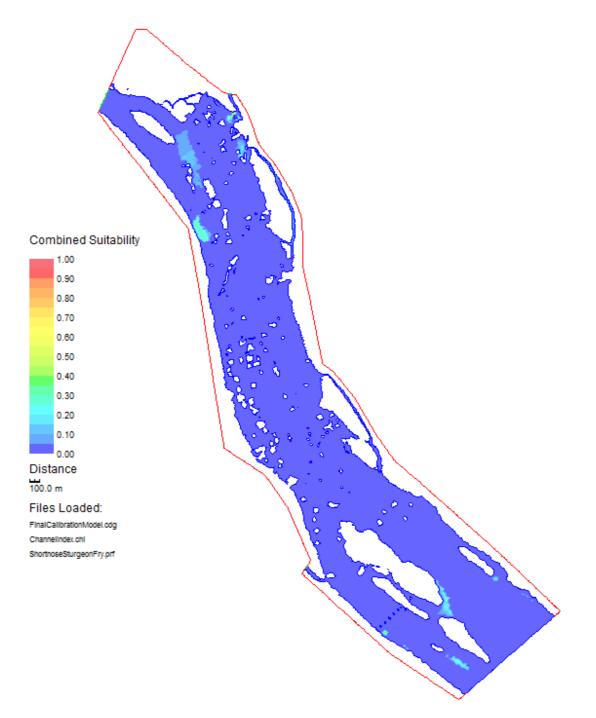



# Shortnose Sturgeon Spawning – 50,000 cfs

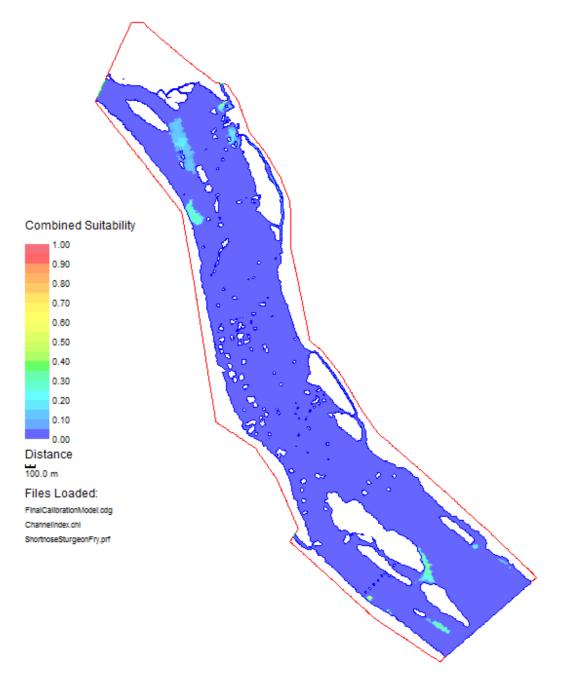



Shortnose Sturgeon Spawning – 60,000 cfs

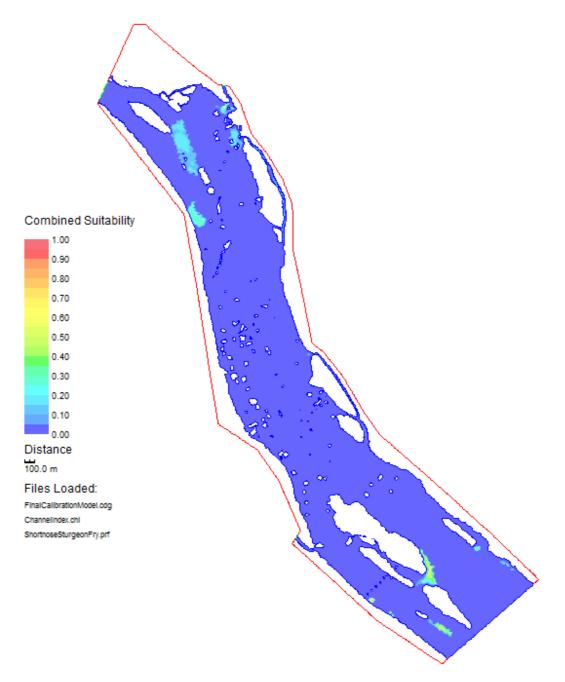



Shortnose Sturgeon Spawning – 70,000 cfs

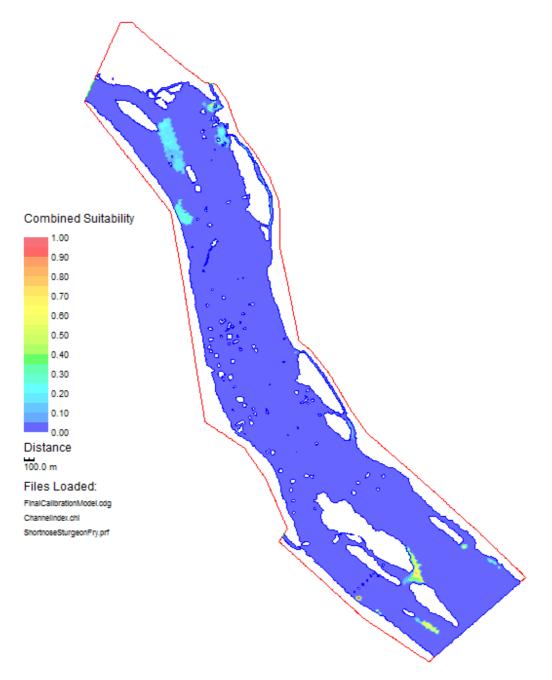



### Shortnose Sturgeon Spawning – 80,000 cfs

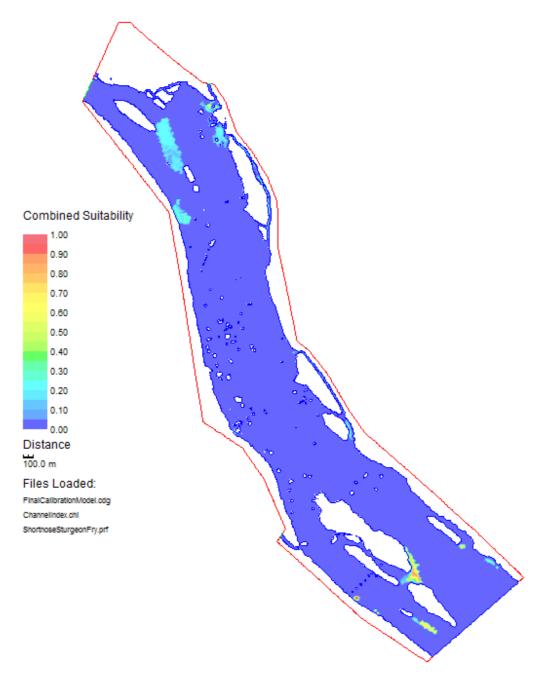



### Shortnose Sturgeon Spawning – 86,000 cfs

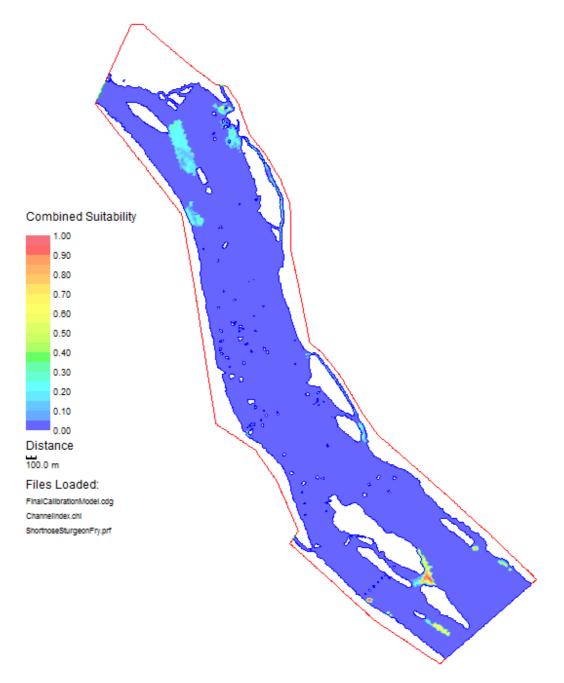



Shortnose Sturgeon Fry – 2,000 cfs

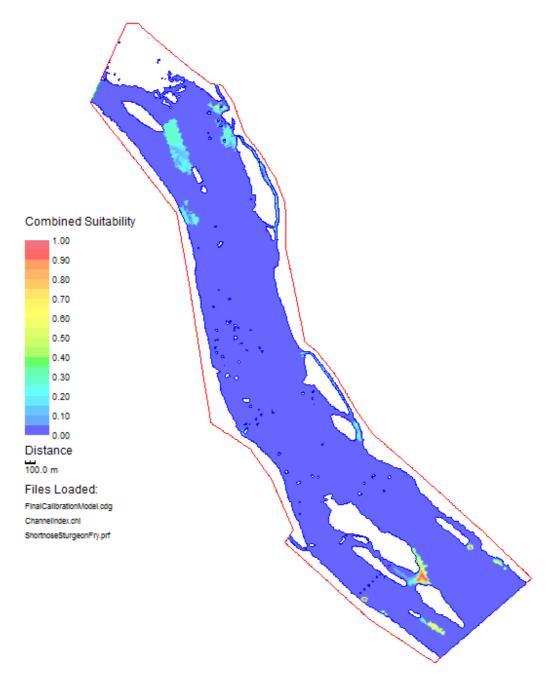



## Shortnose Sturgeon Fry – 3,500 cfs

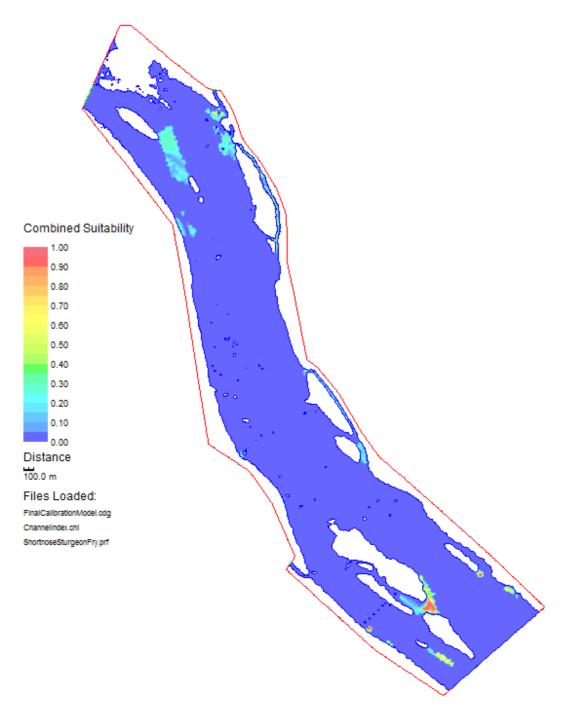



# Shortnose Sturgeon Fry – 5,000 cfs

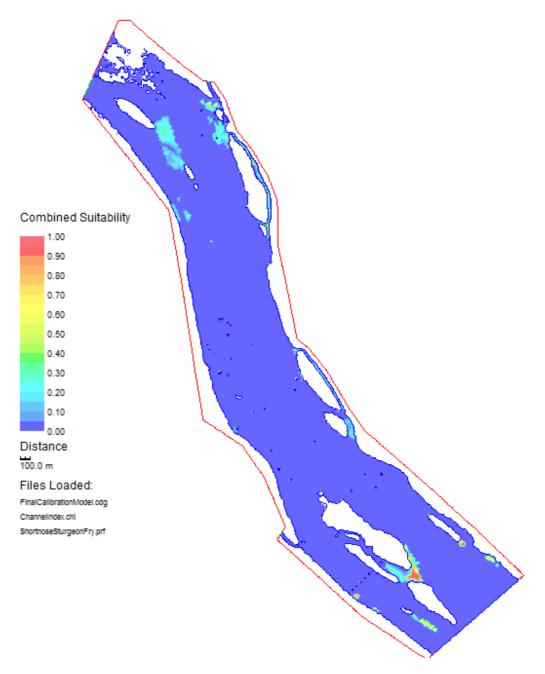



## Shortnose Sturgeon Fry – 7,500 cfs

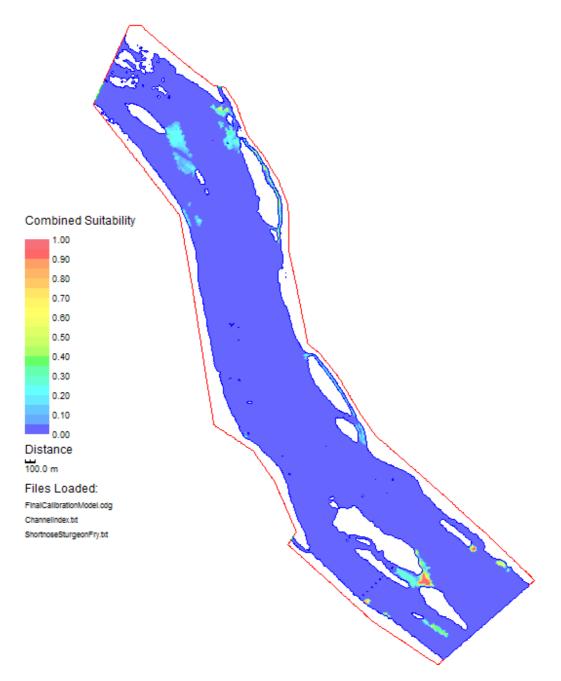



### Shortnose Sturgeon Fry – 10,000 cfs

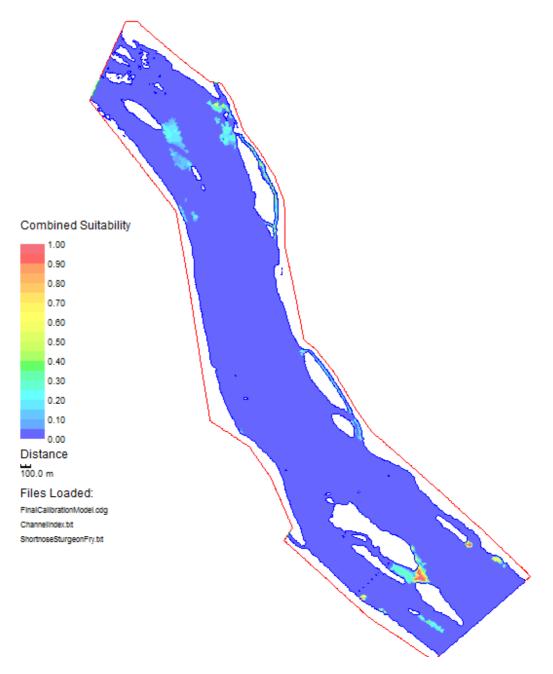



## Shortnose Sturgeon Fry – 15,000 cfs

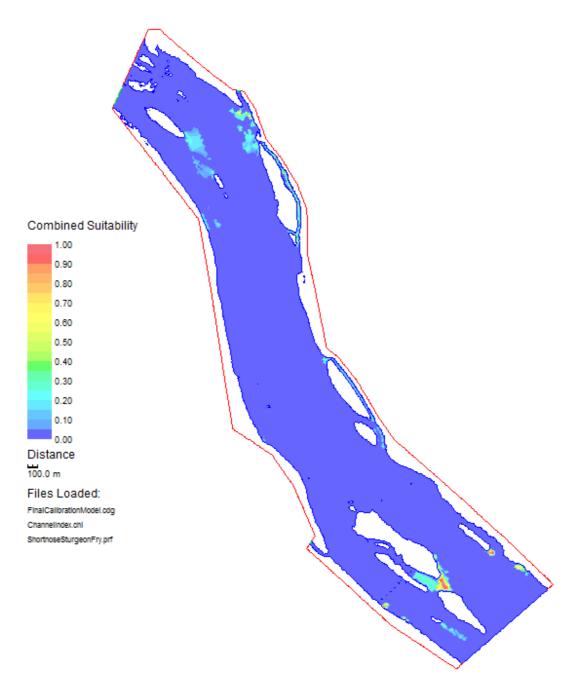



### Shortnose Sturgeon Fry – 20,000 cfs

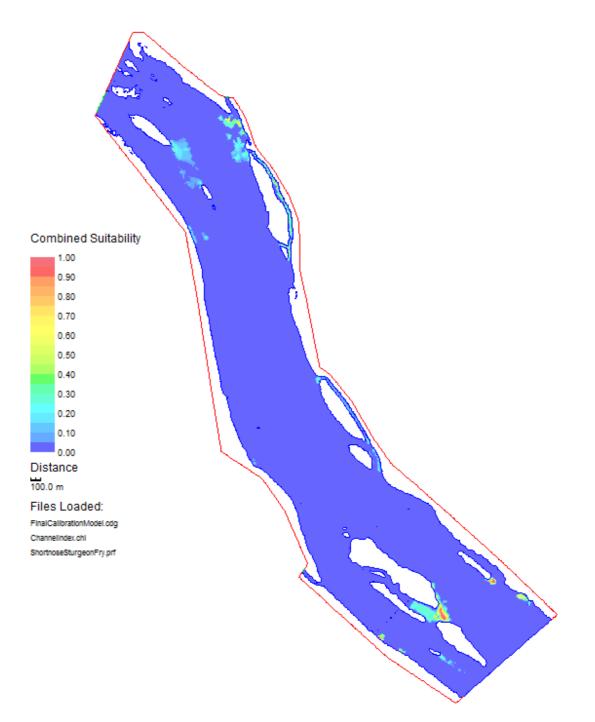



Shortnose Sturgeon Fry – 30,000 cfs

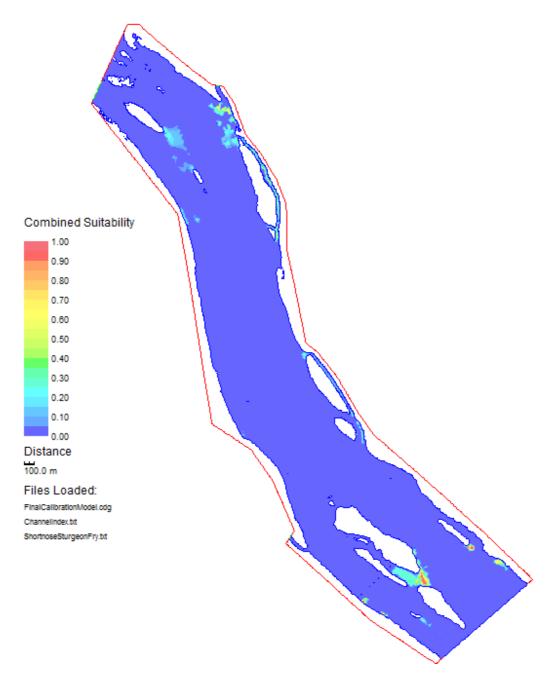



## Shortnose Sturgeon Fry – 40,000

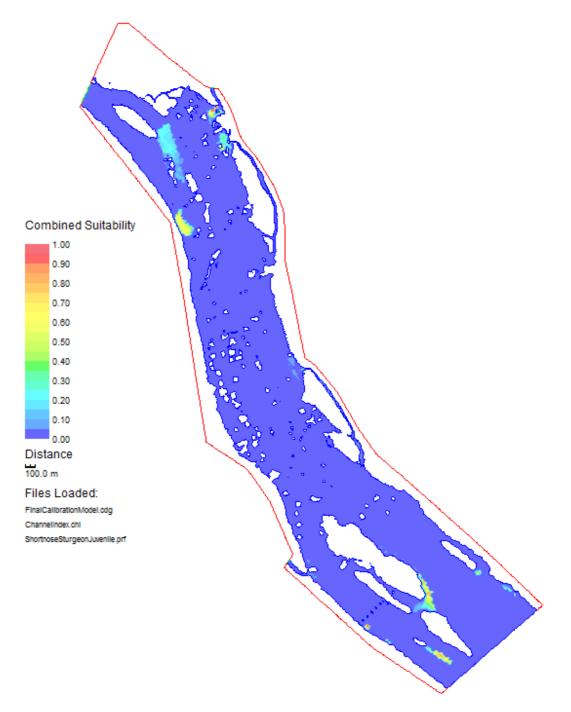



## Shortnose Sturgeon Fry – 50,000 cfs

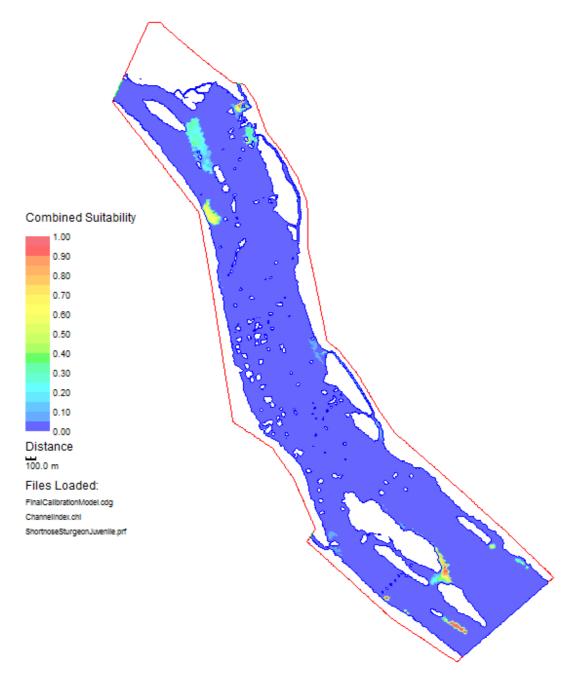



## Shortnose Sturgeon Fry – 60,000 cfs

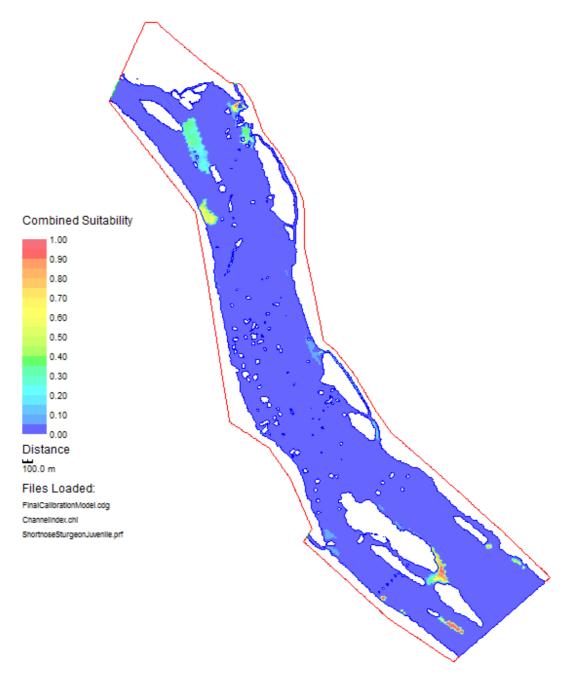



## Shortnose Sturgeon Fry – 70,000 cfs

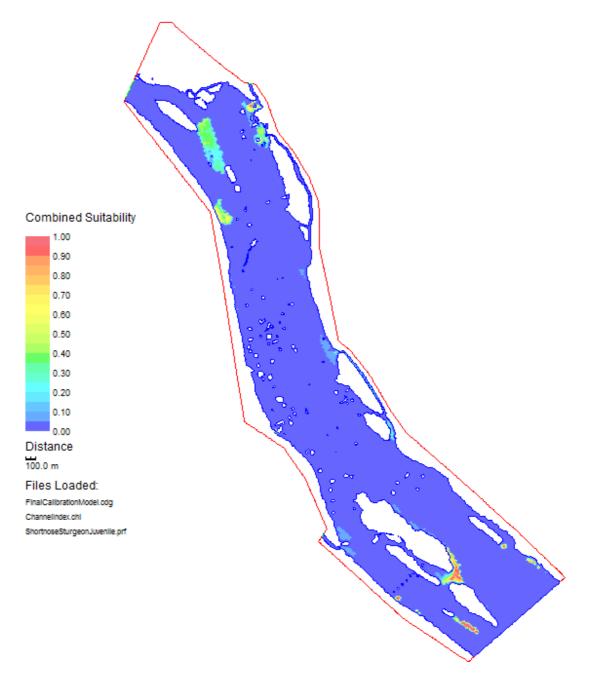



Shortnose Sturgeon Fry – 80,000 cfs

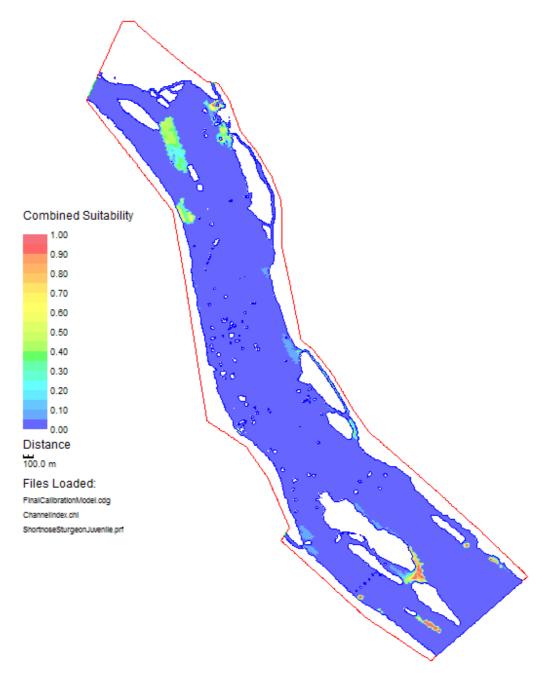



## Shortnose Sturgeon Fry – 86,000 cfs

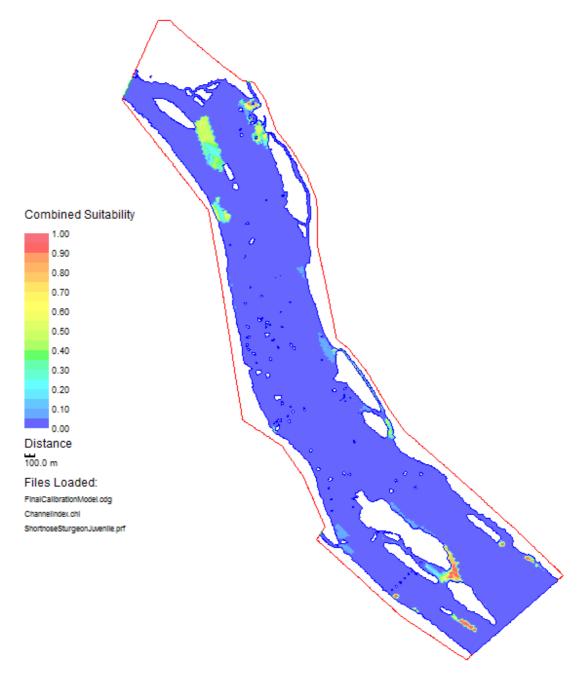



Shortnose Sturgeon Juvenile – 2,000 cfs

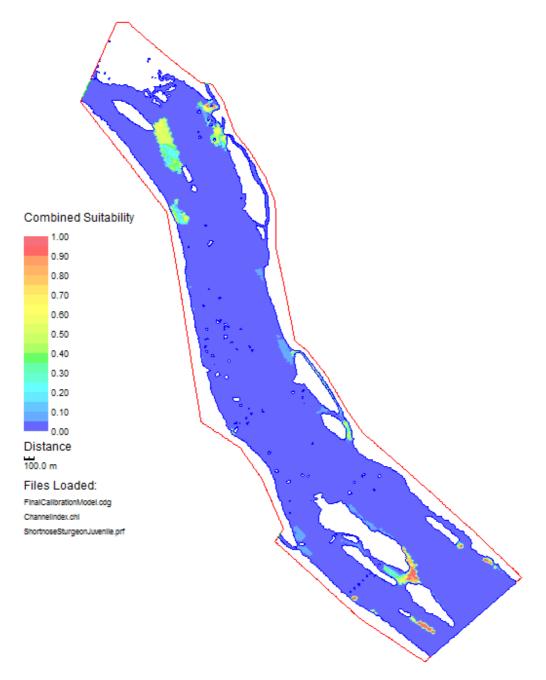



## Shortnose Sturgeon Juvenile – 3,500 cfs

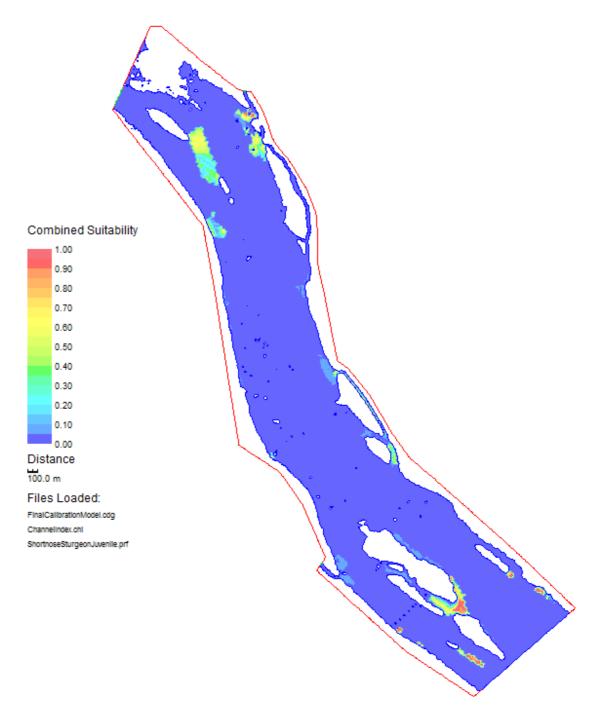



Shortnose Sturgeon Juvenile – 5,000 cfs

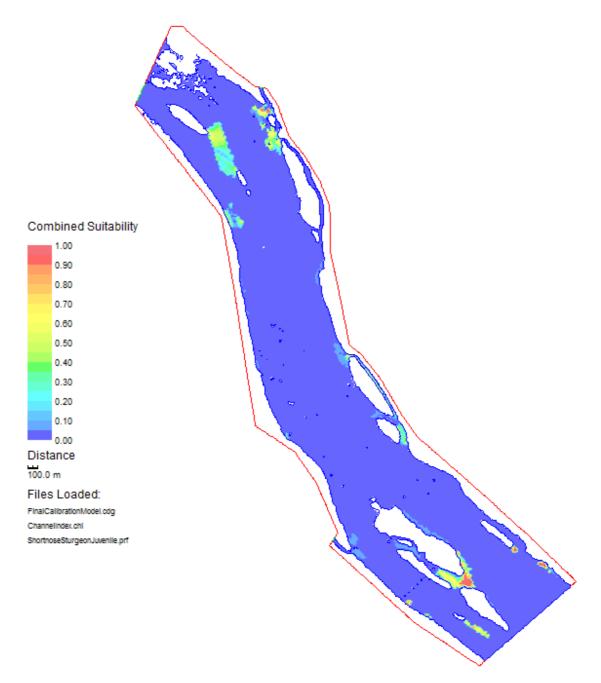



Shortnose Sturgeon Juvenile – 7,500 cfs

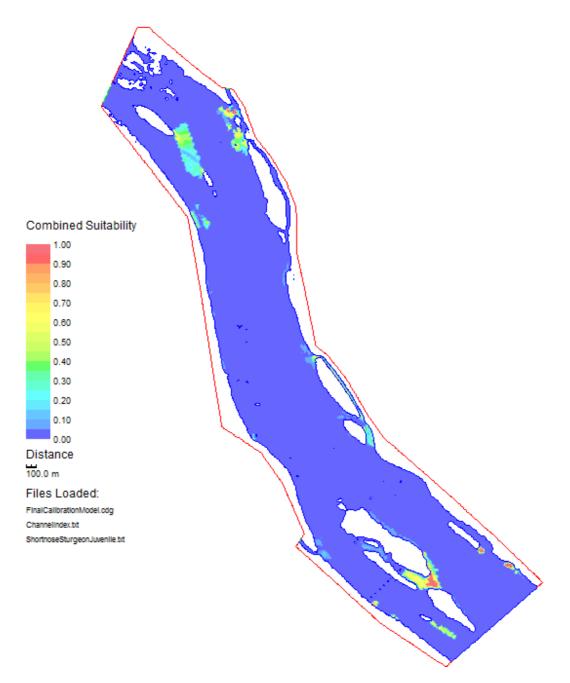



## Shortnose Sturgeon Juvenile – 10,000 cfs

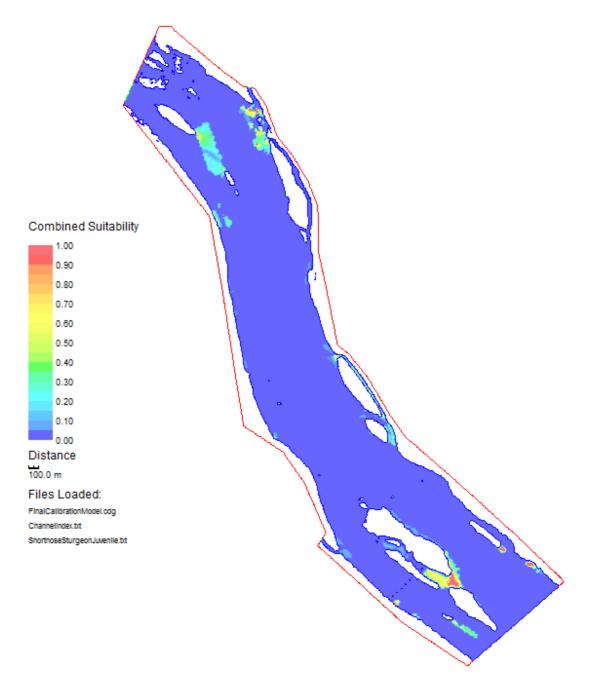



### Shortnose Sturgeon Juvenile – 15,000 cfs

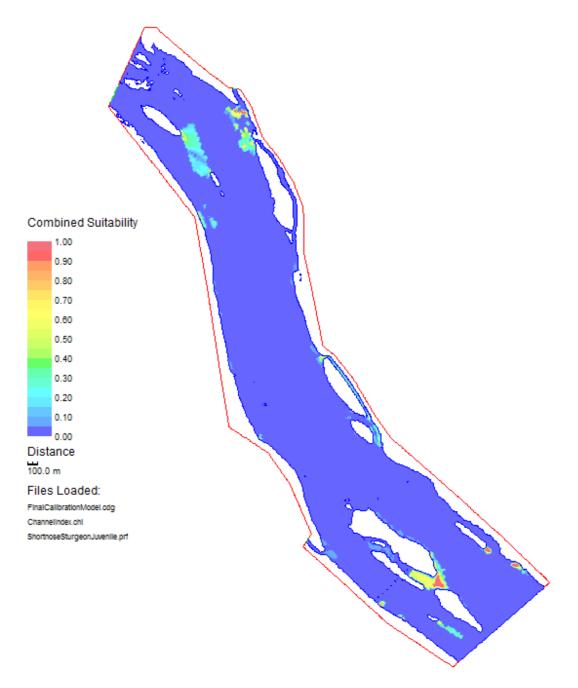



Shortnose Sturgeon Juvenile – 20,000 cfs

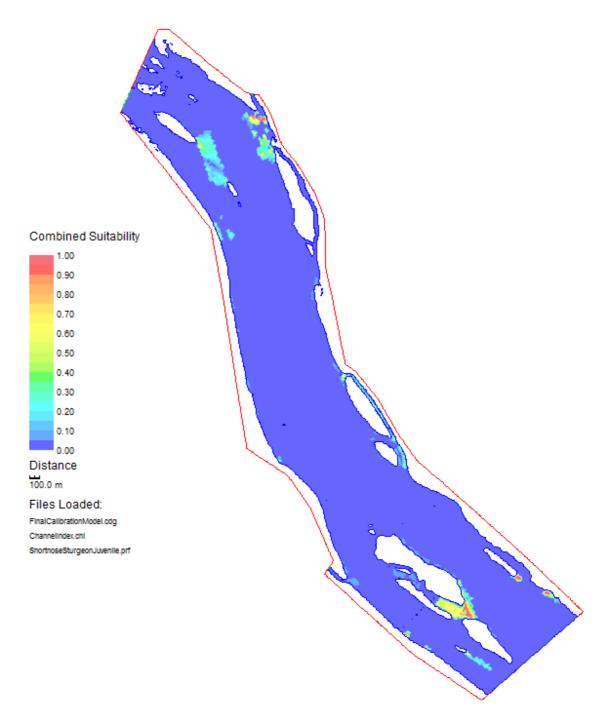



Shortnose Sturgeon Juvenile – 30,000 cfs

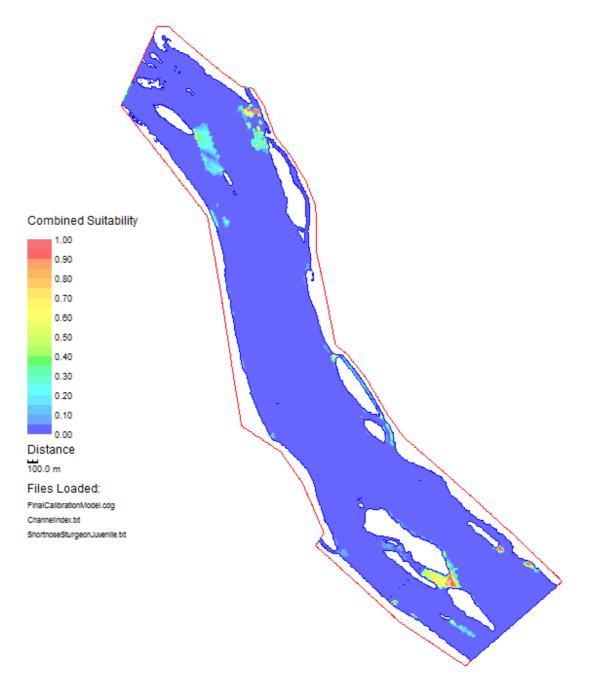



Shortnose Sturgeon Juvenile – 40,000 cfs

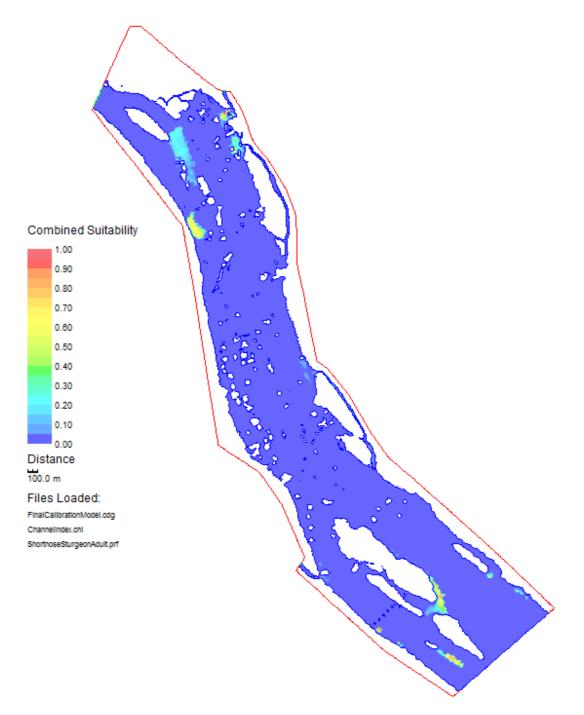



Shortnose Sturgeon Juvenile – 50,000 cfs

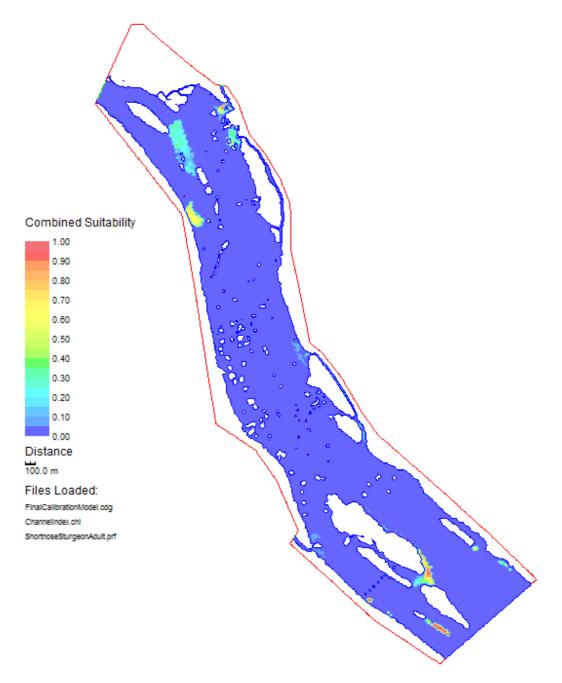



Shortnose Sturgeon Juvenile – 60,000 cfs

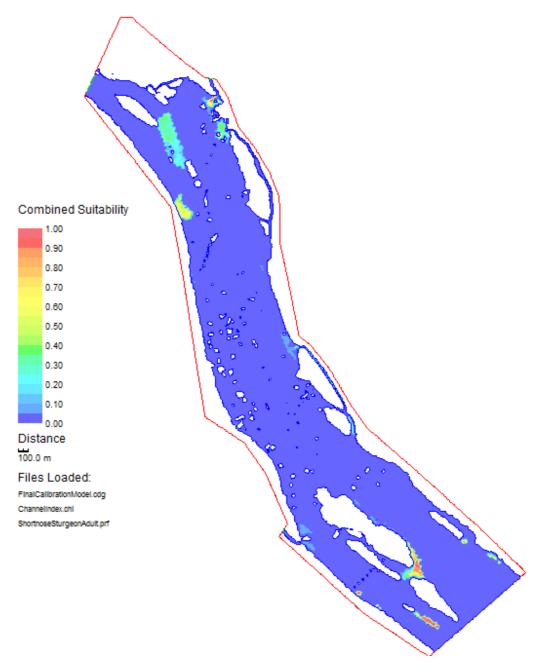



Shortnose Sturgeon Juvenile – 70,000 cfs

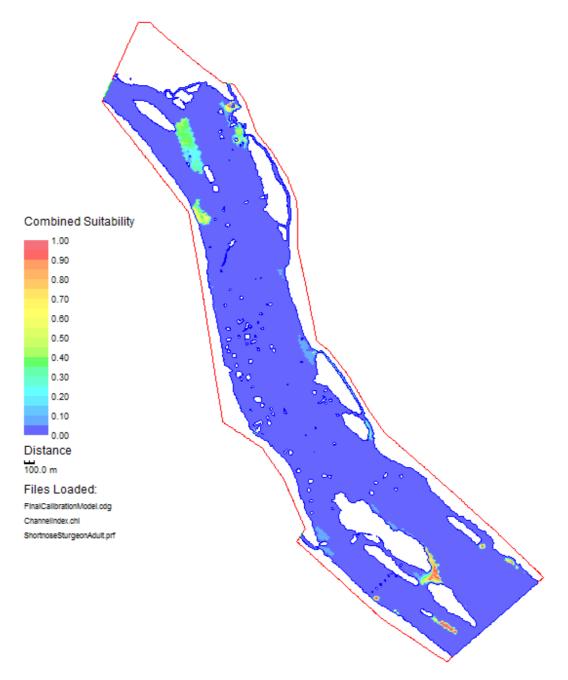



Shortnose Sturgeon Juvenile – 80,000 cfs

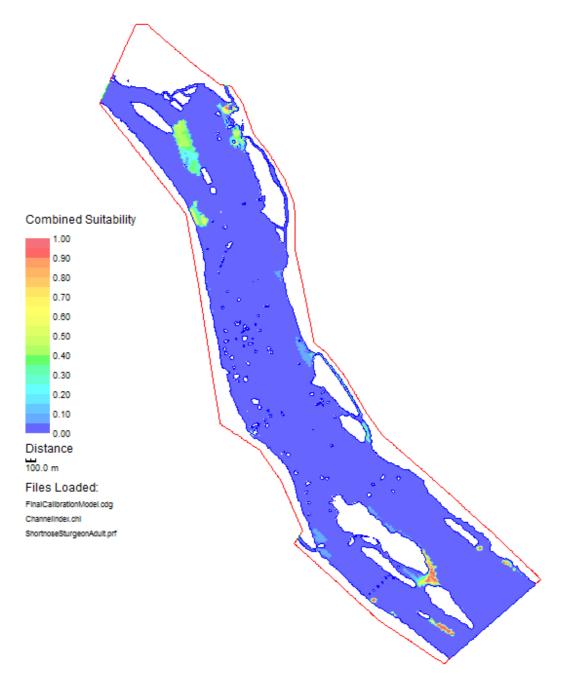



Shortnose Sturgeon Juvenile – 86,000 cfs

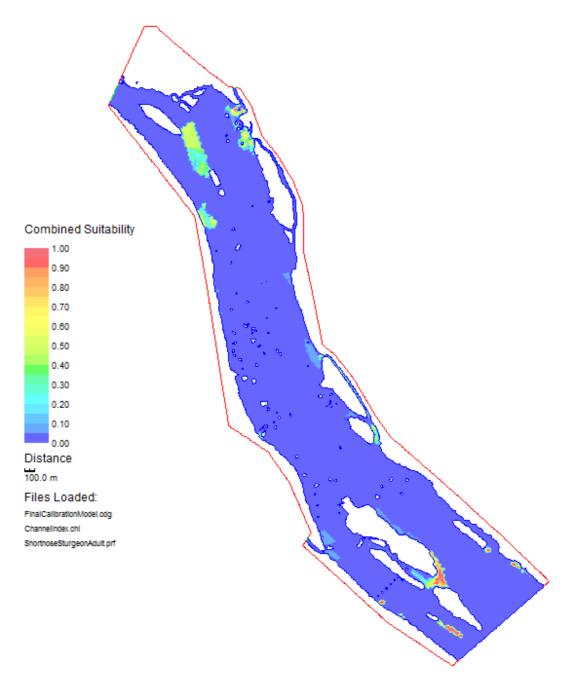



Shortnose Sturgeon Adult – 2,000 cfs

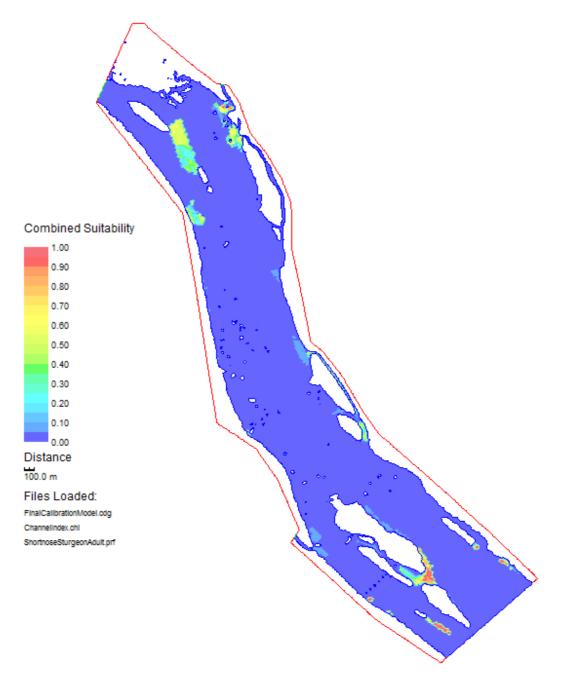



Shortnose Sturgeon Adult – 3,500 cfs

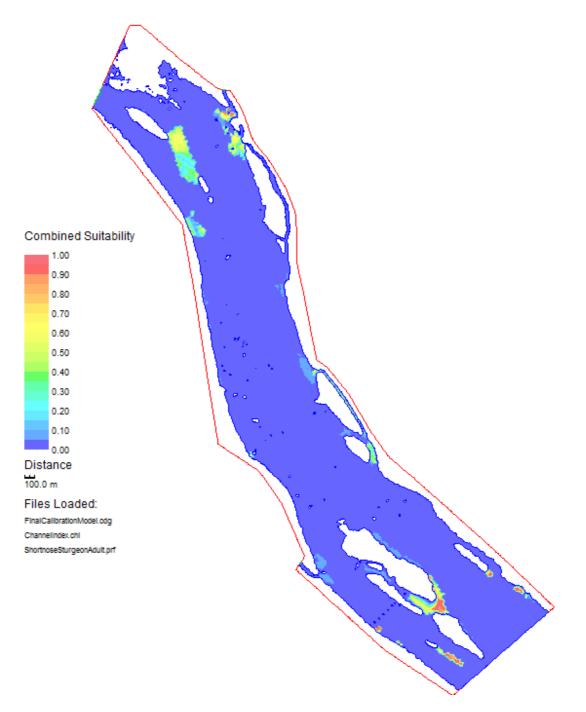



Shortnose Sturgeon Adult – 5,000 cfs

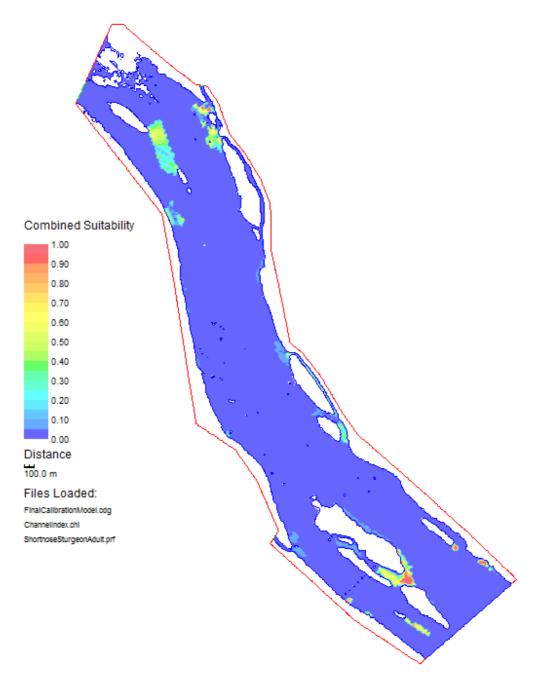



Shortnose Sturgeon Adult – 7,500 cfs

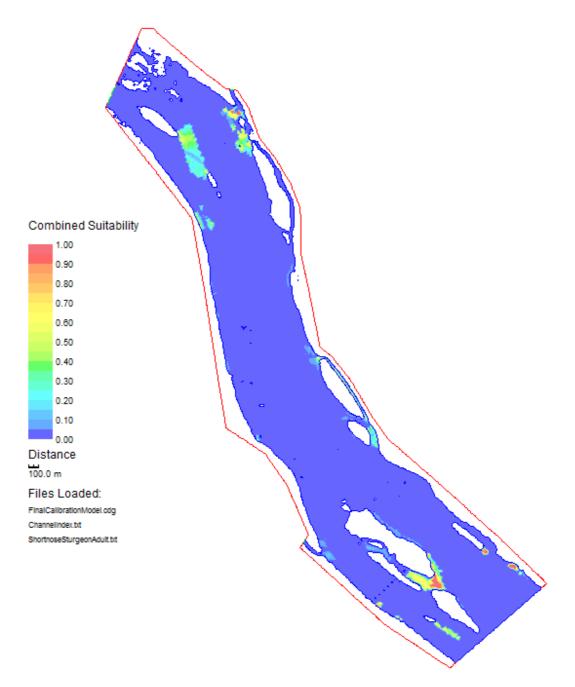



# Shortnose Sturgeon Adult – 10,000 cfs

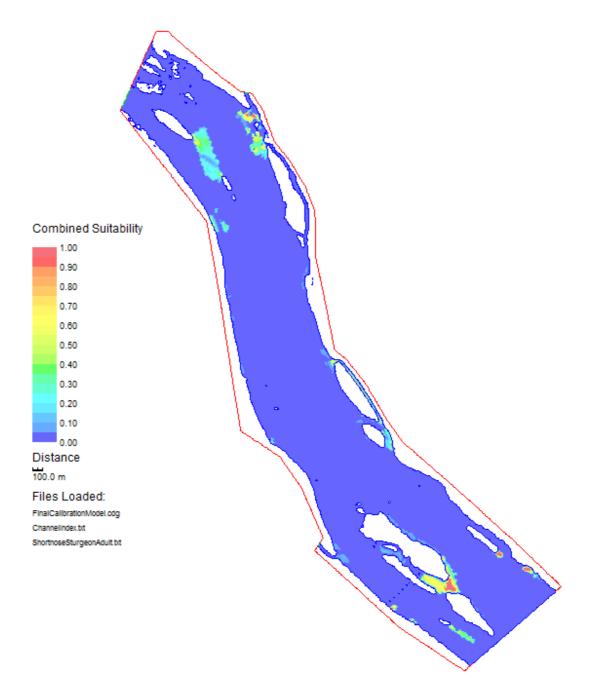



## Shortnose Sturgeon Adult – 15,000 cfs

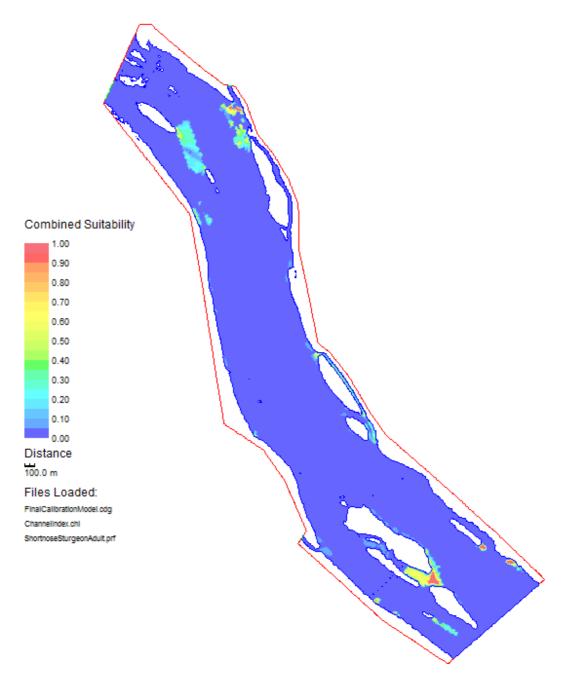



### Shortnose Sturgeon Adult – 20,000 cfs

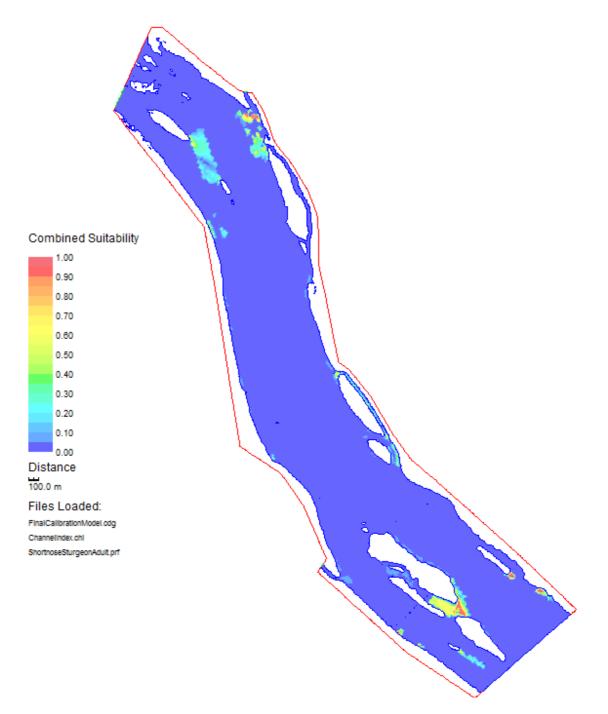



Shortnose Sturgeon Adult – 30,000 cfs

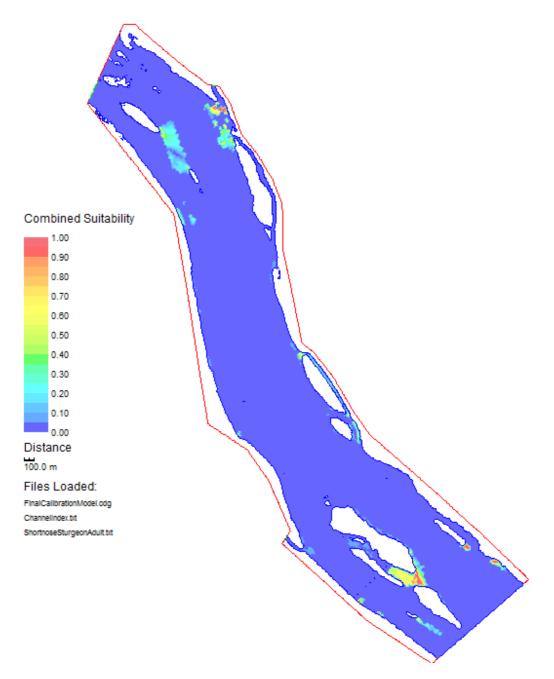



## Shortnose Sturgeon Adult – 40,000 cfs

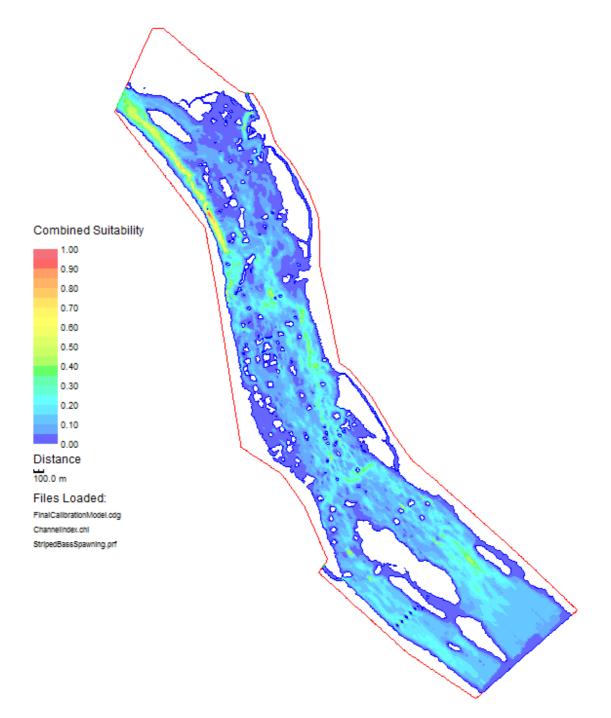



### Shortnose Sturgeon Adult – 50,000 cfs

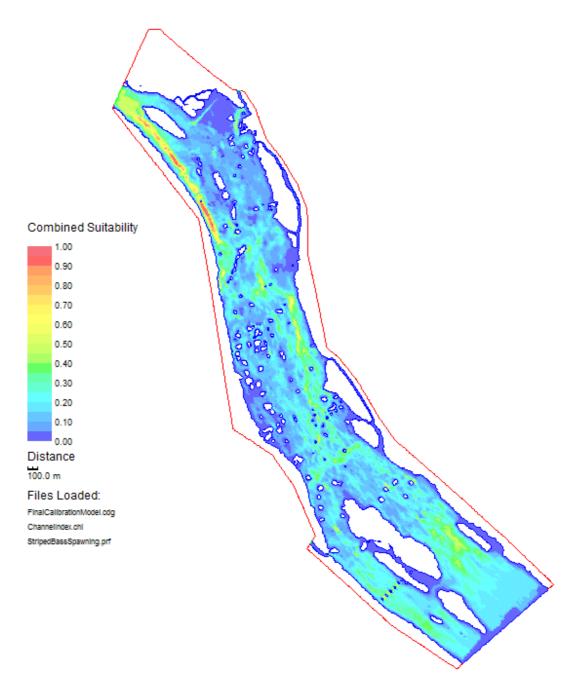



## Shortnose Sturgeon Adult – 60,000 cfs

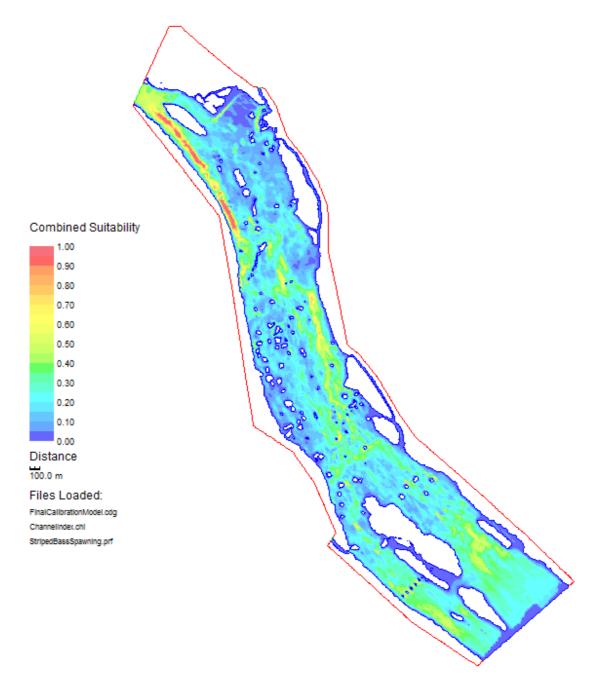



## Shortnose Sturgeon Adult – 70,000 cfs

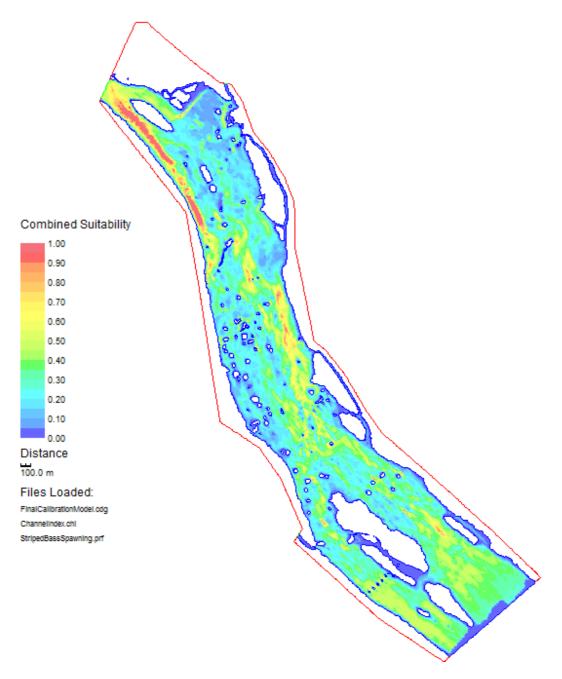



Shortnose Sturgeon Adult – 80,000 cfs

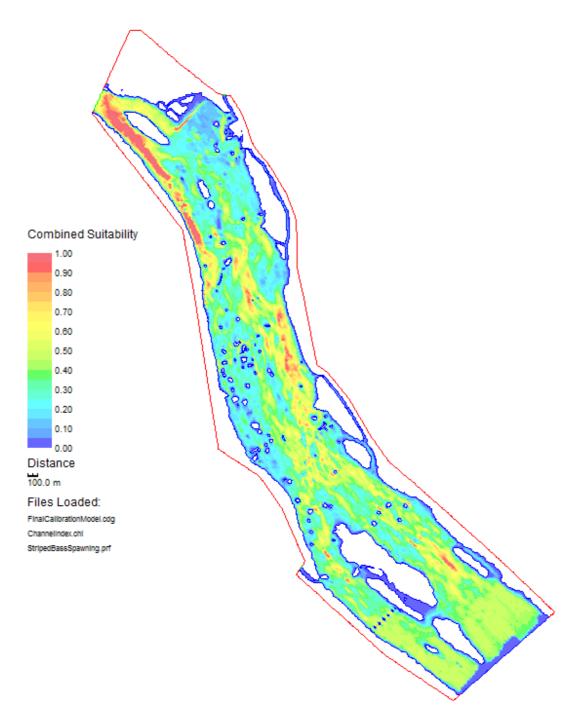



## Shortnose Sturgeon Adult – 86,000 cfs

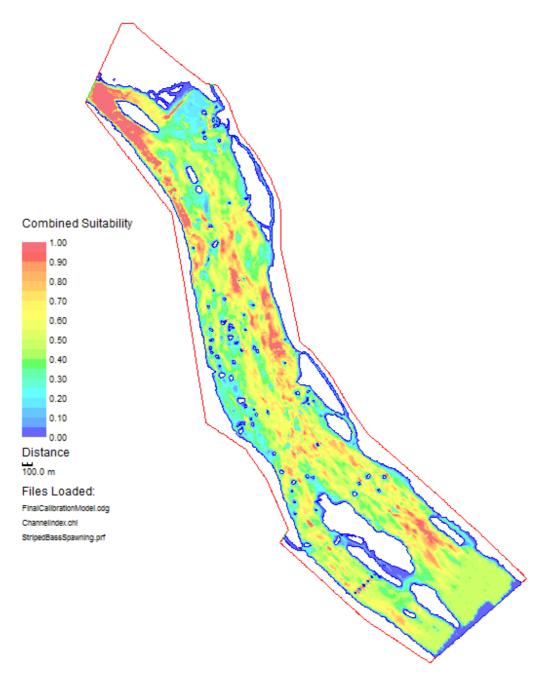



Striped Bass Spawning – 2,000 cfs

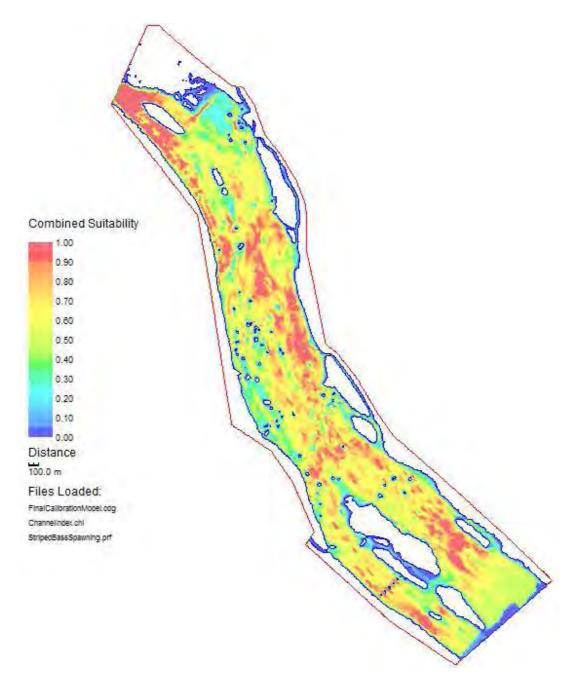



Striped Bass Spawning – 3,500 cfs

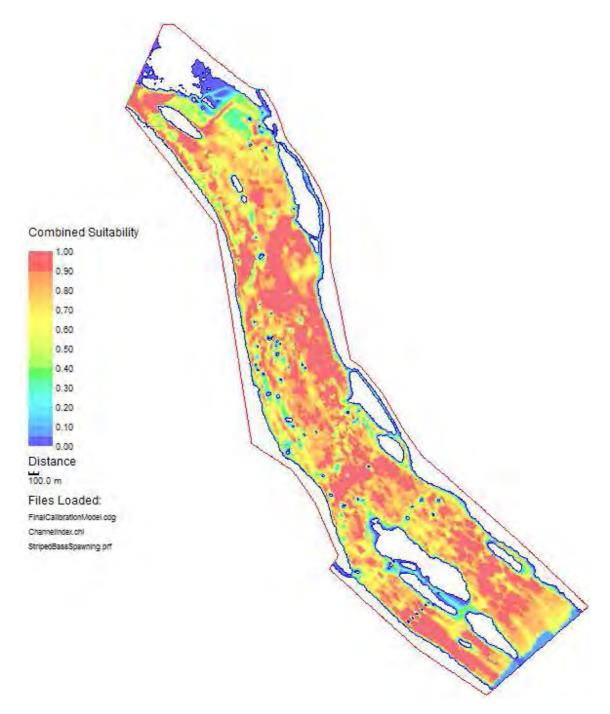



Striped Bass Spawning – 5,000 cfs

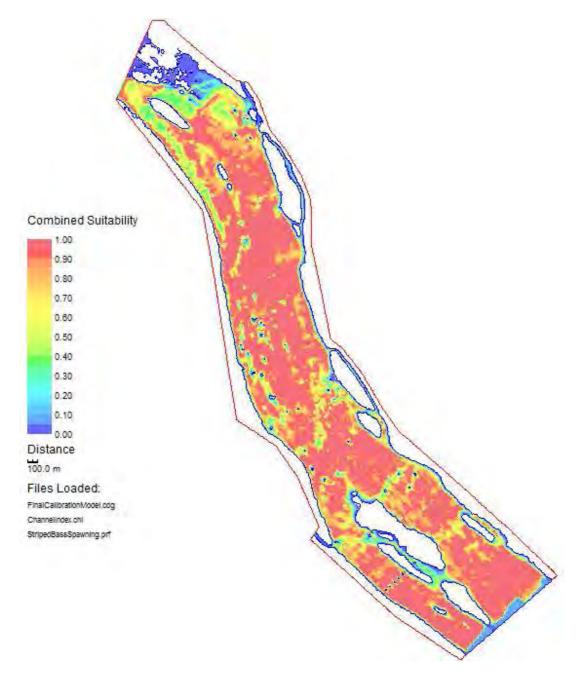



## Striped Bass Spawning – 7,500 cfs

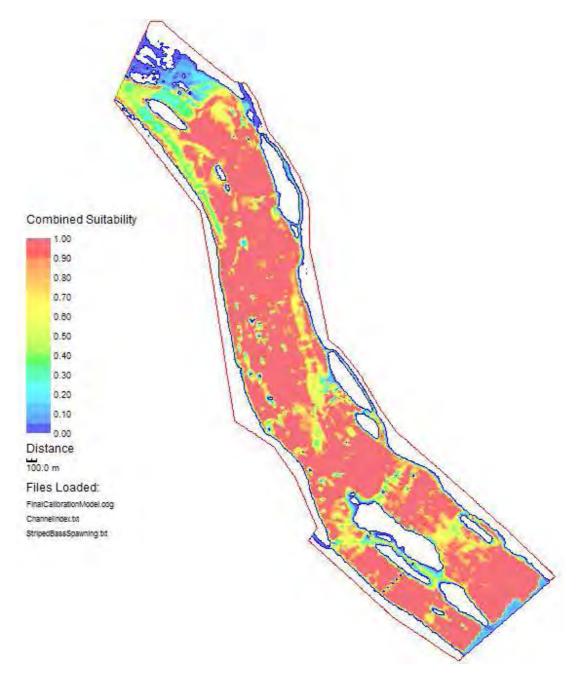



Striped Bass Spawning – 10,000 cfs

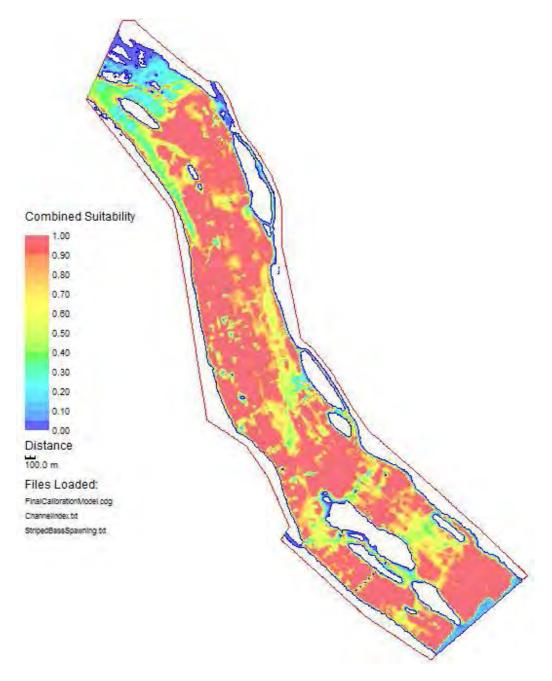



Striped Bass Spawning – 15,000 cfs

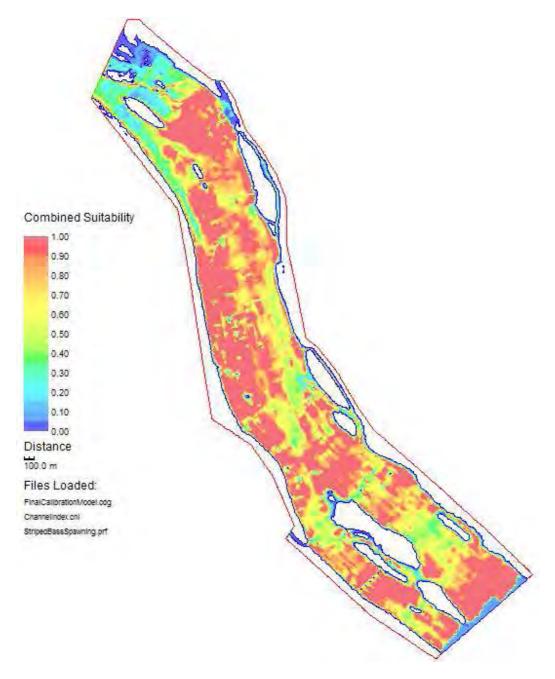



Striped Bass Spawning – 20,000 cfs

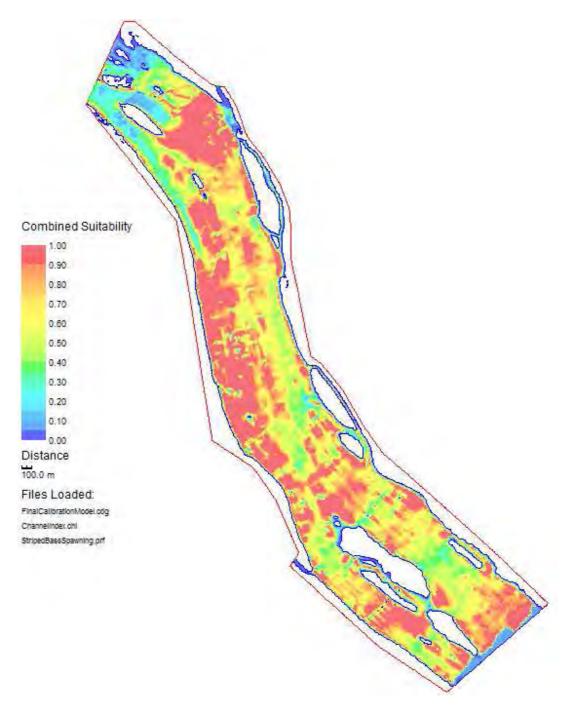



Striped Bass Spawning – 30,000 cfs

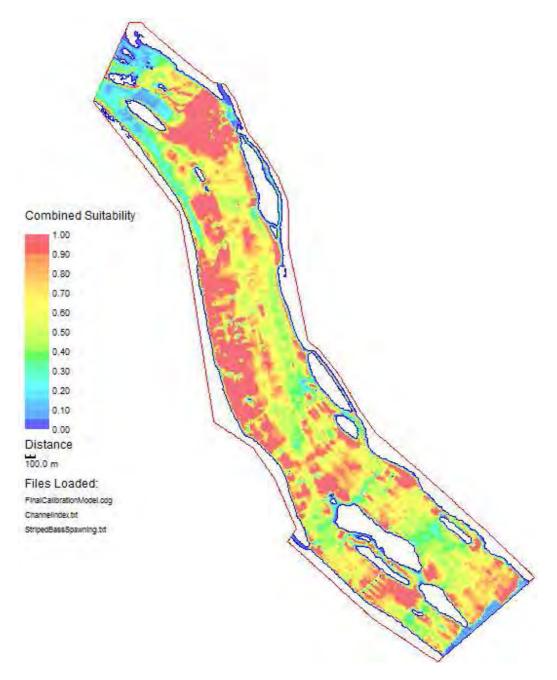



Striped Bass Spawning – 40,000 cfs

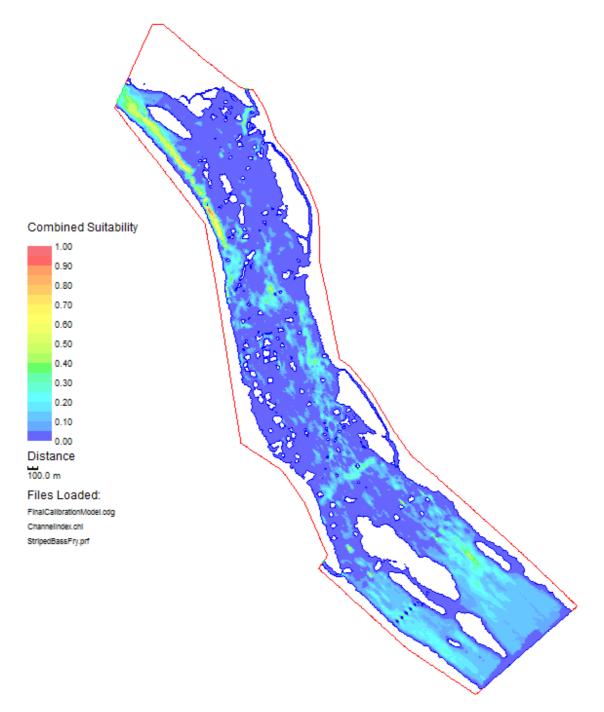



Striped Bass Spawning – 50,000 cfs




Striped Bass Spawning – 60,000 cfs

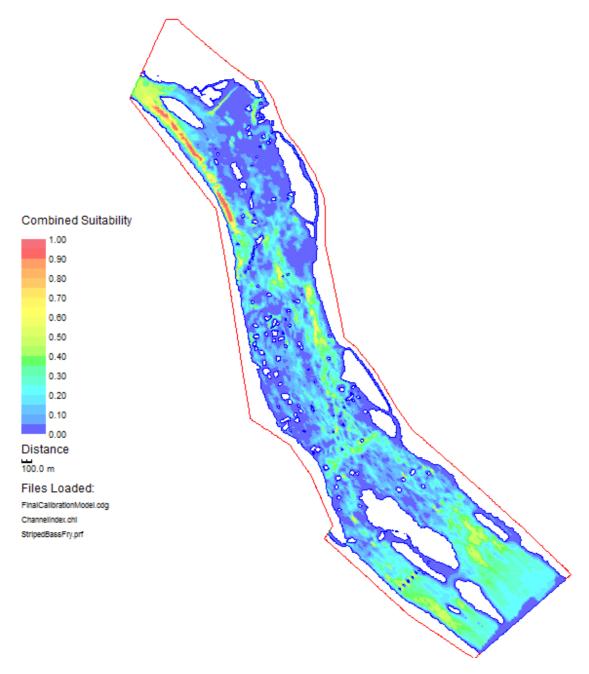



Striped Bass Spawning – 70,000 cfs



Striped Bass Spawning – 80,000 cfs

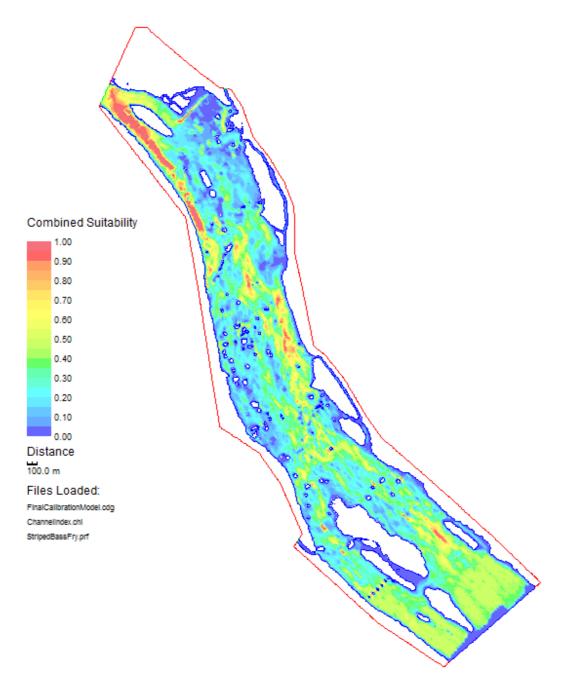



Striped Bass Spawning – 86,000 cfs

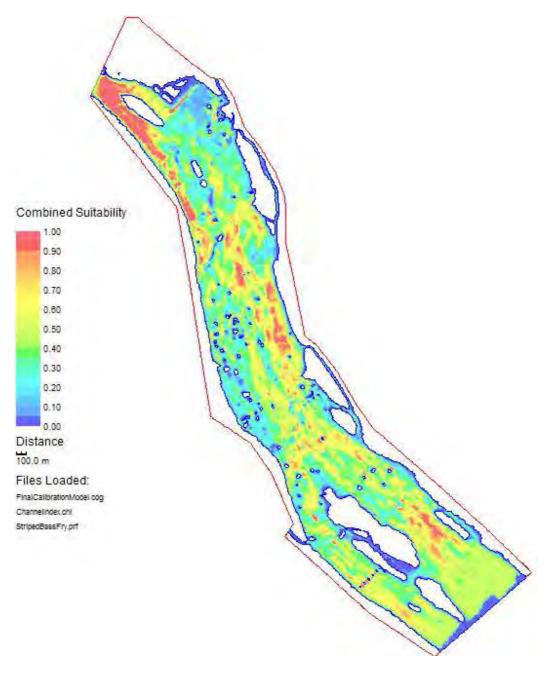


Striped Bass Fry – 2,000 cfs

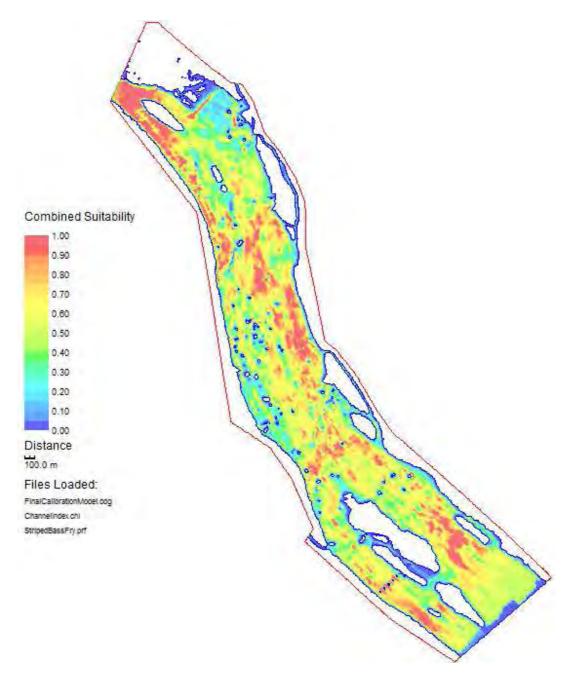



Striped Bass Fry – 3,500 cfs

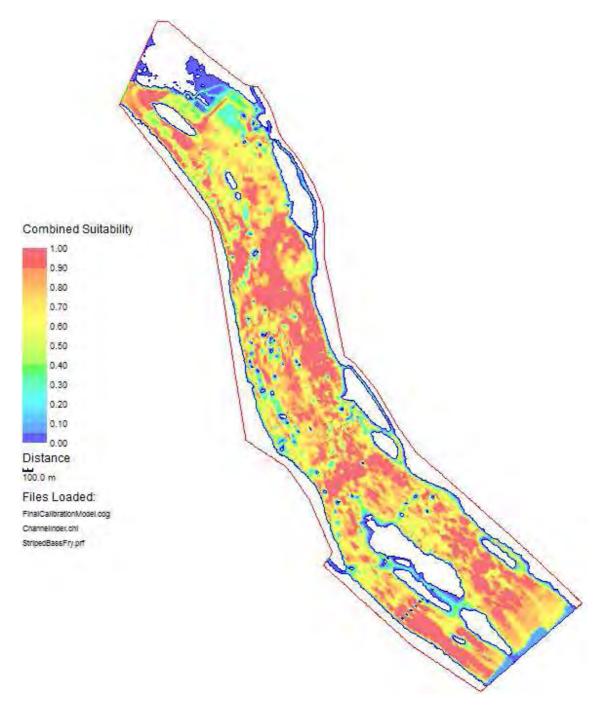



# Striped Bass Fry – 5,000 cfs

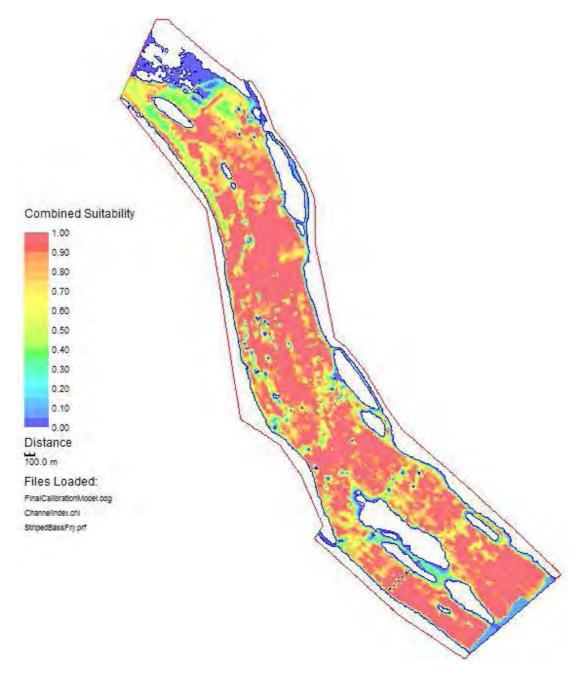



Striped Bass Fry – 7,500 cfs

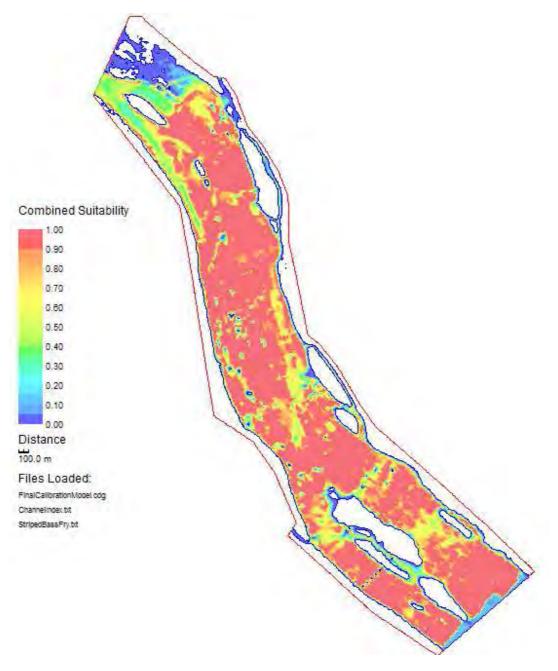



Striped Bass Fry – 10,000 cfs

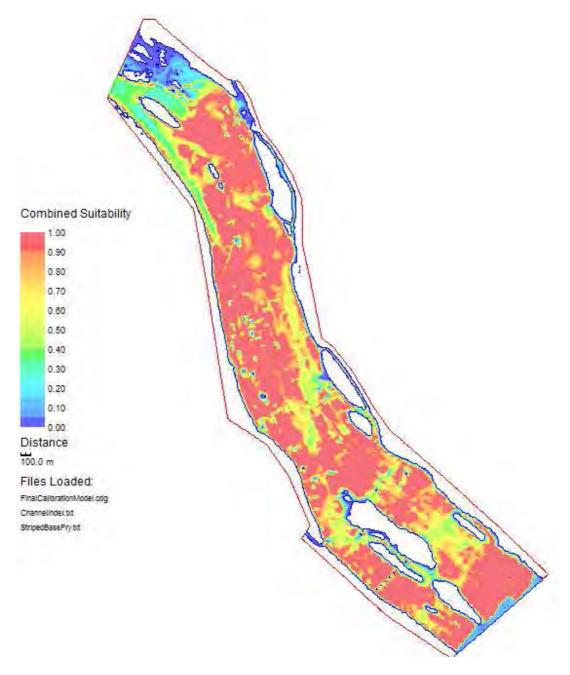



Striped Bass Fry – 15,000 cfs

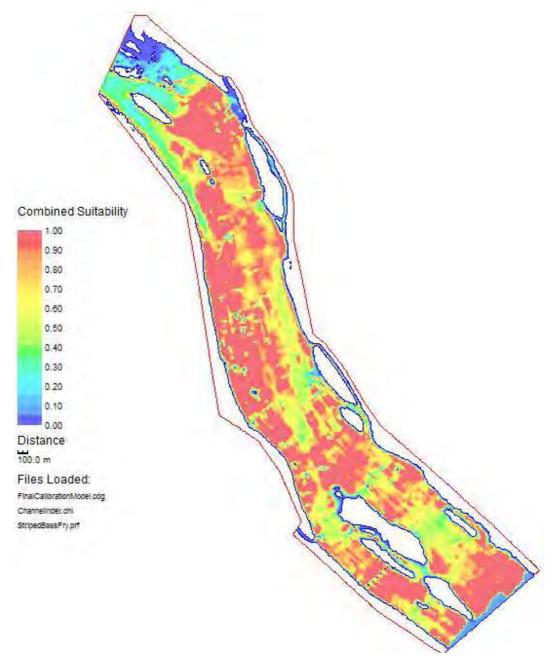



Striped Bass Fry – 20,000 cfs

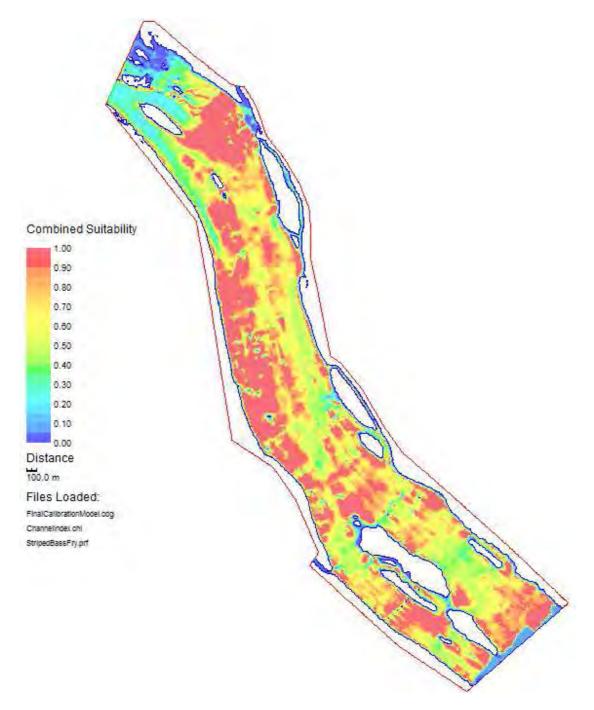



Striped Bass Fry – 30,000 cfs

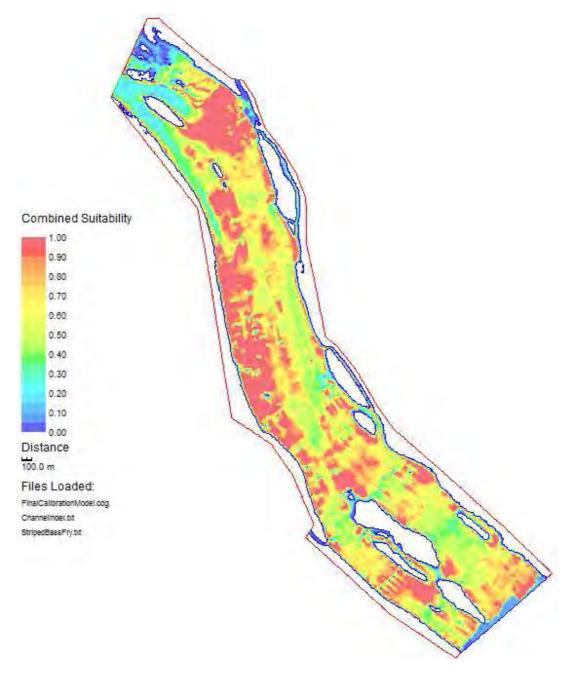



Striped Bass Fry – 40,000 cfs

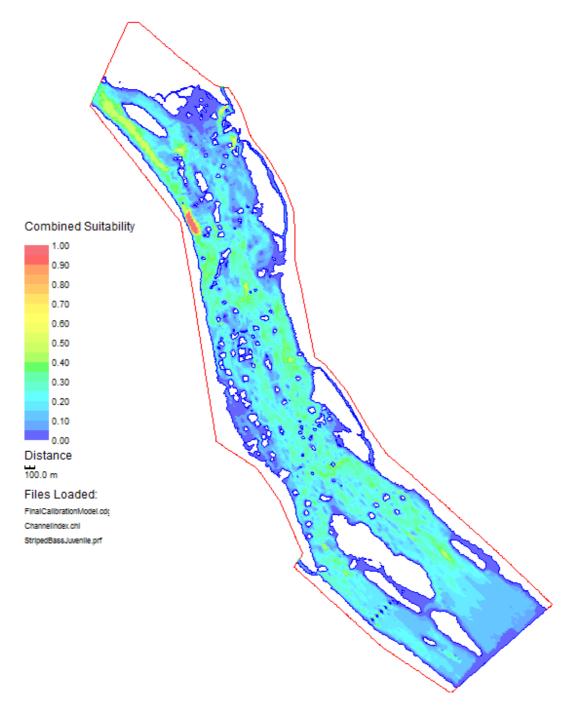



# Striped Bass Fry – 50,000 cfs

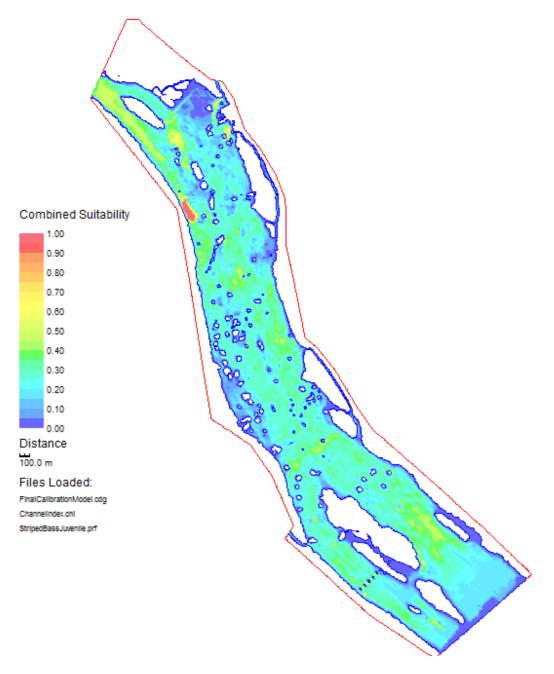



## Striped Bass Fry – 60,000 cfs

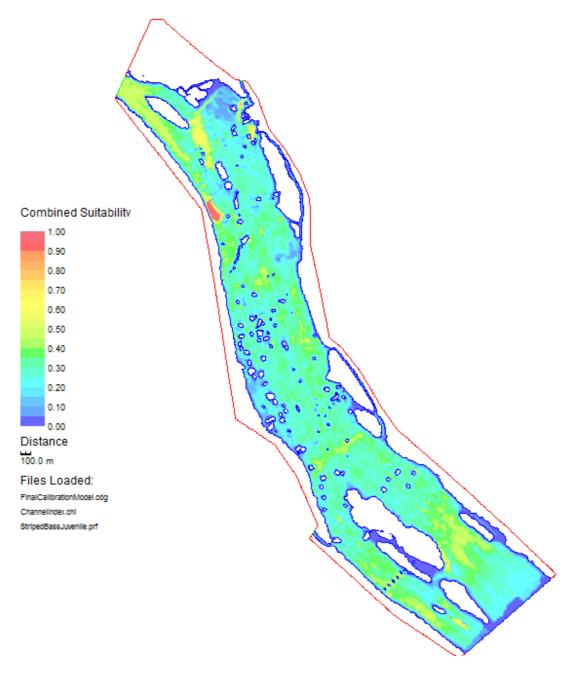



Striped Bass Fry – 70,000 cfs

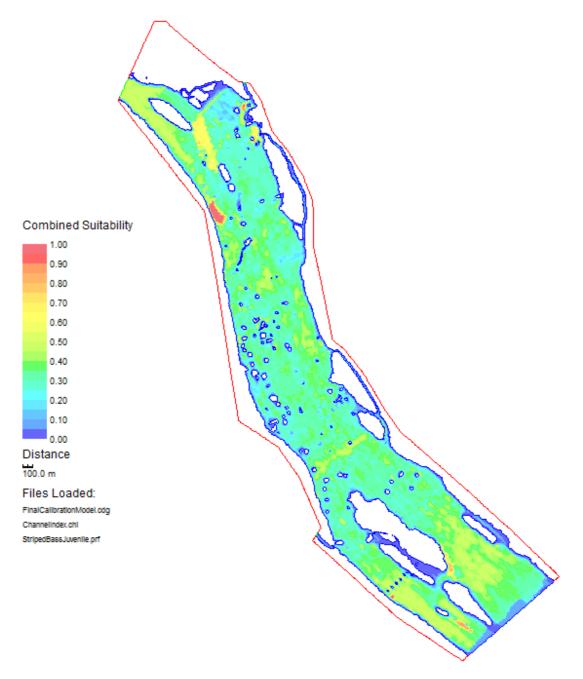



Striped Bass Fry – 80,000 cfs

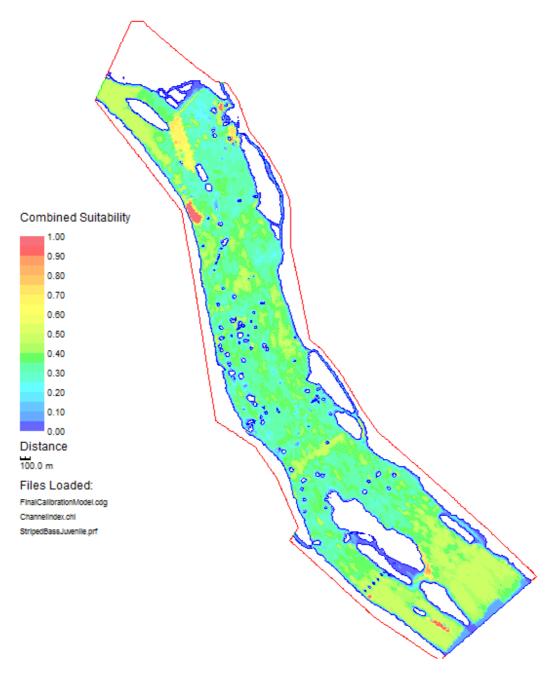



# Striped Bass Fry – 86,000 cfs

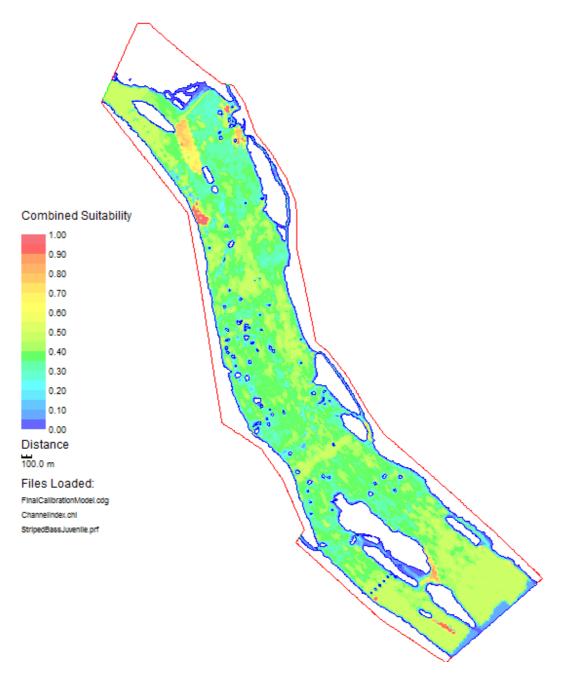



Striped Bass Juvenile – 2,000 cfs

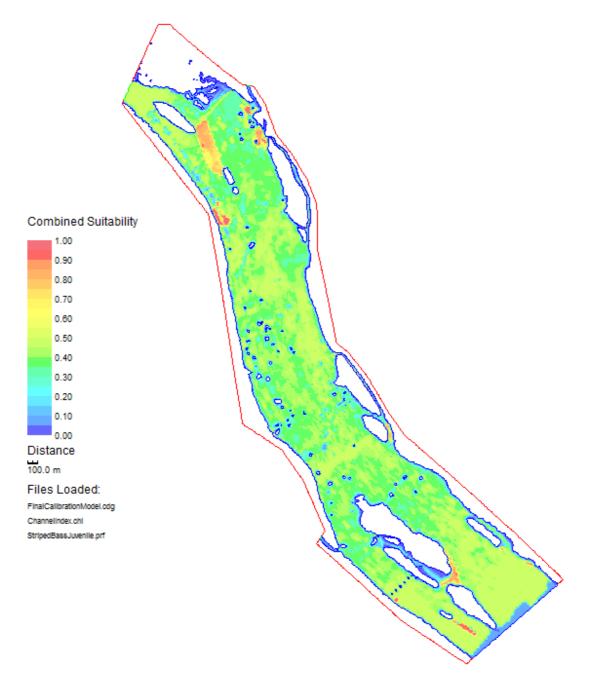



Striped Bass Juvenile – 3,500 cfs

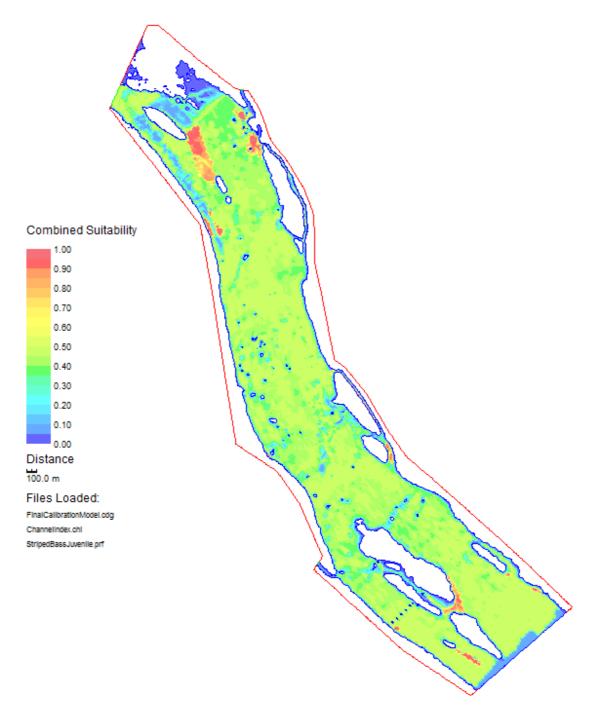



Striped Bass Juvenile – 5,000 cfs

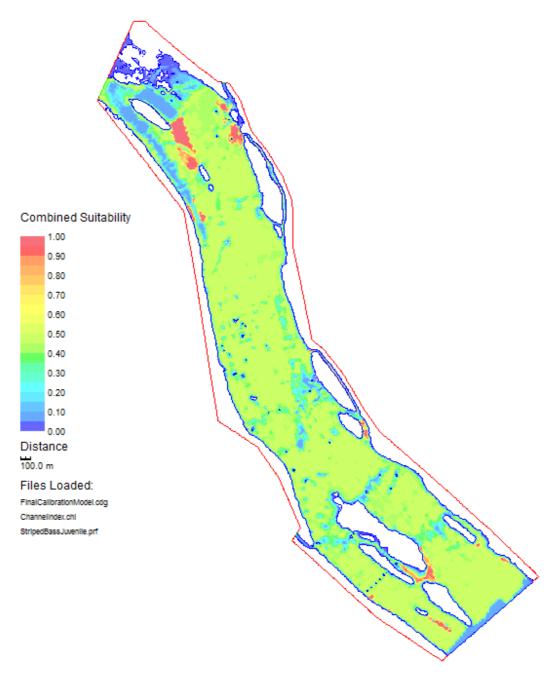



Striped Bass Juvenile – 7,500 cfs

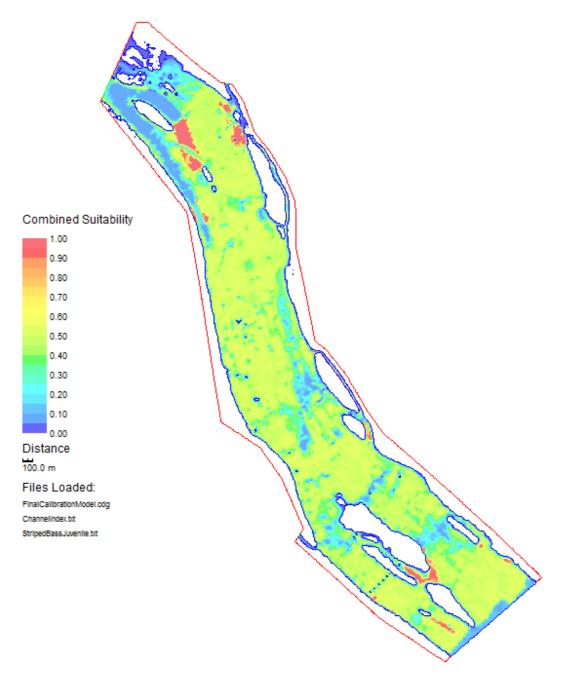



Striped Bass Juvenile – 10,000 cfs

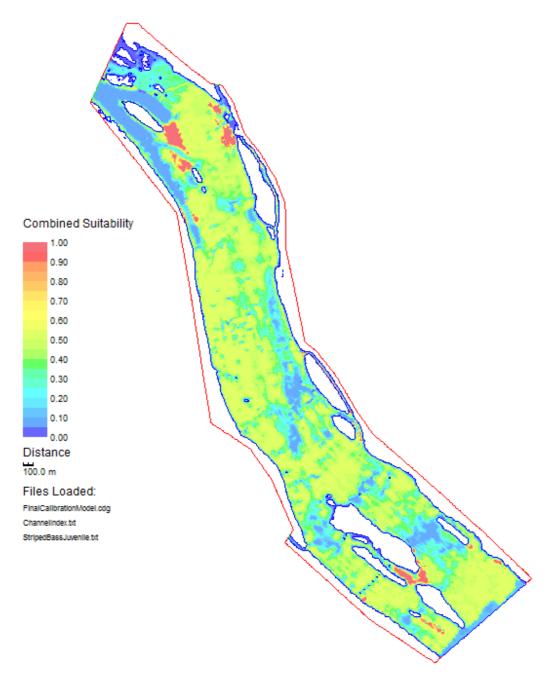



# Striped Bass Juvenile – 15,000 cfs

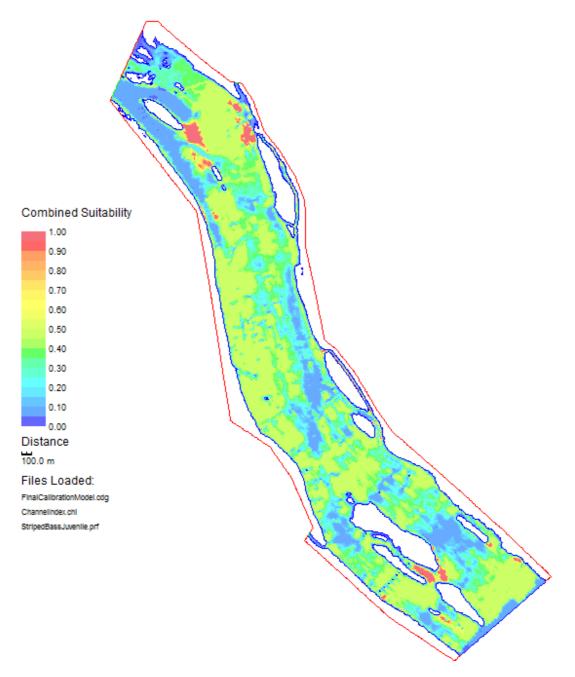



# Striped Bass Juvenile – 20,000 cfs

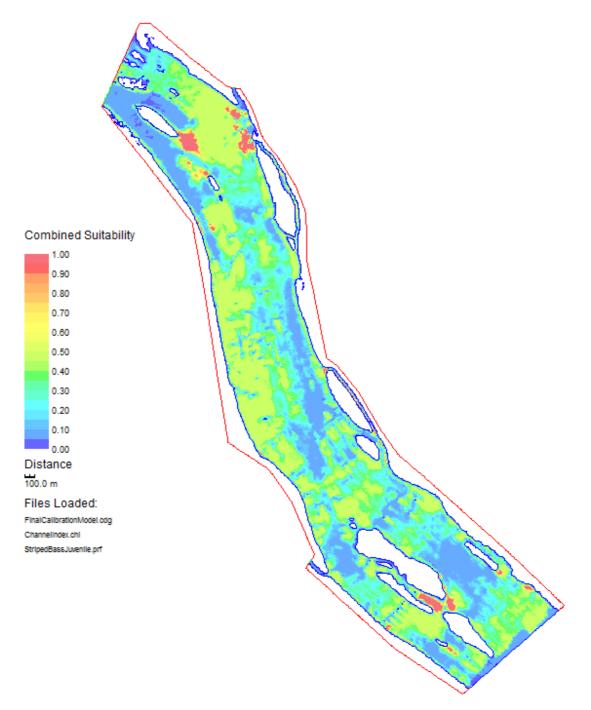



Striped Bass Juvenile – 30,000 cfs

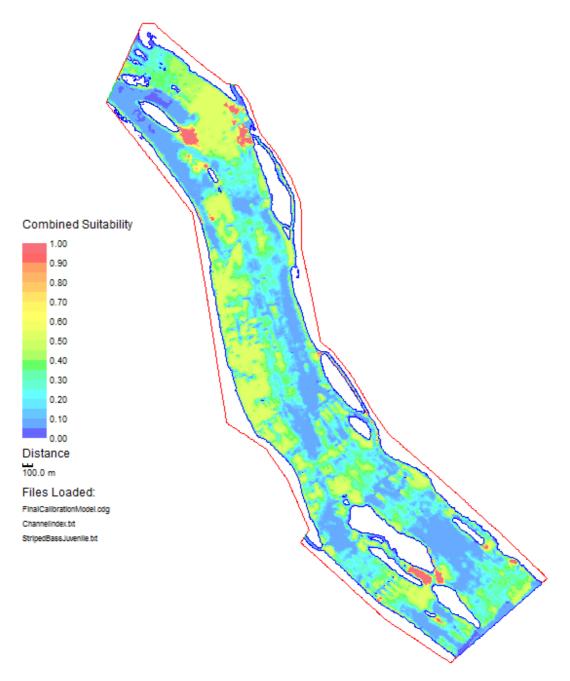



Striped Bass Juvenile – 40,000 cfs

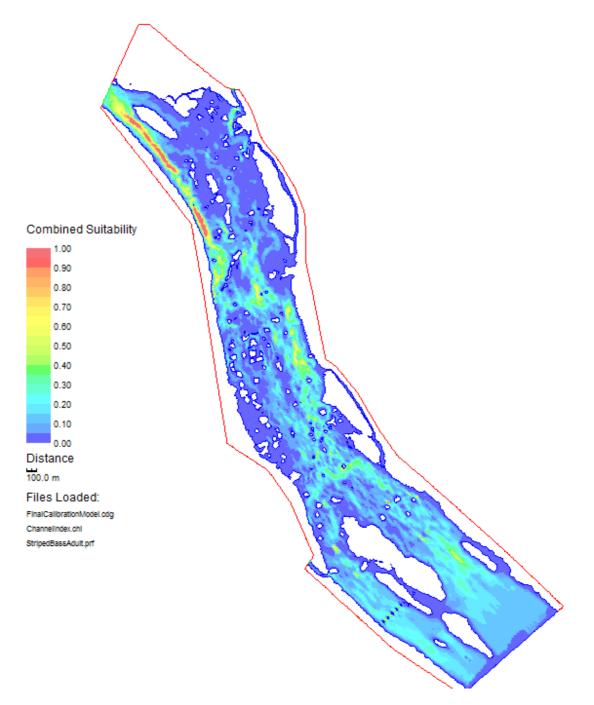



Striped Bass Juvenile – 50,000 cfs

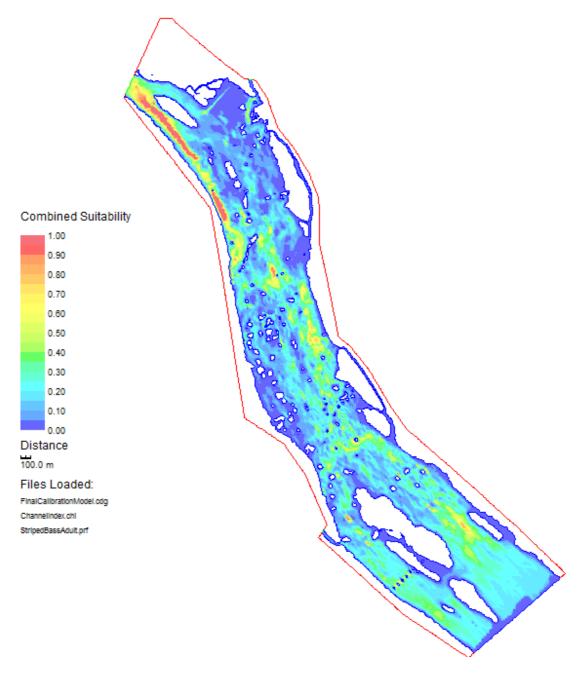



### Striped Bass Juvenile – 60,000 cfs

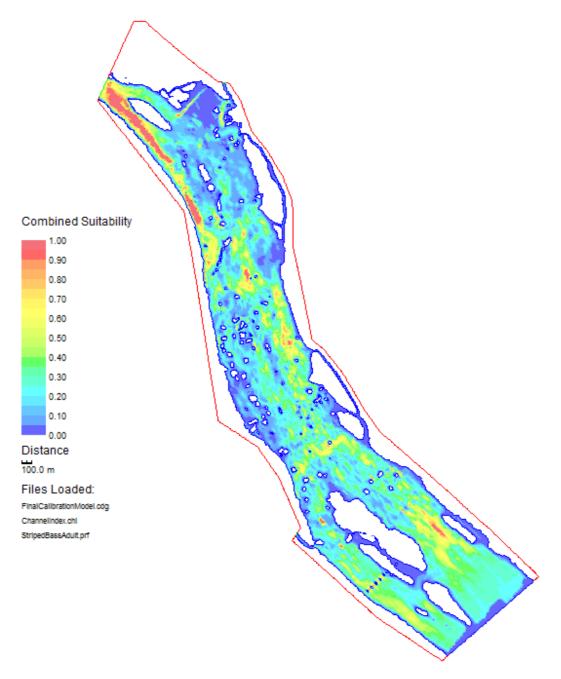



Striped Bass Juvenile – 70,000 cfs

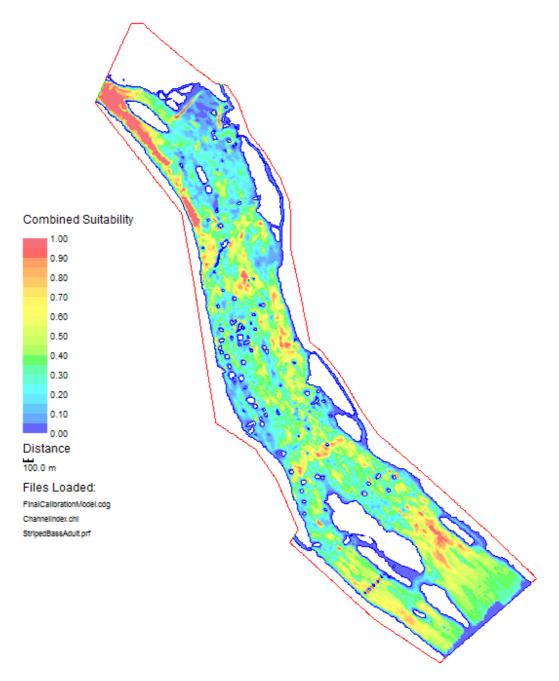



Striped Bass Juvenile – 80,000 cfs

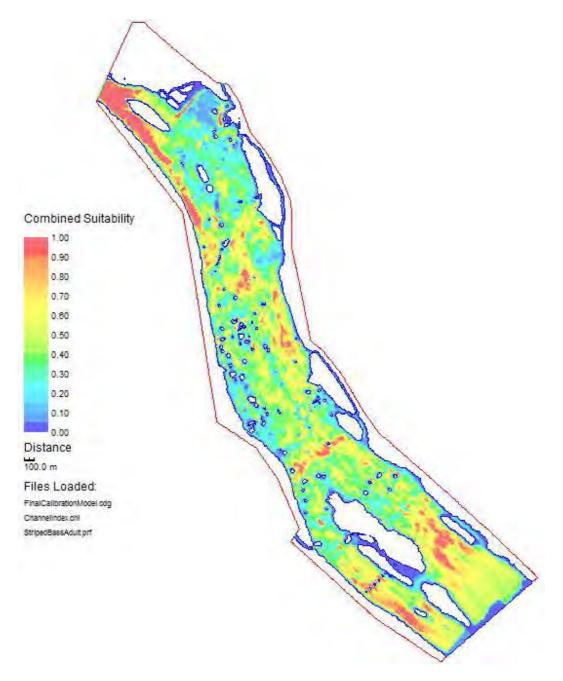



### Striped Bass Juvenile – 86,000 cfs

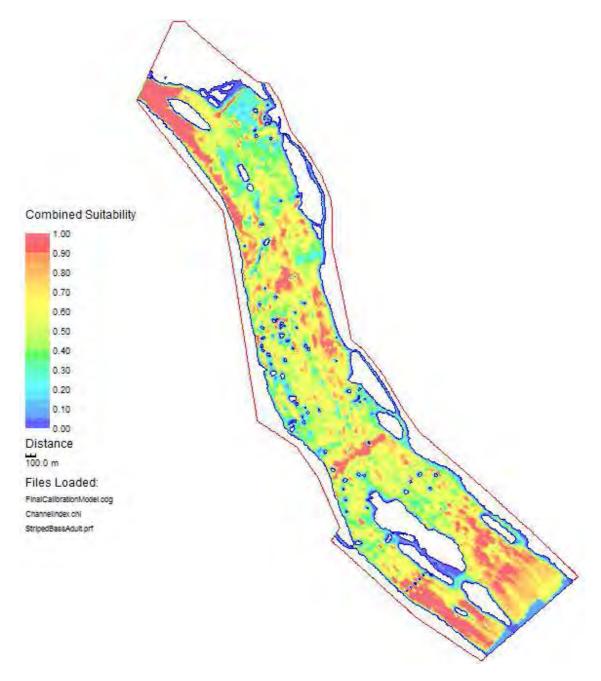



Striped Bass Adult – 2,000 cfs

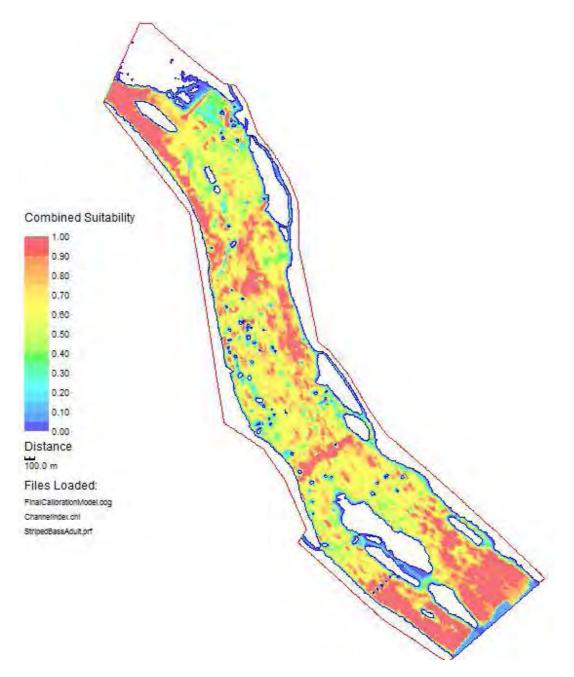



#### Striped Bass Adult – 3,500 cfs

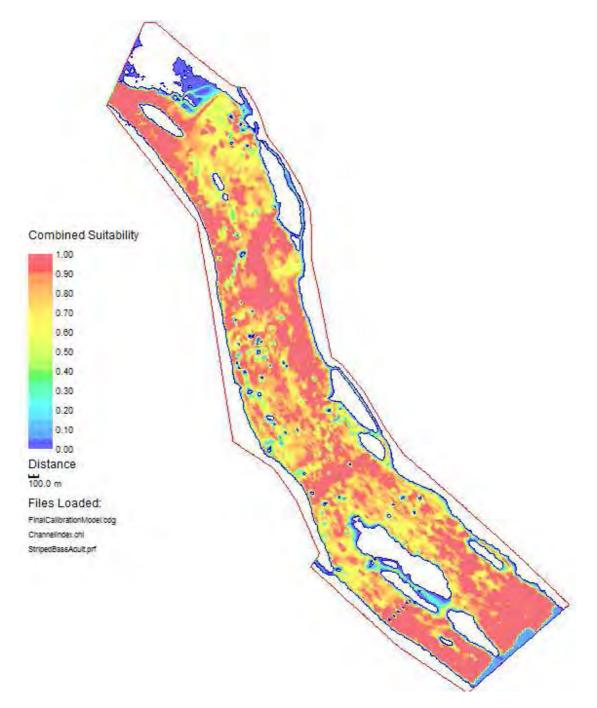



Striped Bass Adult – 5,000 cfs

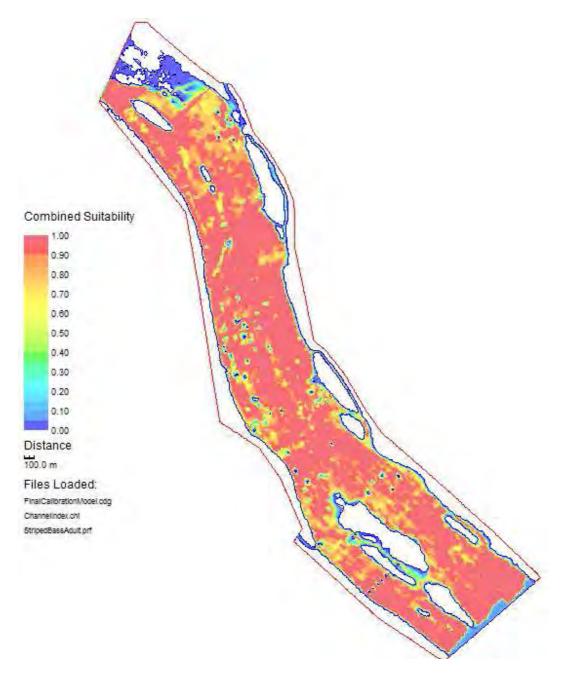



Striped Bass Adult – 7,500 cfs

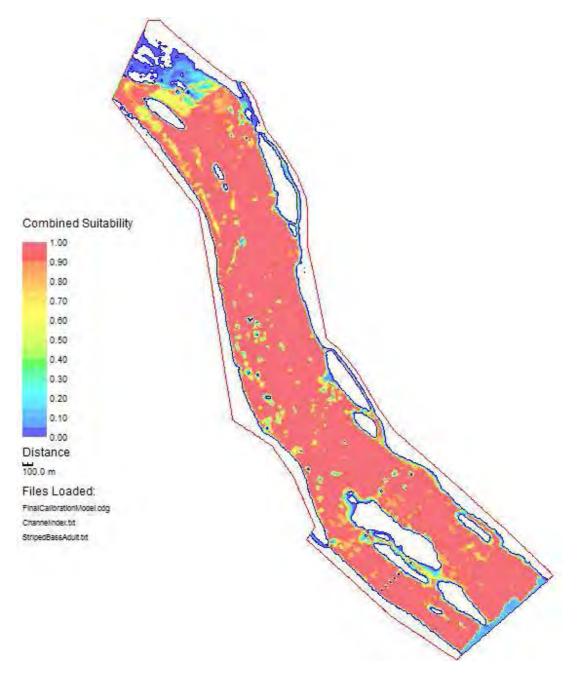



Striped Bass Adult – 10,000 cfs

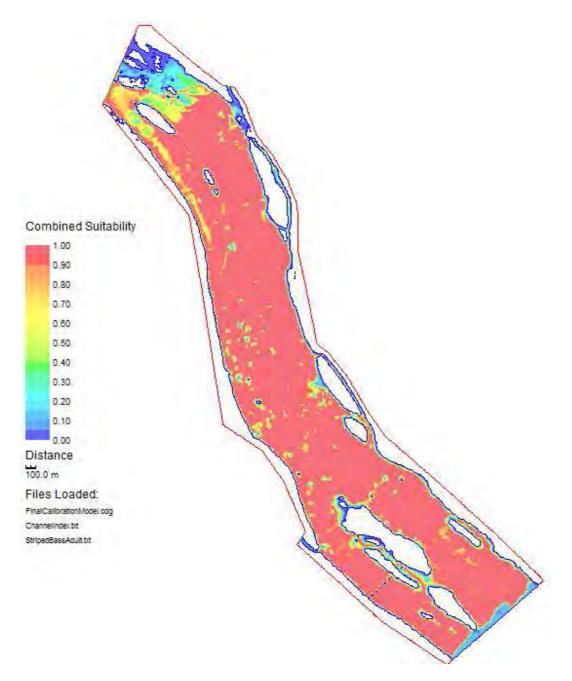



# Striped Bass Adult – 15,000 cfs

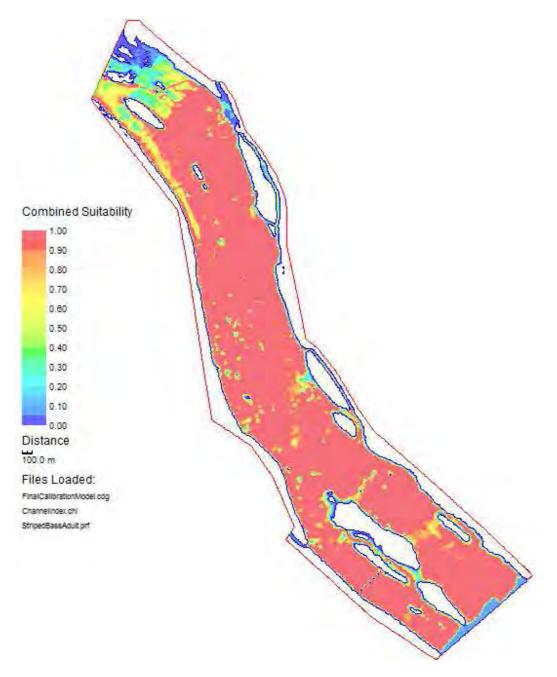



Striped Bass Adult – 20,000 cfs

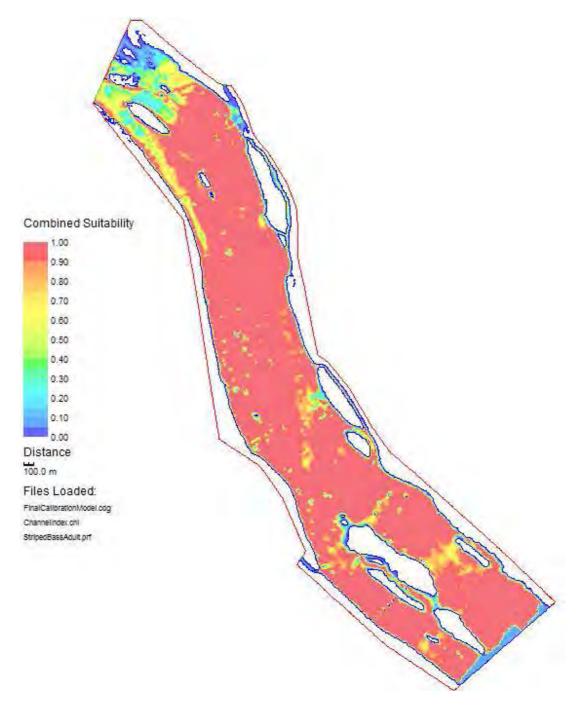



Striped Bass Adult – 30,000 cfs

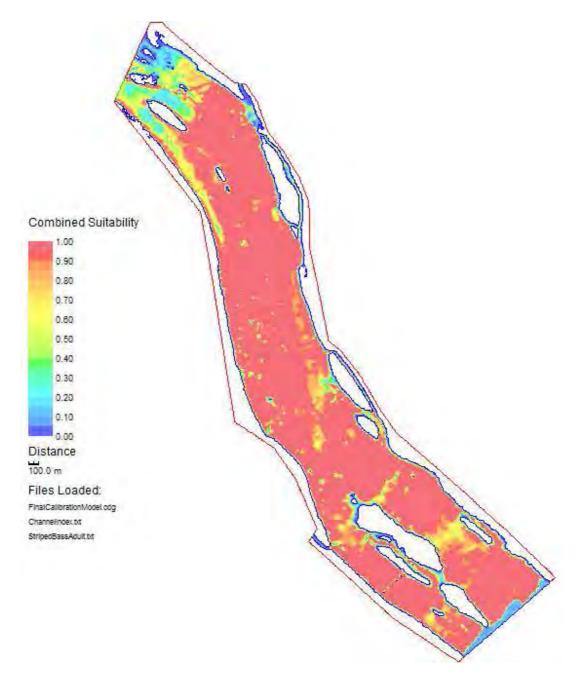



Striped Bass Adult – 40,000 cfs

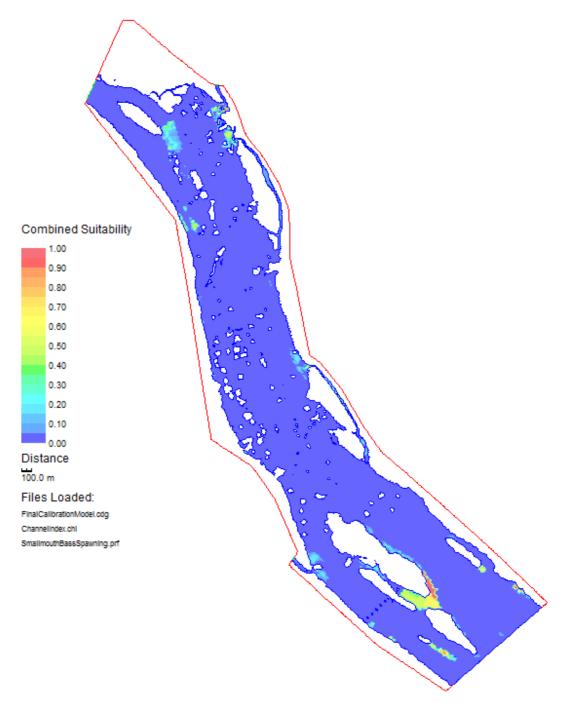



Striped Bass Adult – 50,000 cfs

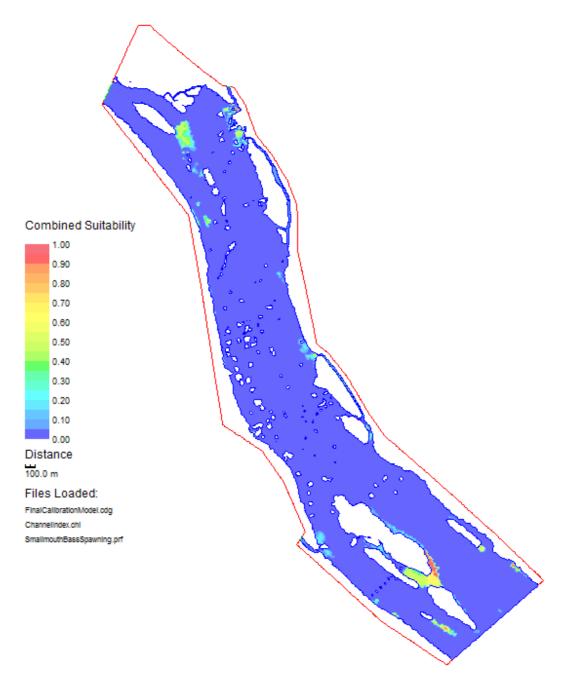



Striped Bass Adult – 60,000 cfs

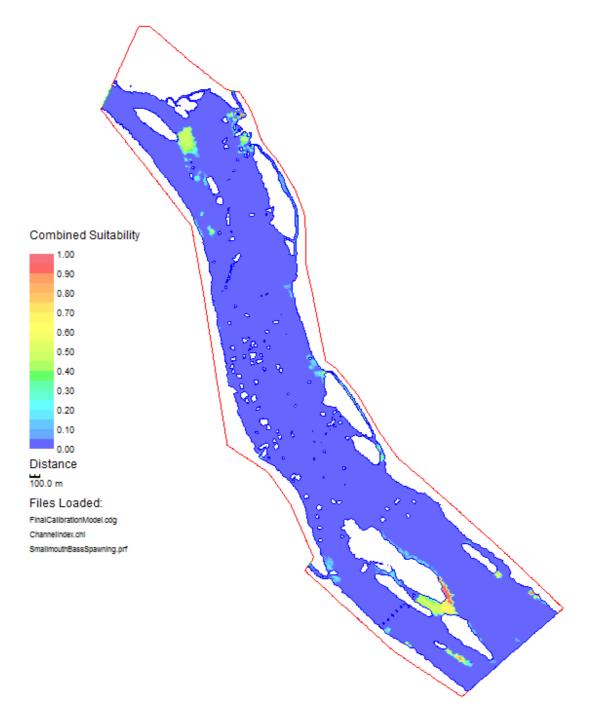



Striped Bass Adult – 70,000 cfs

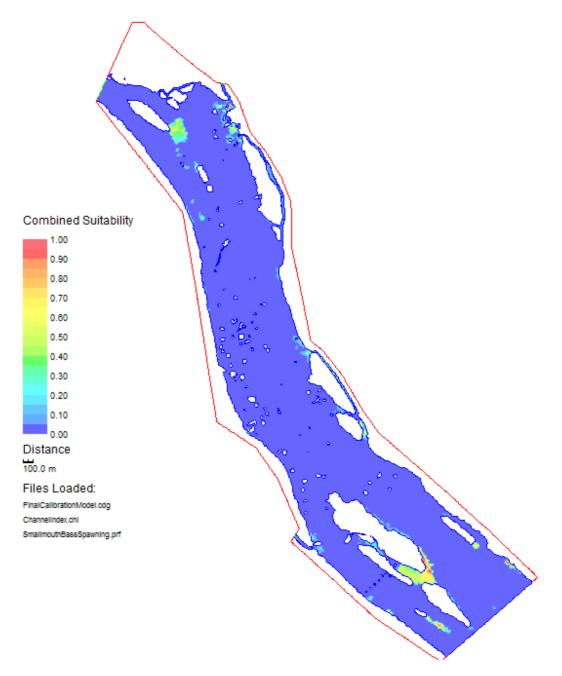



Striped Bass Adult – 80,000 cfs

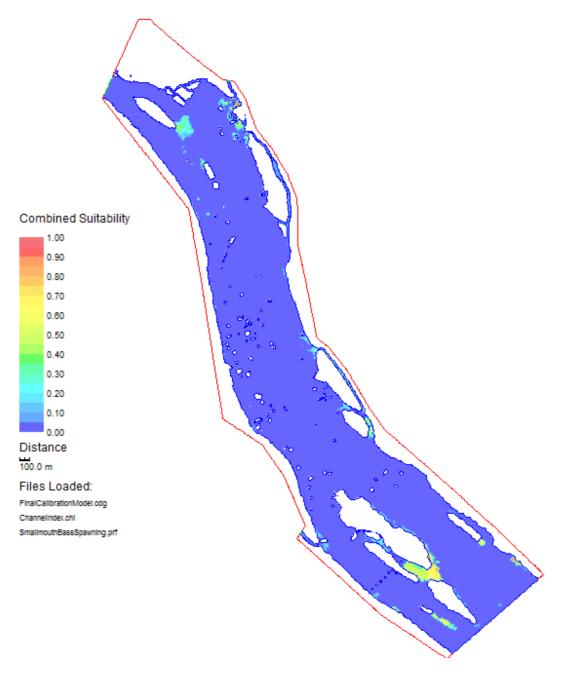



Striped Bass Adult – 86,000 cfs

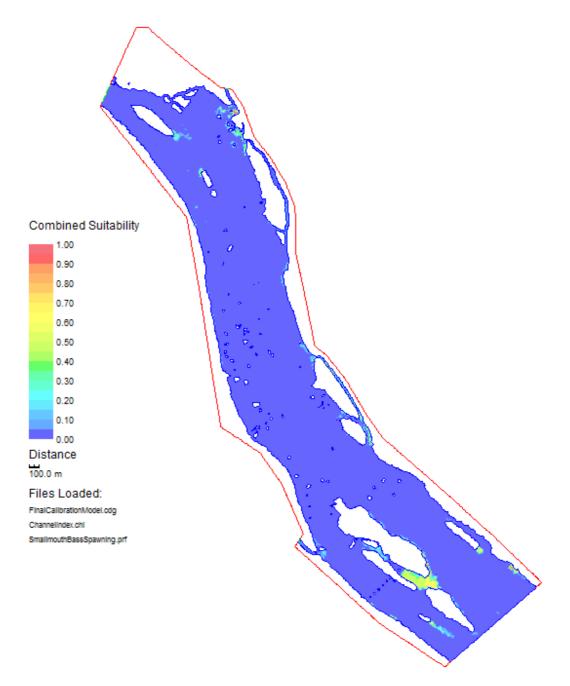



Smallmouth Bass Spawning – 2,000 cfs

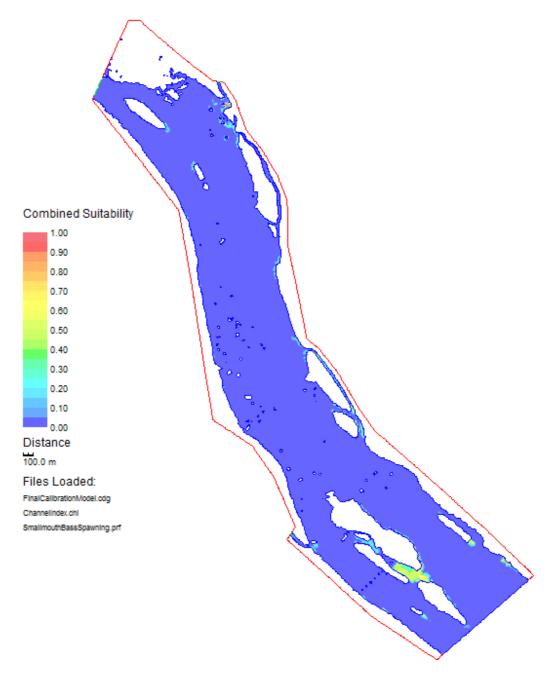



Smallmouth Bass Spawning – 3,500 cfs

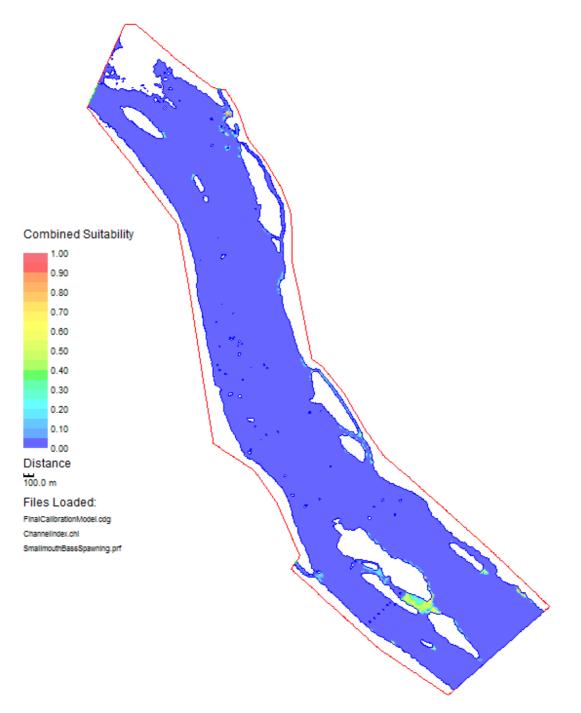



Smallmouth Bass Spawning – 5,000 cfs

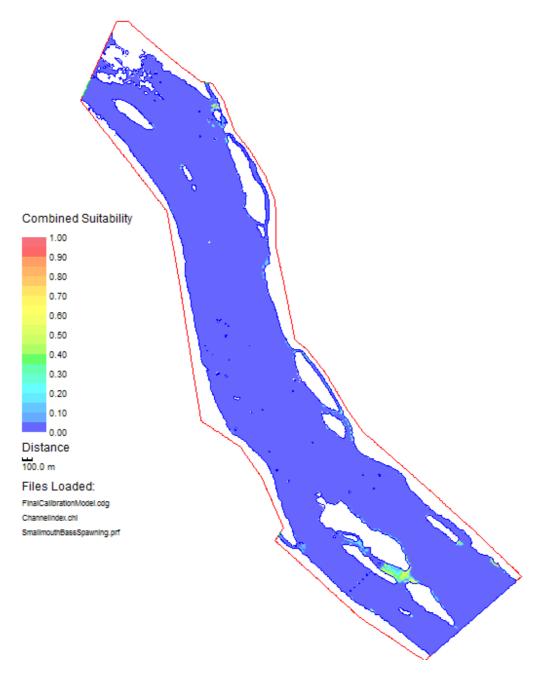



Smallmouth Bass Spawning – 7,500 cfs

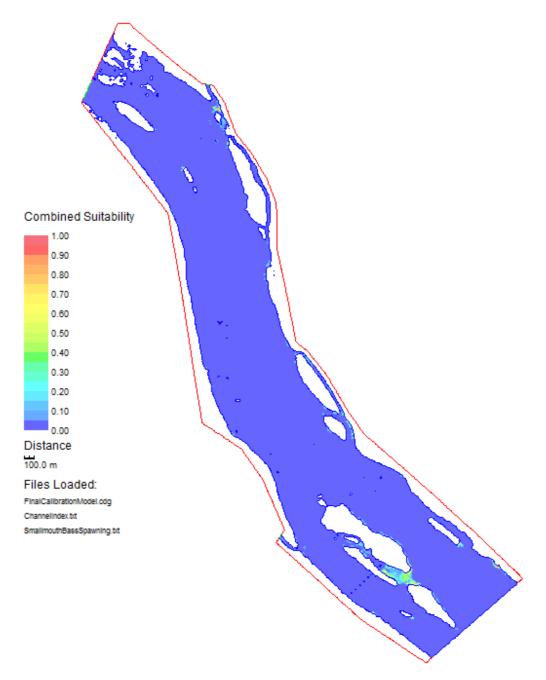



### Smallmouth Bass Spawning – 10,000 cfs

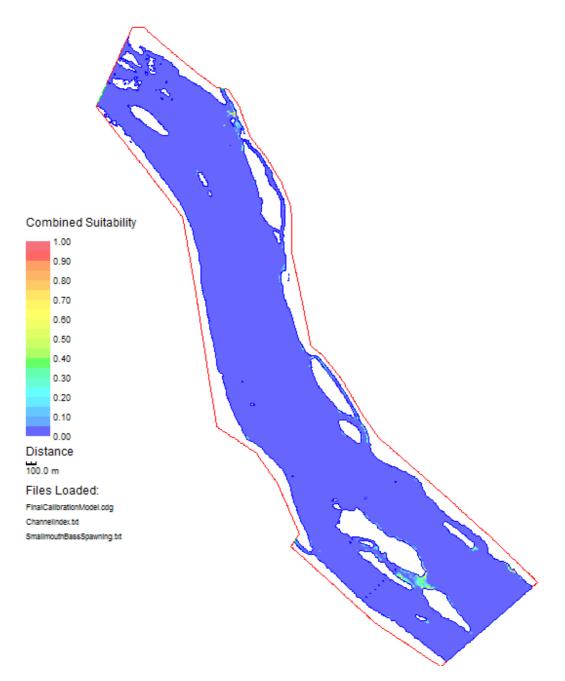



# Smallmouth Bass Spawning – 15,000 cfs

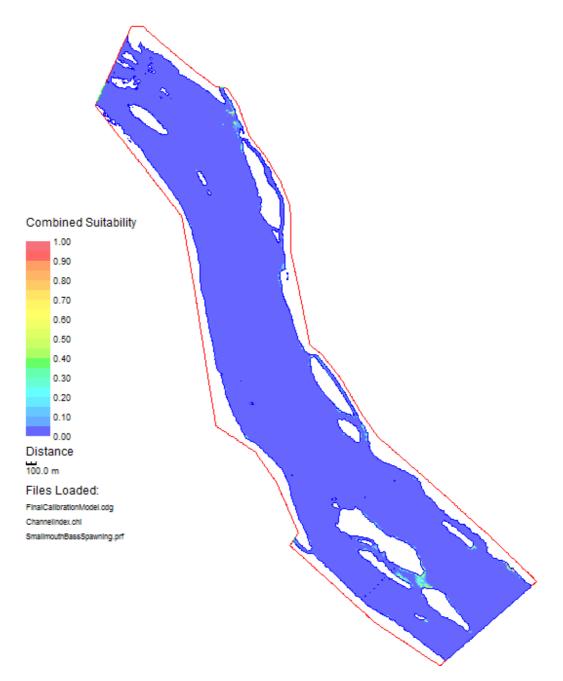



Smallmouth Bass Spawning – 20,000 cfs

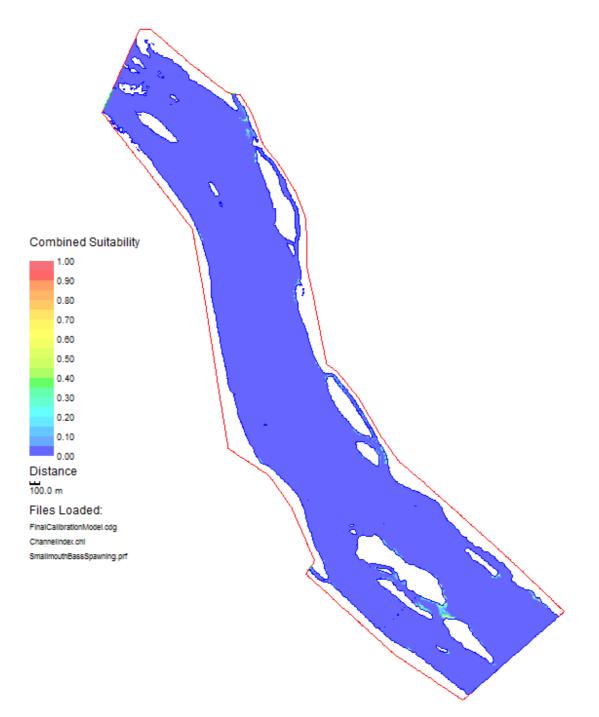



Smallmouth Bass Spawning – 30,000 cfs

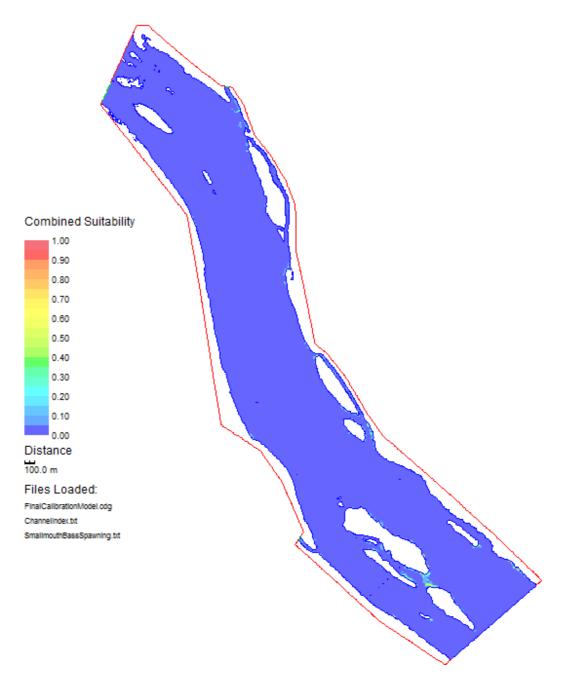



### Smallmouth Bass Spawning – 40,000 cfs

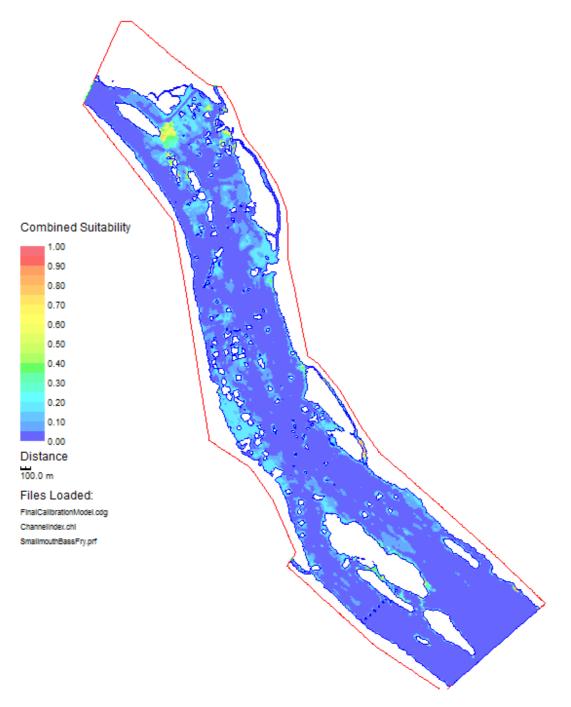



### Smallmouth Bass Spawning – 50,000 cfs

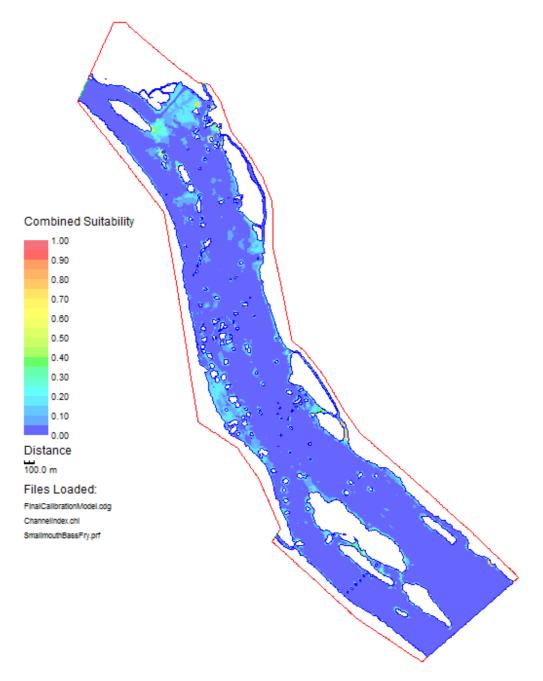



Smallmouth Bass Spawning – 60,000 cfs

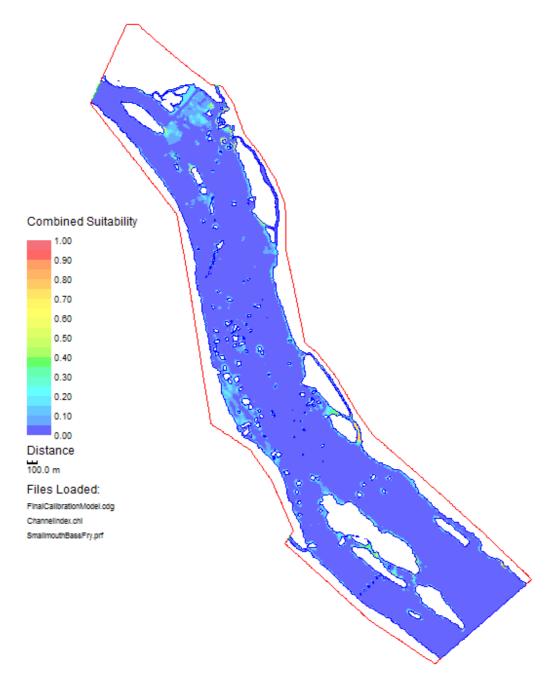



Smallmouth Bass Spawning – 70,000 cfs

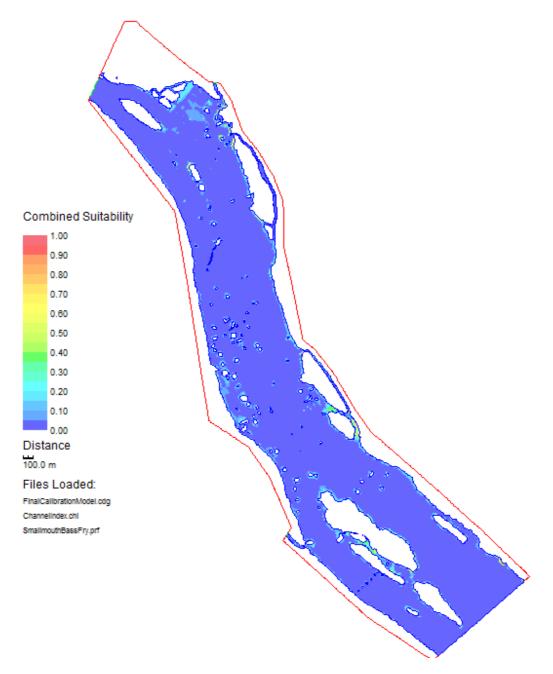



Smallmouth Bass Spawning – 80,000 cfs

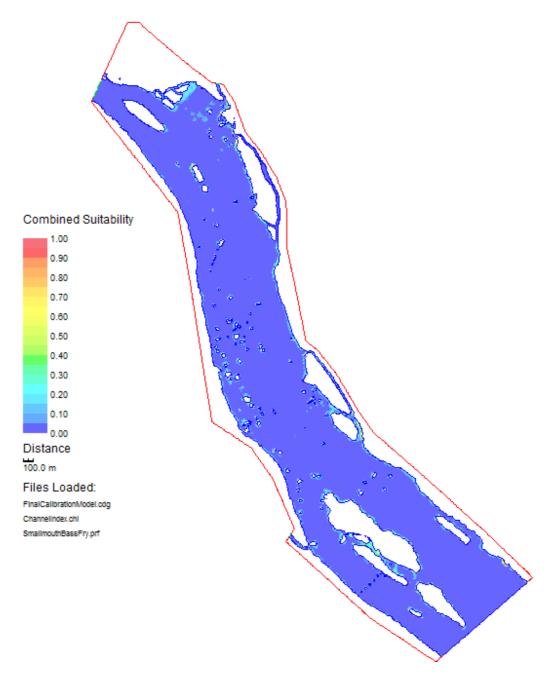



### Smallmouth Bass Spawning – 86,000 cfs

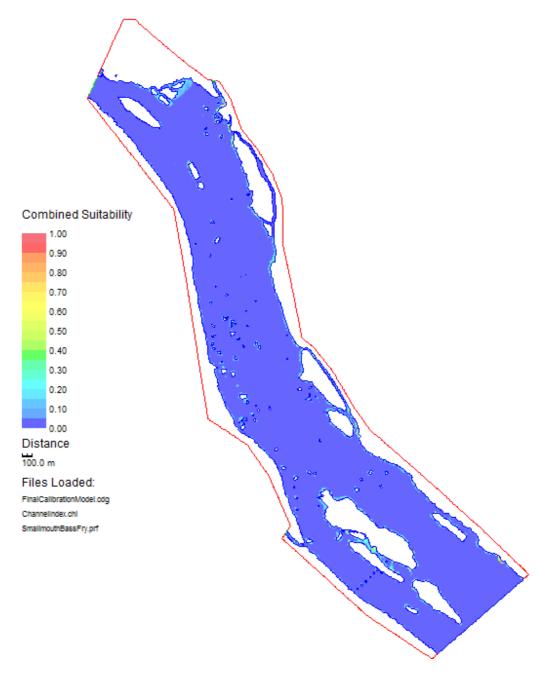



Smallmouth Bass Fry – 2,000 cfs

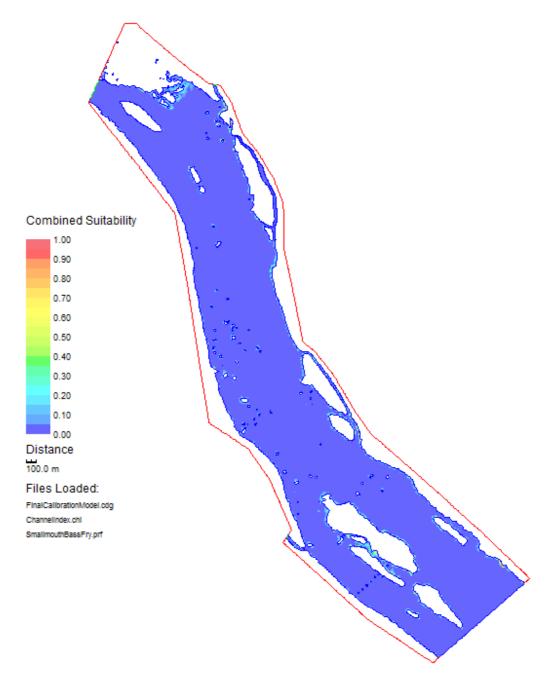



Smallmouth Bass Fry – 3,500 cfs

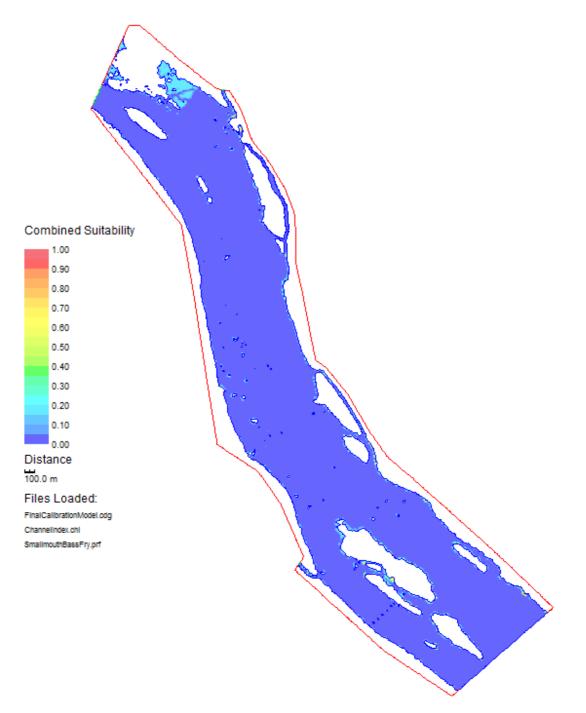



Smallmouth Bass Fry – 5,000 cfs

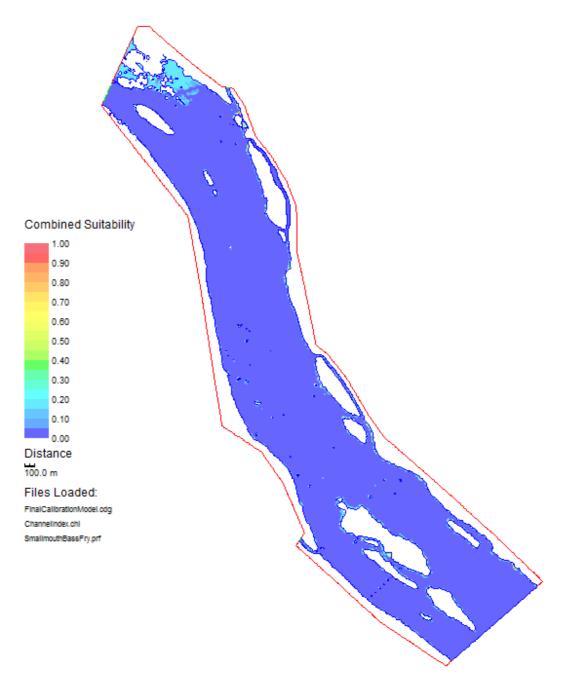



Smallmouth Bass Fry – 7,500 cfs

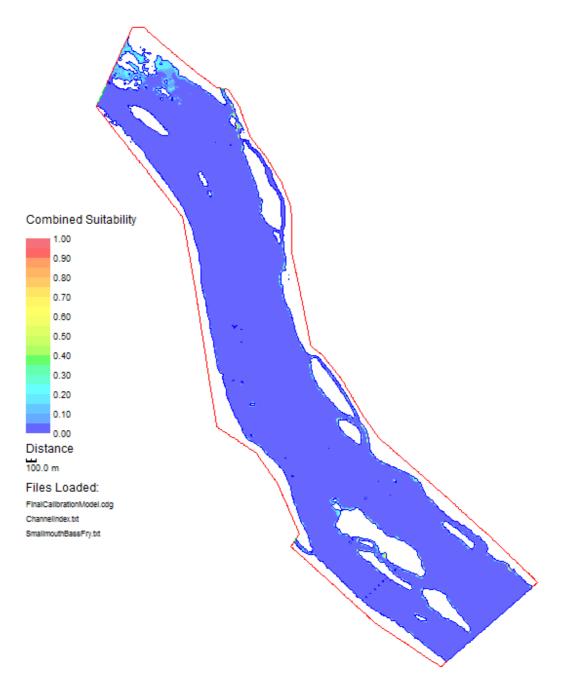



## Smallmouth Bass Fry – 10,000 cfs

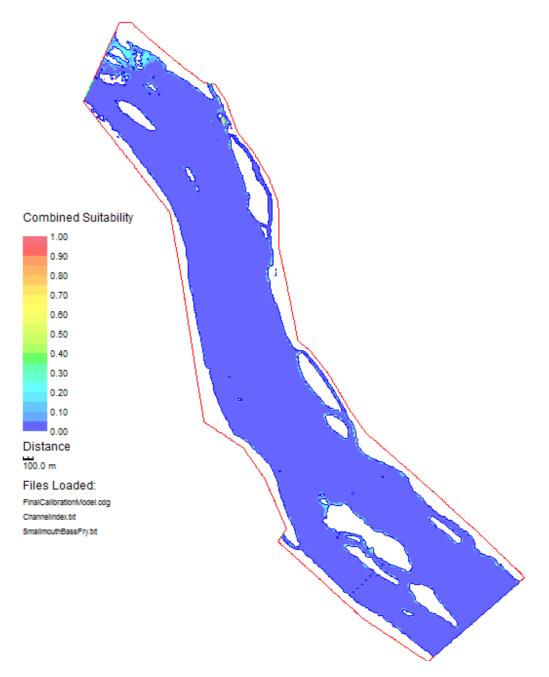



## Smallmouth Bass Fry – 15,000 cfs

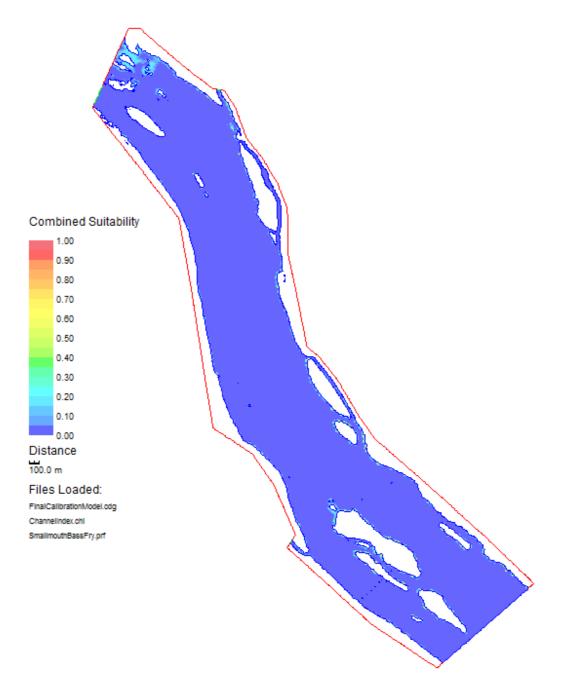



## Smallmouth Bass Fry – 20,000 cfs

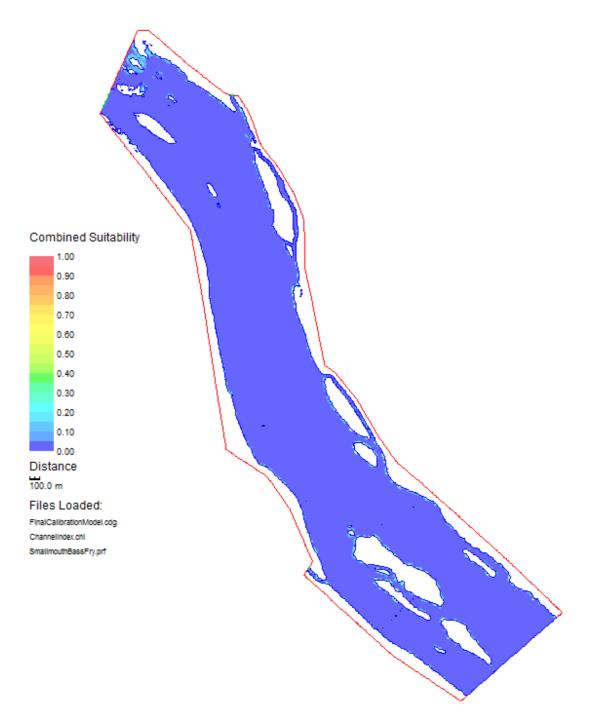



Smallmouth Bass Fry – 30,000 cfs

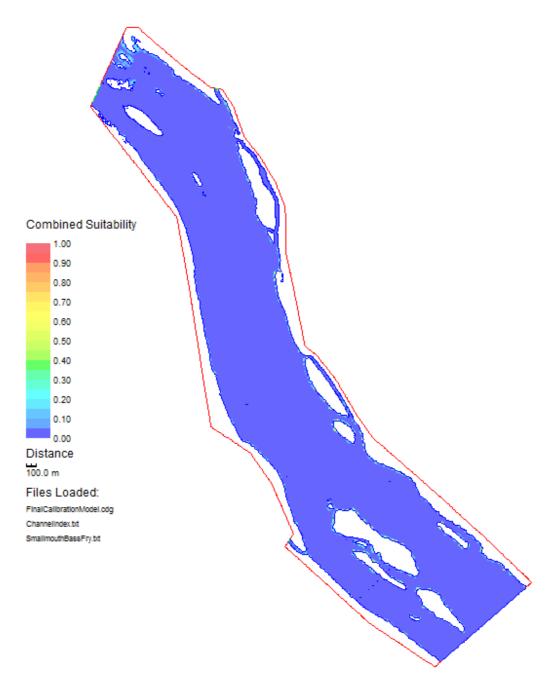



### Smallmouth Bass Fry – 40,000 cfs

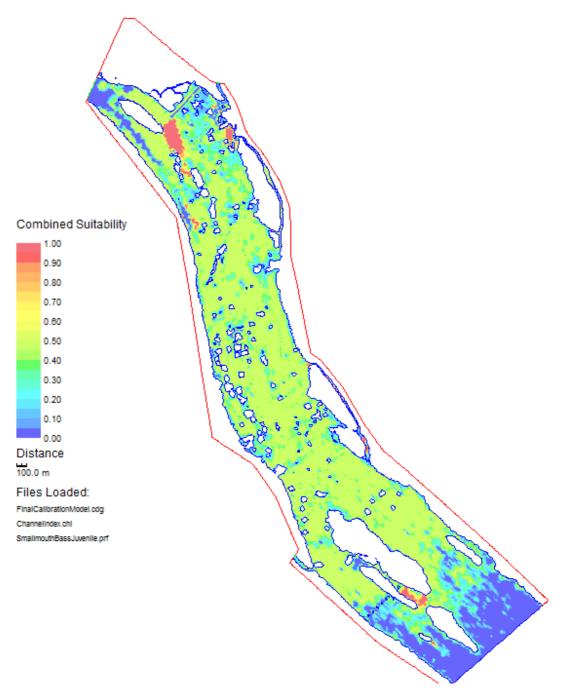



## Smallmouth Bass Fry – 50,000 cfs

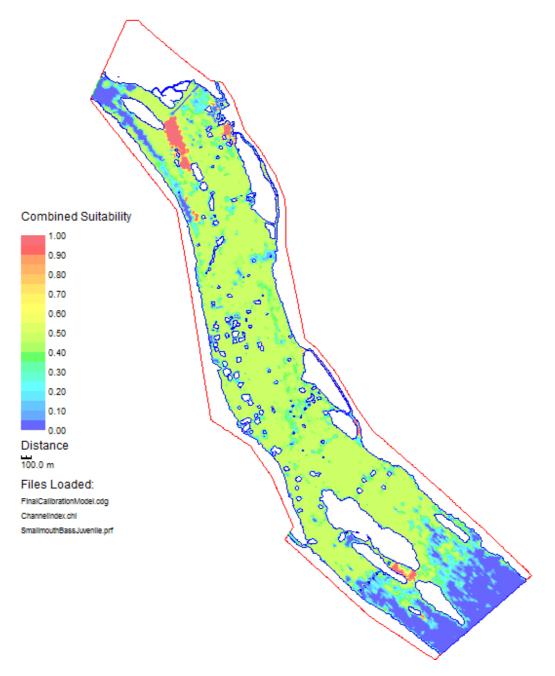



### Smallmouth Bass Fry – 60,000 cfs

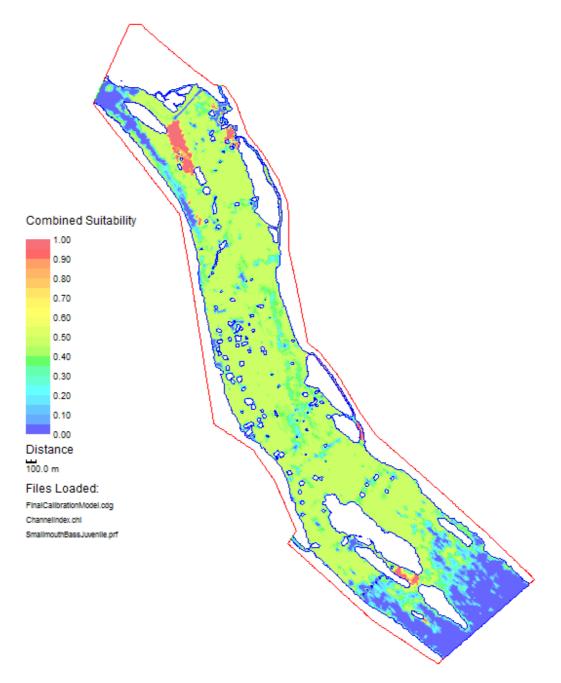



# Smallmouth Bass Fry – 70,000 cfs

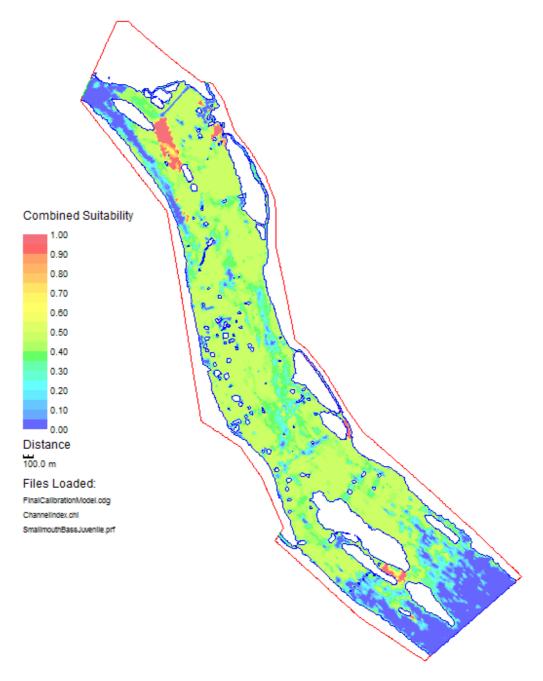



Smallmouth Bass Fry – 80,000 cfs

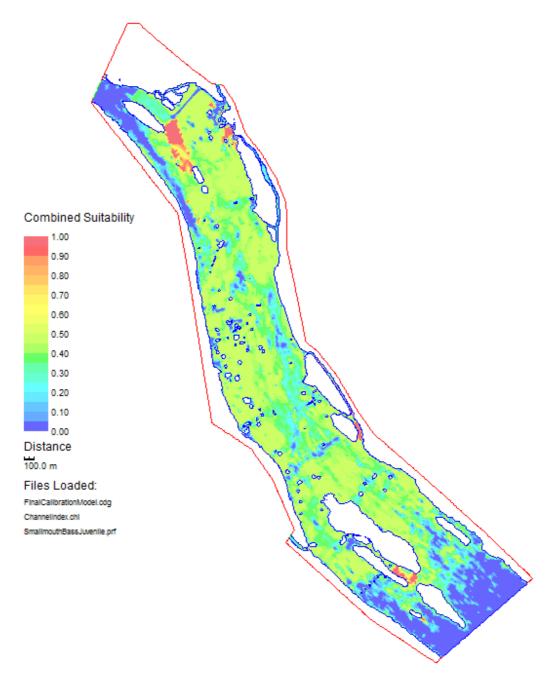



## Smallmouth Bass Fry – 86,000 cfs

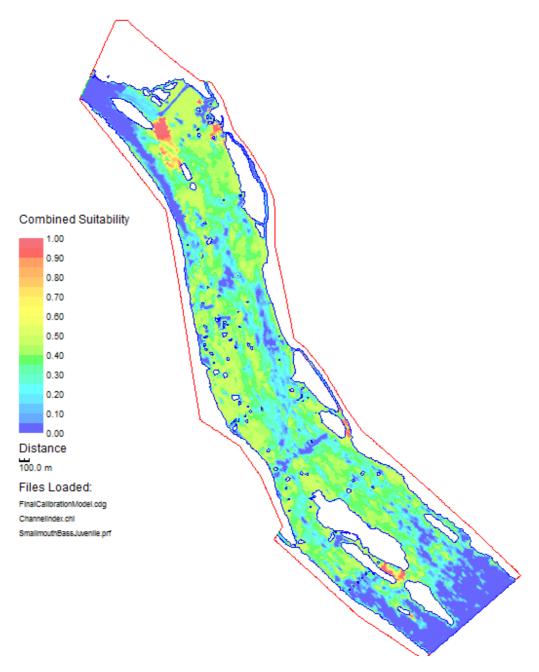



Smallmouth Bass Juvenile – 2,000 cfs

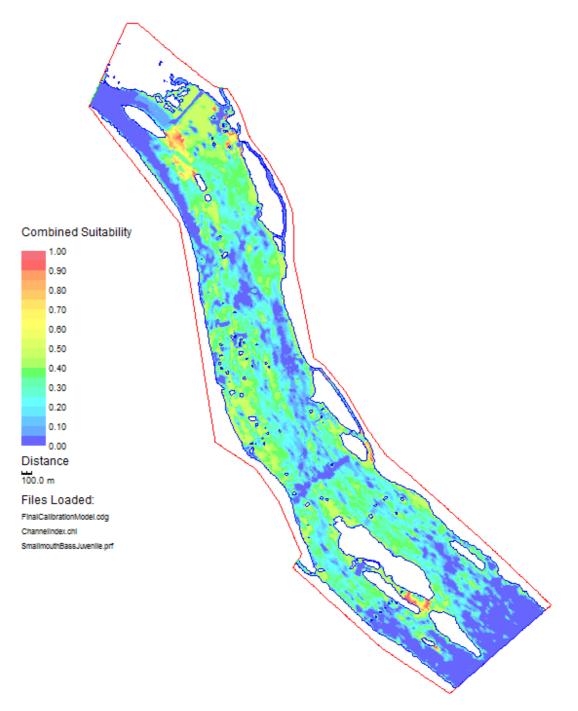



Smallmouth Bass Juvenile – 3,500 cfs

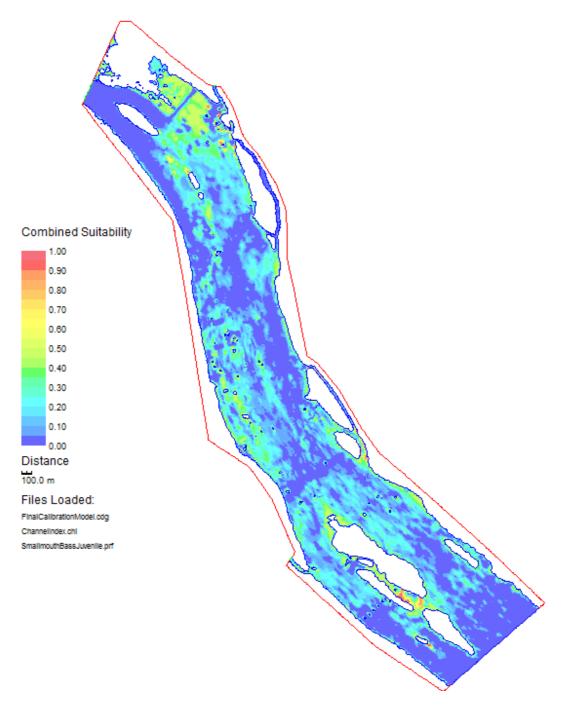



Smallmouth Bass Juvenile – 5,000 cfs

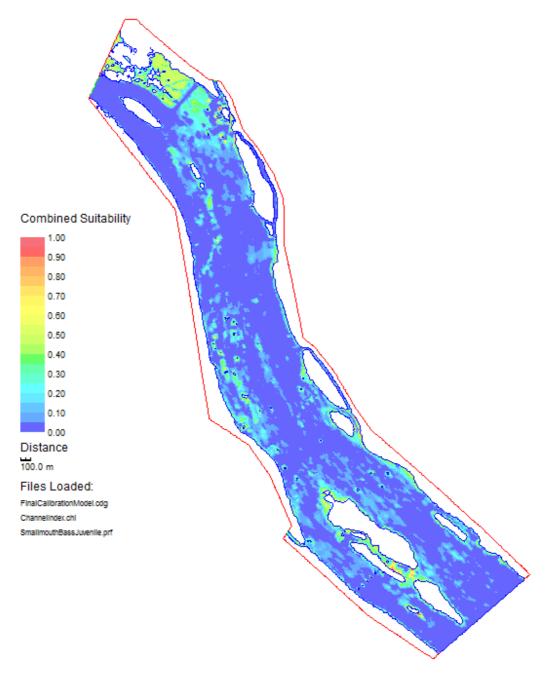



Smallmouth Bass Juvenile – 7,500 cfs

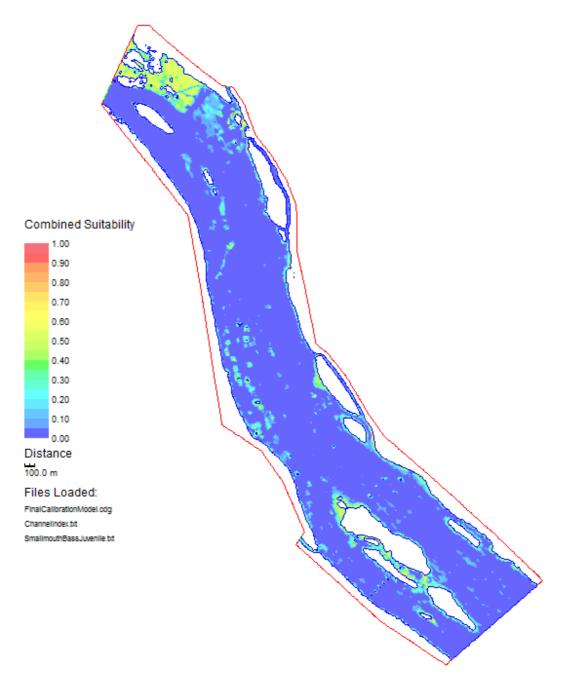



Smallmouth Bass Juvenile – 10,000 cfs

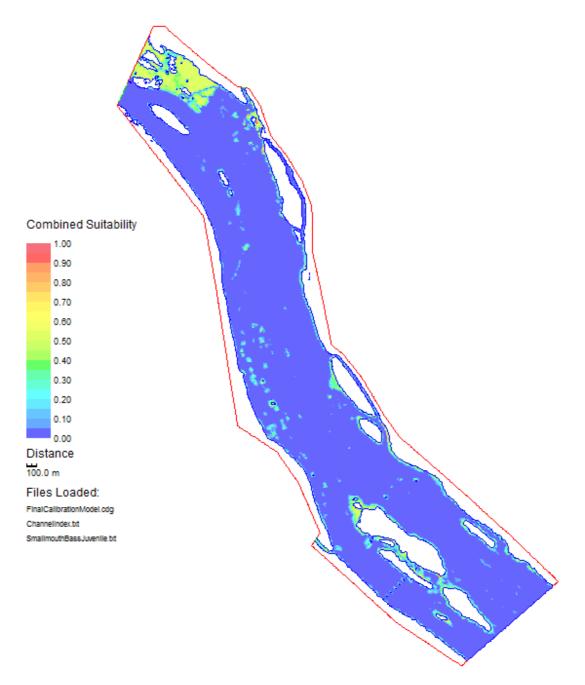



### Smallmouth Bass Juvenile – 15,000 cfs

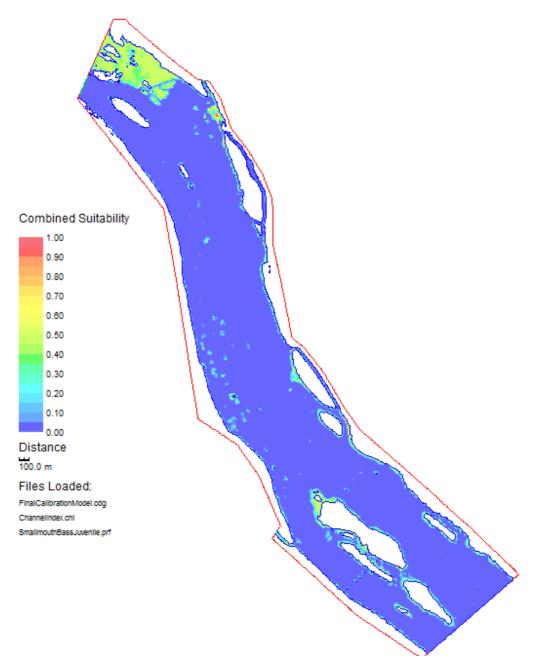



Smallmouth Bass Juvenile – 20,000 cfs

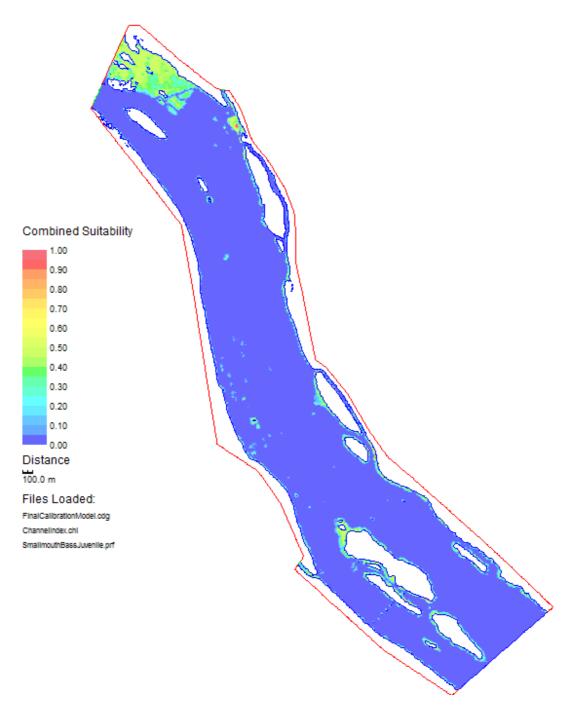



Smallmouth Bass Juvenile – 30,000 cfs

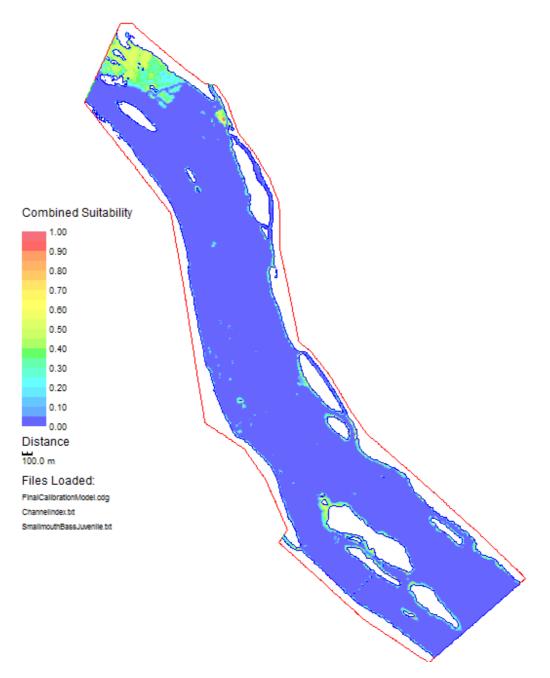



Smallmouth Bass Juvenile – 40,000 cfs

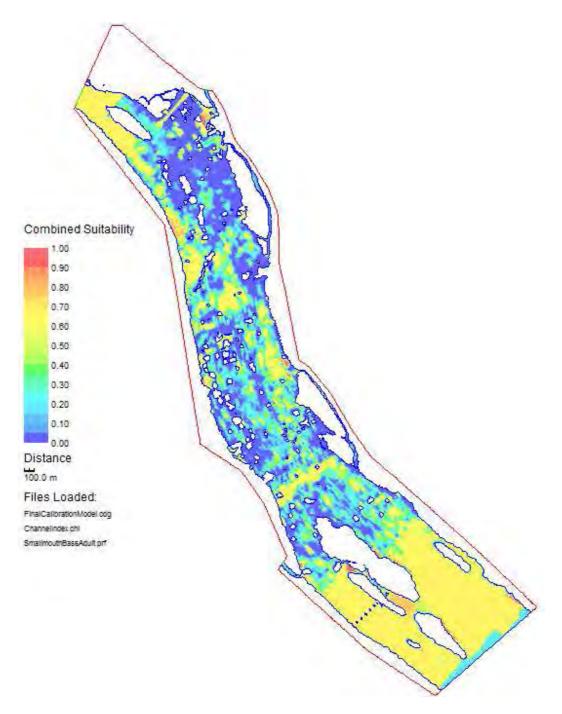



## Smallmouth Bass Juvenile – 50,000 cfs

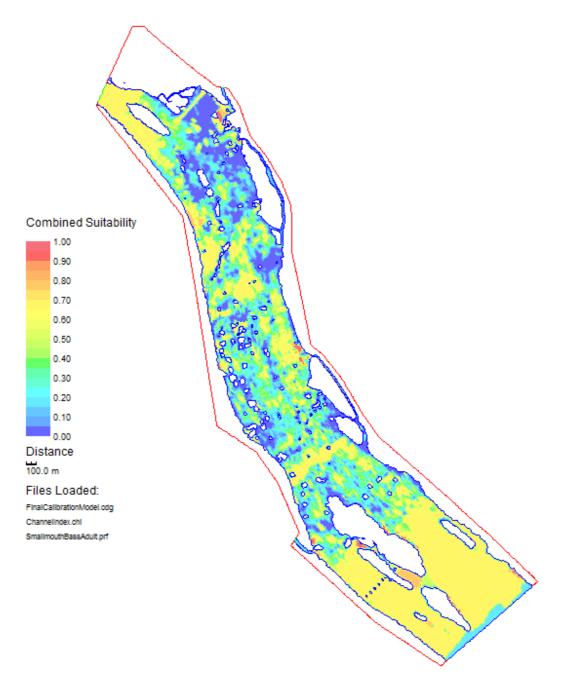



# Smallmouth Bass Juvenile – 60,000 cfs




### Smallmouth Bass Juvenile – 70,000 cfs

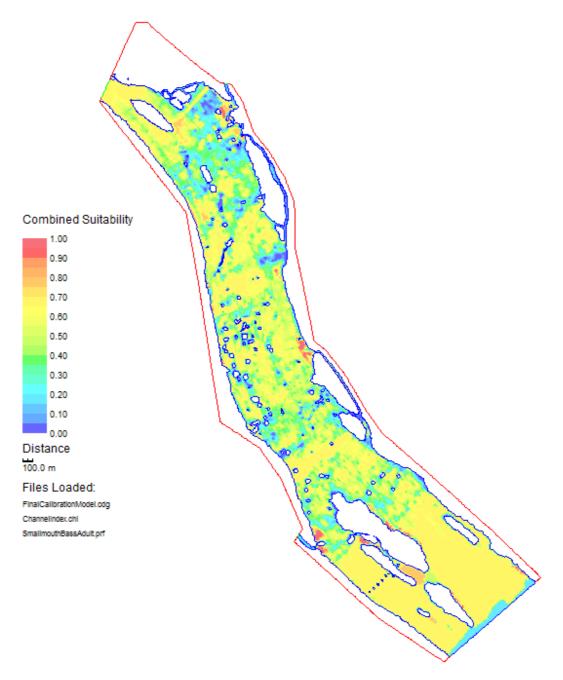



Smallmouth Bass Juvenile – 80,000 cfs

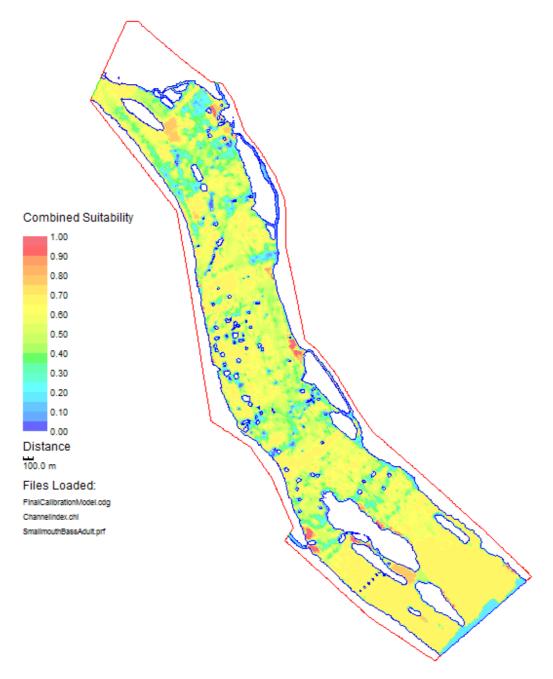



Smallmouth Bass Juvenile – 86,000 cfs

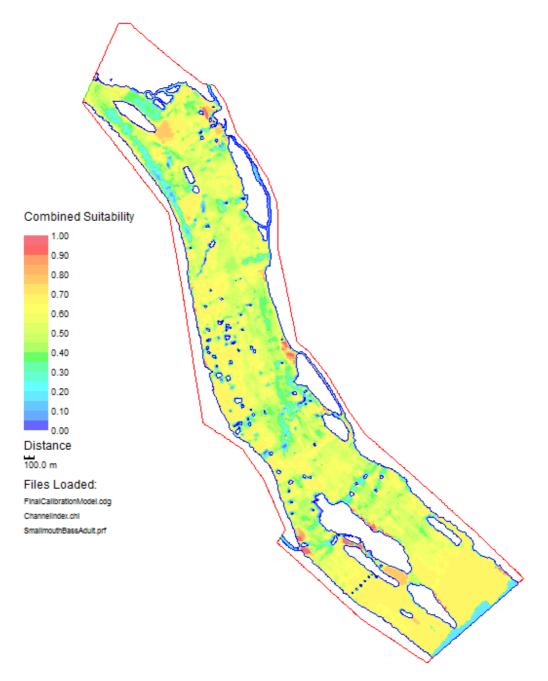



Smallmouth Bass Adult – 2,000 cfs

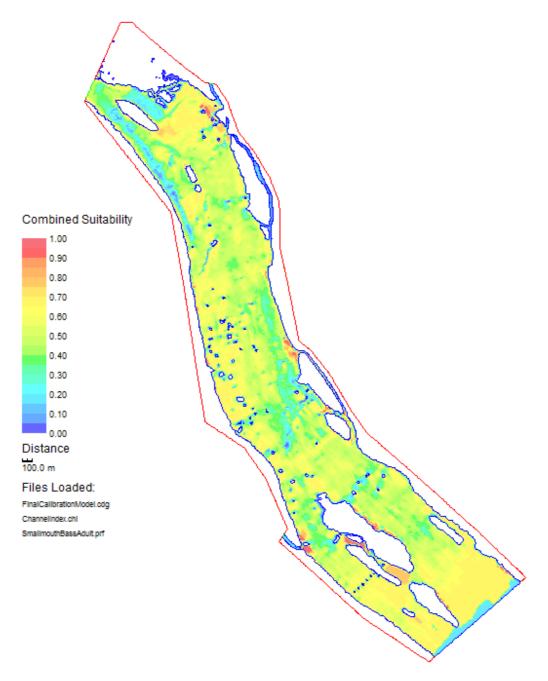



### Smallmouth Bass Adult –3,500 cfs

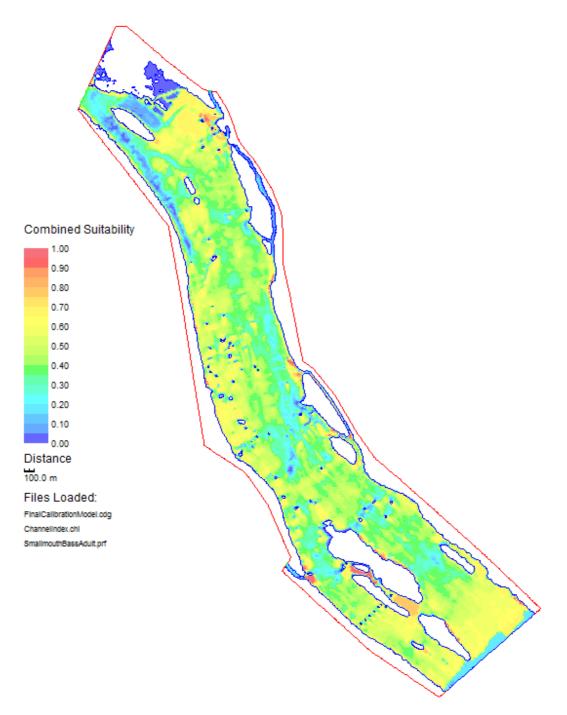



Smallmouth Bass Adult – 5,000 cfs

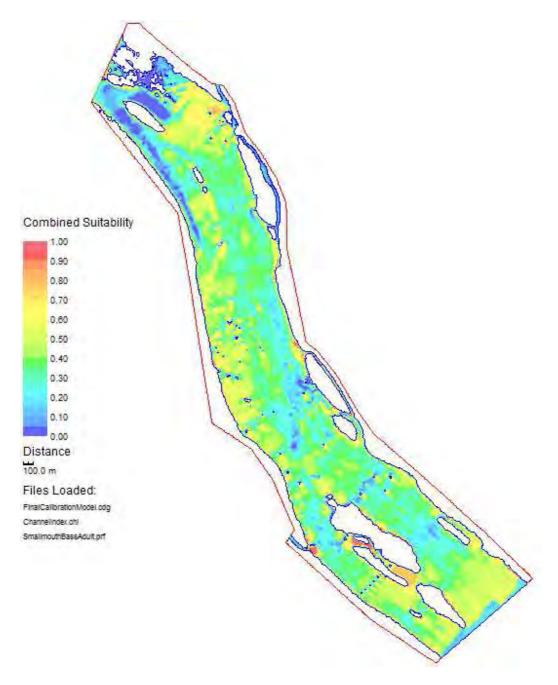



Smallmouth Bass Adult – 7,500 cfs

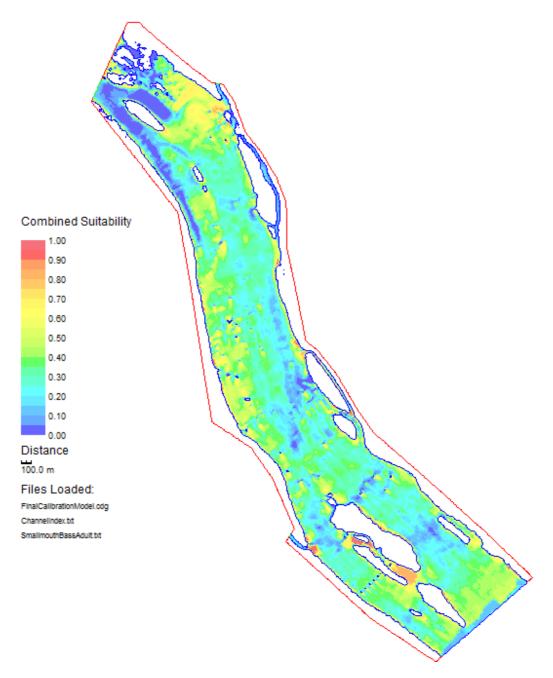



Smallmouth Bass Adult – 10,000 cfs

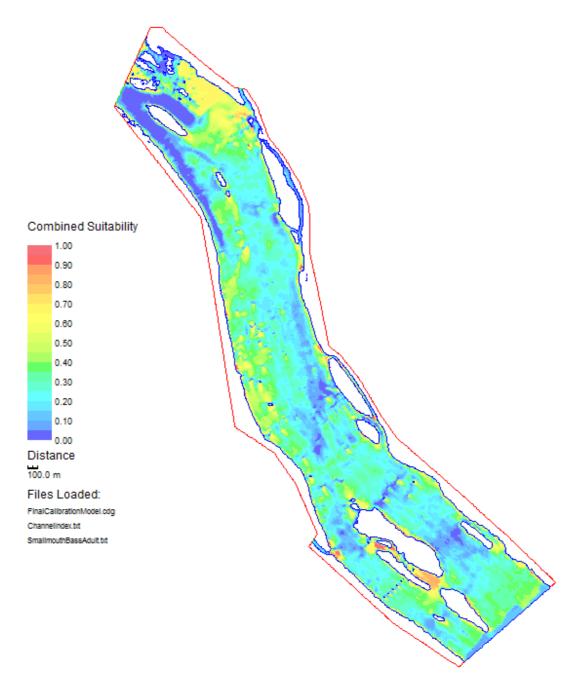



Smallmouth Bass Adult - 15,000 cfs

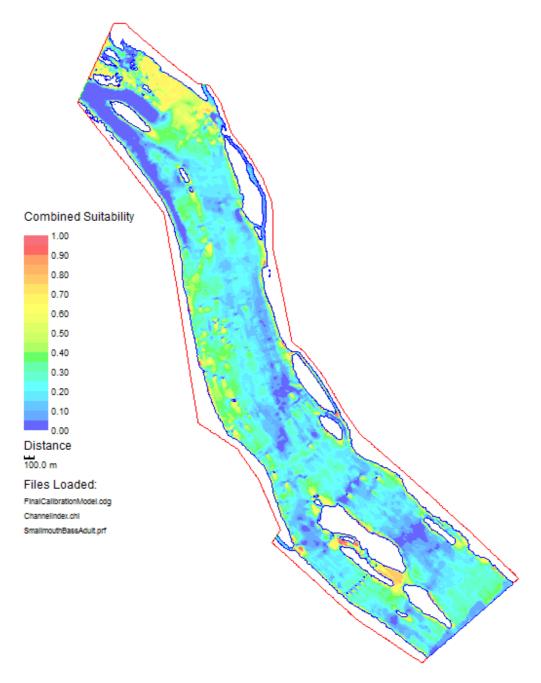



Smallmouth Bass Adult – 20,000 cfs

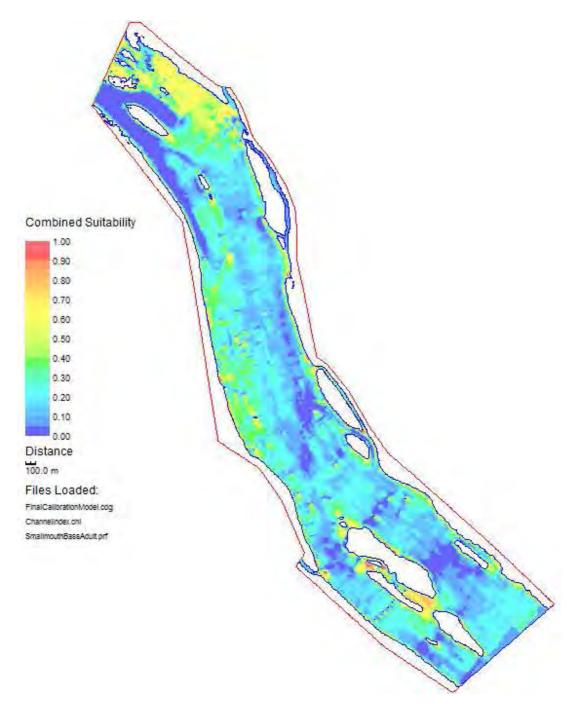



Smallmouth Bass Adult – 30,000 cfs

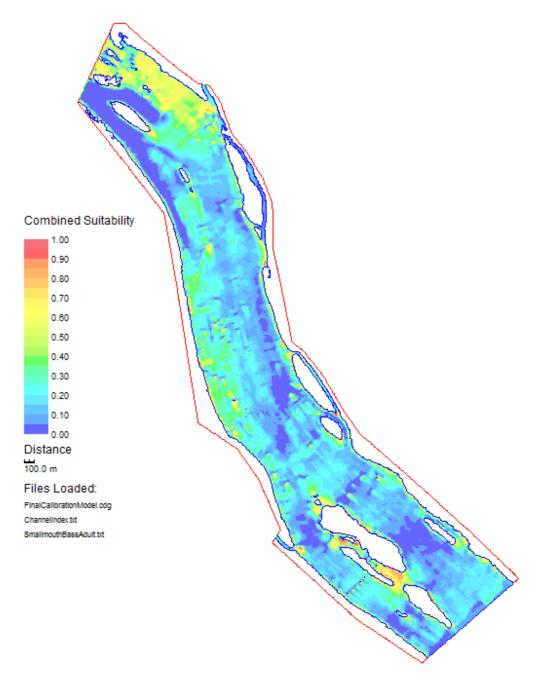



Smallmouth Bass Adult – 40,000 cfs

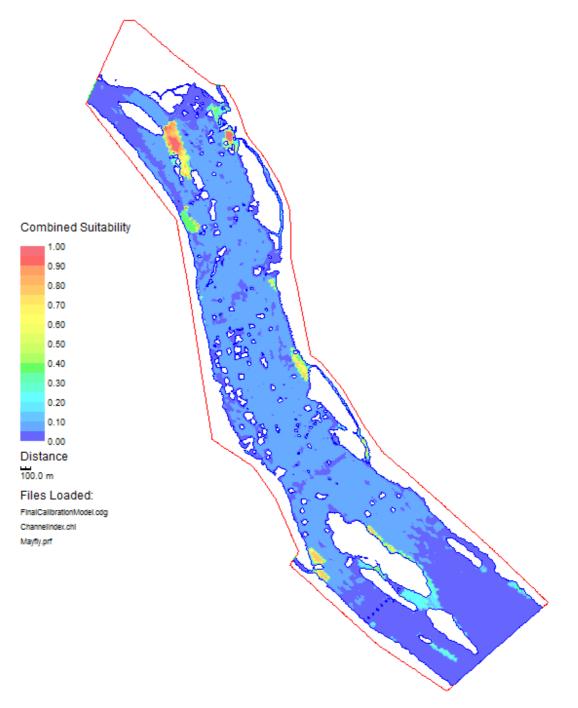



## Smallmouth Bass Adult – 50,000 cfs

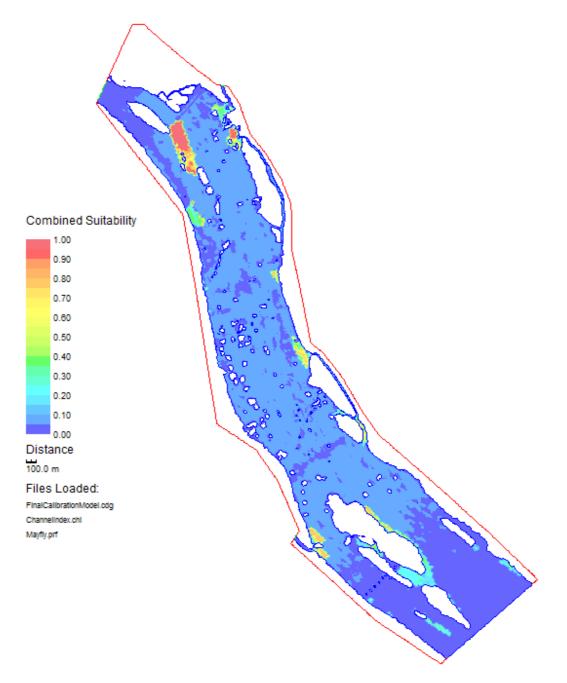



Smallmouth Bass Adult – 60,000 cfs

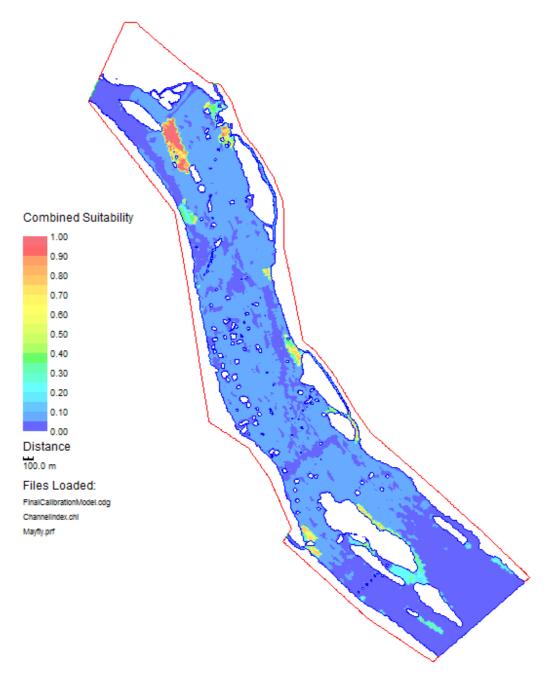



## Smallmouth Bass Adult – 70,000 cfs

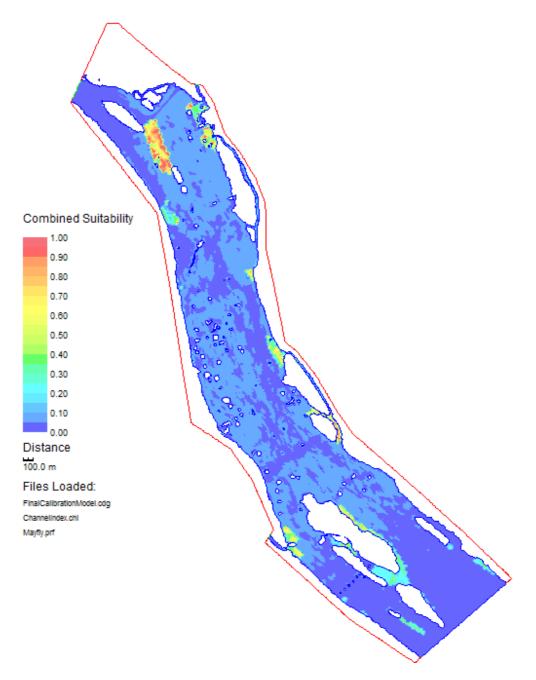



Smallmouth Bass Adult – 80,000 cfs

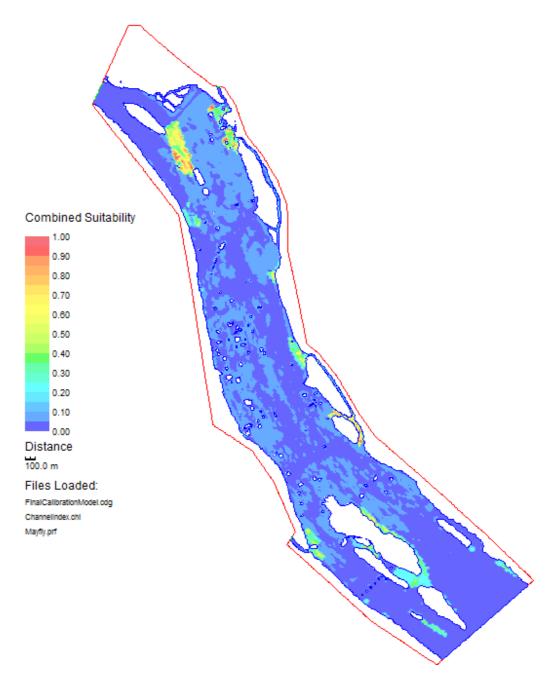



## Smallmouth Bass Adult – 86,000 cfs

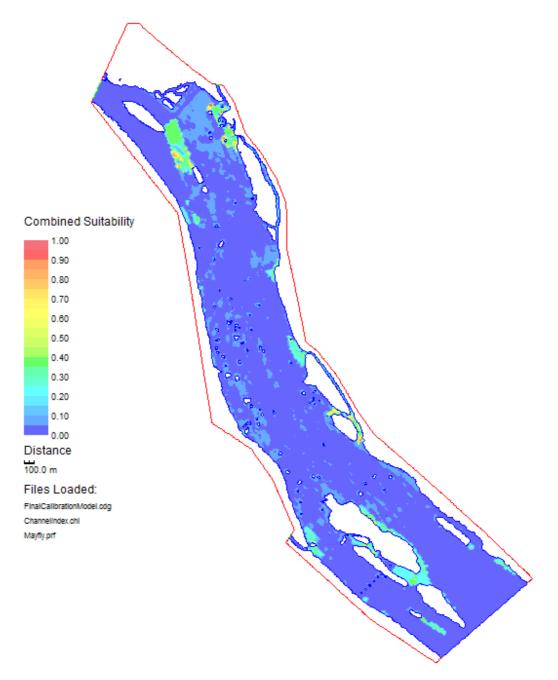



Mayfly – 2,000 cfs

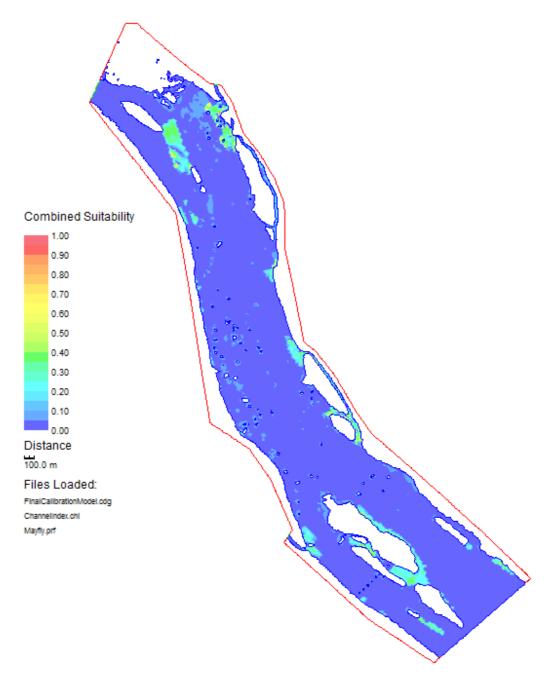



Mayfly – 3,500 cfs

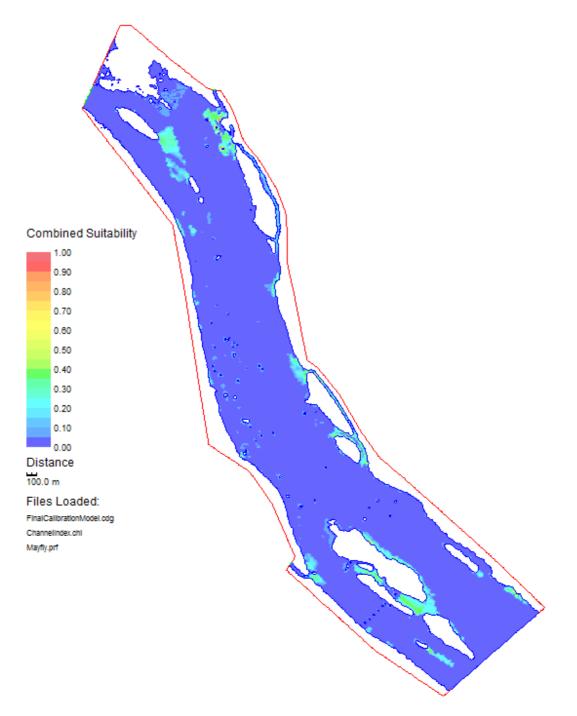



Mayfly – 5,000 cfs

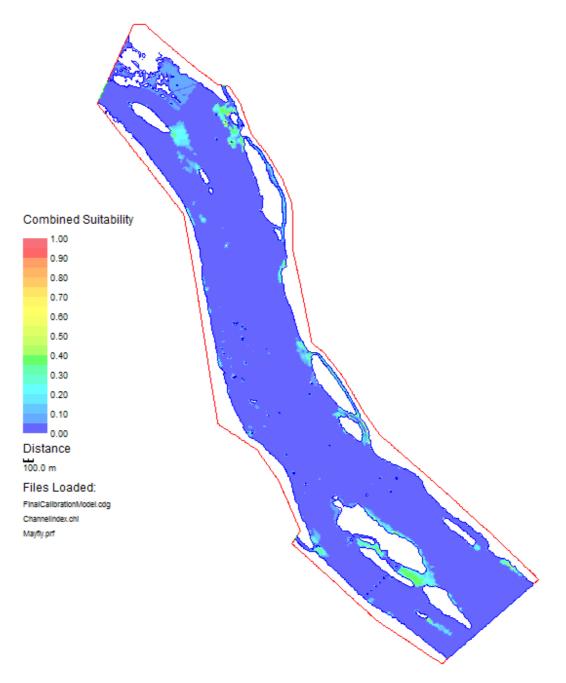



Mayfly – 7,500 cfs

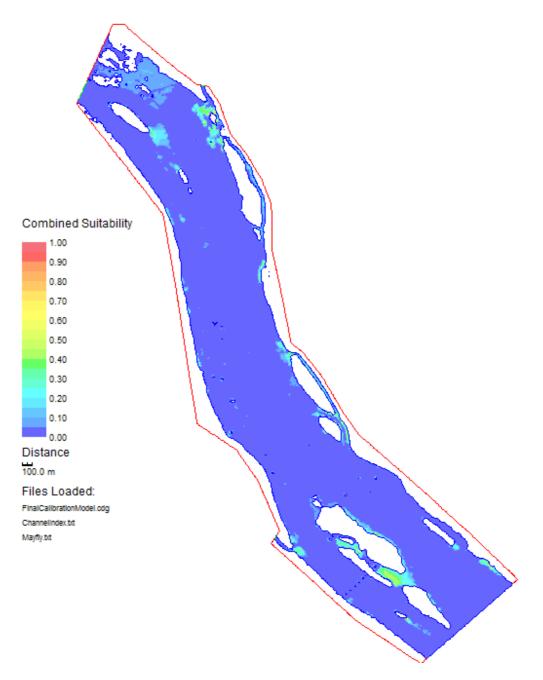



Mayfly – 10,000 cfs

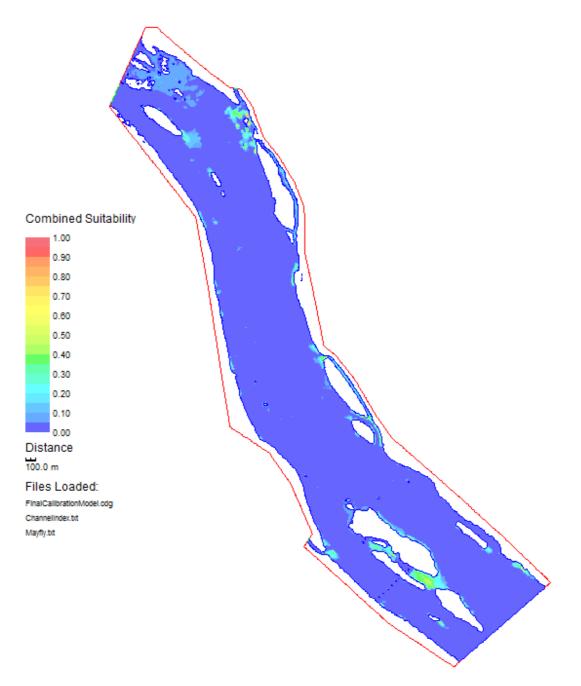



Mayfly – 15,000 cfs

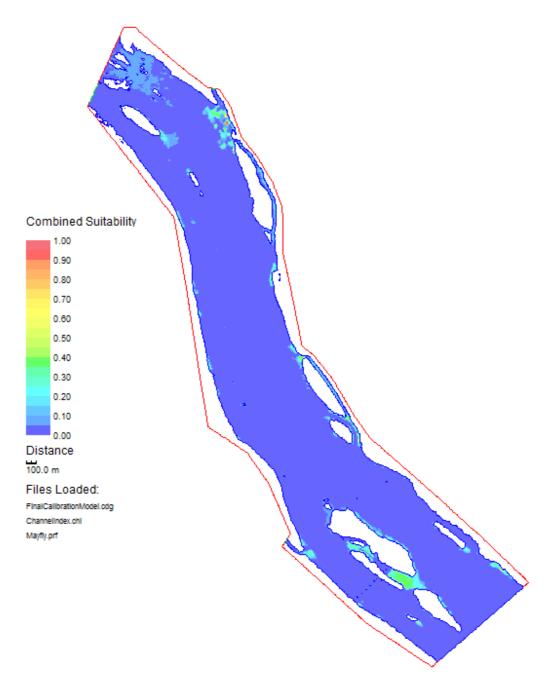



Mayfly – 20,000 cfs

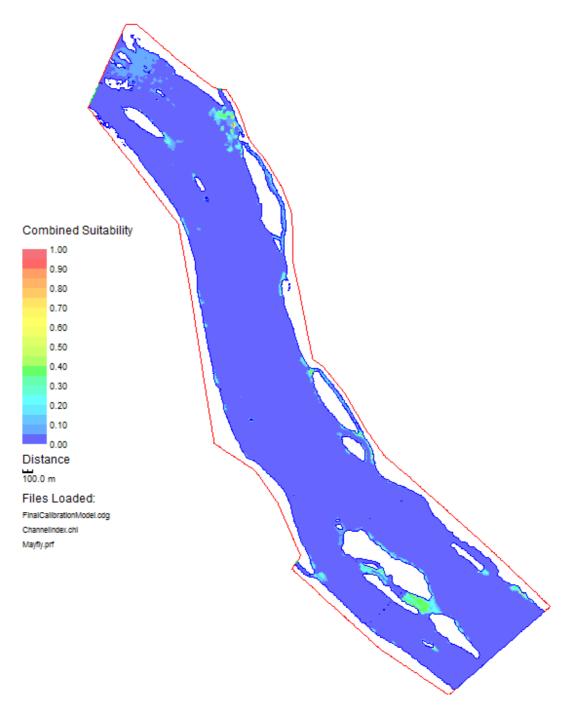



Mayfly – 30,000 cfs

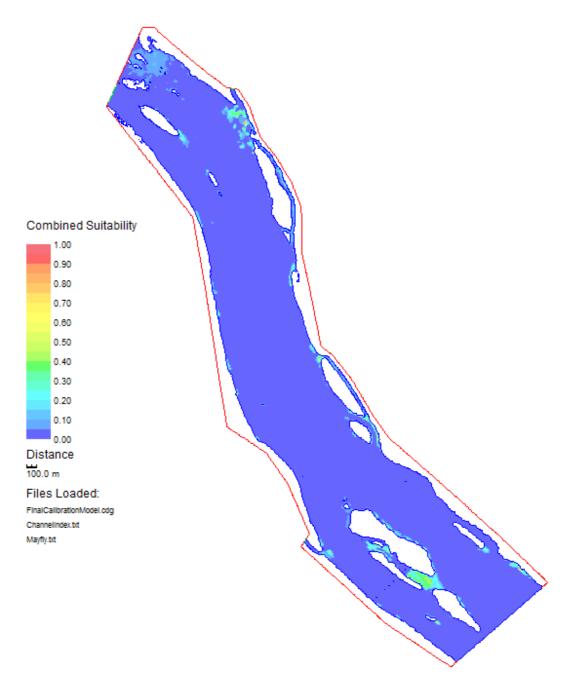



Mayfly – 40,000 cfs

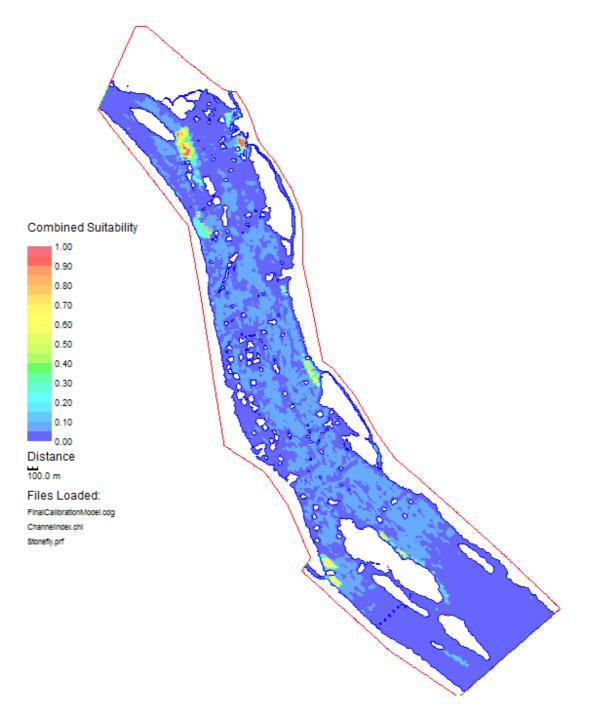



Mayfly – 50,000cfs

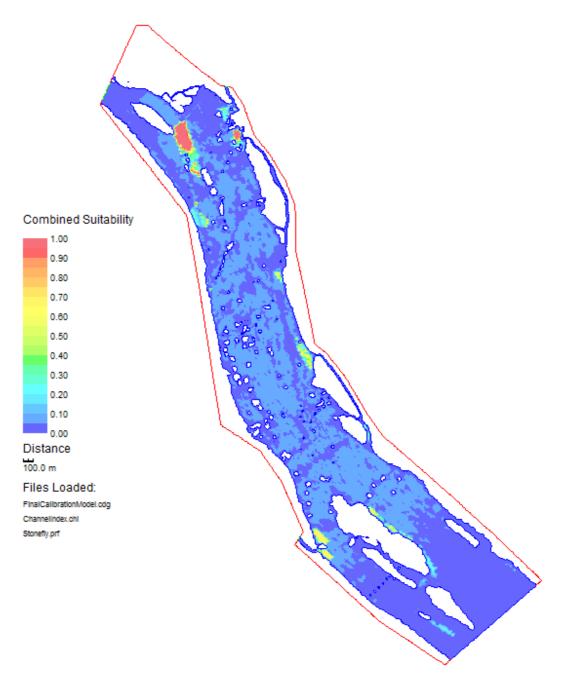



Mayfly – 60,000 cfs

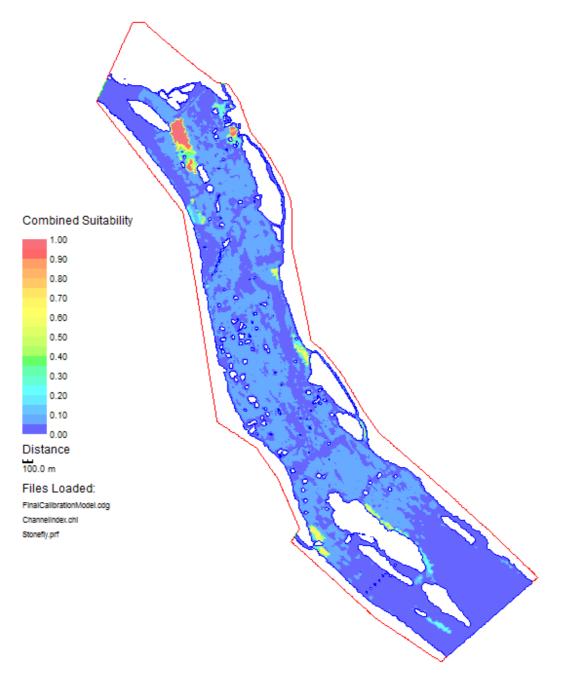



Mayfly – 70,000 cfs

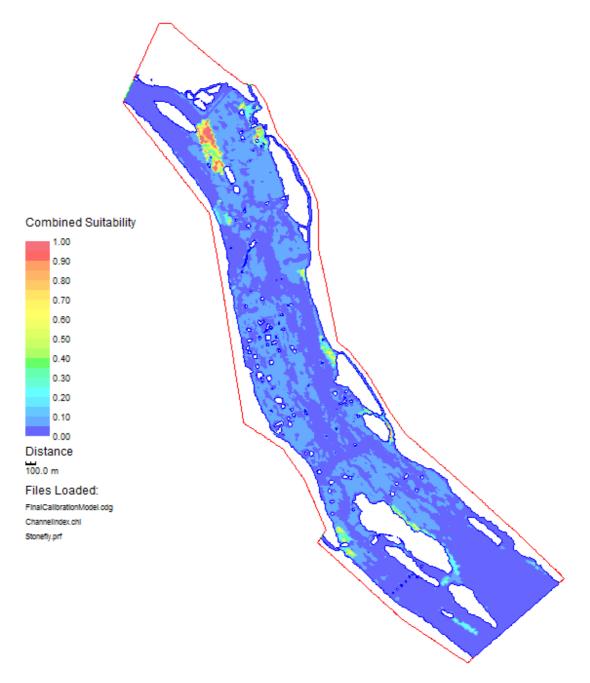



Mayfly – 80,000 cfs

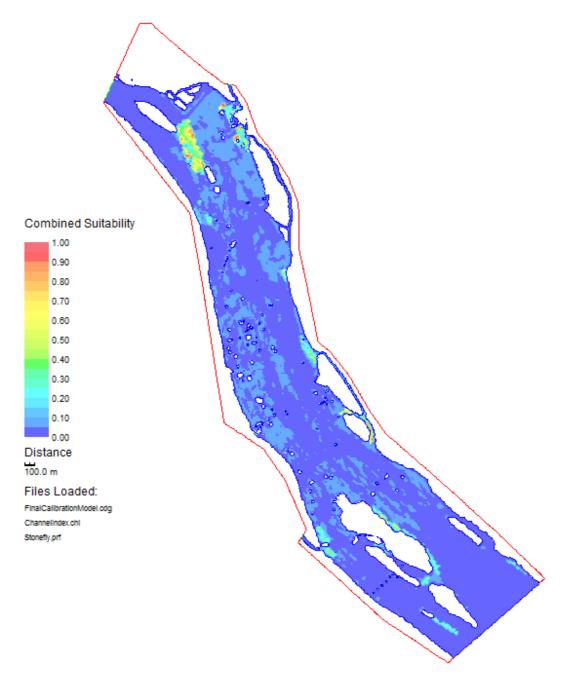



Mayfly – 86,000 cfs

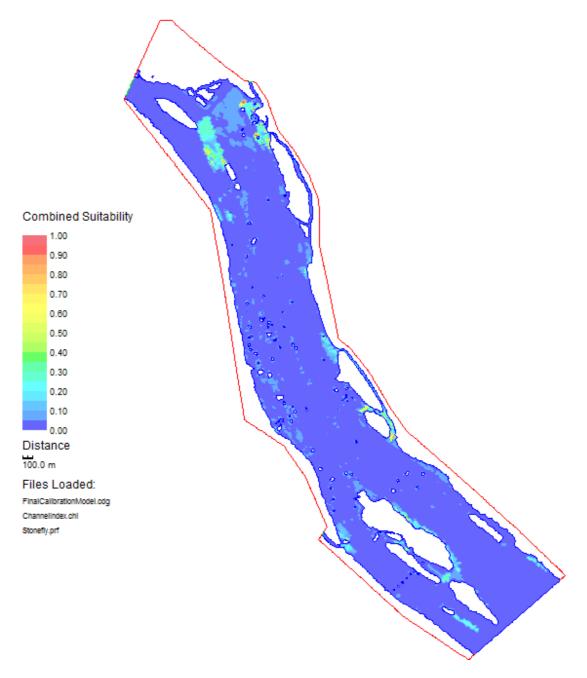



Stonefly – 2,000 cfs

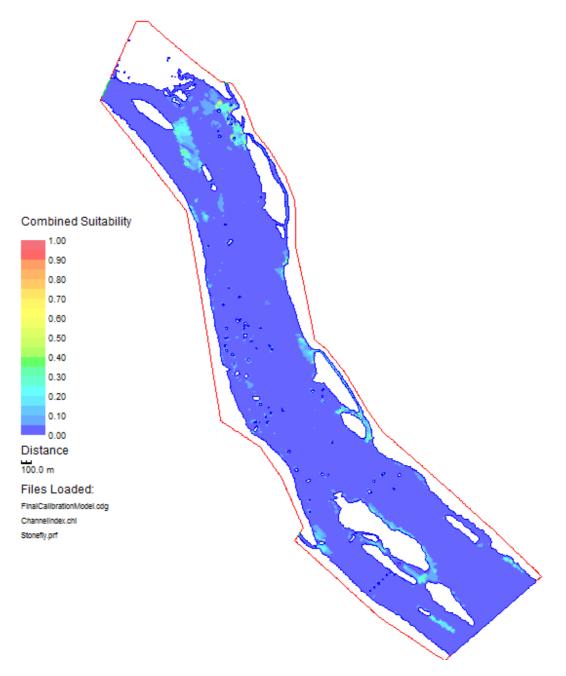



Stonefly – 3,500 cfs

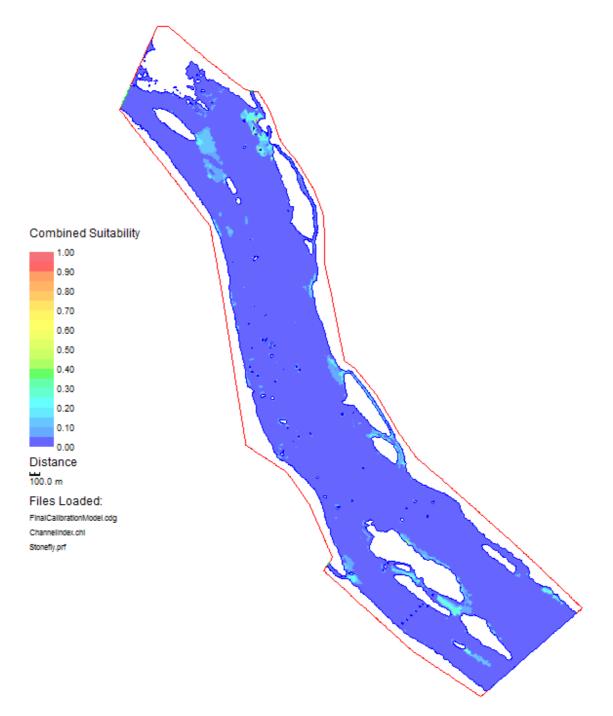



Stonefly – 5,000 cfs

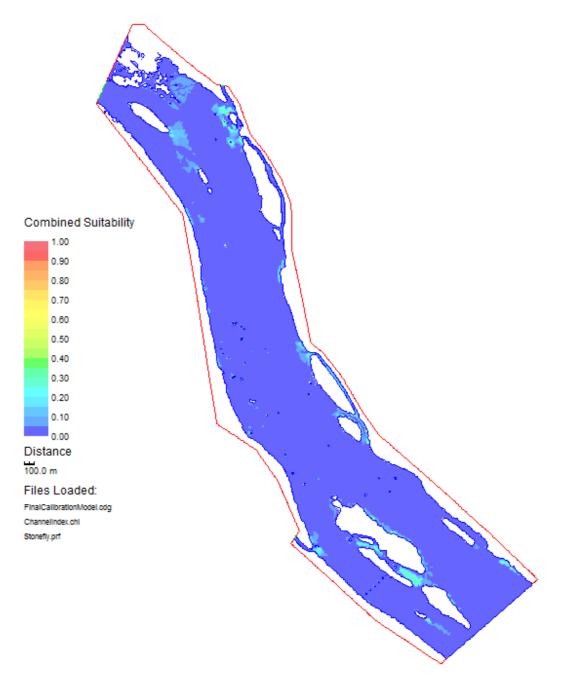



Stonefly – 7,500 cfs

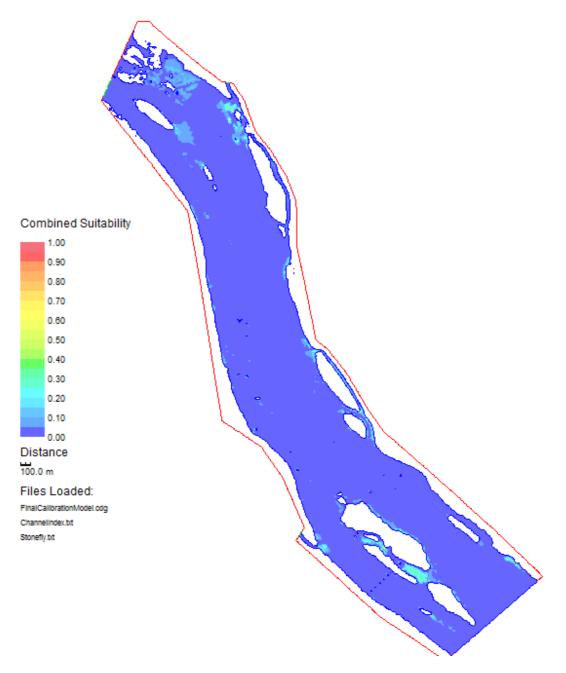



Stonefly – 10,000 cfs

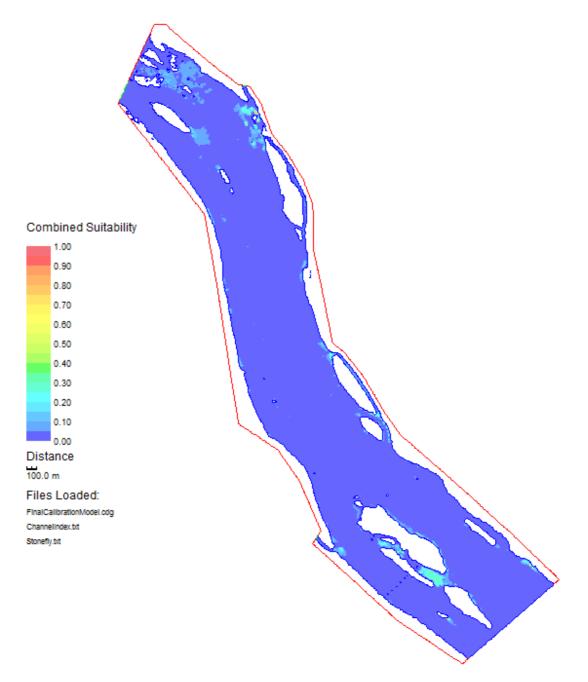



Stonefly – 15,000 cfs

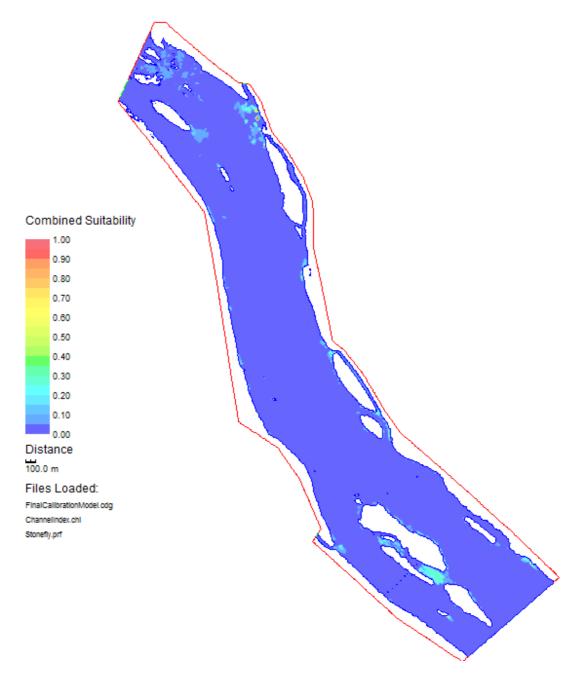



Stonefly – 20,000 cfs

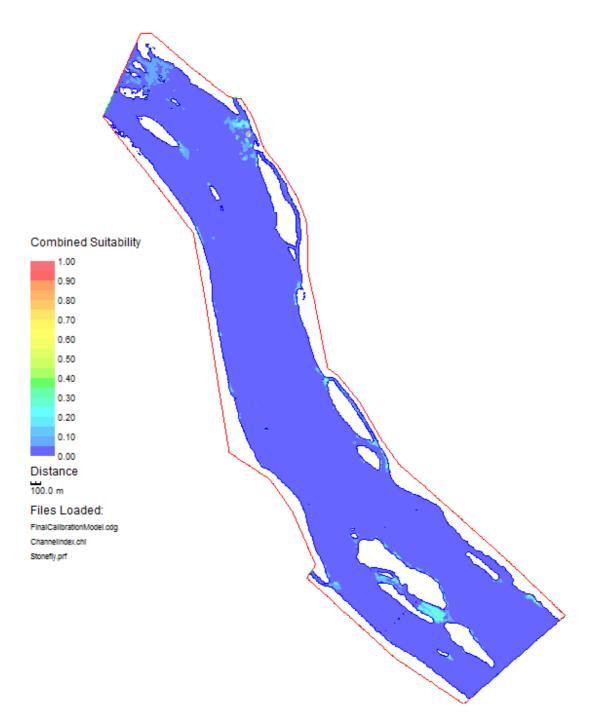



Stonefly – 30,000 cfs

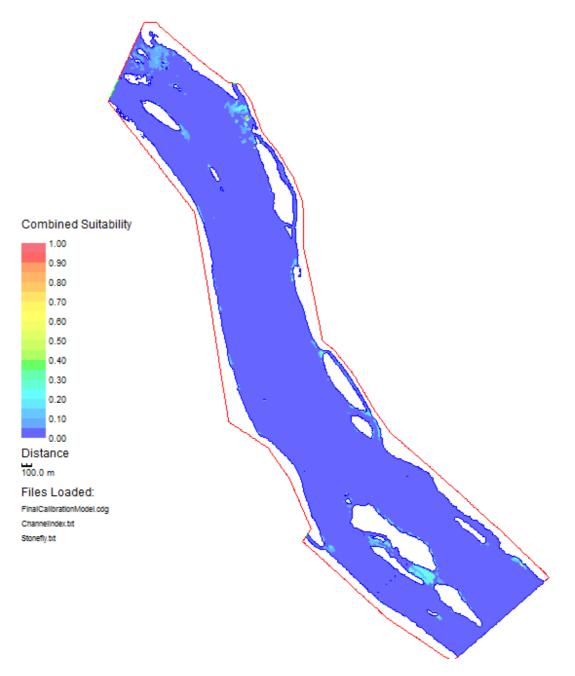



Stonefly – 40,000 cfs

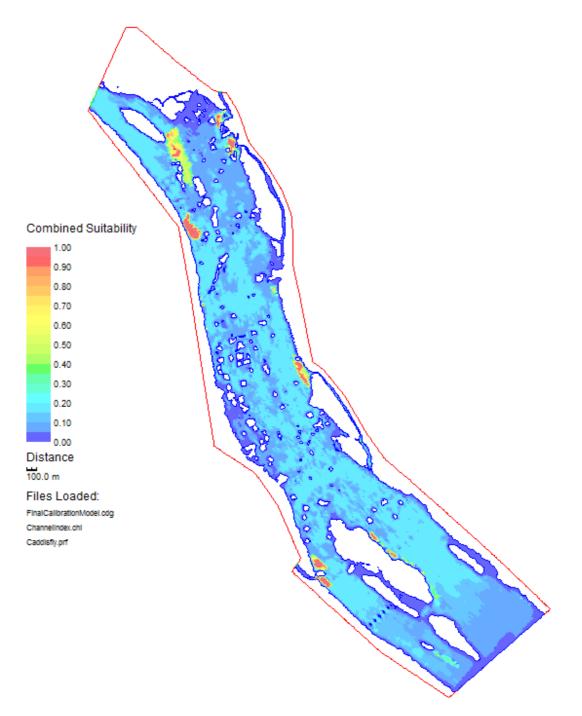



Stonefly – 50,000 cfs

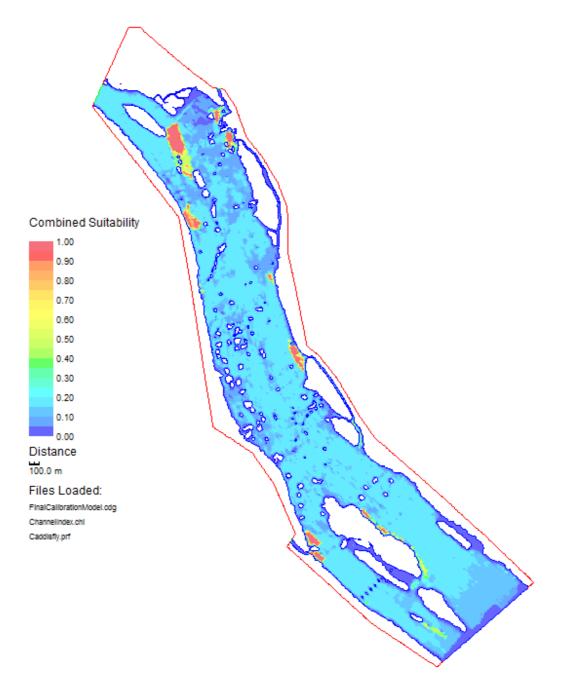



Stonefly – 60,000 cfs

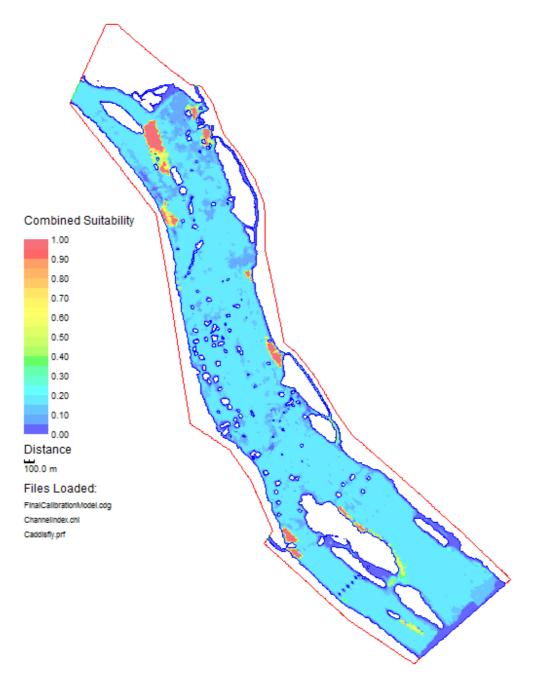



Stonefly – 70,000 cfs

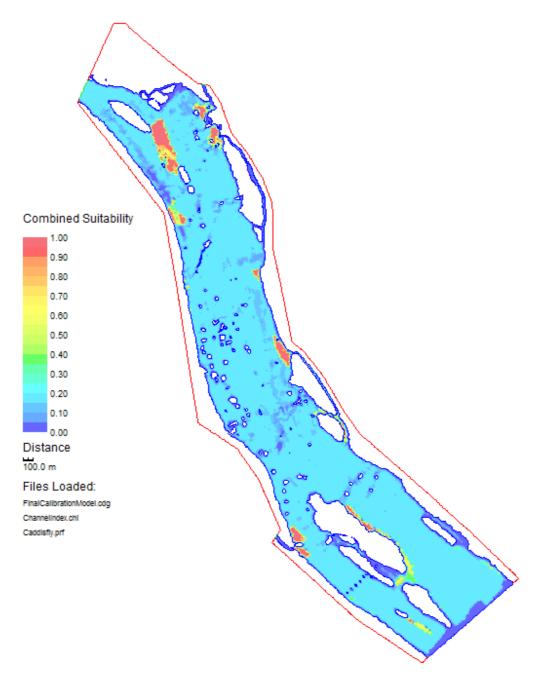



Stonefly – 80,000 cfs

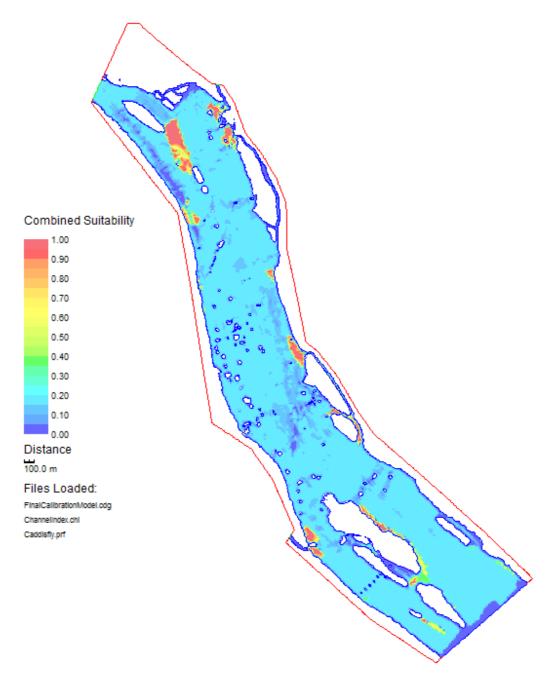



Stonefly – 86,000 cfs

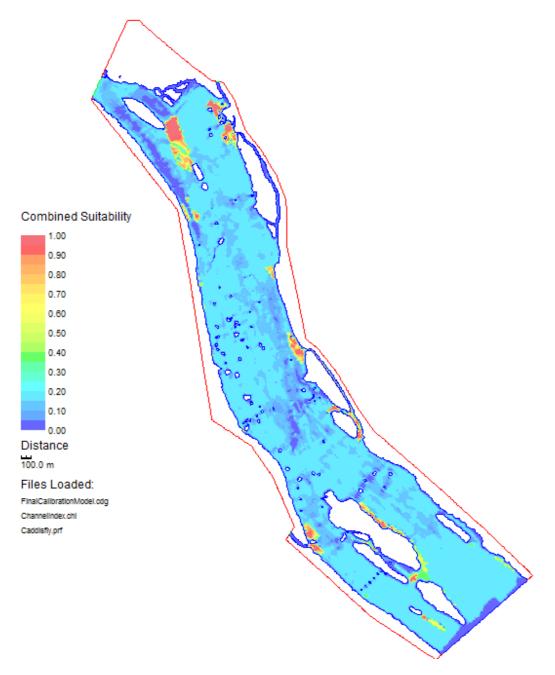



Caddisfly – 2,000 cfs

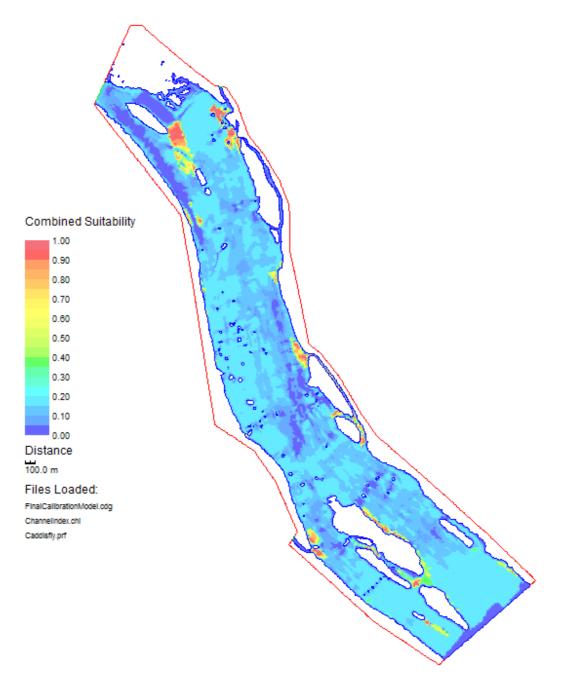



Caddisfly – 3,500 cfs

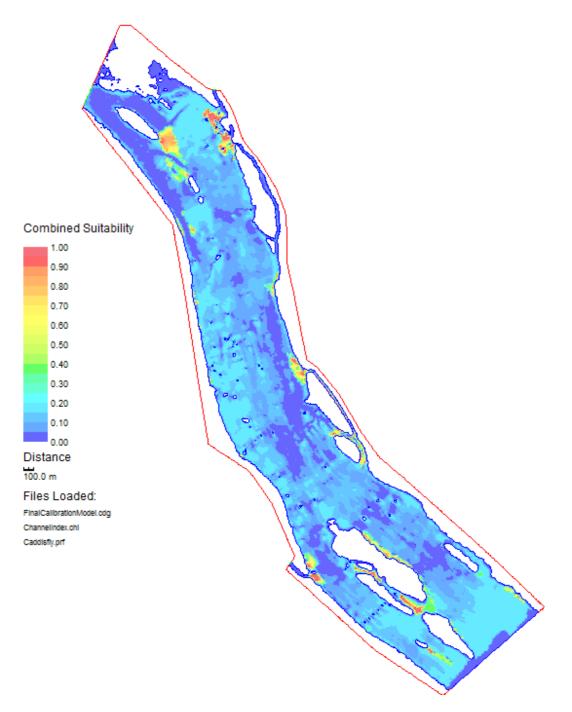



Caddisfly – 5,000 cfs

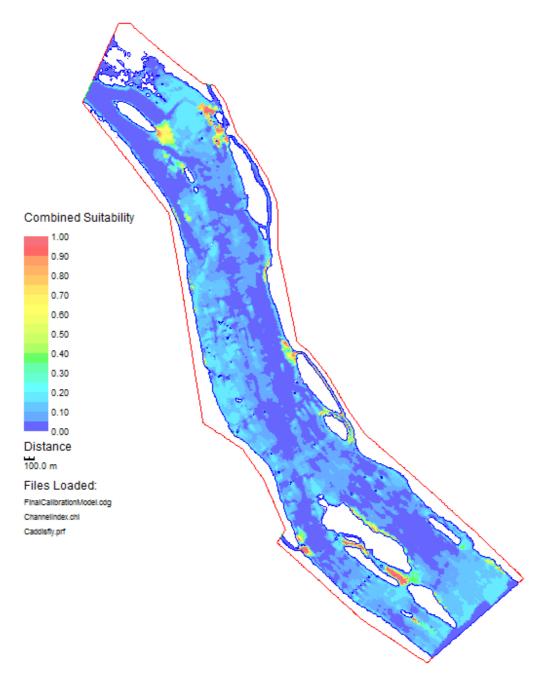



Caddisfly – 7,500 cfs

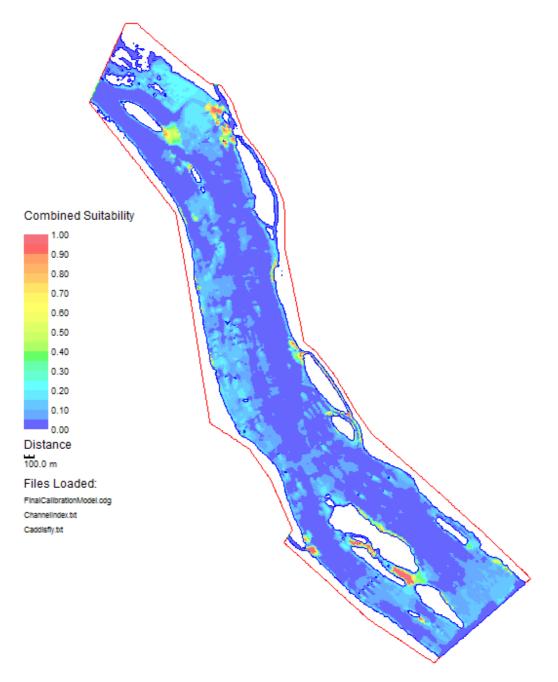



Caddisfly – 10,000 cfs

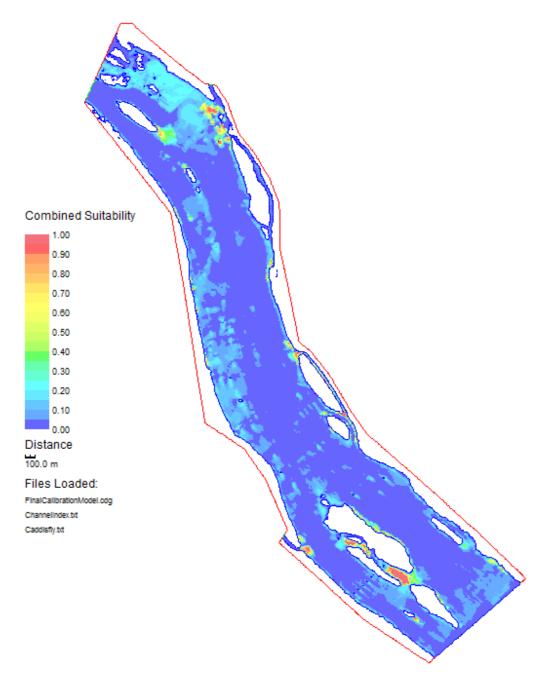



Caddisfly – 15,000 cfs

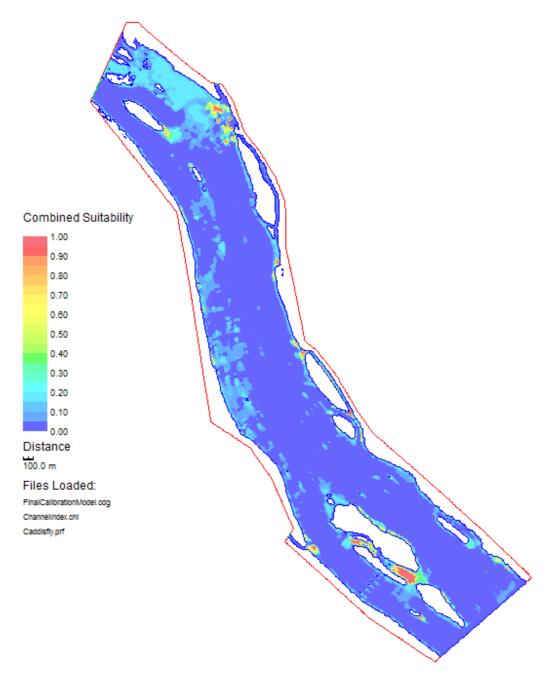



Caddisfly – 20,000 cfs

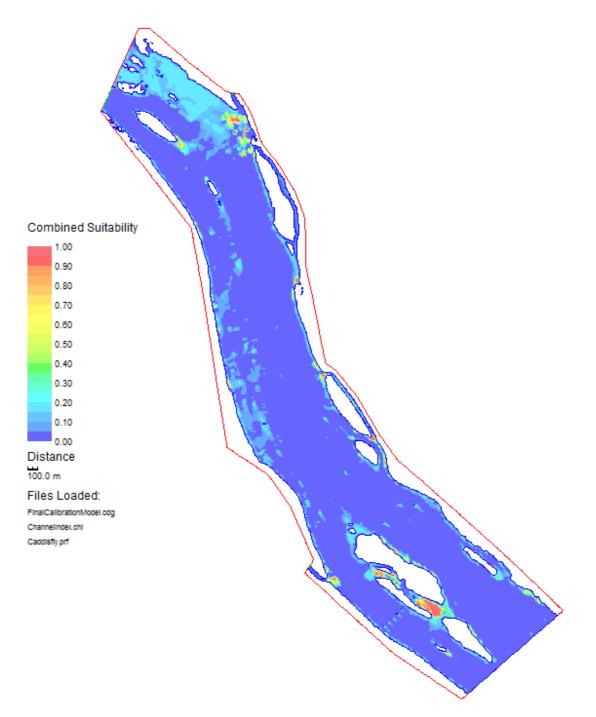



Caddisfly – 30,000 cfs

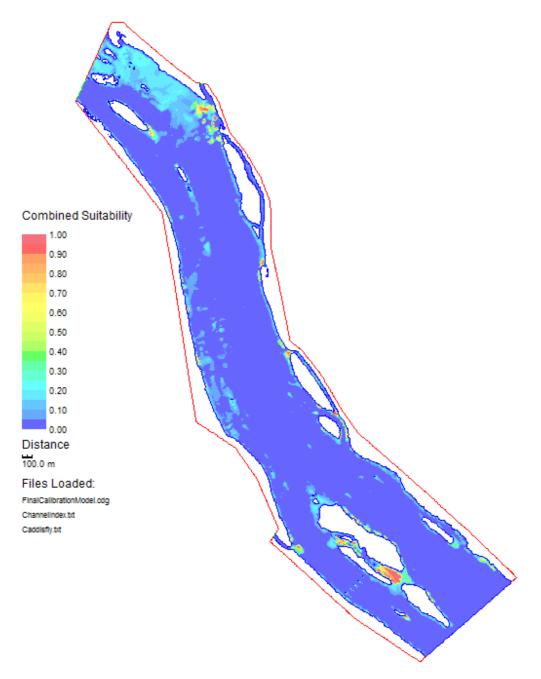



Caddisfly – 40,000 cfs

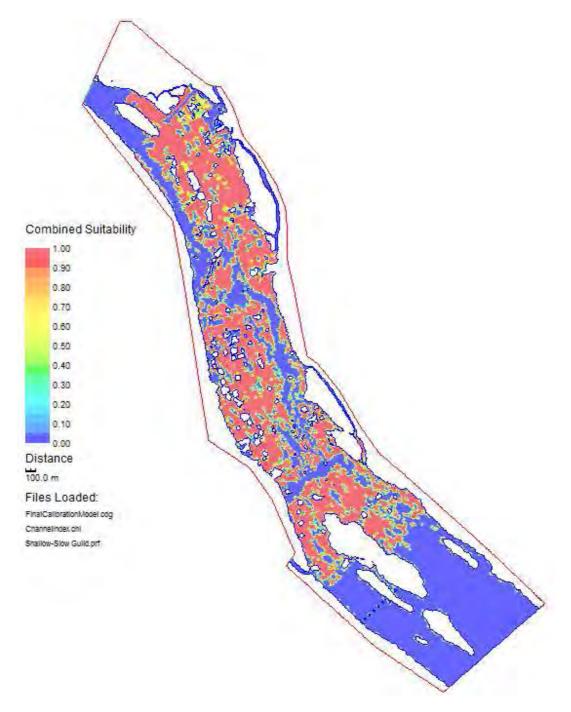



## Caddisfly – 50,000 cfs

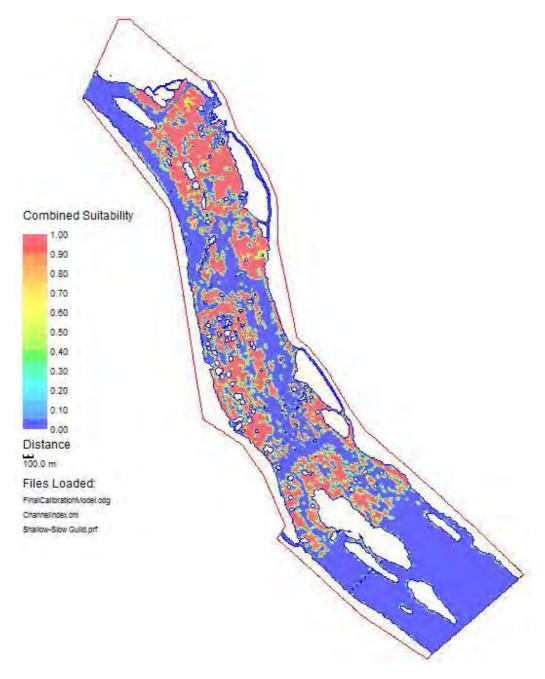



# Caddisfly – 60,000 cfs

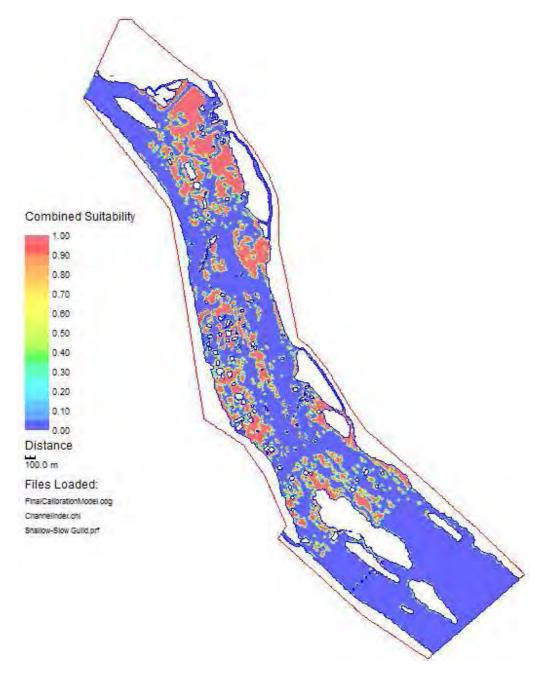



Caddisfly – 70,000 cfs

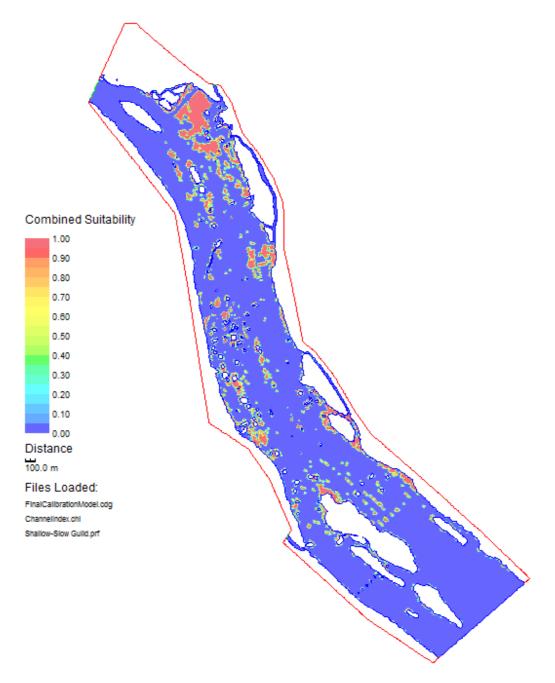



Caddisfly – 80,000 cfs

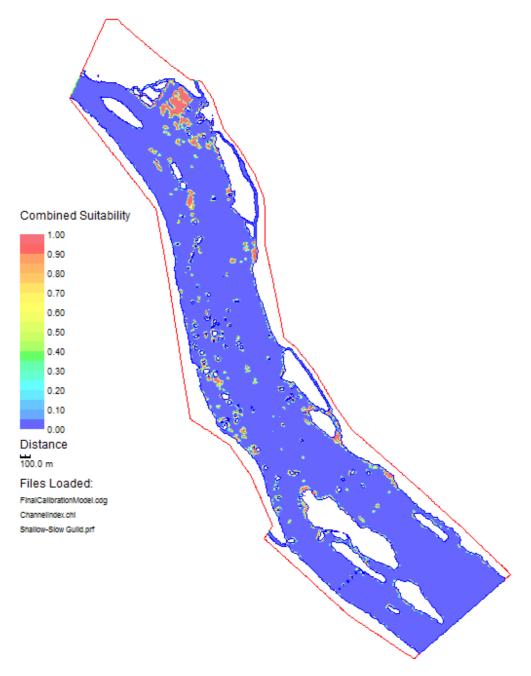



Caddisfly – 86,000 cfs

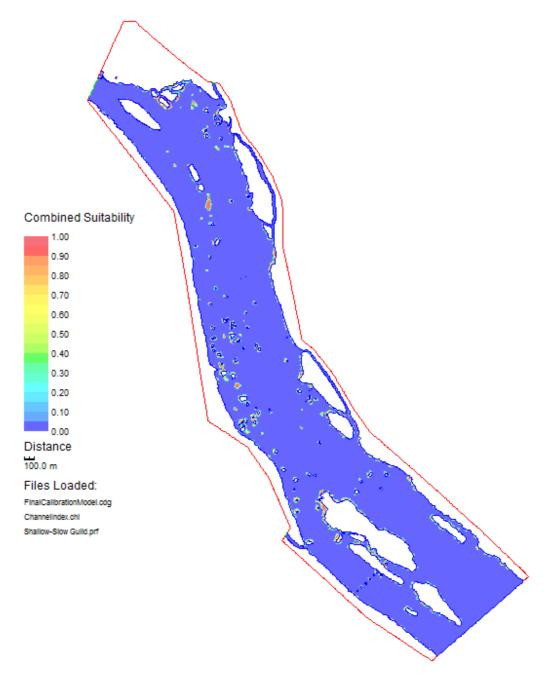



Shallow-Slow Guild – 2,000 cfs

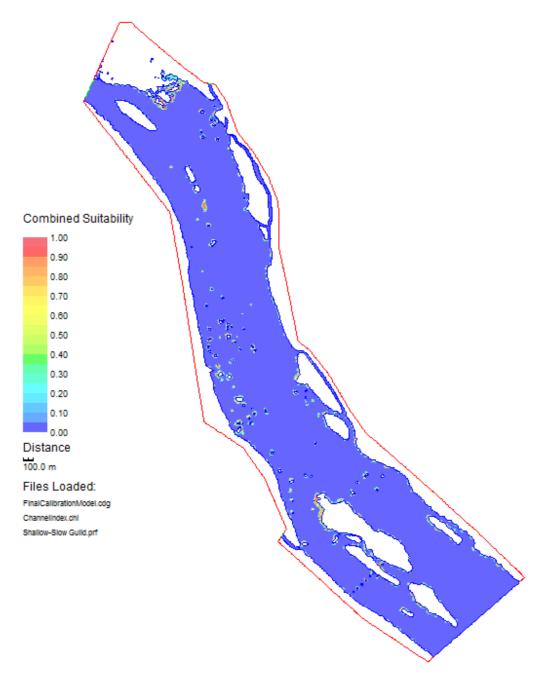



Shallow-Slow Guild – 3,500 cfs

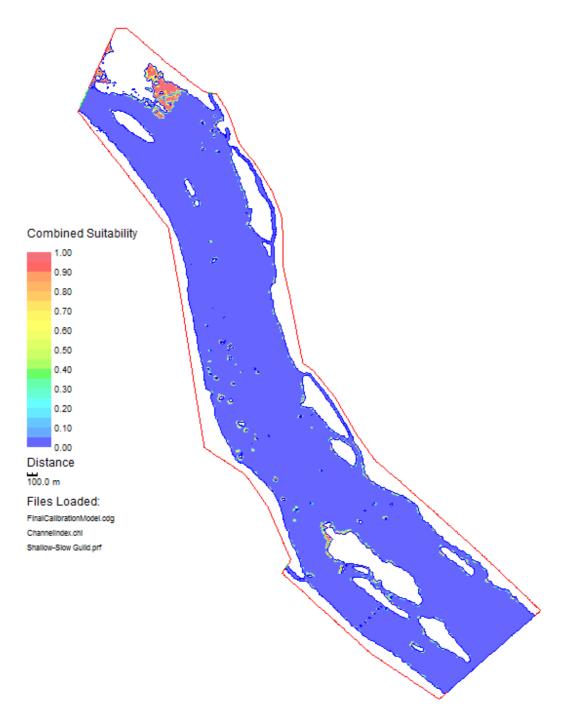



Shallow-Slow Guild – 5,000 cfs

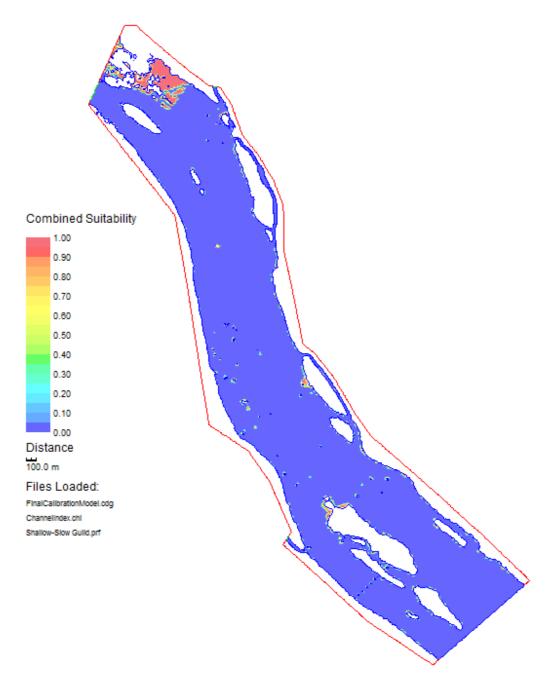



Shallow-Slow Guild – 7,500 cfs

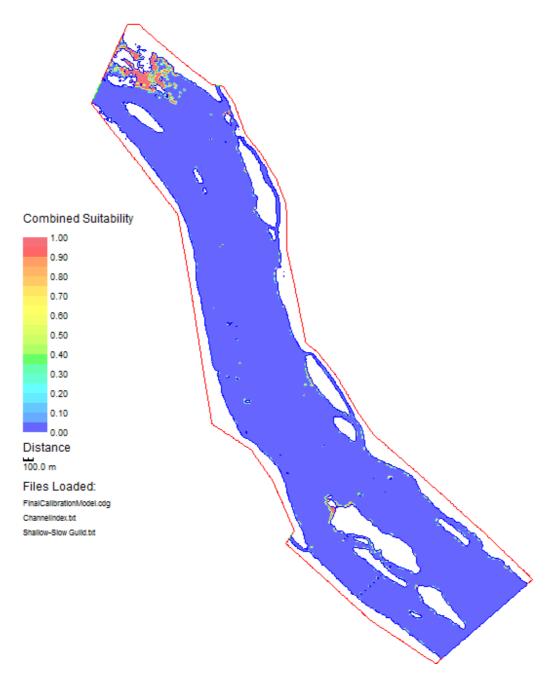



### Shallow-Slow Guild – 10,000 cfs

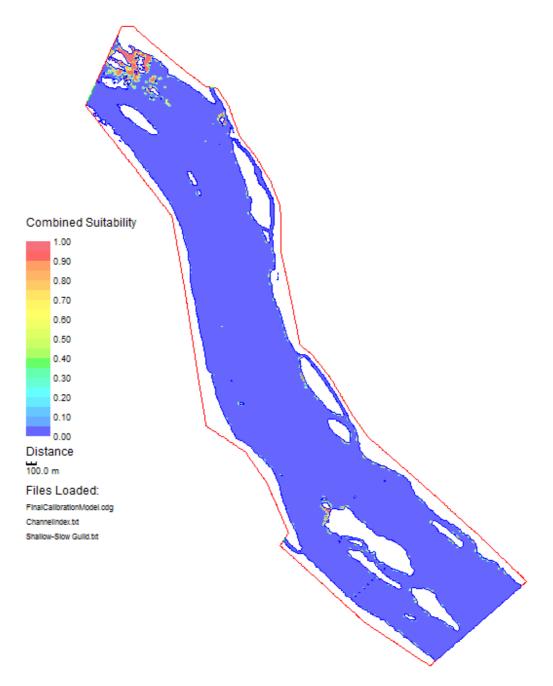



Shallow-Slow Guild – 15,000 cfs

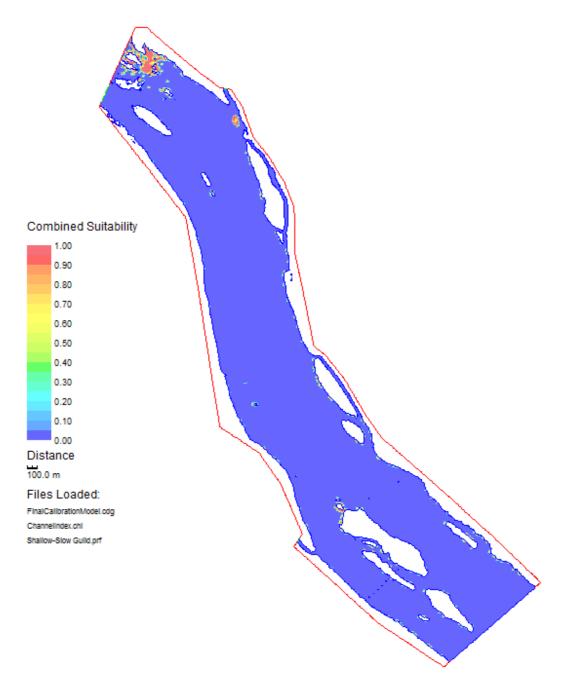



Shallow-Slow Guild – 20,000 cfs

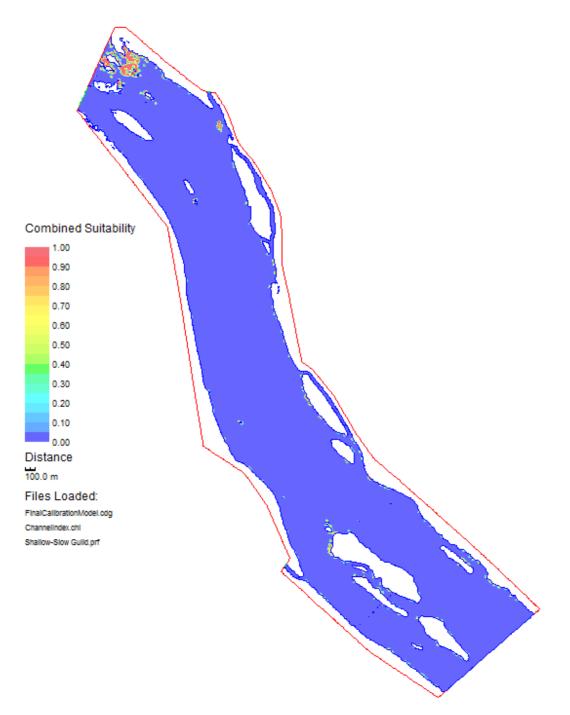



Shallow-Slow Guild – 30,000 cfs

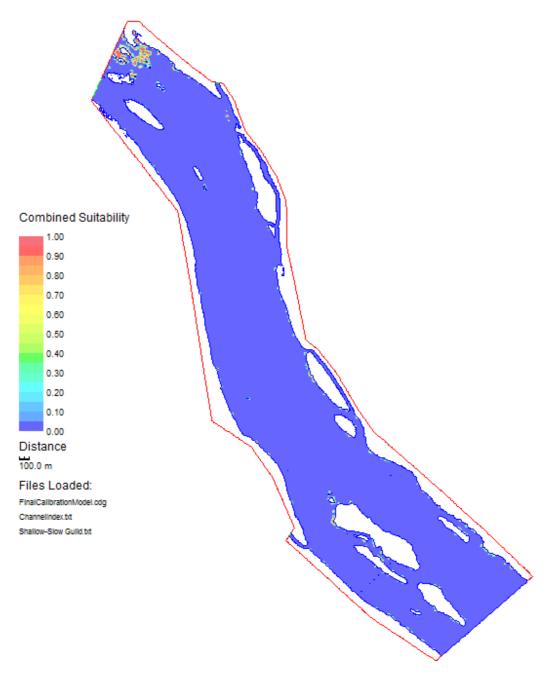



Shallow-Slow Guild – 40,000 cfs

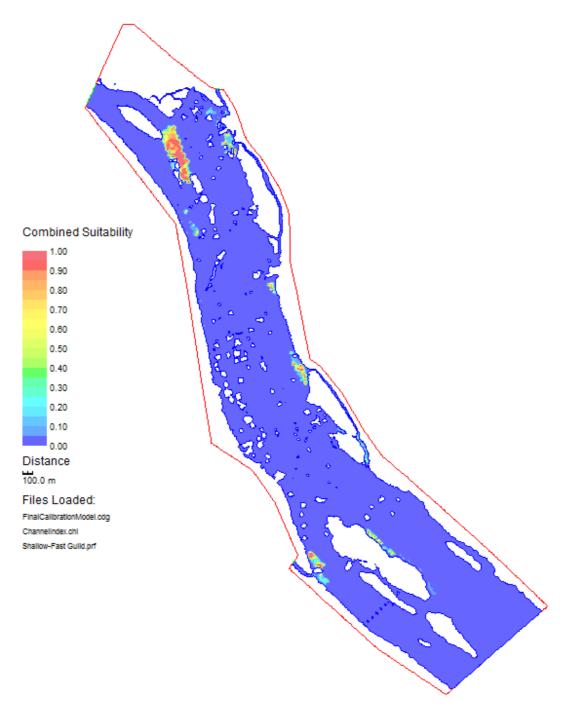



### Shallow-Slow Guild – 50,000 cfs

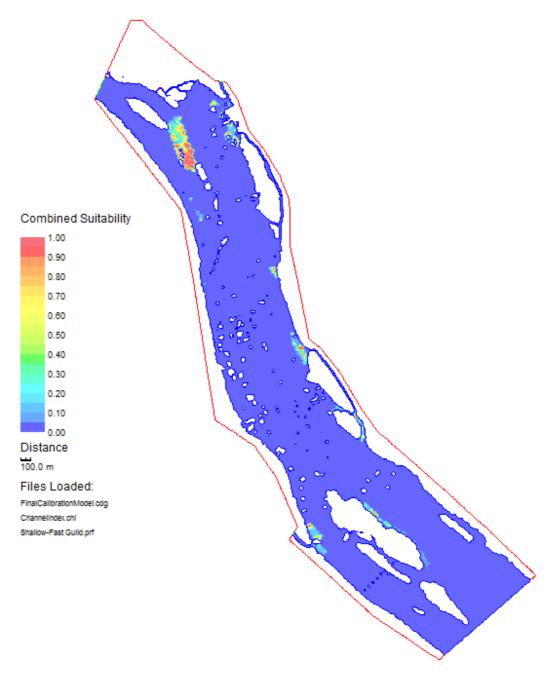



## Shallow-Slow Guild – 60,000 cfs

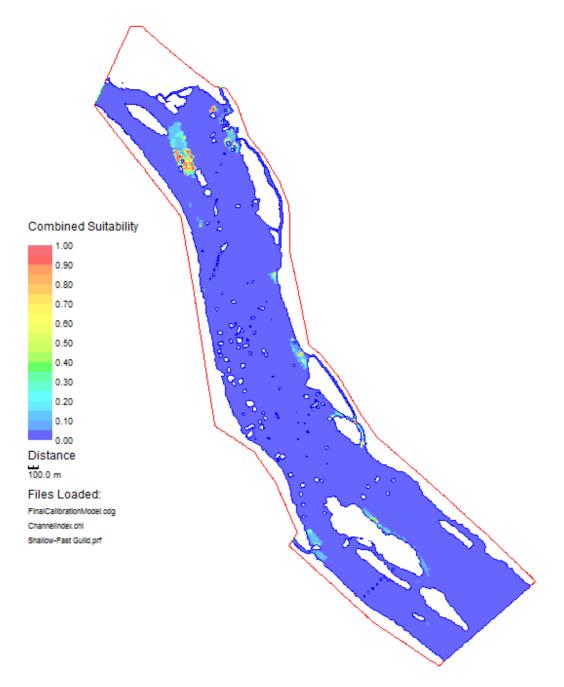



Shallow-Slow Guild – 70,000 cfs

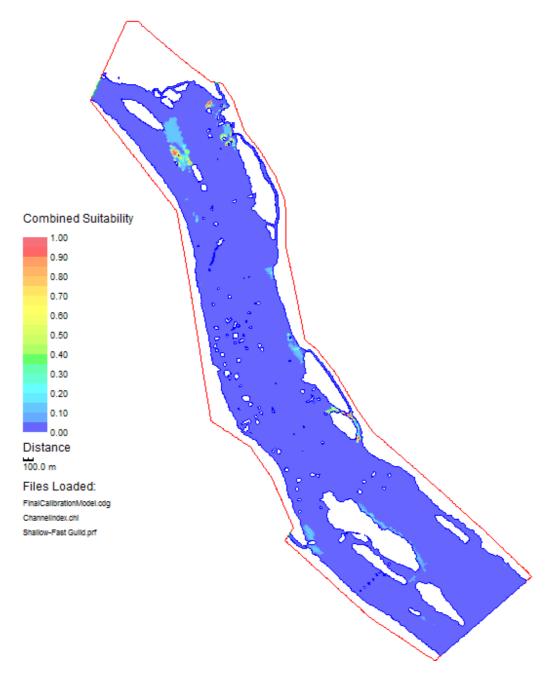



Shallow-Slow Guild – 80,000 cfs

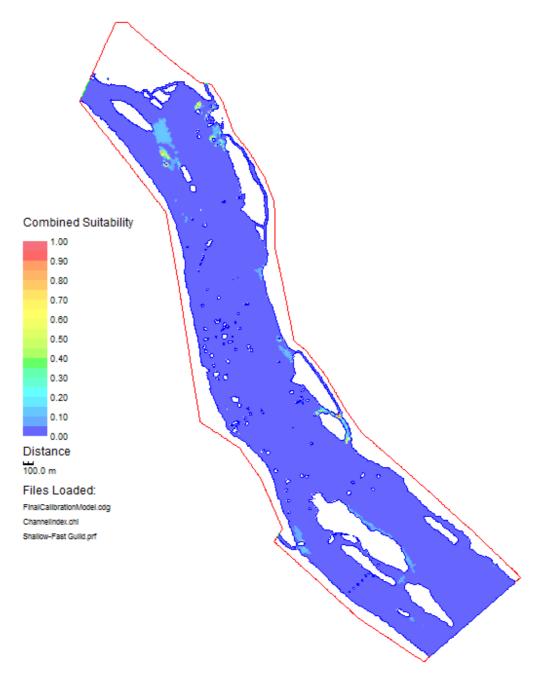



### Shallow-Slow Guild – 86,000 cfs

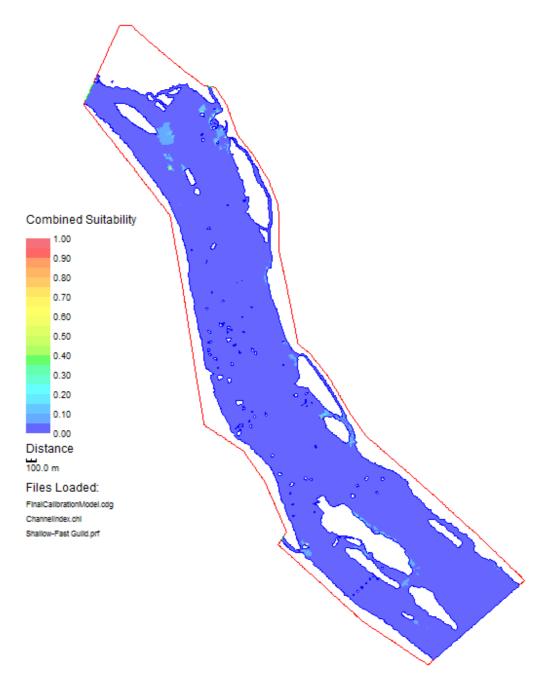



Shallow-Fast Guild – 2,000 cfs

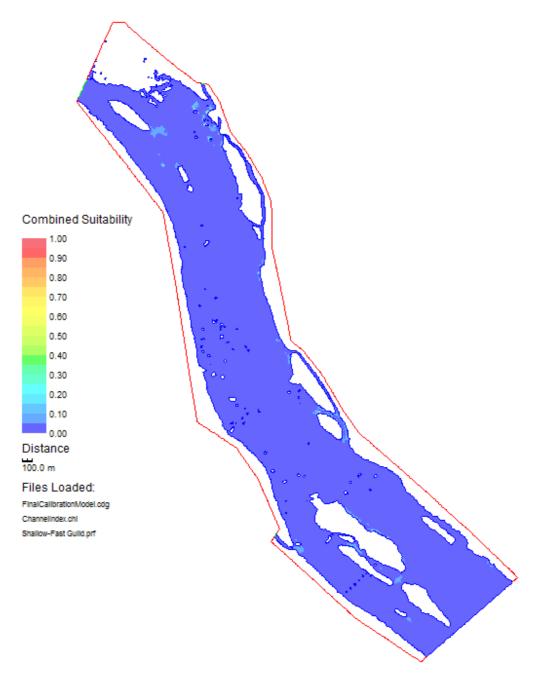



### Shallow-Fast Guild – 3,500 cfs




## Shallow-Fast Guild – 5,000 cfs

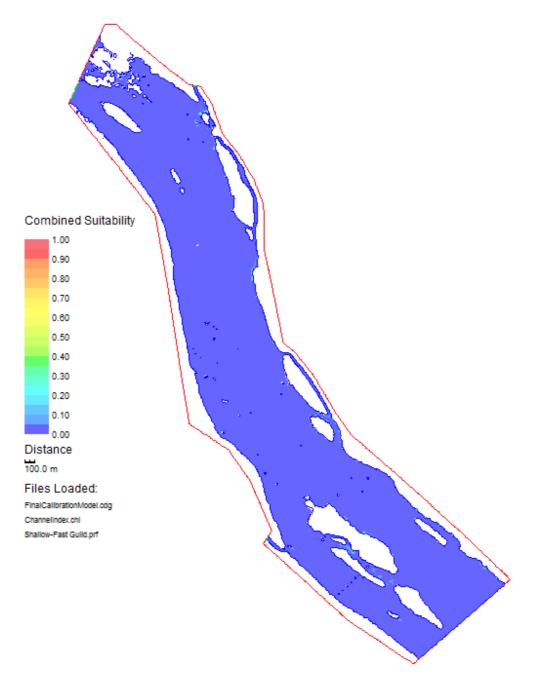



### Shallow-Fast Guild – 7,500 cfs

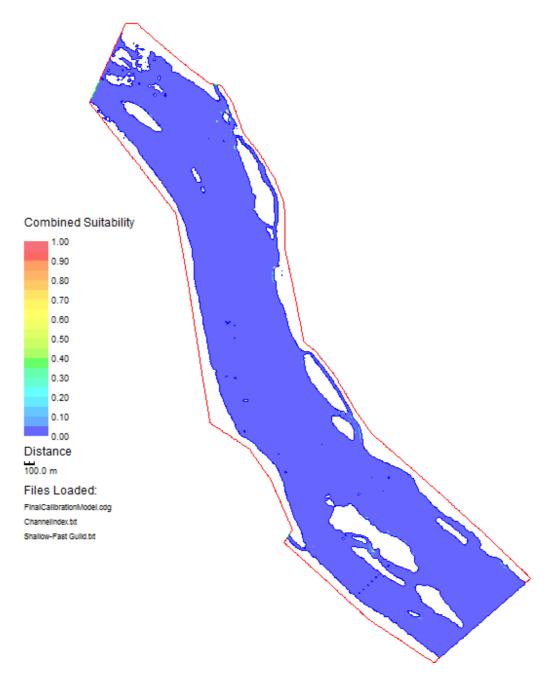


#### Shallow-Fast Guild – 10,000 cfs

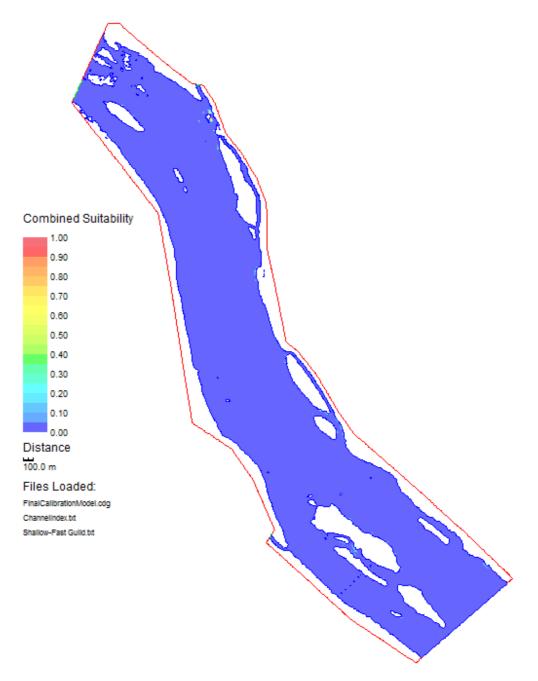



### Shallow-Fast Guild – 15,000 cfs

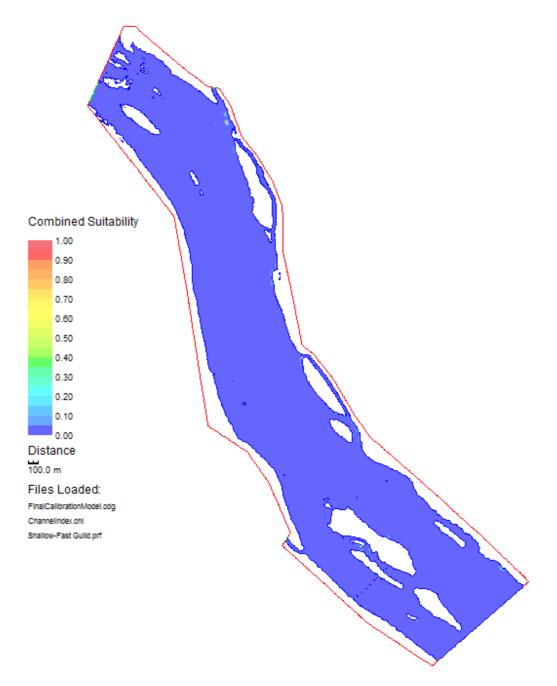



Shallow-Fast Guild – 20,000 cfs

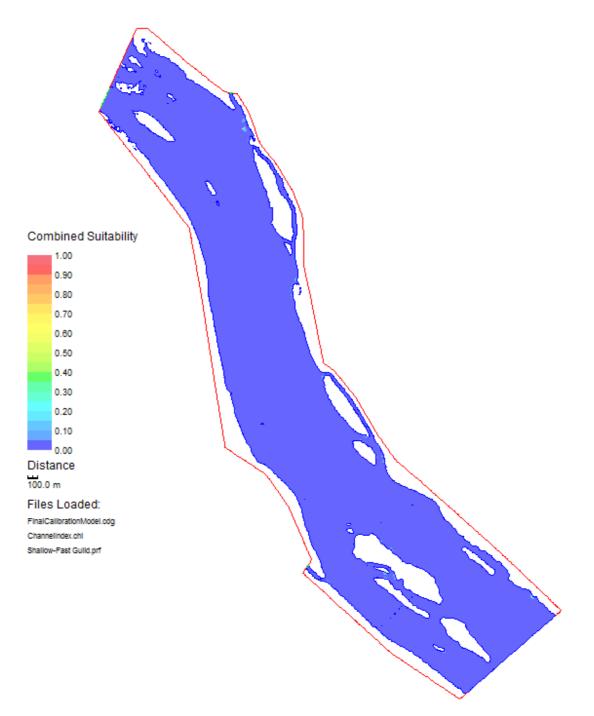



Shallow-Fast Guild – 30,000 cfs

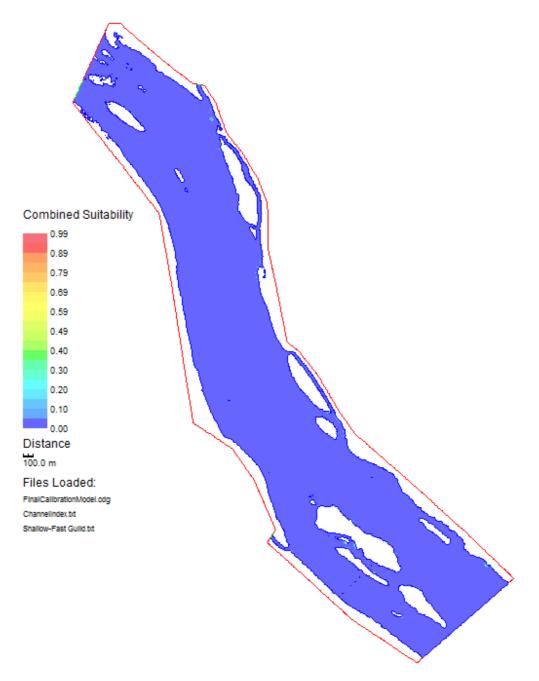



Shallow-Fast Guild – 40,000 cfs

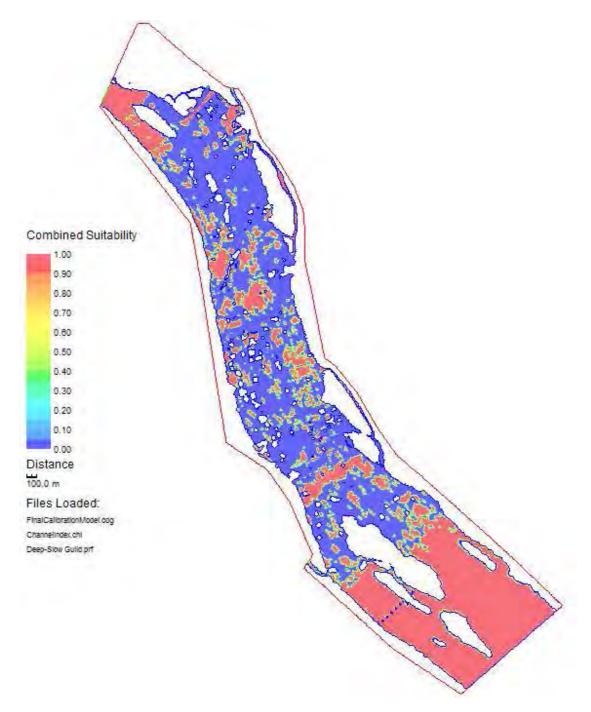



Shallow-Fast Guild – 50,000 cfs

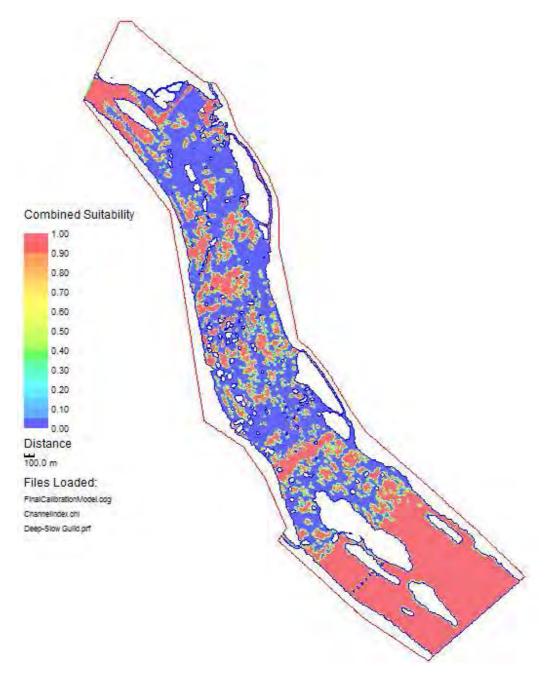



Shallow-Fast Guild – 60,000 cfs

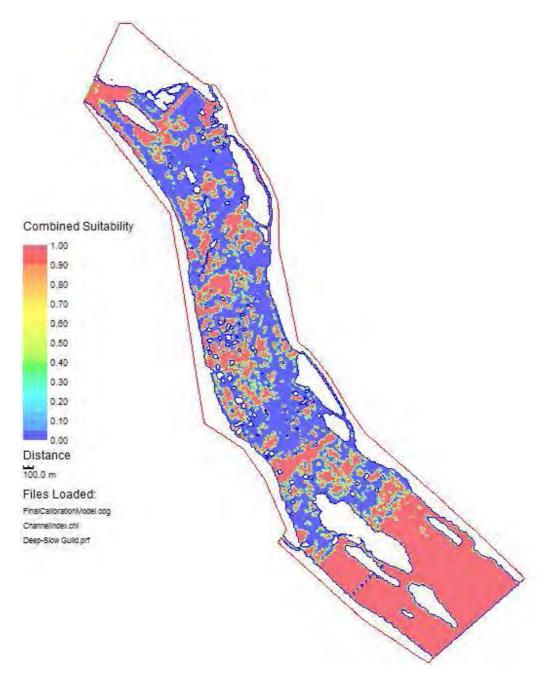



Shallow-Fast Guild – 70,000 cfs

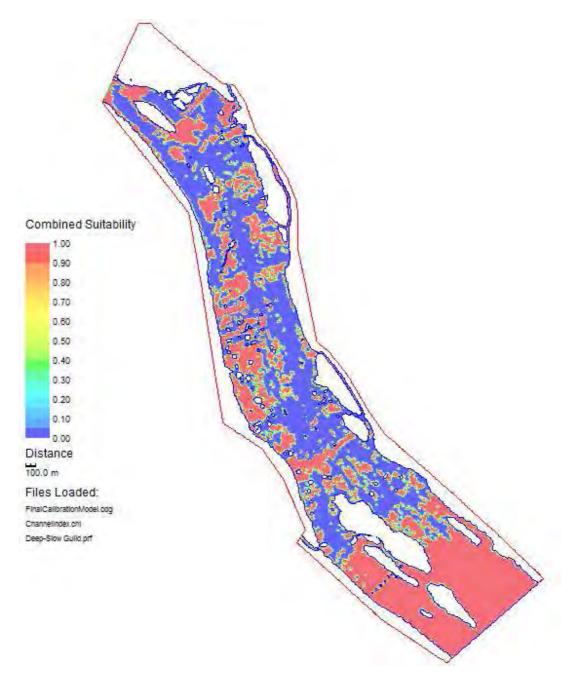



Shallow-Fast Guild – 80,000 cfs

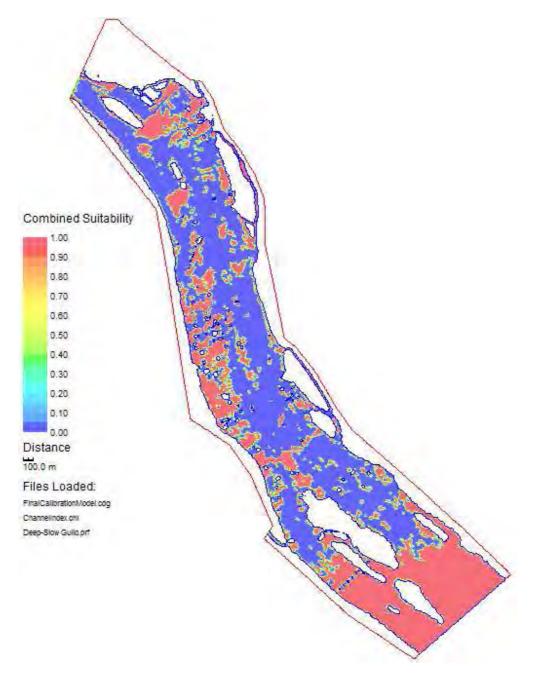



## Shallow-Fast Guild – 86,000 cfs

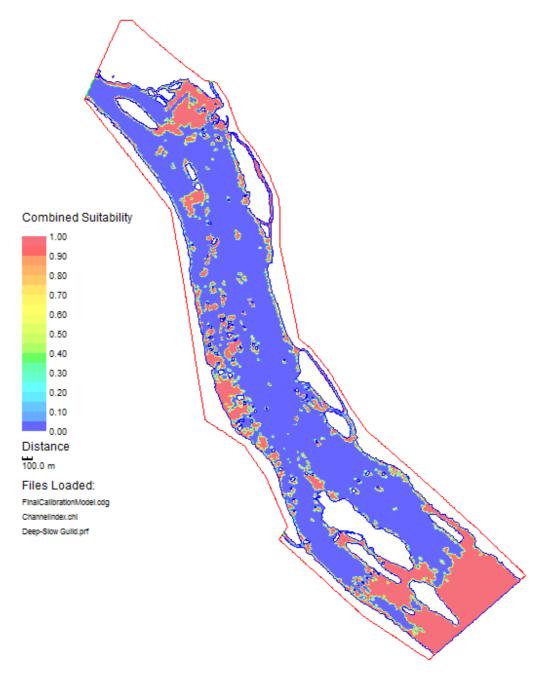



Deep-Slow Guild – 2,000 cfs

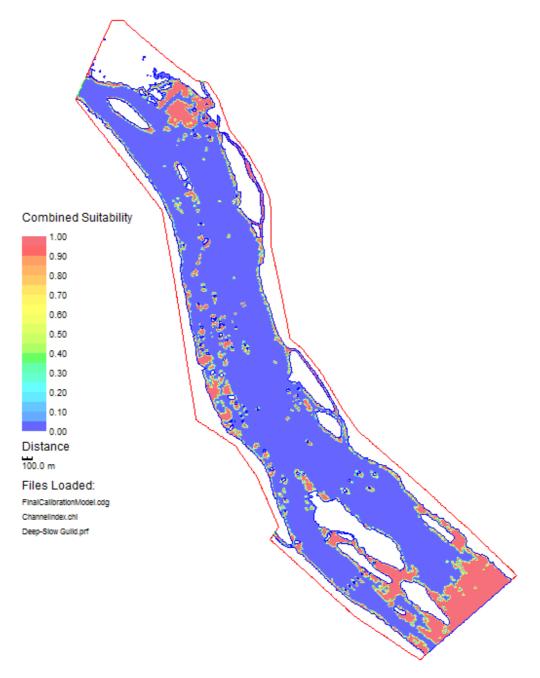



Deep-Slow Guild – 3,500 cfs

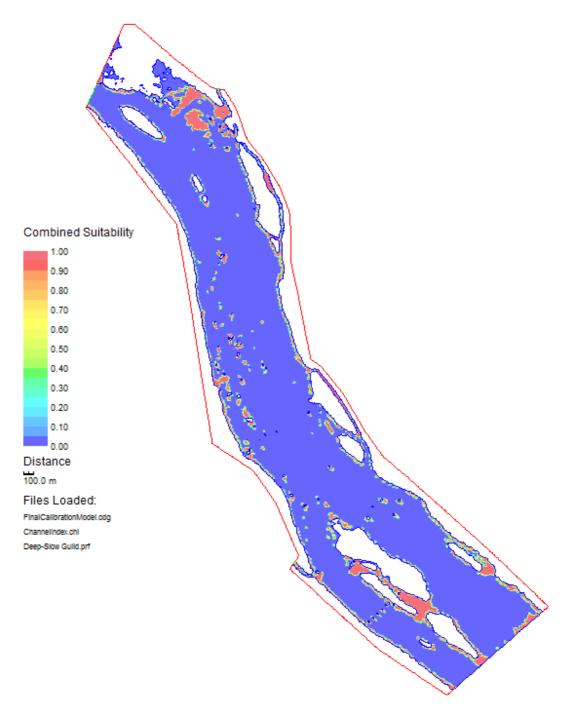



Deep-Slow Guild – 5,000 cfs

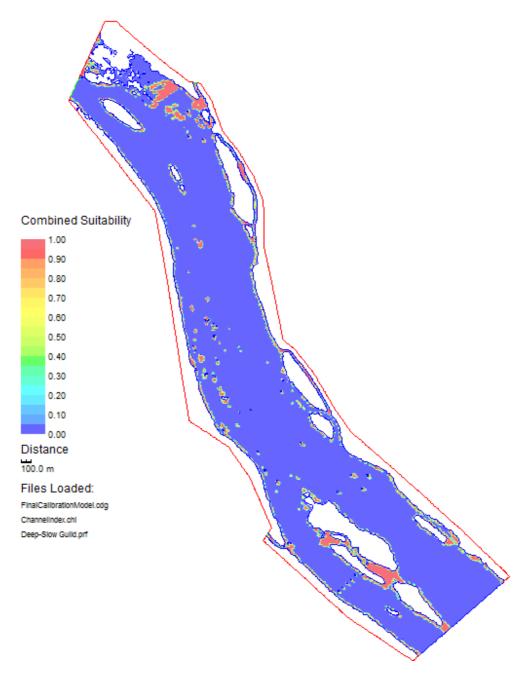



Deep-Slow Guild – 7,500 cfs

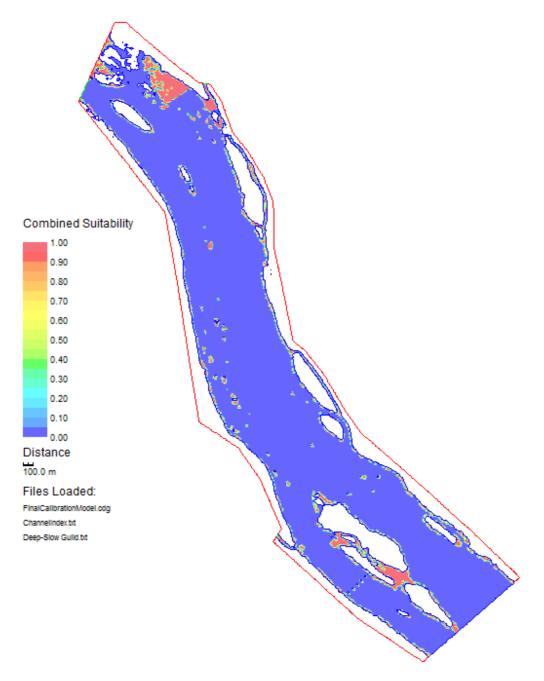



Deep-Slow Guild – 10,000 cfs

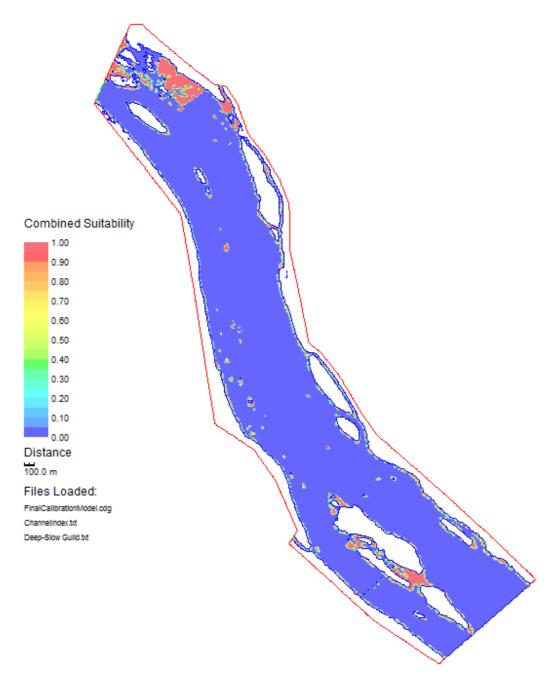



Deep-Slow Guild – 15,000 cfs




Deep-Slow Guild – 20,000 cfs

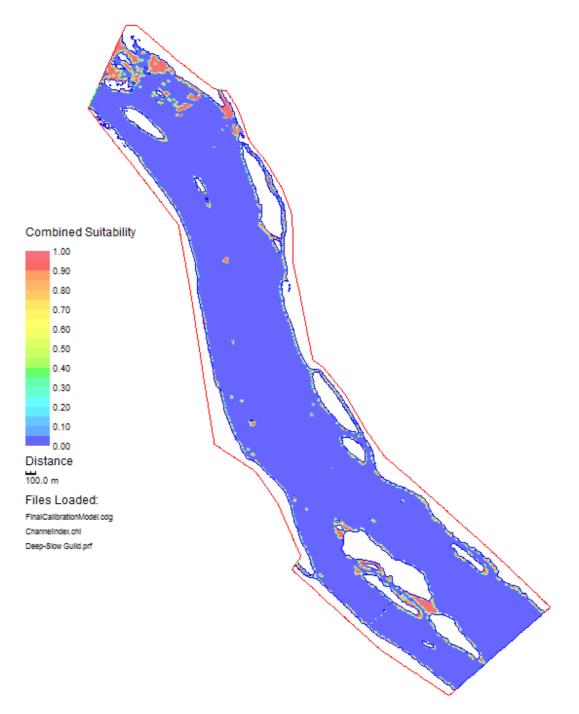



Deep-Slow Guild – 30,000 cfs

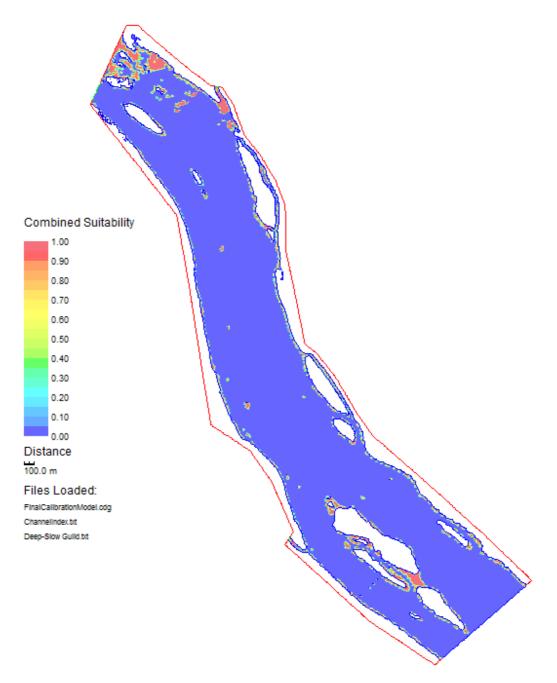



Deep-Slow Guild – 40,000 cfs

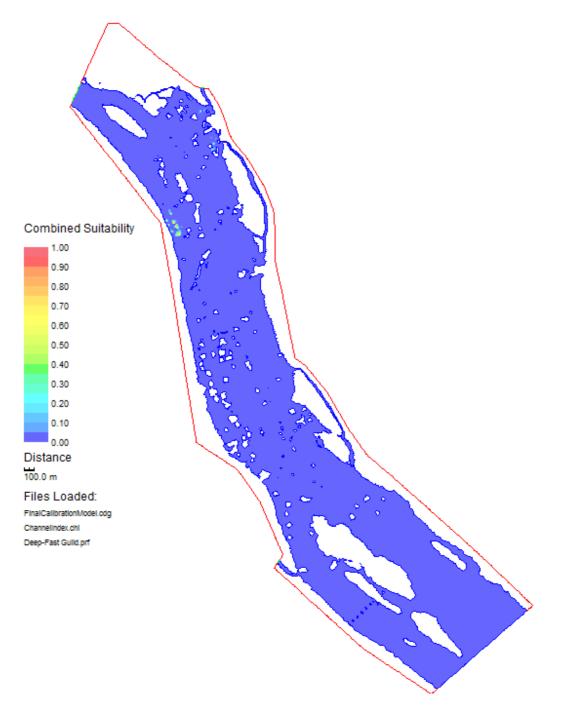



Deep-Slow Guild – 50,000 cfs

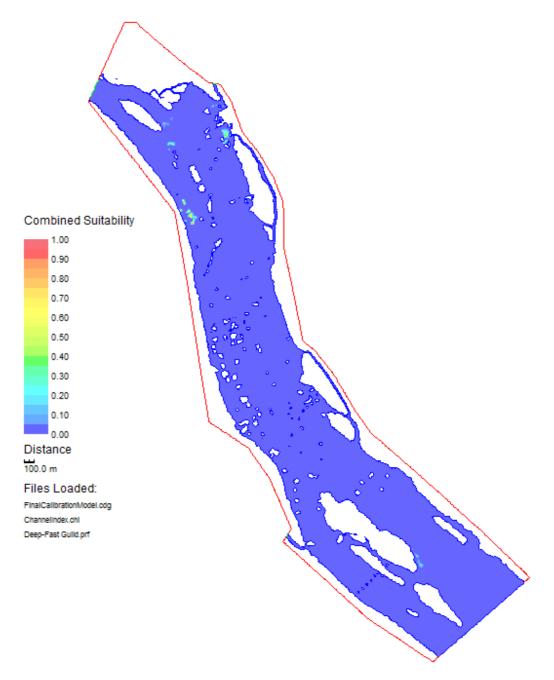



Deep-Slow Guild – 60,000 cfs

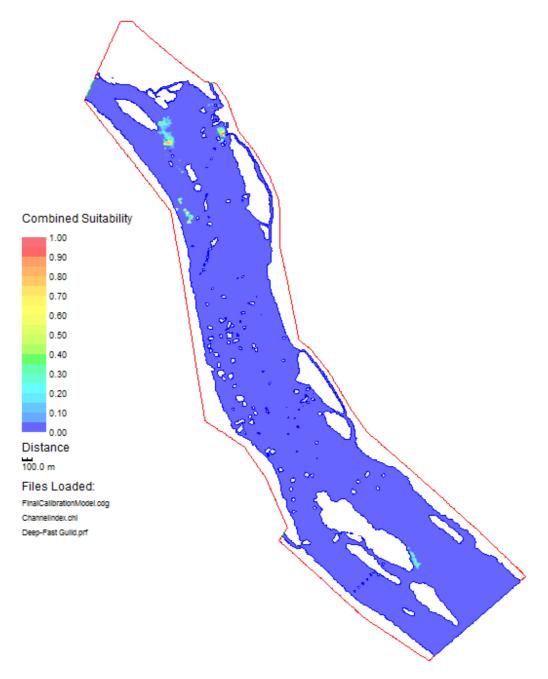



Deep-Slow Guild – 70,000 cfs

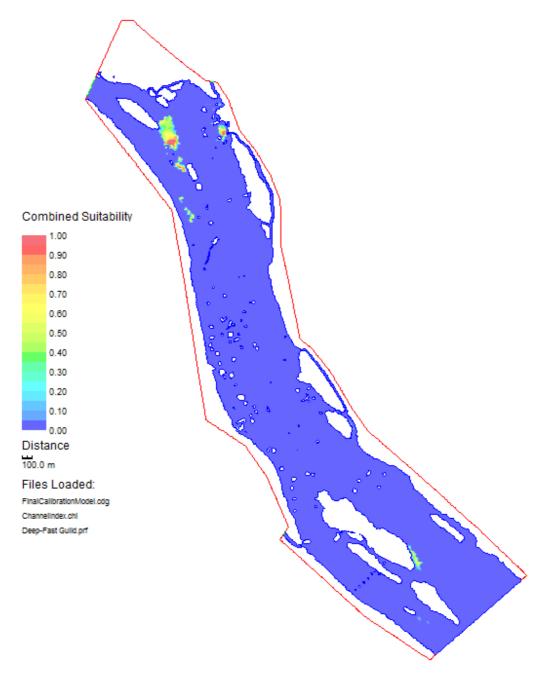



Deep-Slow Guild – 80,000 cfs

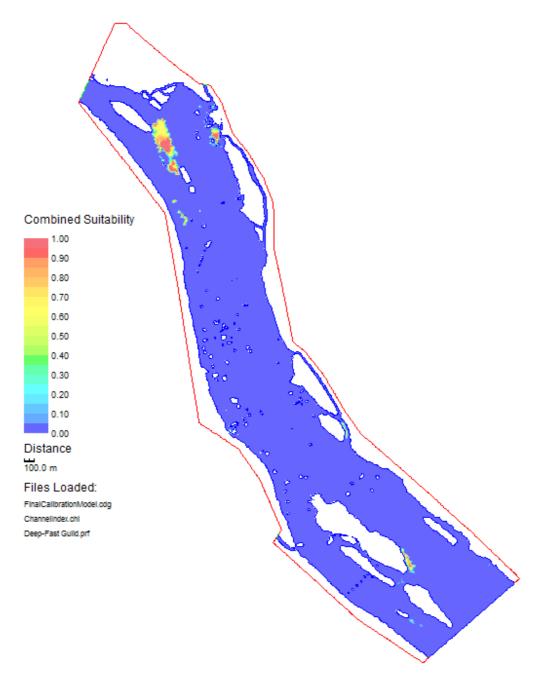



Deep-Slow Guild – 86,000 cfs

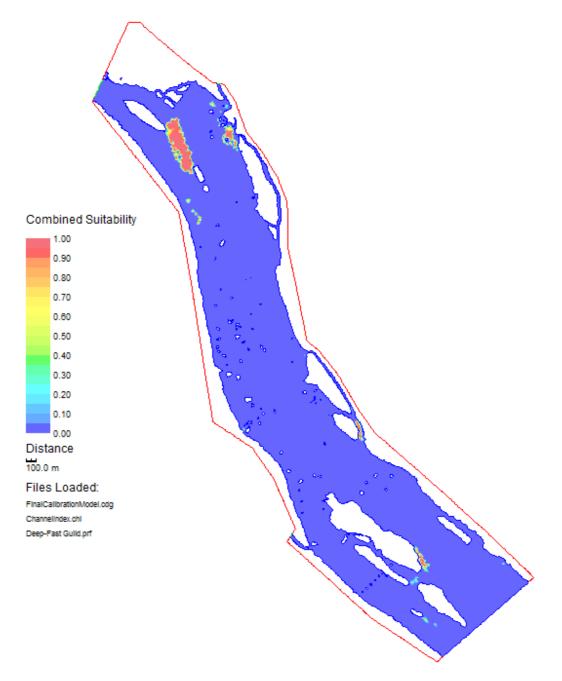



Deep-Fast Guild – 2,000 cfs

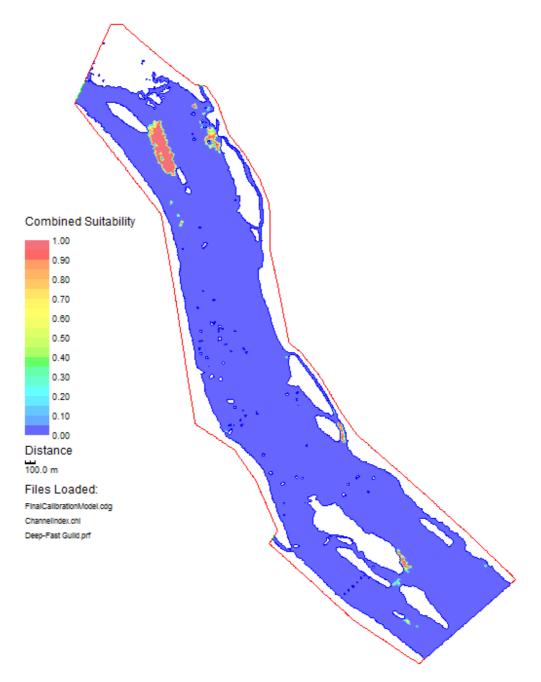



Deep-Fast Guild – 3,500 cfs

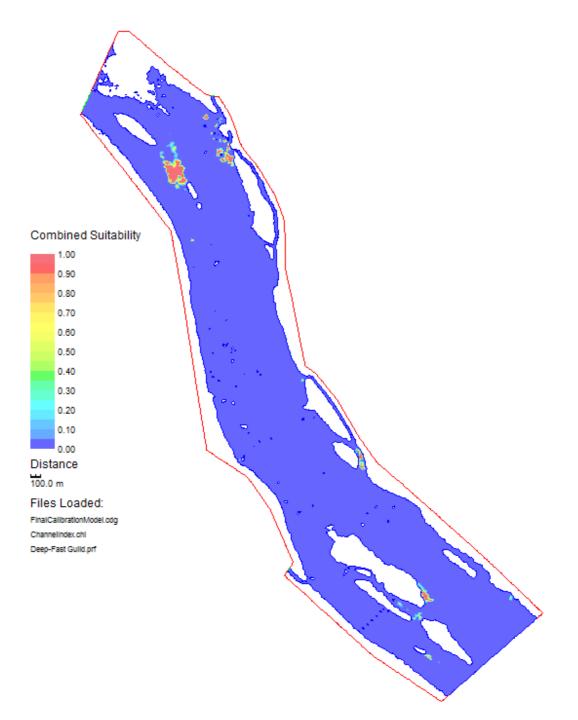



Deep-Fast Guild – 5,000 cfs

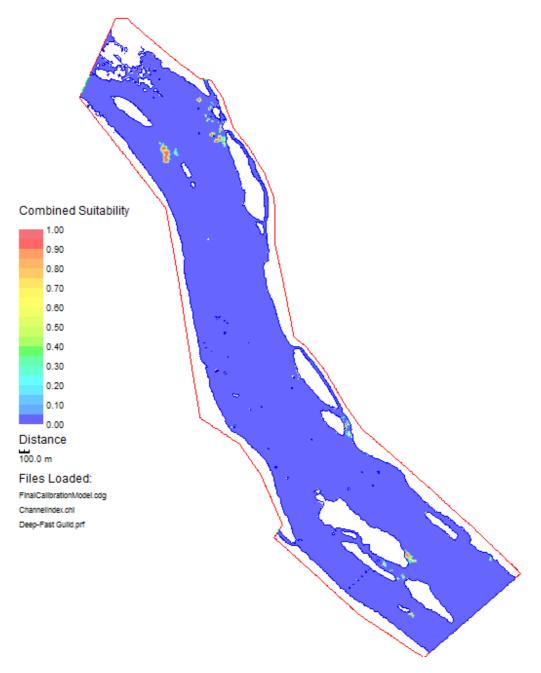



Deep-Fast Guild – 7,500 cfs

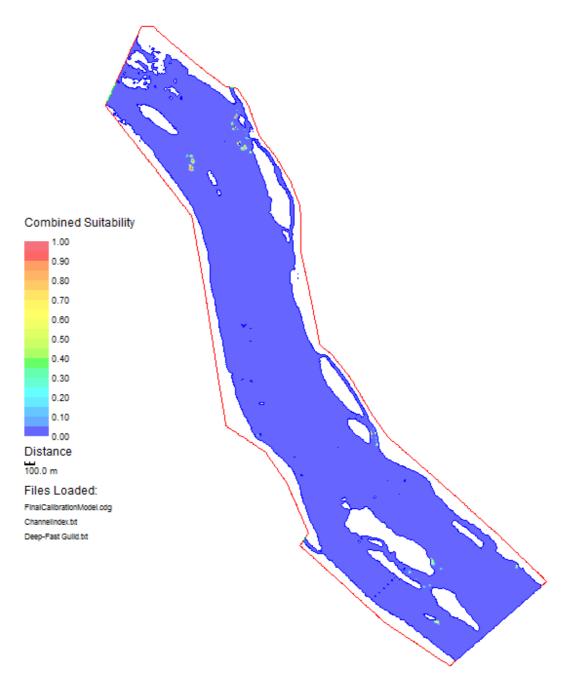



Deep-Fast Guild – 10,000 cfs

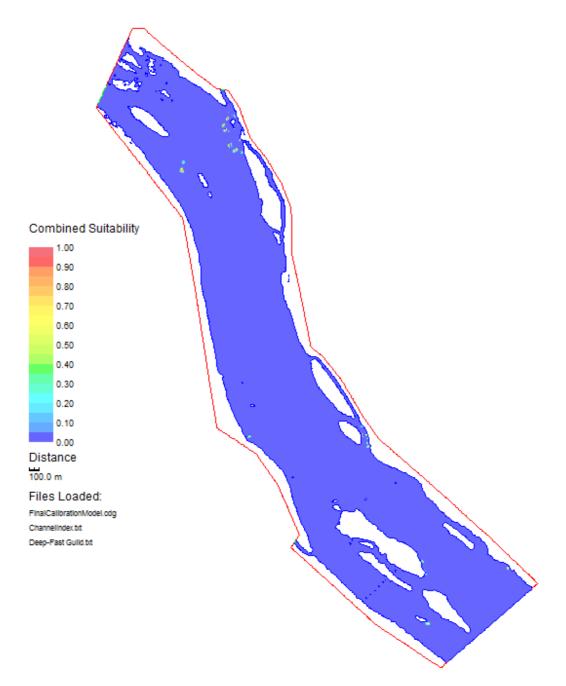



Deep-Fast Guild – 15,000 cfs

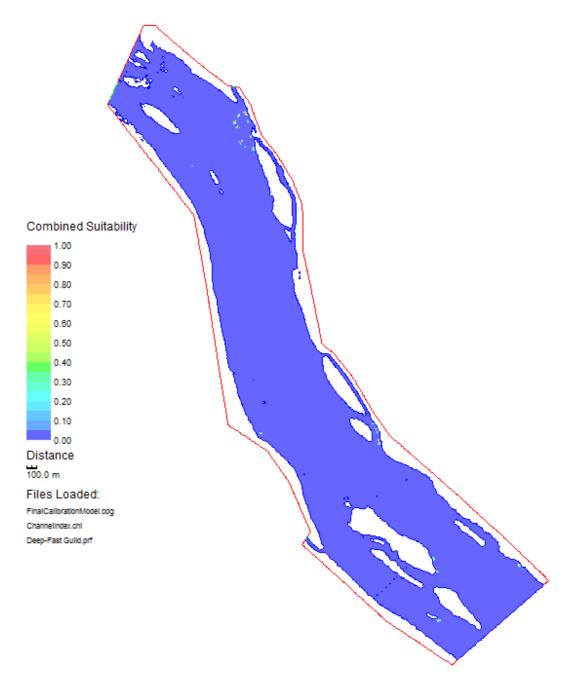



## Deep-Fast Guild – 20,000 cfs

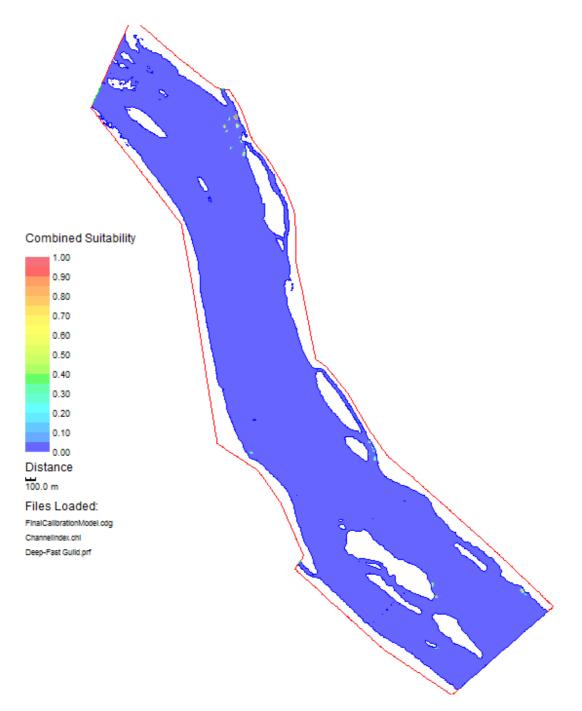



Deep-Fast Guild – 30,000 cfs

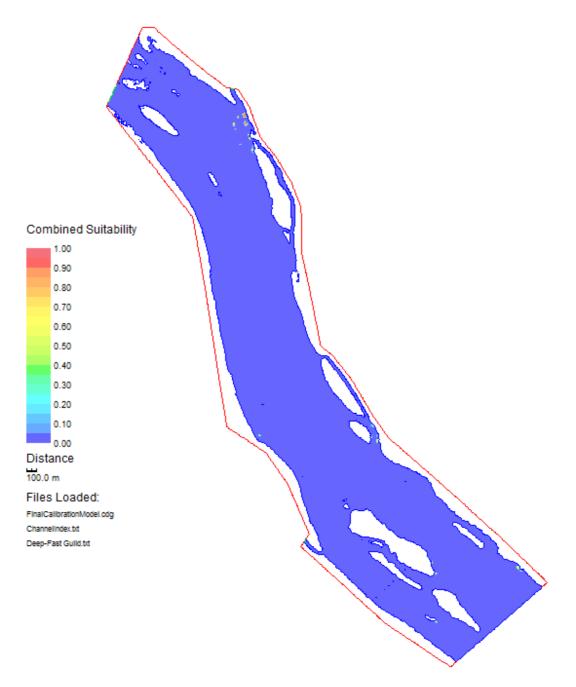



Deep-Fast Guild – 40,000 cfs



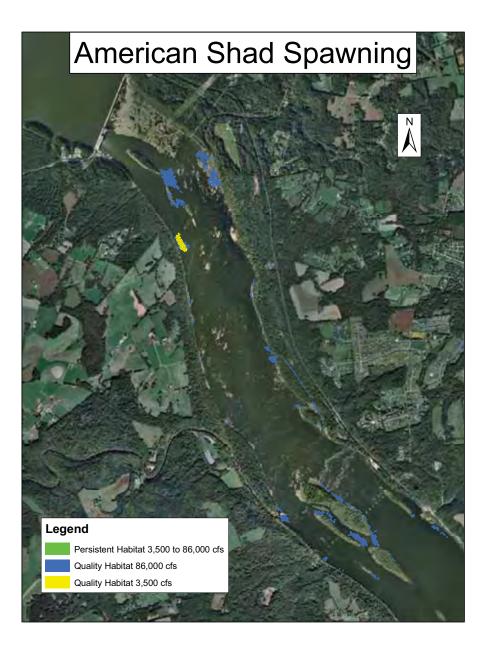

# Deep-Fast Guild – 50,000 cfs

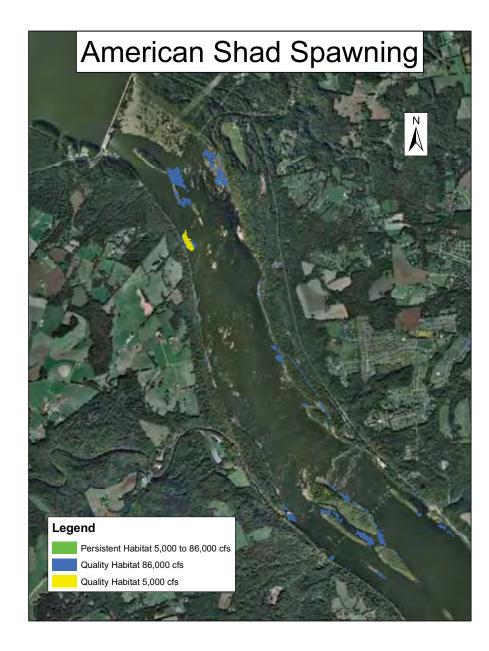


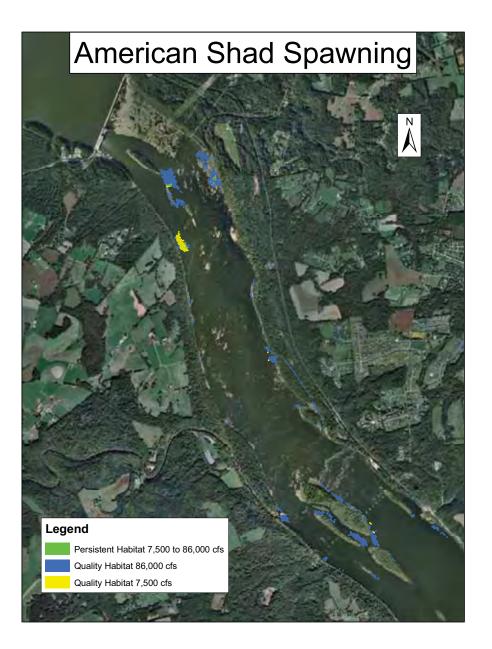

Deep-Fast Guild – 60,000 cfs

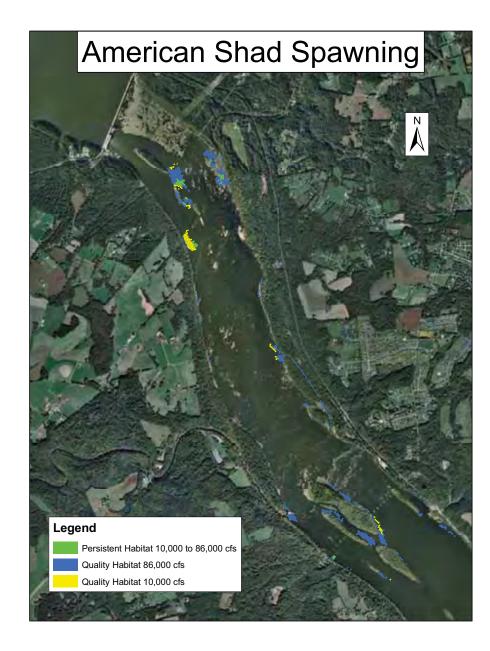


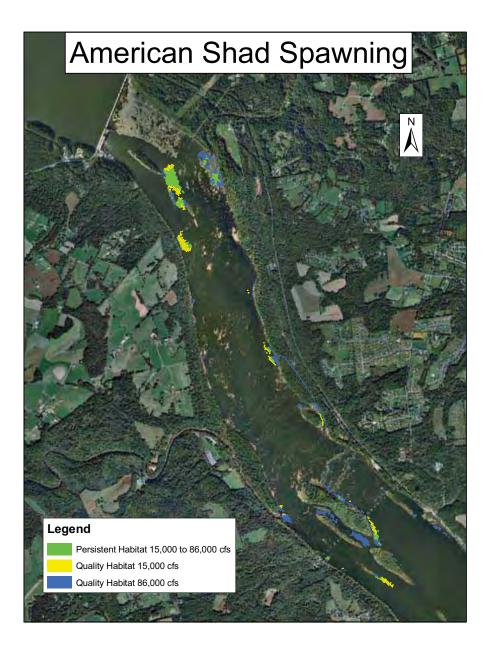
Deep-Fast Guild – 70,000 cfs

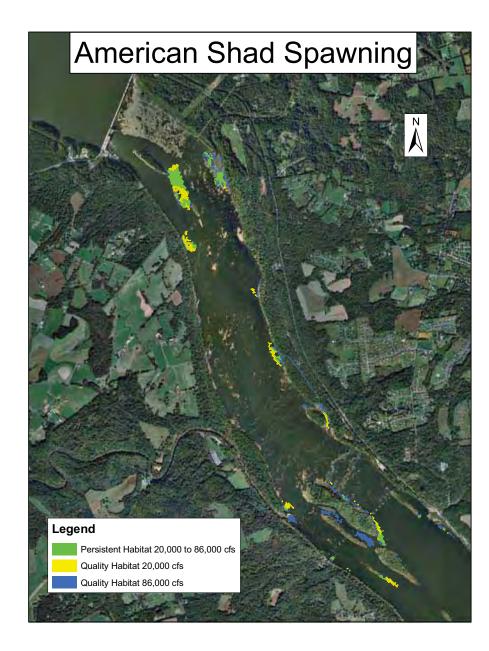


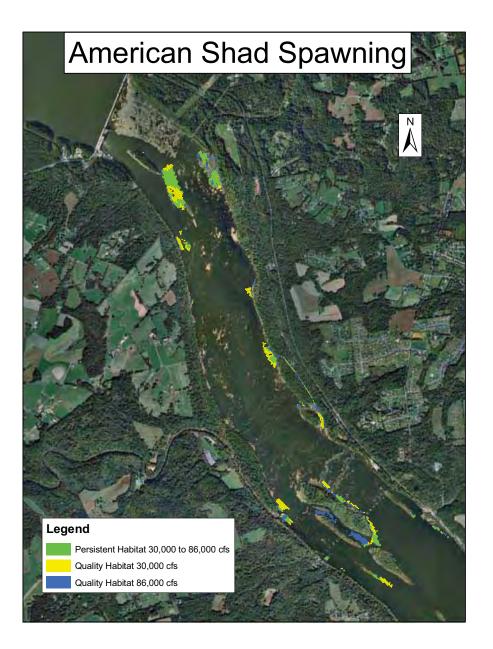


Deep-Fast Guild – 80,000 cfs

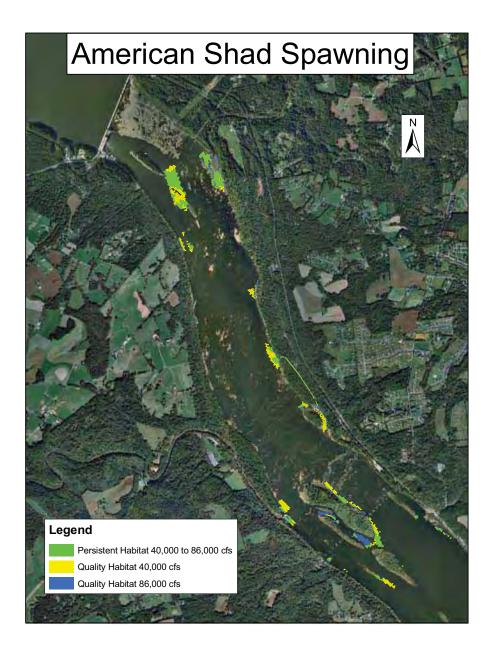


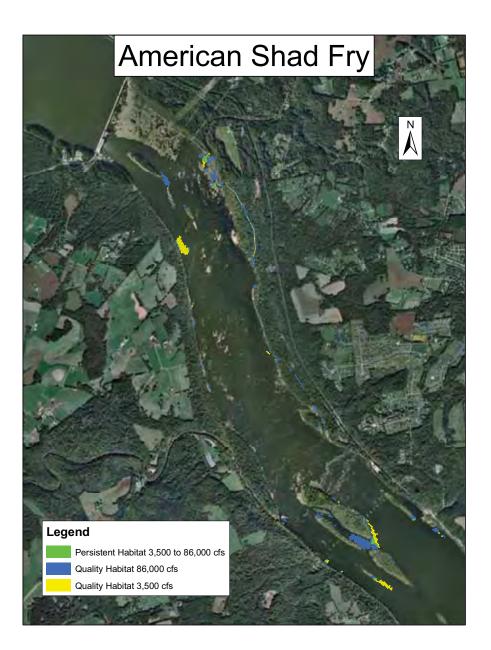


# Deep-Fast Guild – 86,000 cfs

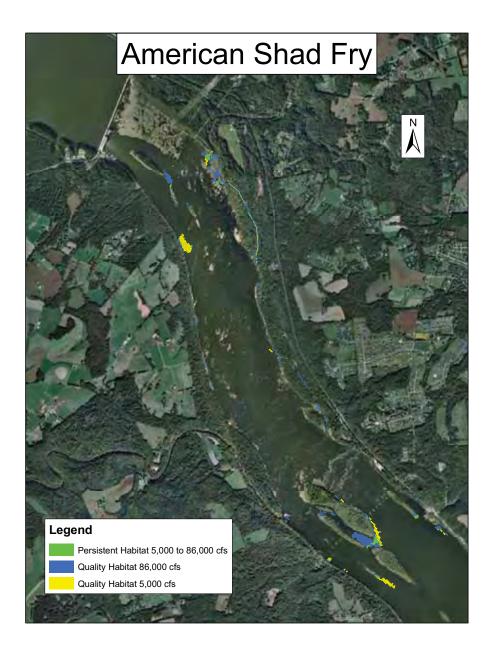

### APPENDIX F-HABITAT PERSISTENCE MAPS

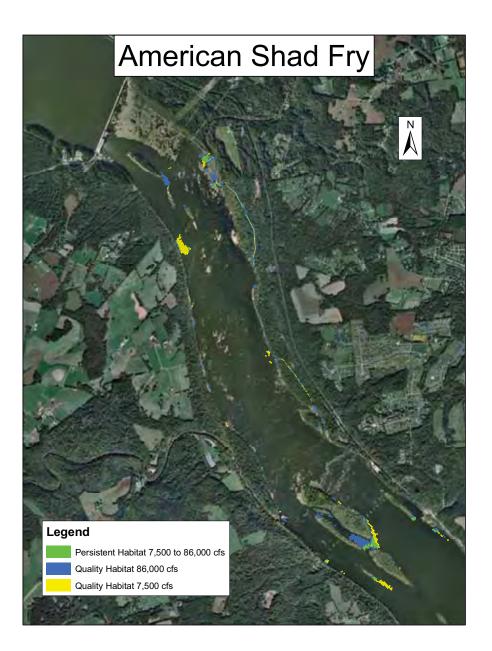


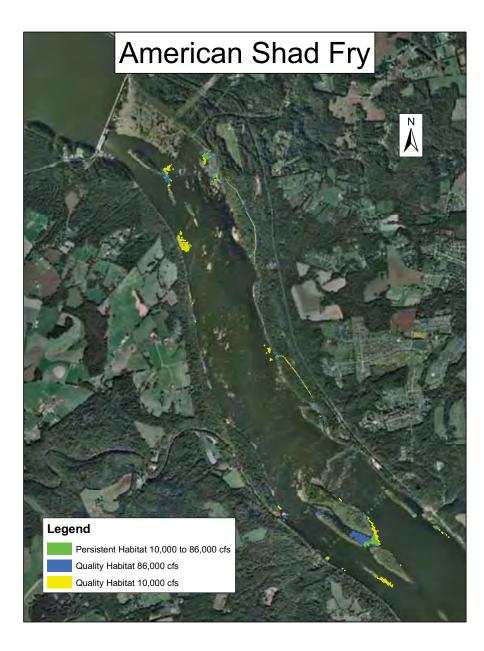



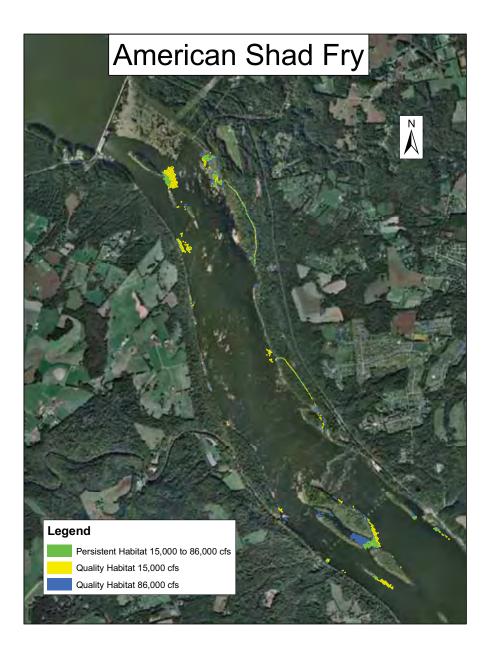



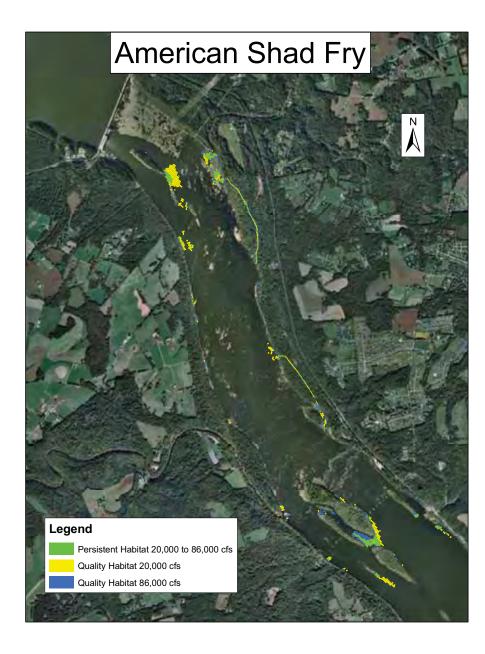



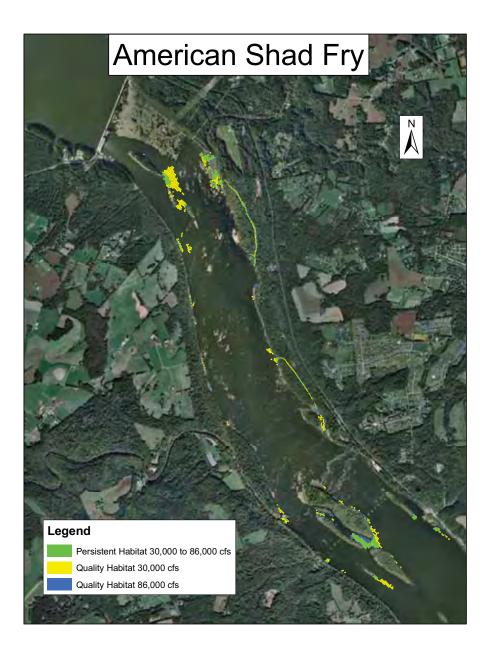



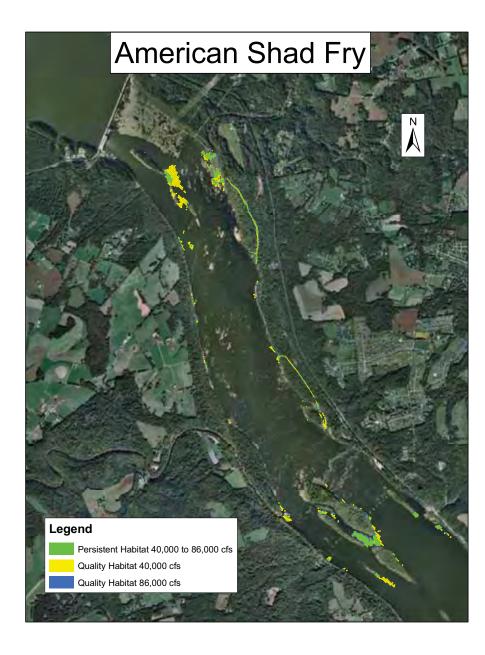



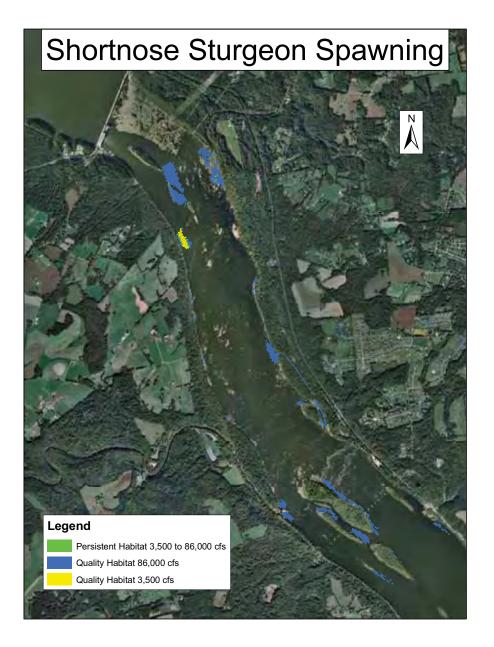



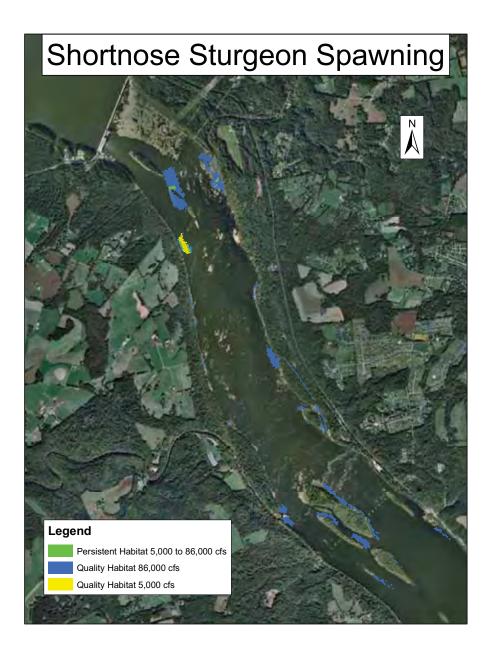



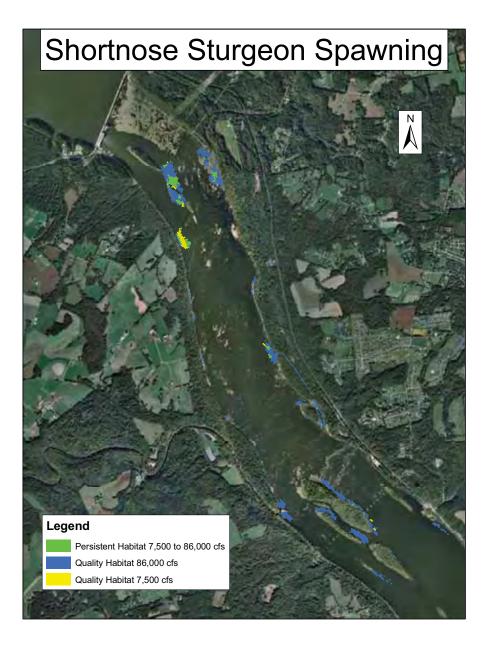



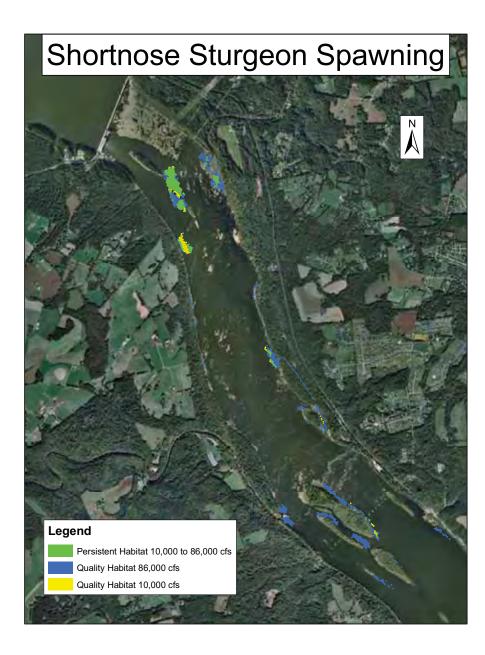



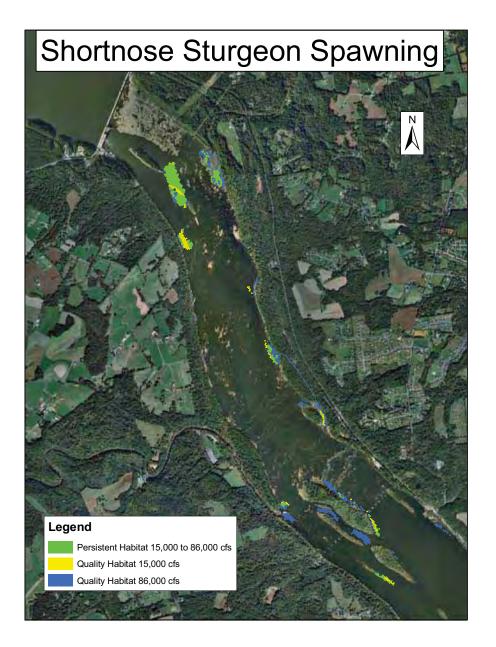



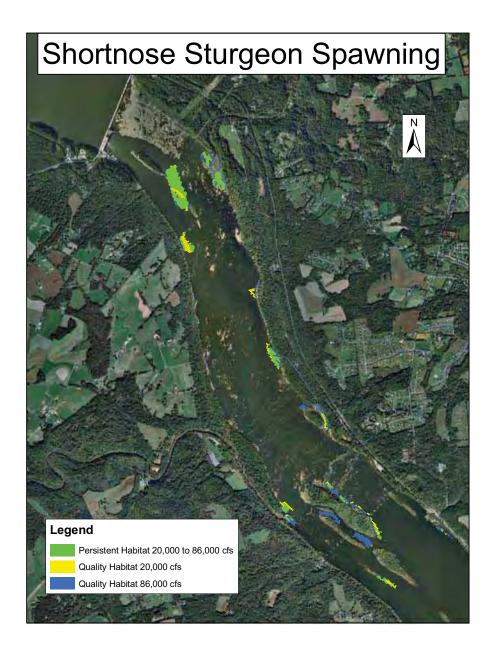



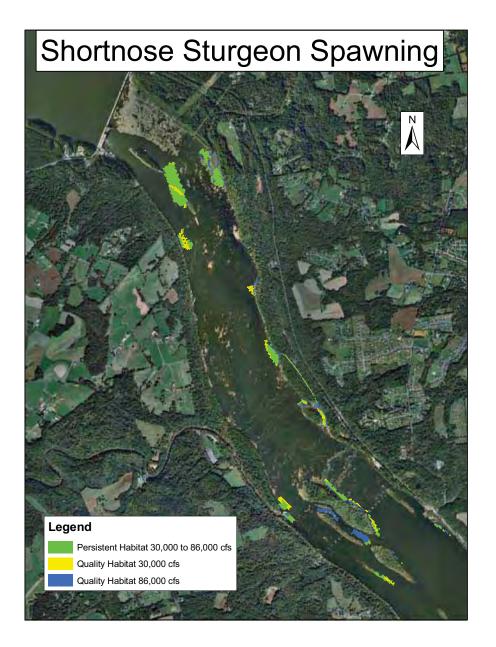



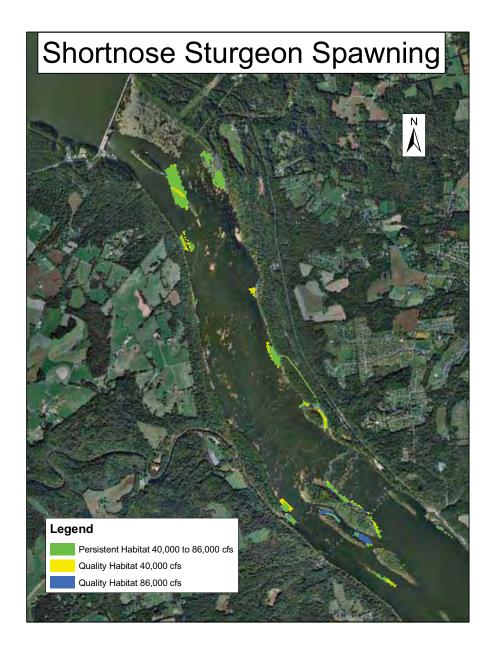



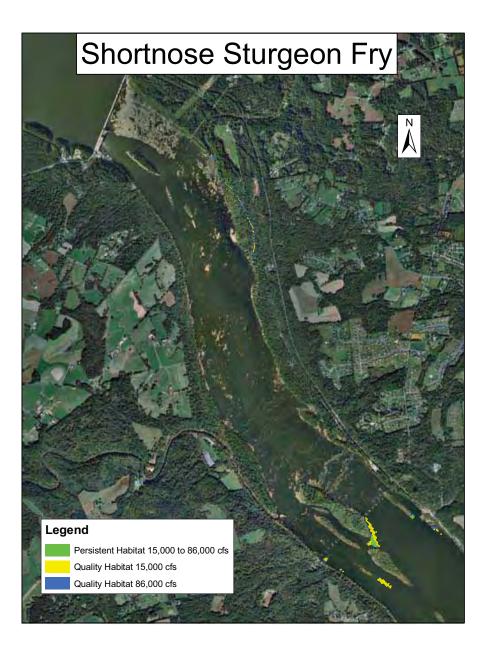



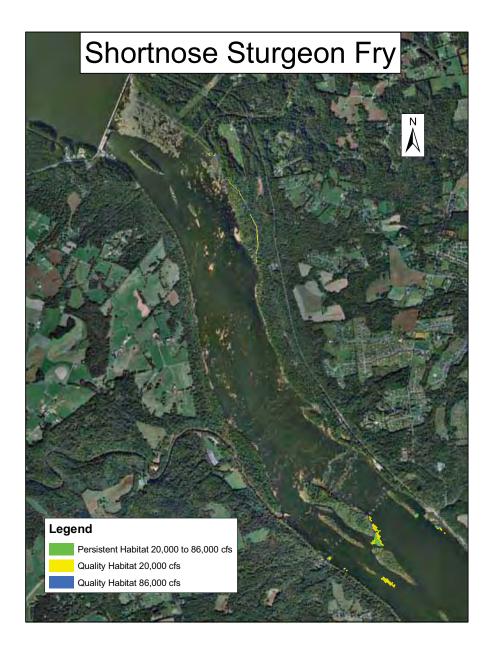


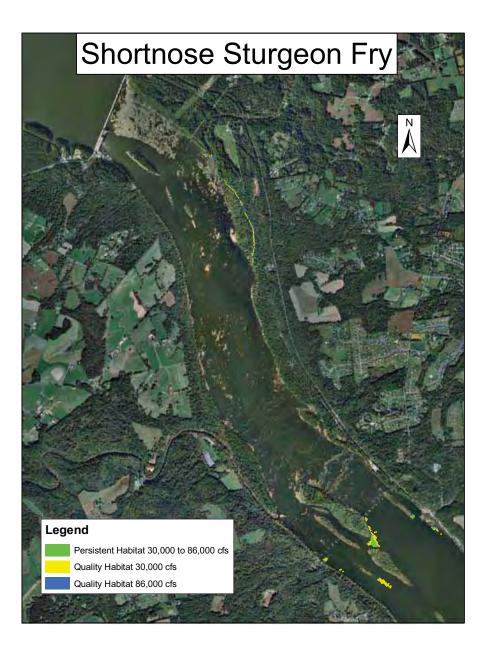


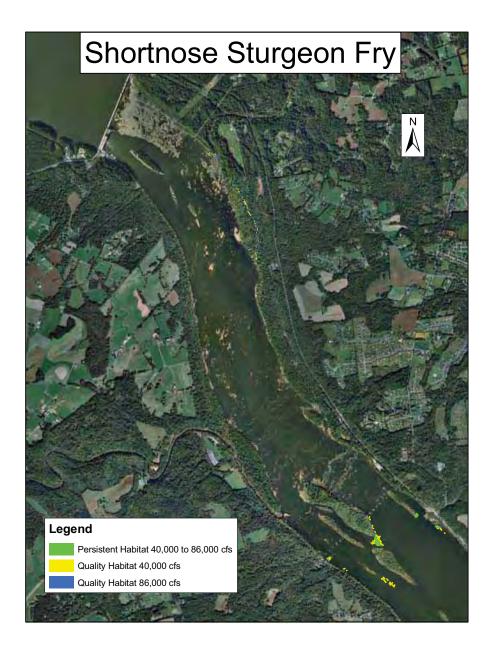


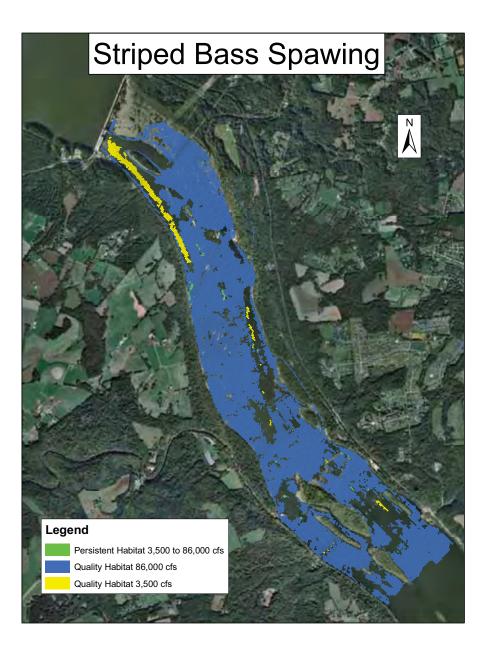


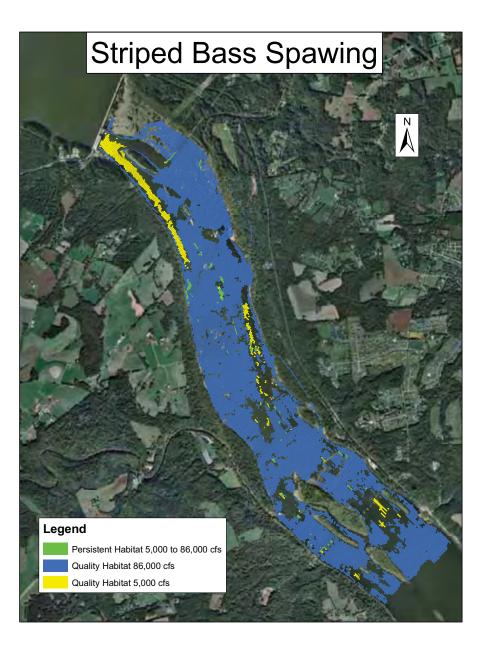



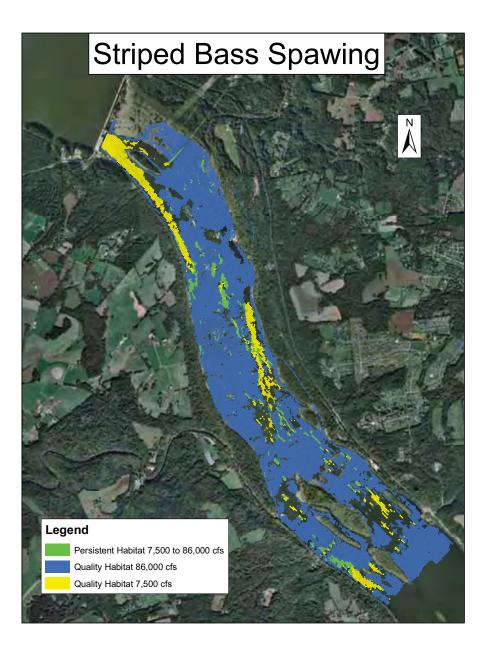



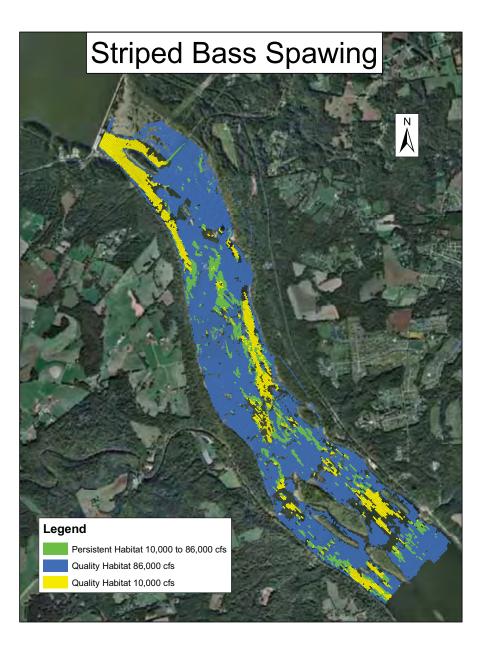



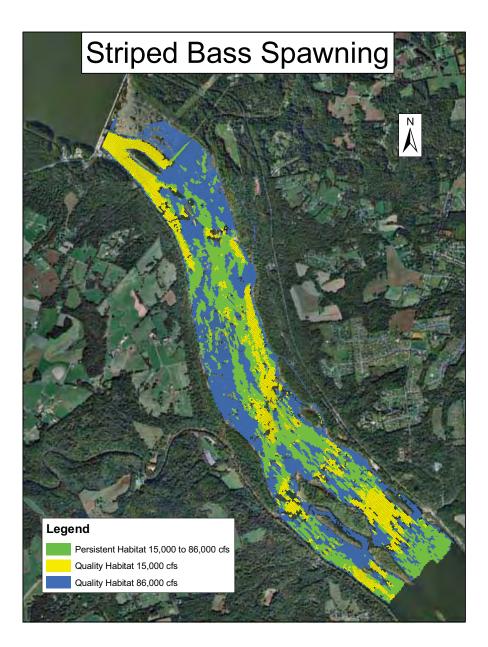



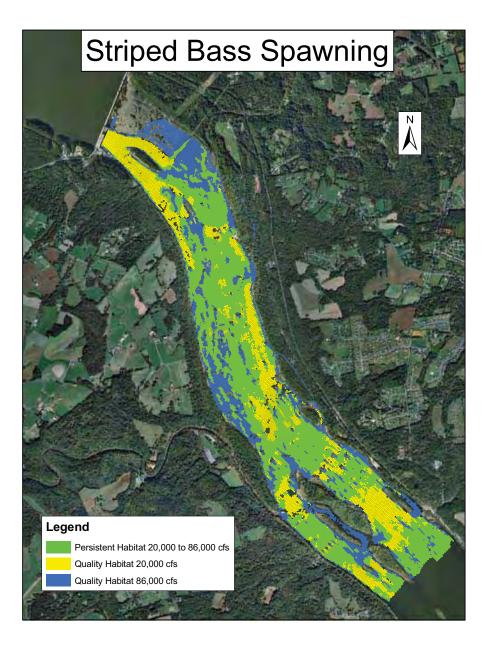



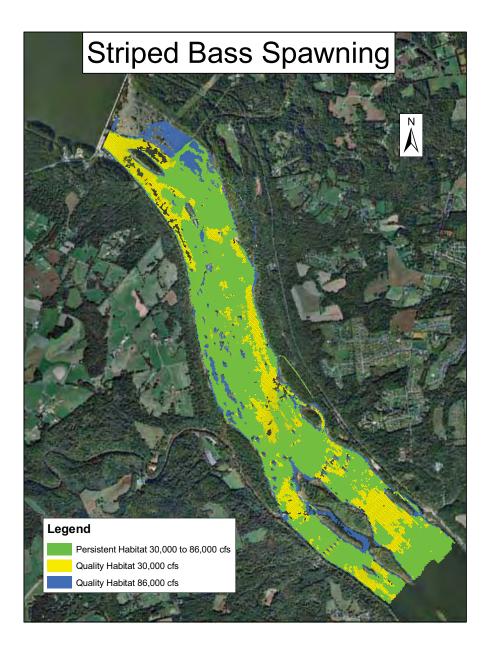



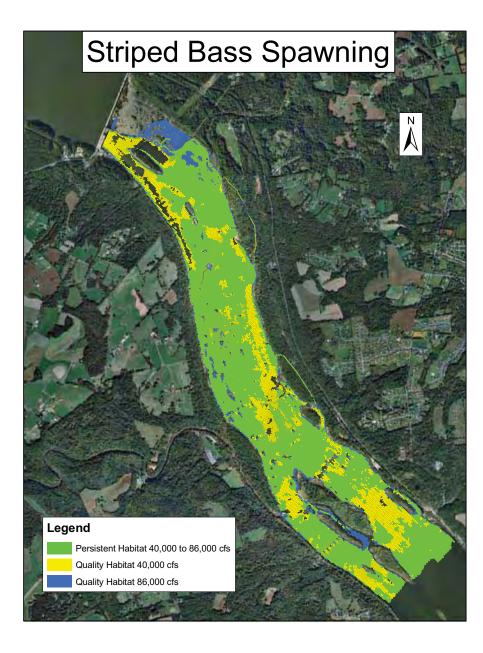



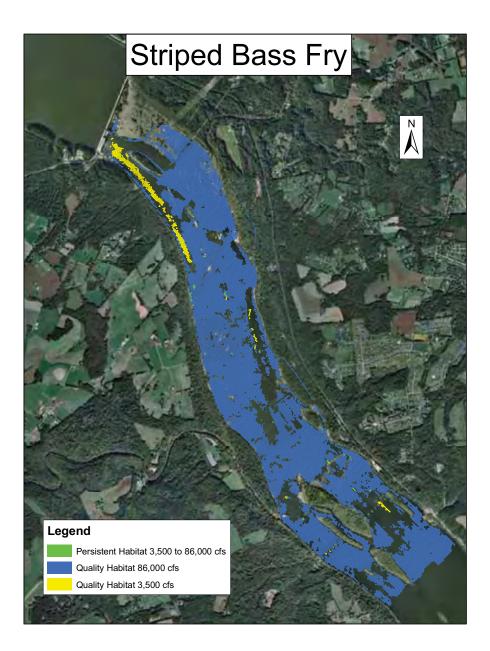



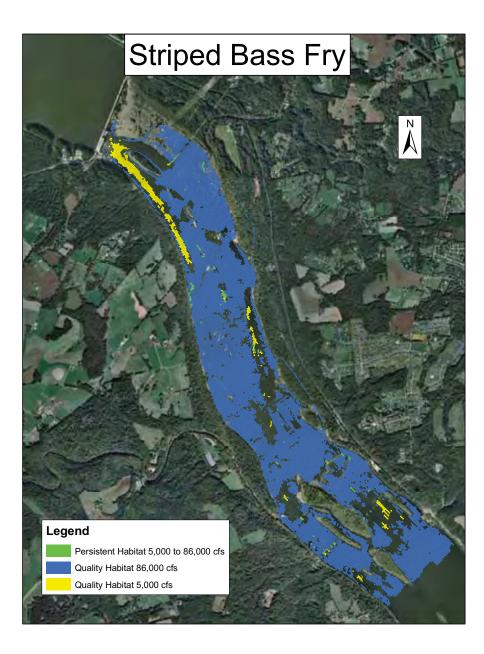



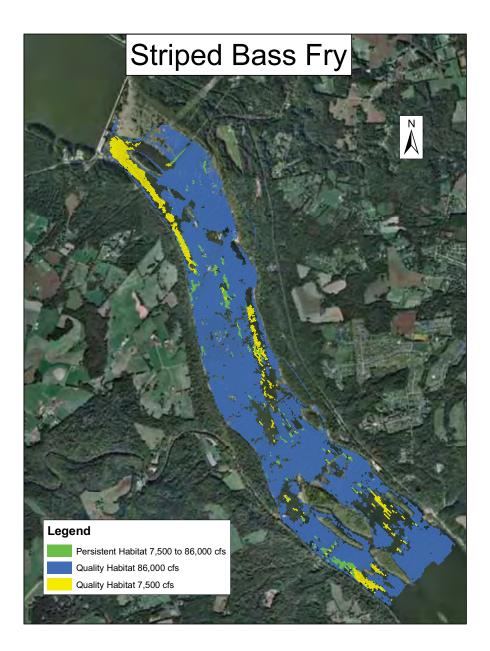



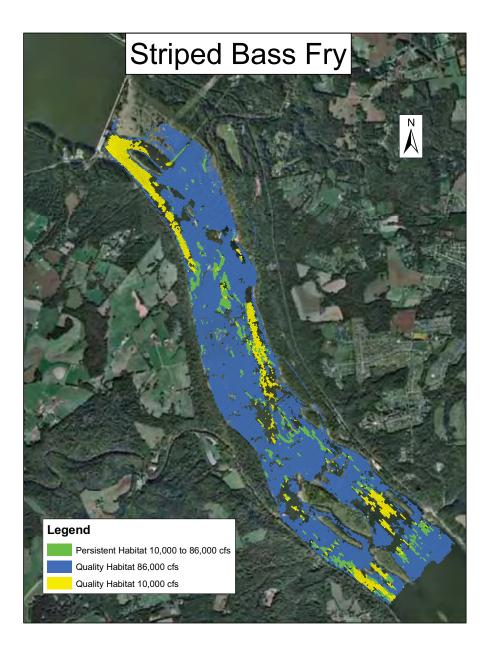



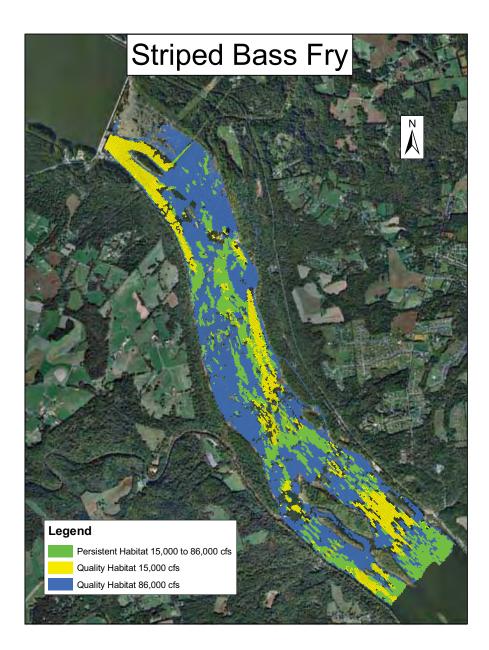



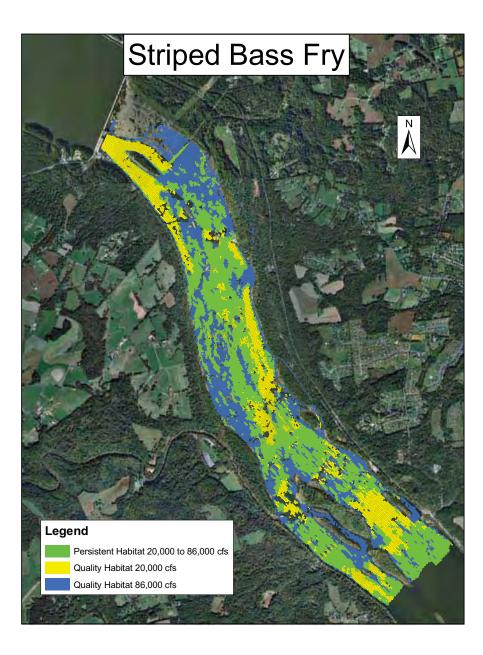



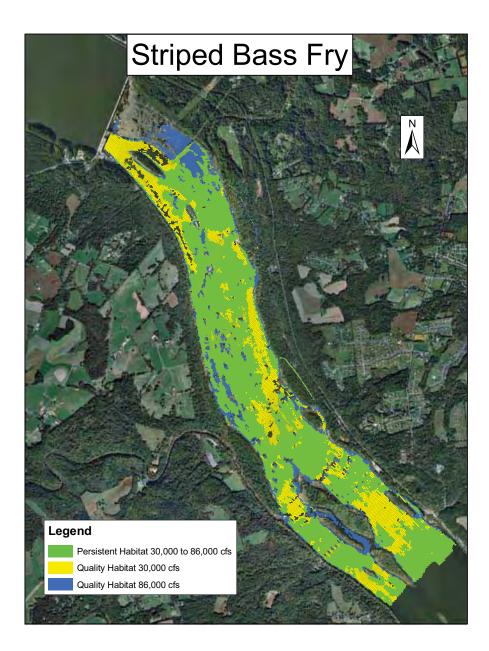



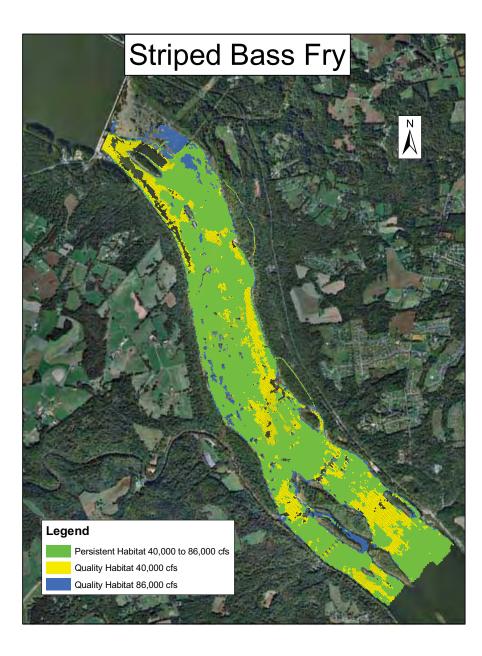



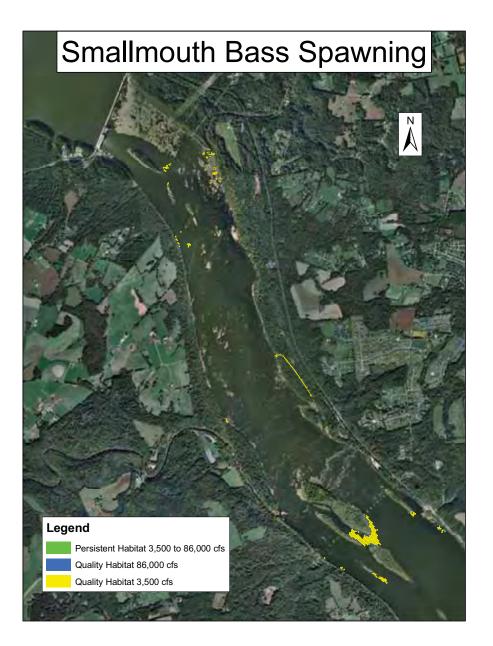



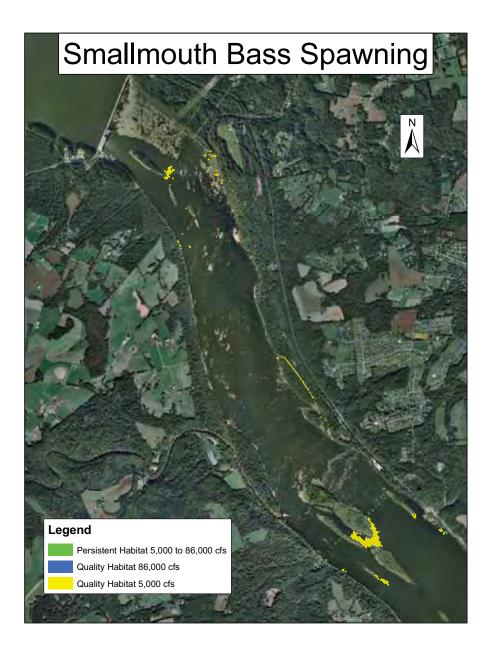



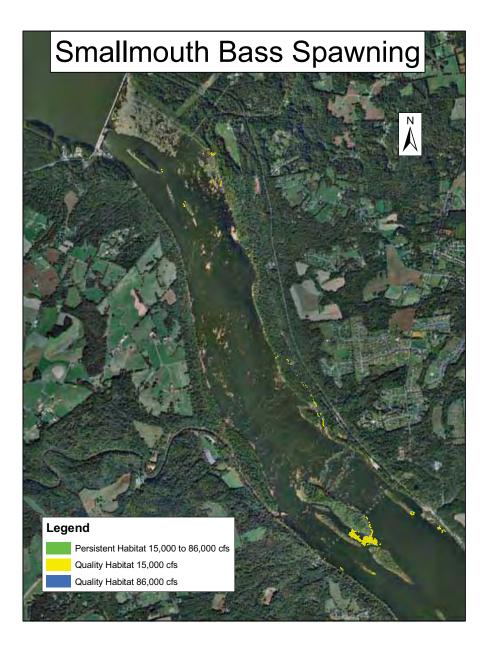



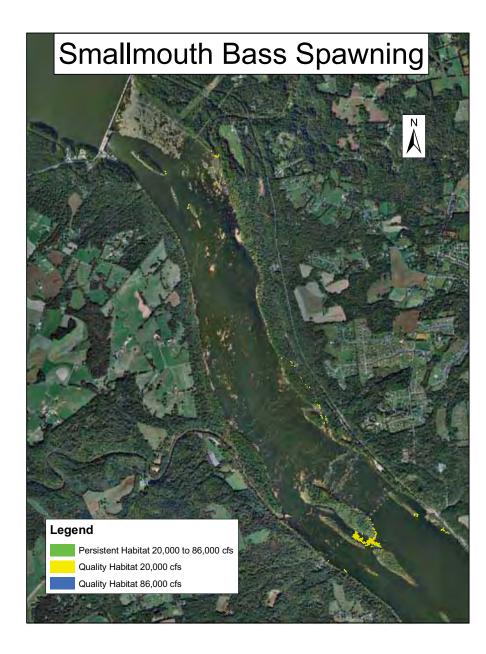



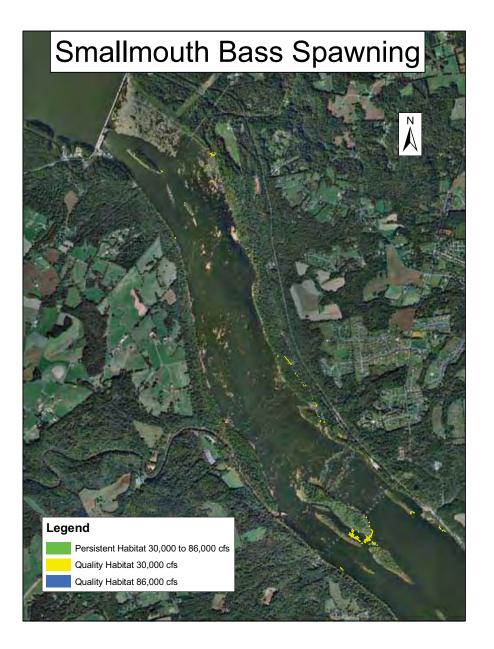


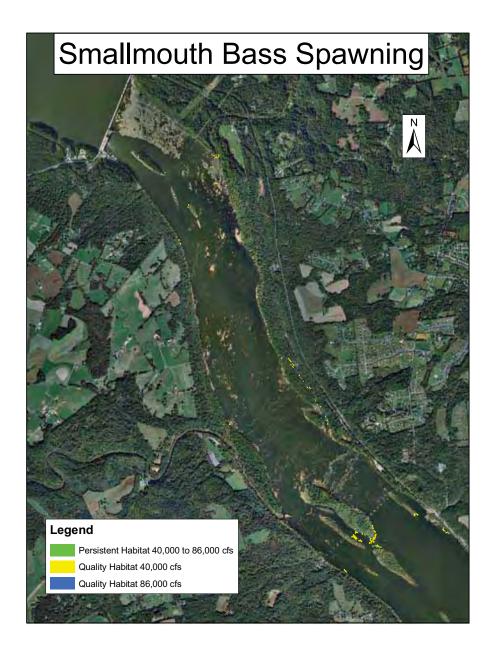






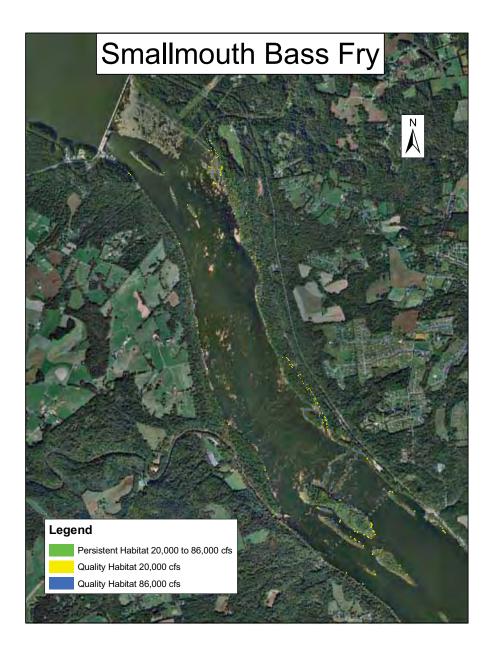


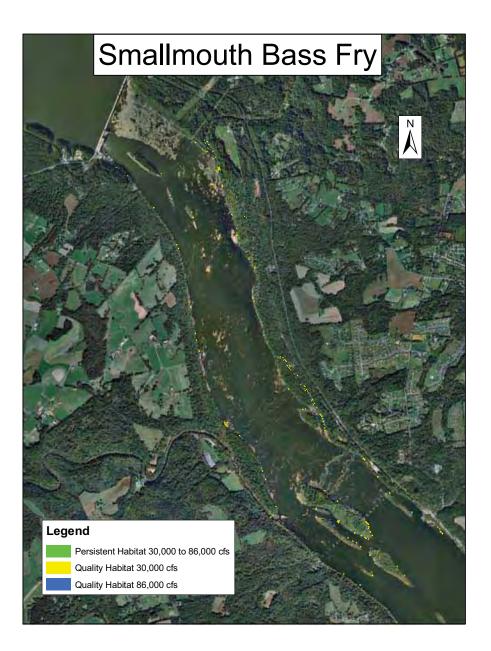


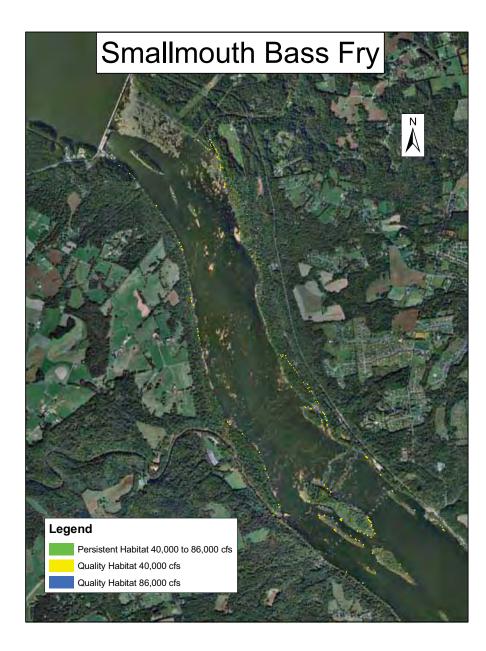


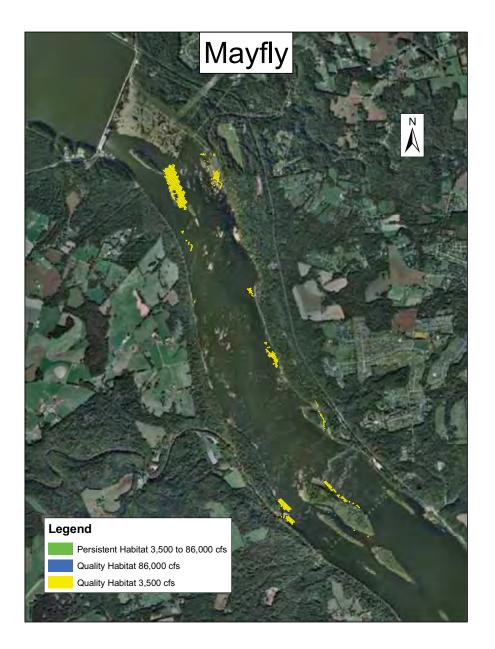


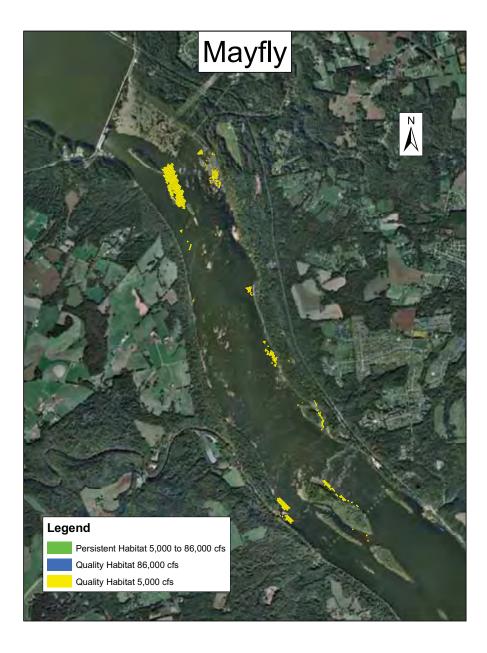


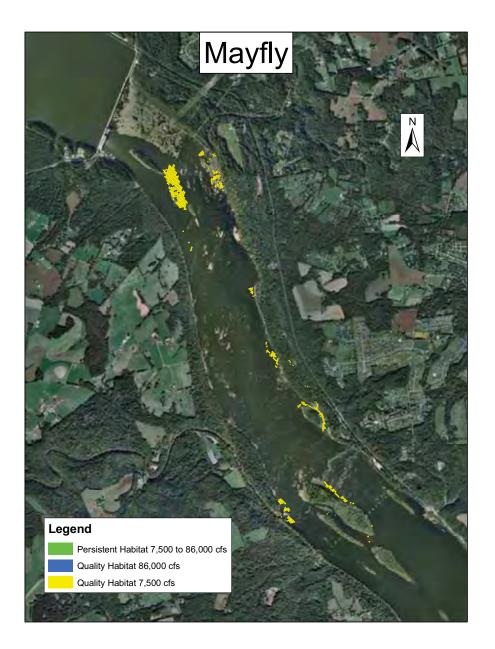



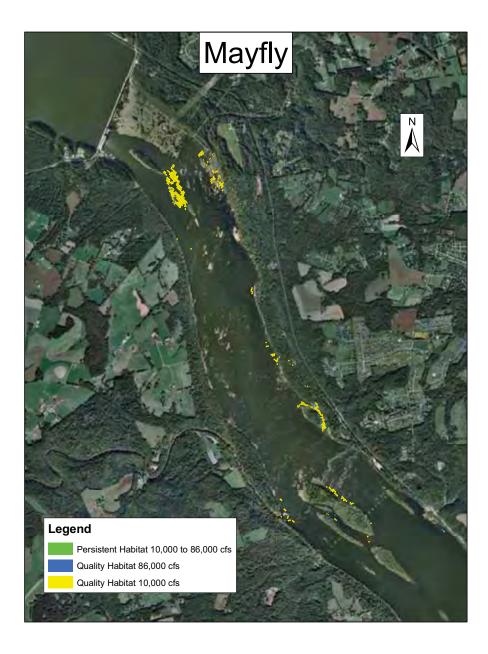



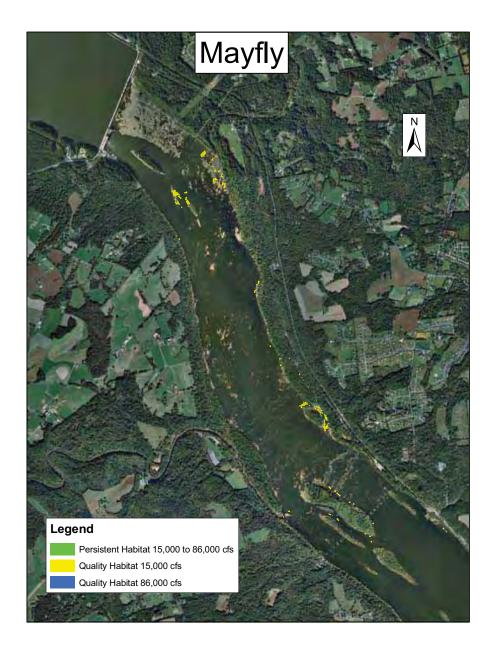



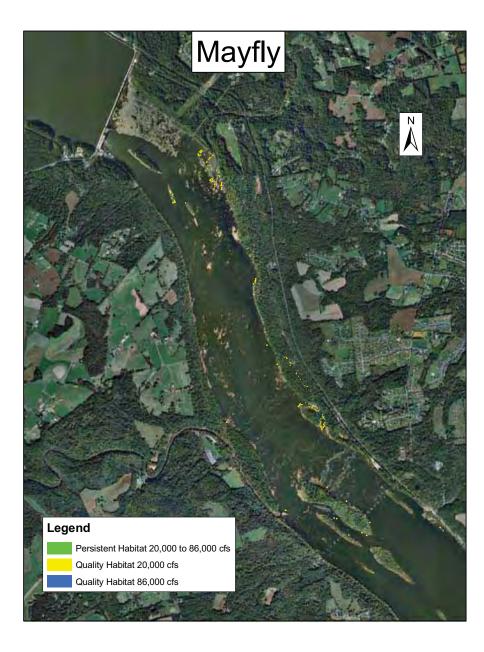



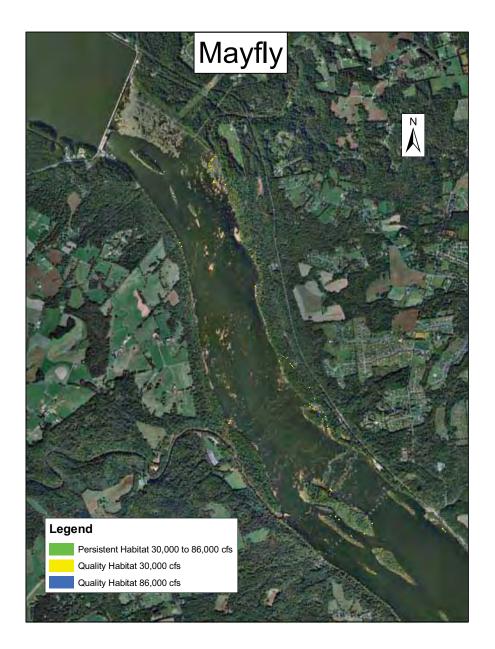



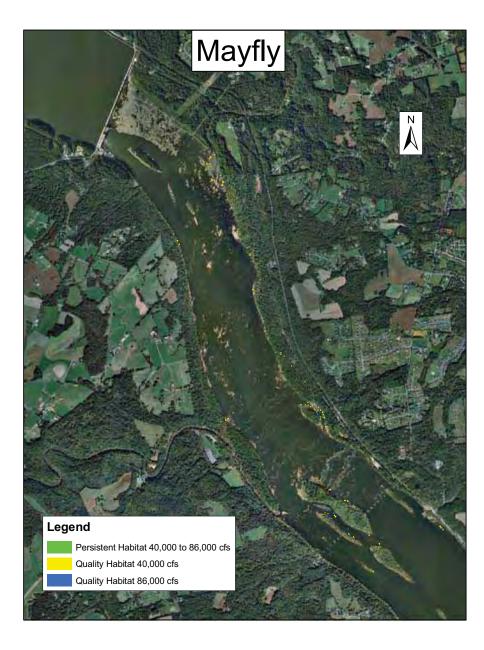



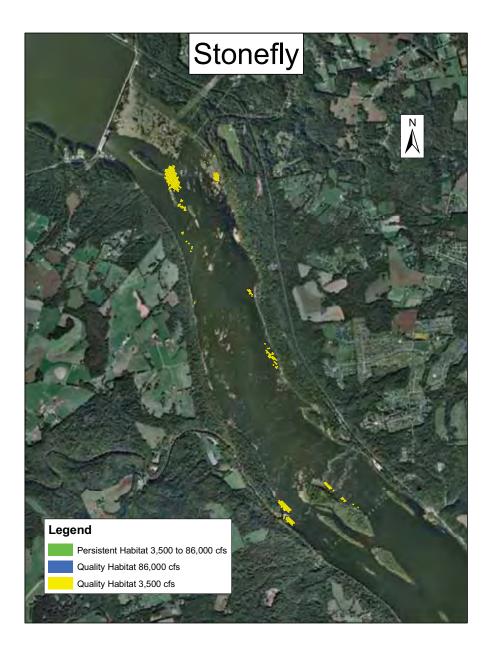



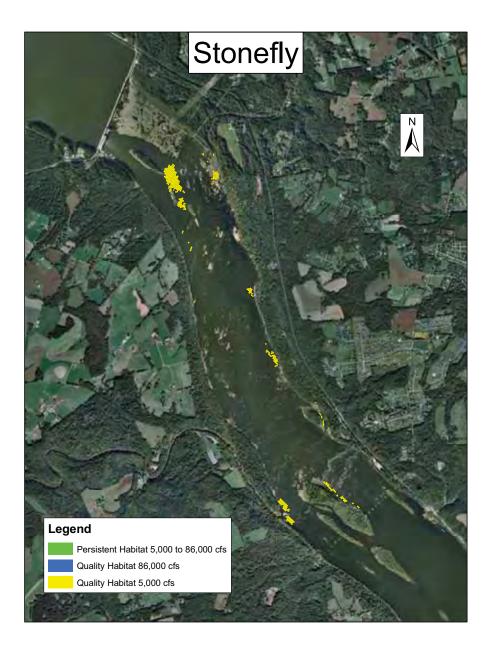



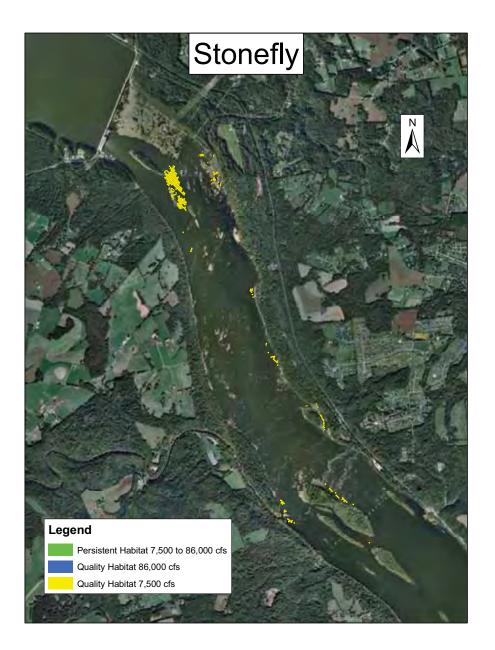



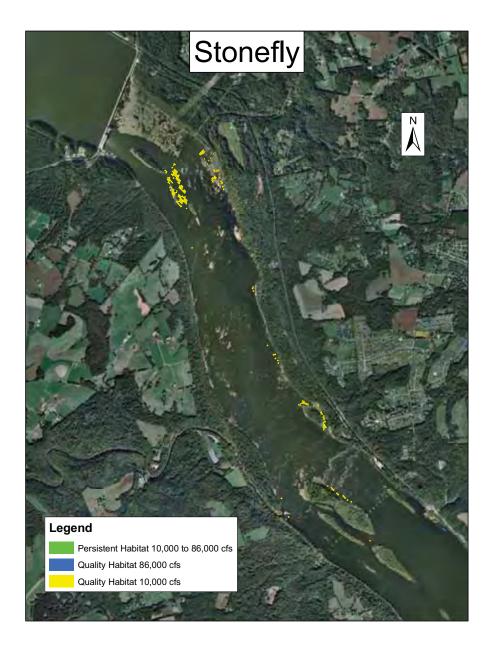



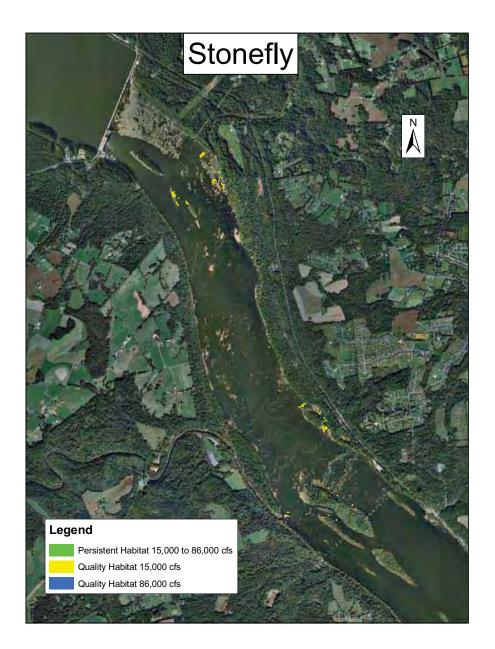



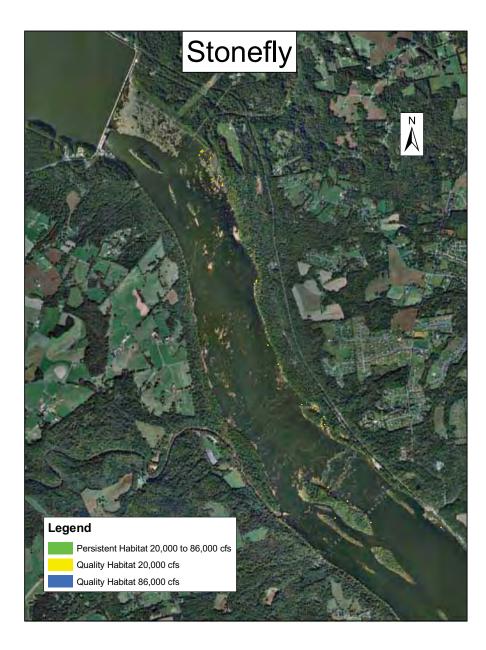



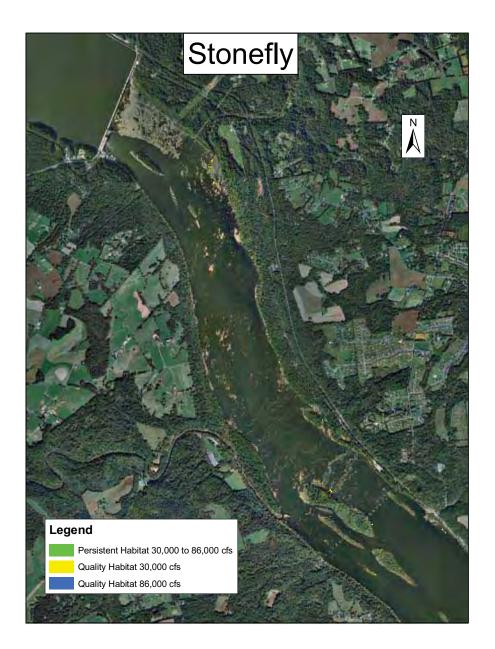



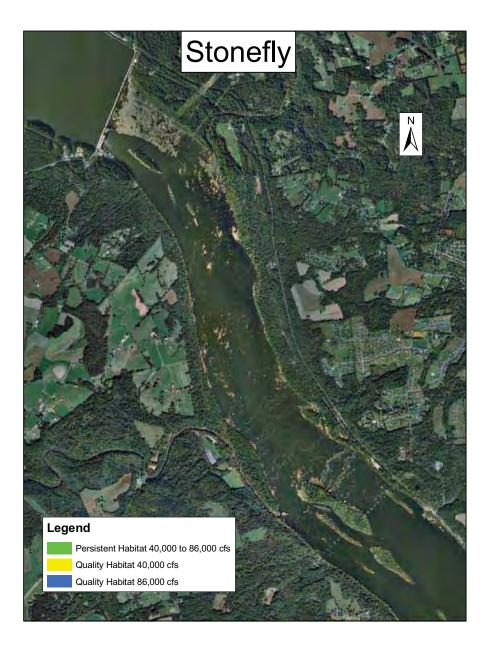



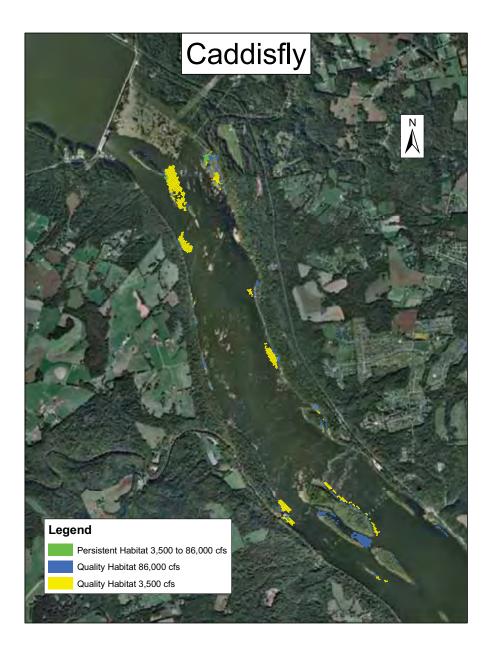



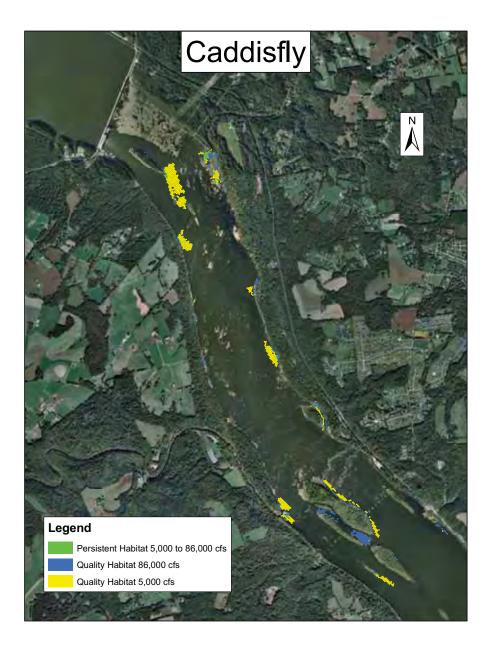



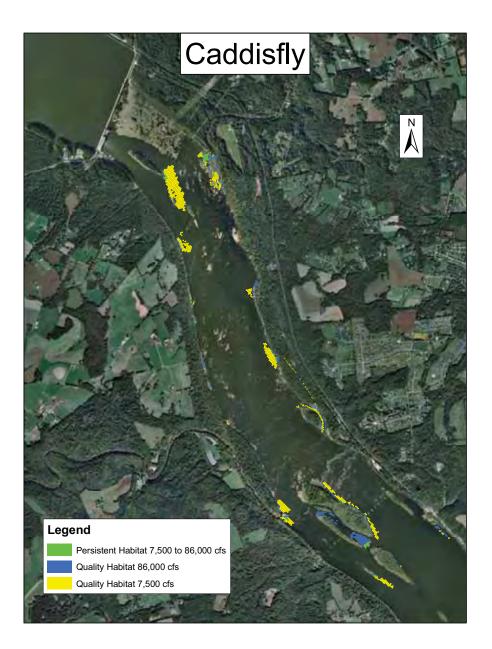



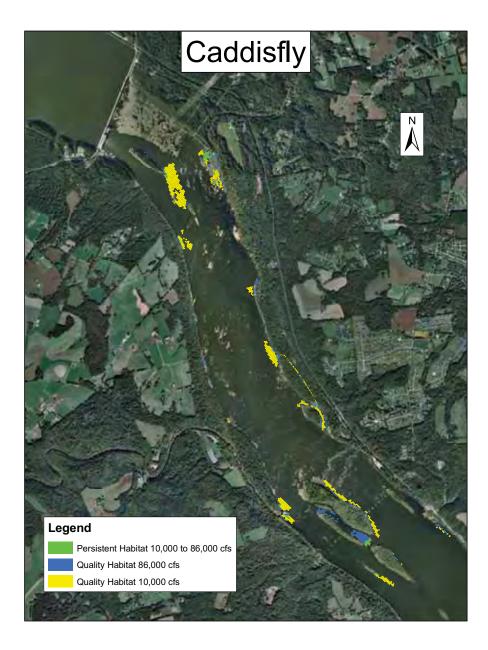



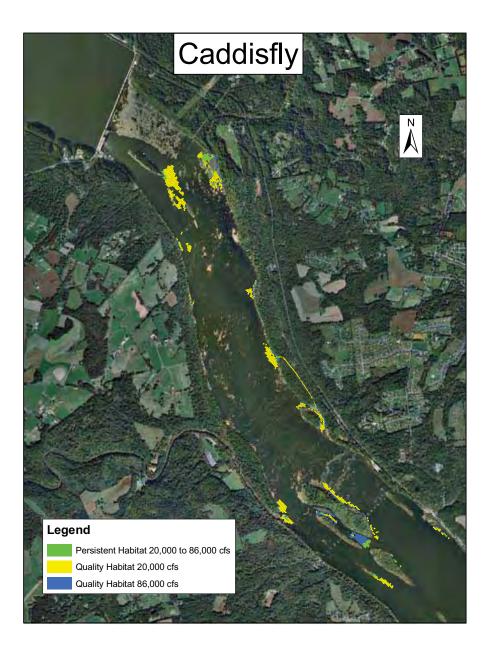



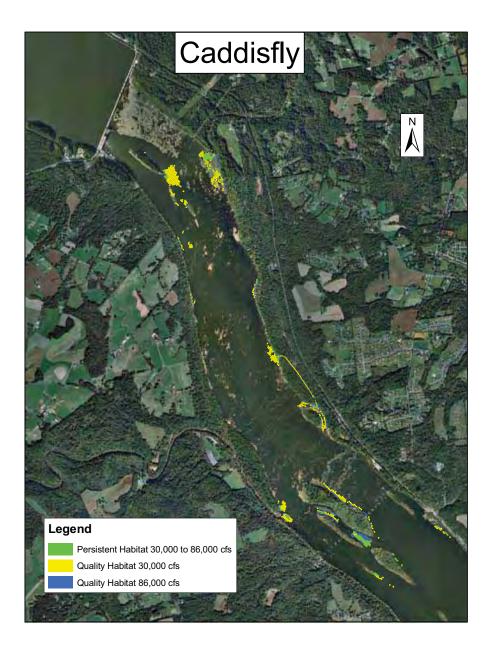



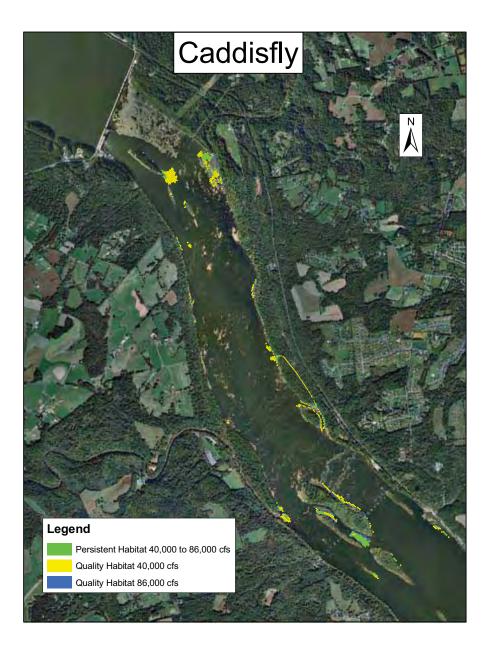



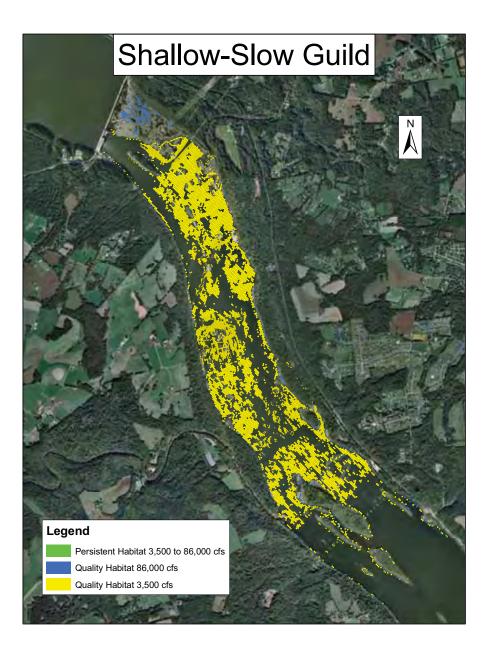


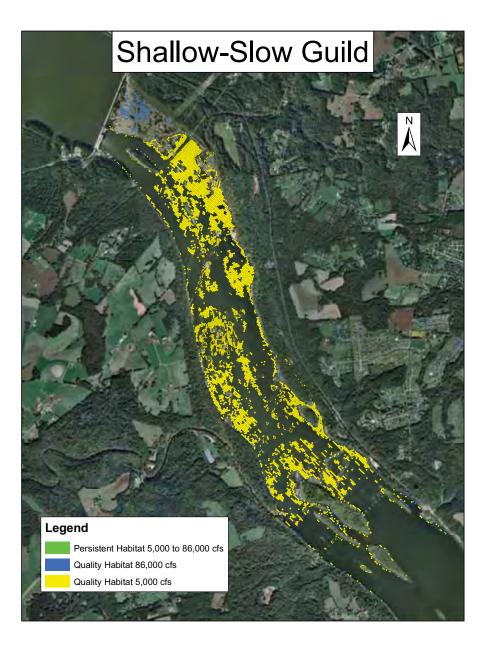


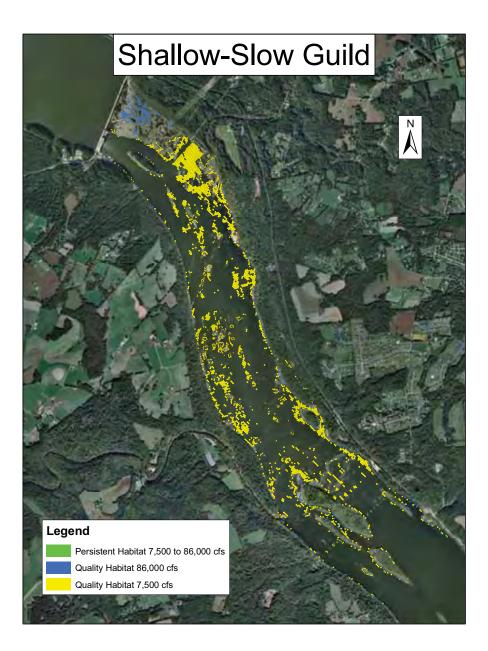


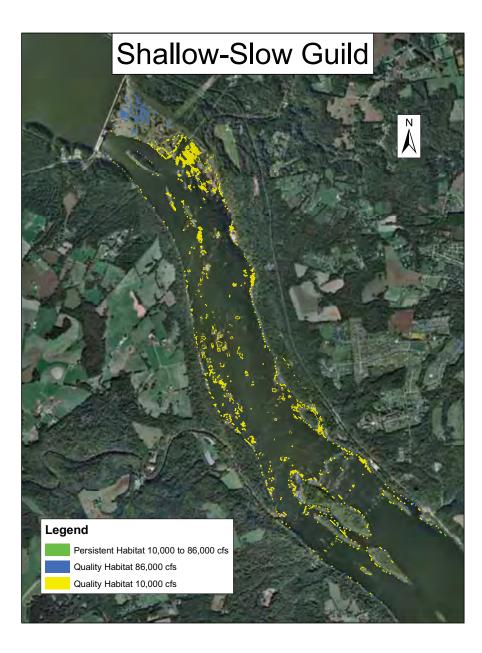



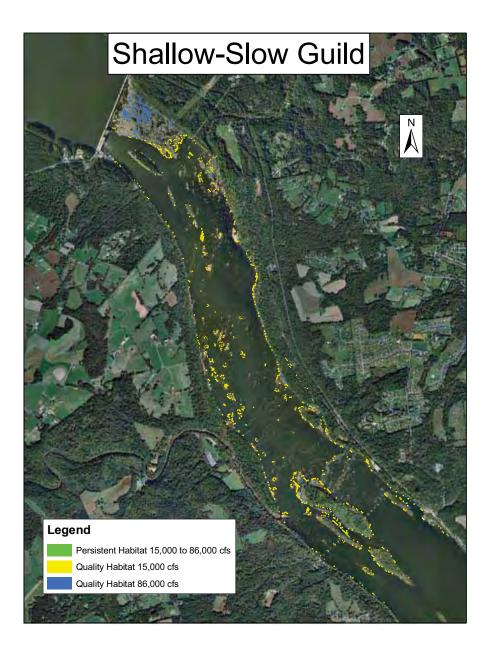



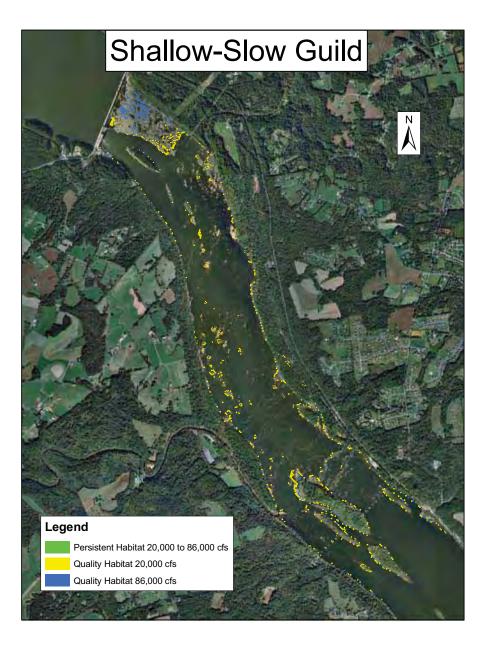



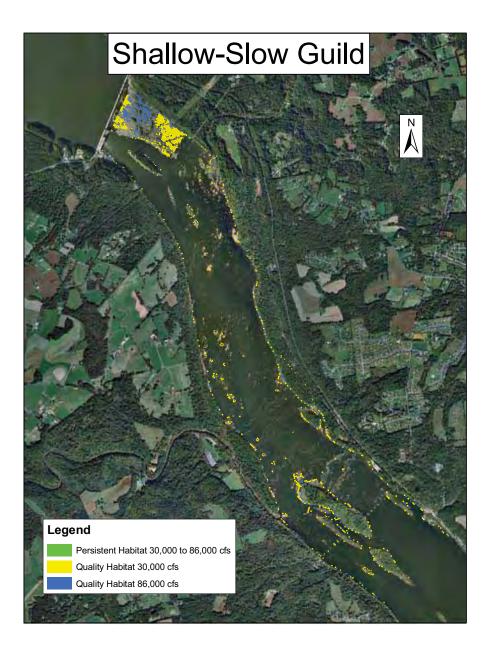



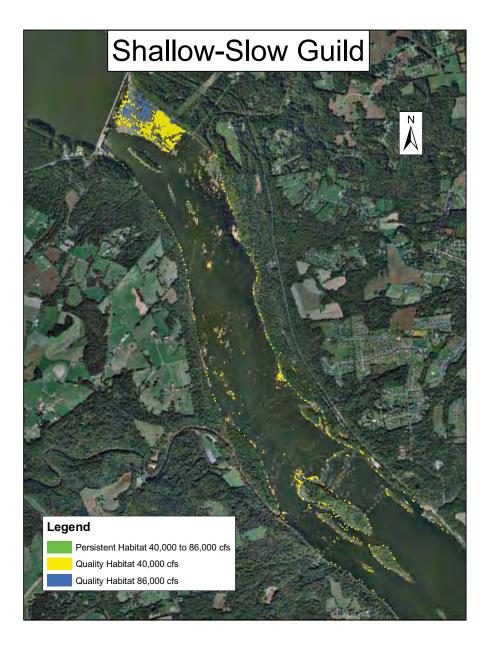



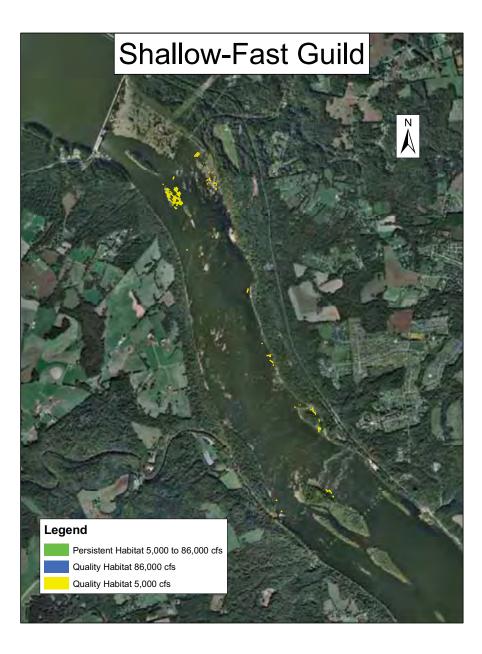





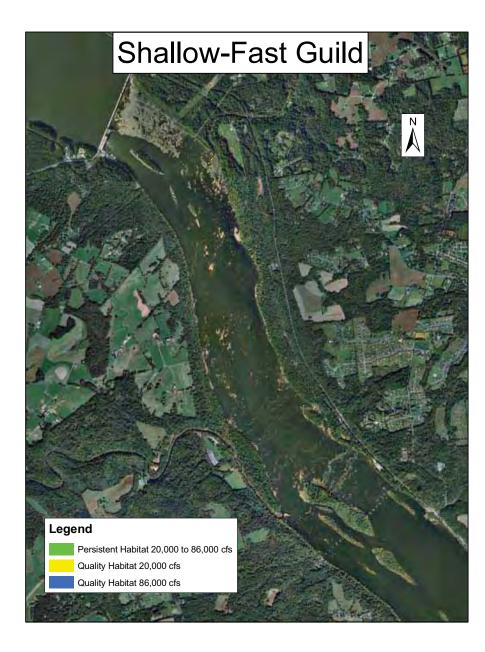





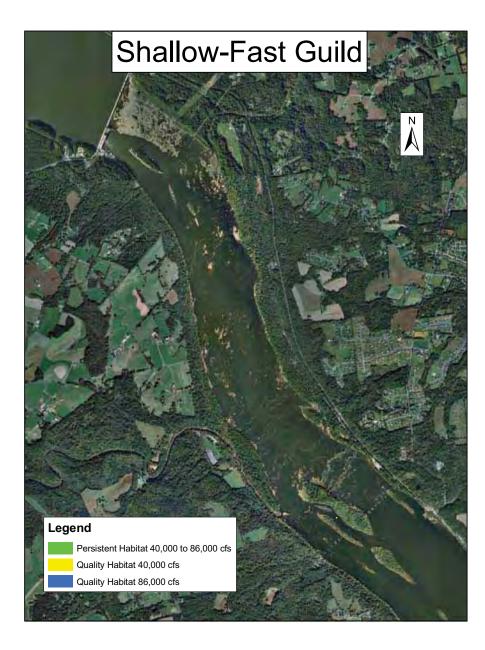


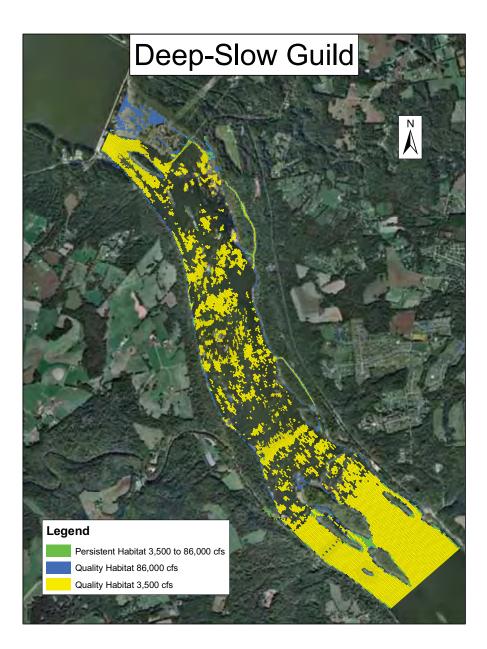


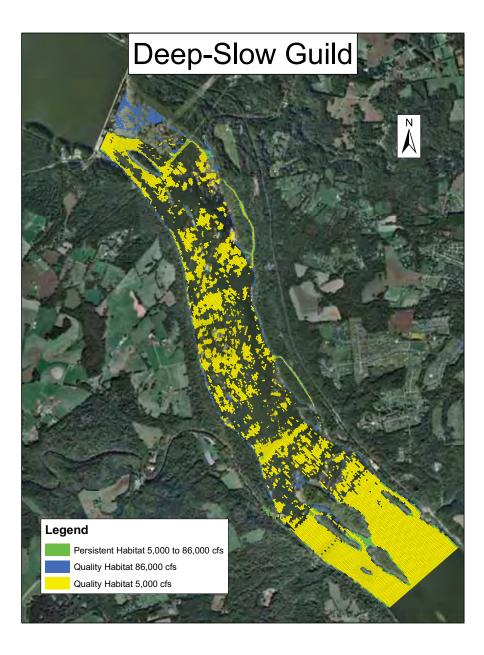


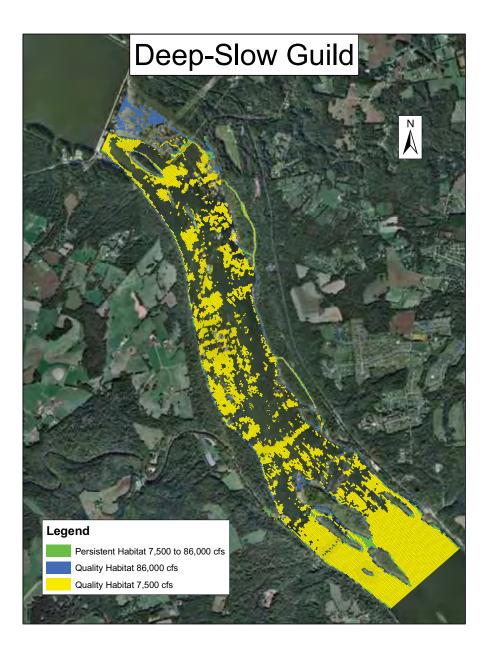


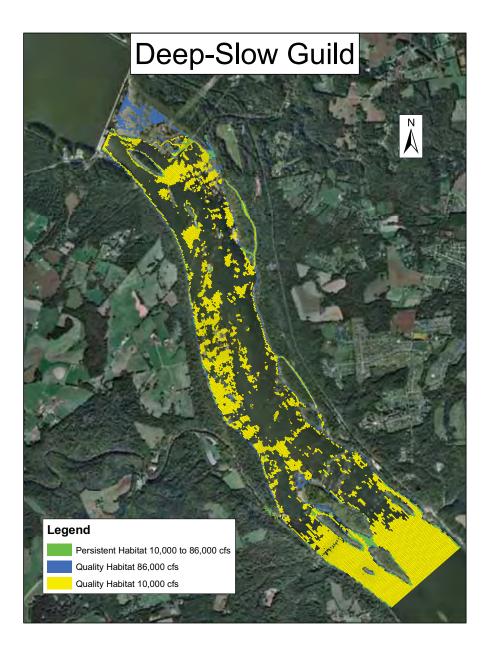


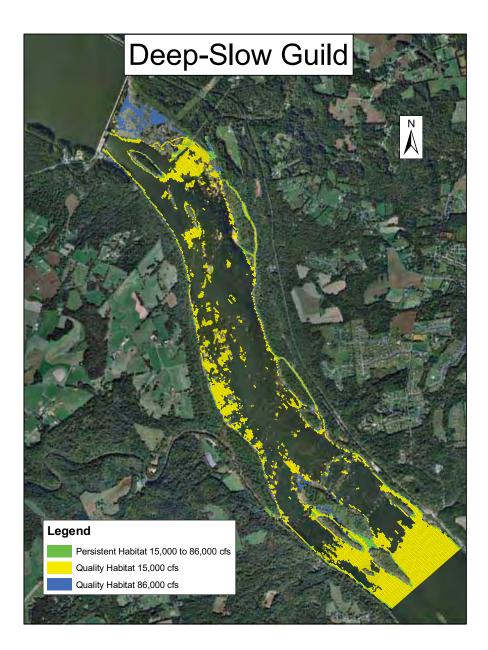



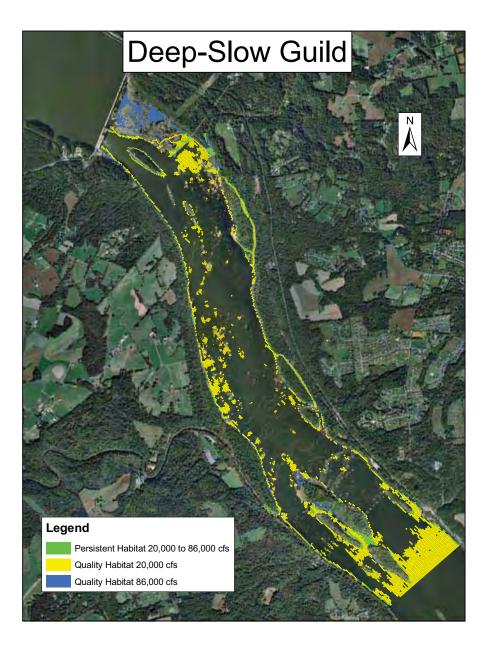



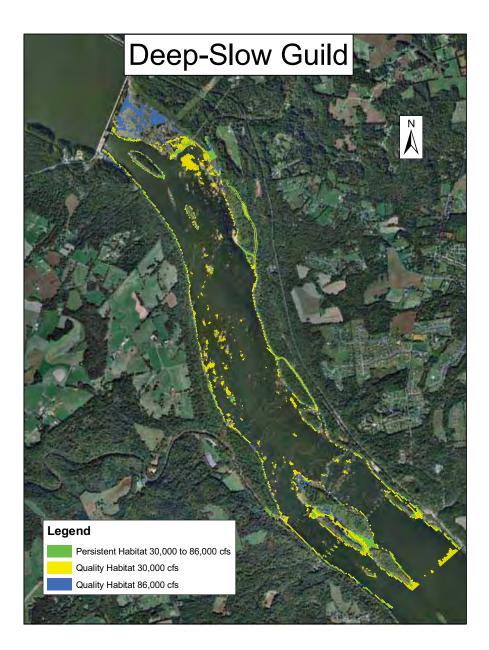



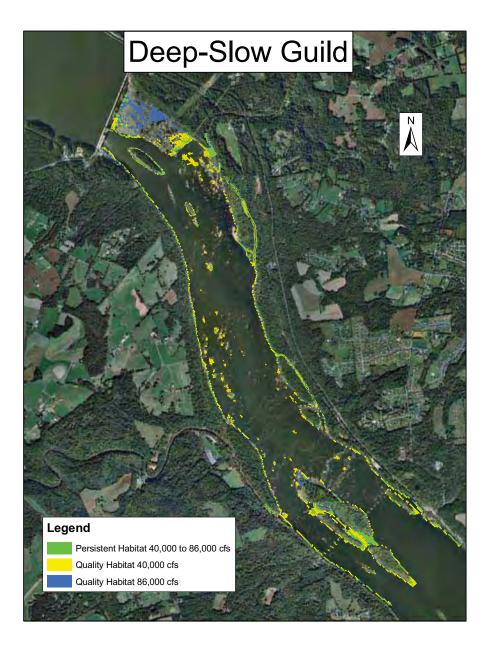



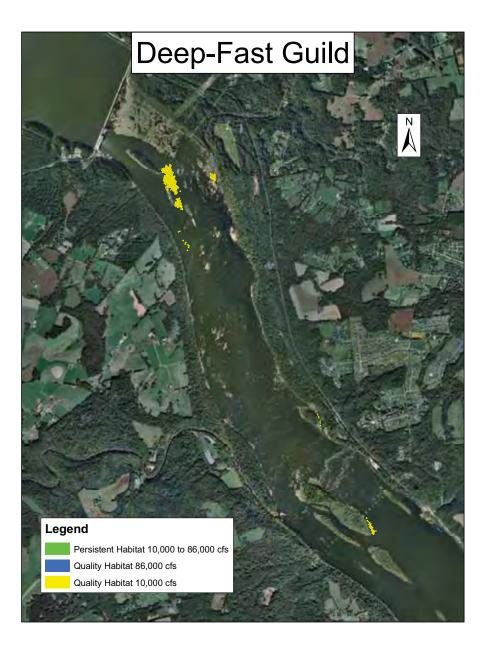



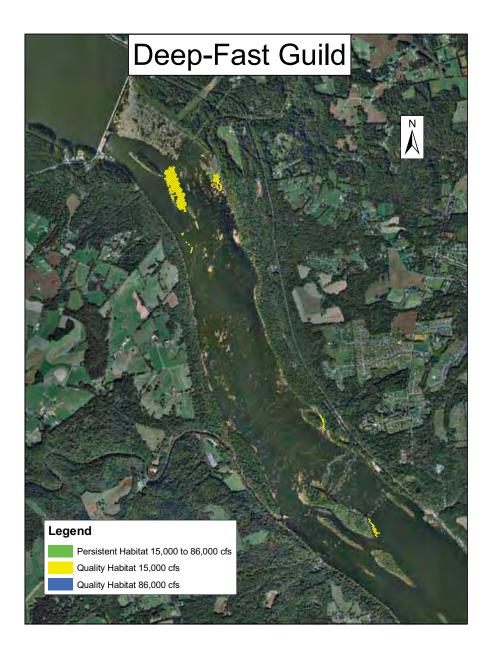



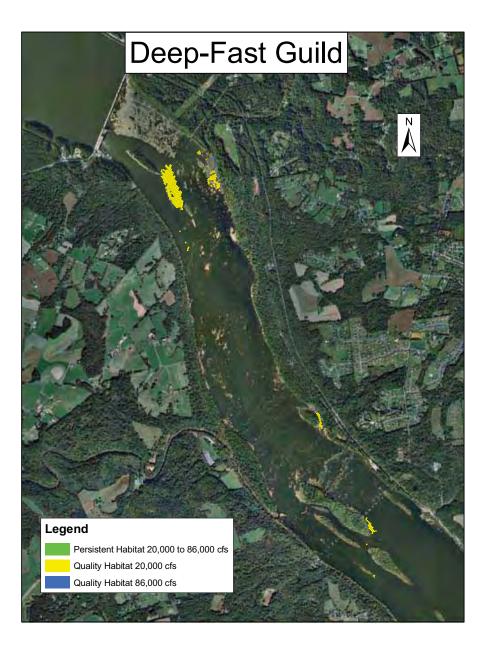


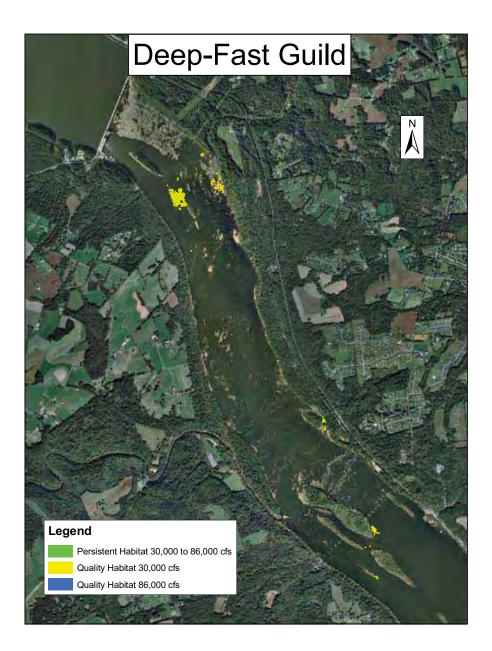


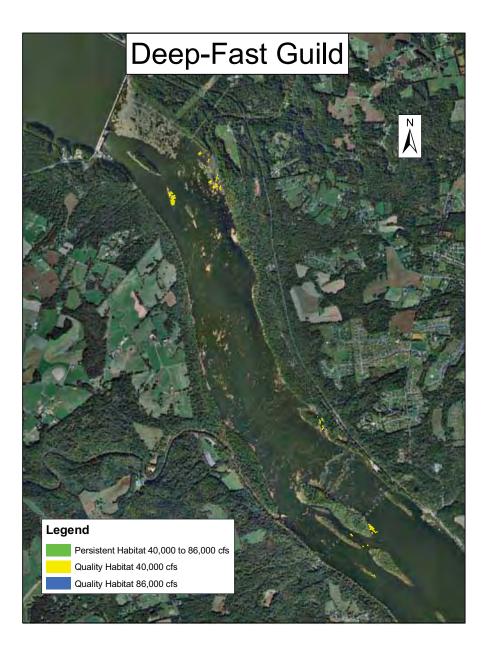













## APPENDIX G-HABITAT PERSISTENCE TABLES

| _                     |         |              |              |              |         |           | Generation | Flow (cfs) |           |           |           |           |           |           |
|-----------------------|---------|--------------|--------------|--------------|---------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500        | 5,000        | 7,500        | 10,000  | 15,000    | 20,000     | 30,000     | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000                 | 144,797 | ,<br>144,797 | ,<br>144,797 | ,<br>144,797 | 144,797 | 141,917   | 123,412    | 51,975     | 22,024    | 9,953     | 2,244     | 2,244     | 2,244     | 2,244     |
| 3,500                 |         | 185,653      | 185,653      | 185,653      | 185,653 | 182,772   | 164,268    | 90,944     | 60,993    | 50,809    | 36,878    | 12,923    | 8,355     | 5,797     |
| 5,000                 |         |              | 205,330      | 205,330      | 205,330 | 202,449   | 183,944    | 110,621    | 80,670    | 67,350    | 49,507    | 23,477    | 18,908    | 16,351    |
| 7,500                 |         |              |              | 282,747      | 282,747 | 279,867   | 261,362    | 188,038    | 154,263   | 129,637   | 107,840   | 78,039    | 65,696    | 59,689    |
| 10,000                |         |              |              |              | 577,085 | 574,204   | 555,699    | 482,376    | 441,548   | 395,558   | 358,637   | 286,794   | 237,594   | 218,426   |
| 15,000                |         |              |              |              |         | 1,465,467 | 1,446,962  | 1,371,294  | 1,304,578 | 1,214,177 | 1,127,012 | 1,011,489 | 835,362   | 775,405   |
| 20,000                |         |              |              |              |         |           | 2,022,046  | 1,941,371  | 1,864,518 | 1,724,558 | 1,577,015 | 1,399,627 | 1,138,275 | 1,060,982 |
| 30,000                |         |              |              |              |         |           |            | 2,649,183  | 2,560,652 | 2,374,400 | 2,144,559 | 1,901,348 | 1,562,157 | 1,444,265 |
| 40,000                |         |              |              |              |         |           |            |            | 2,973,742 | 2,774,018 | 2,528,802 | 2,245,387 | 1,867,061 | 1,717,777 |
| 50,000                |         |              |              |              |         |           |            |            |           | 3,030,923 | 2,777,884 | 2,481,909 | 2,097,652 | 1,936,262 |
| 60,000                |         |              |              |              |         |           |            |            |           |           | 2,949,583 | 2,650,148 | 2,255,762 | 2,094,373 |
| 70,000                |         |              |              |              |         |           |            |            |           |           |           | 2,822,902 | 2,417,072 | 2,252,212 |
| 80,000                |         |              |              |              |         |           |            |            |           |           |           |           | 2,521,060 | 2,352,468 |
| 86,000                |         |              |              |              |         |           |            |            |           |           |           |           |           | 2,428,418 |

American Shad Spawning Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|            |         |         |         |           |           | Ge        | eneration Flo | w (cfs)   |           |           |           |           |           |           |
|------------|---------|---------|---------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum    |         |         |         |           |           |           |               |           |           |           |           |           |           |           |
| Flow (cfs) | 2,000   | 3,500   | 5,000   | 7,500     | 10,000    | 15,000    | 20,000        | 30,000    | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000      | 777,325 | 498,460 | 498,460 | 496,595   | 476,681   | 406,498   | 377,363       | 333,429   | 279,597   | 244,141   | 139,585   | 104,876   | 98,139    | 87,704    |
| 3,500      |         | 728,506 | 728,506 | 725,625   | 705,711   | 635,528   | 606,393       | 550,468   | 475,584   | 421,668   | 283,816   | 220,876   | 191,528   | 169,829   |
| 5,000      |         |         | 849,534 | 846,654   | 826,739   | 756,556   | 727,422       | 669,974   | 591,703   | 537,418   | 394,962   | 320,270   | 278,311   | 255,179   |
| 7,500      |         |         |         | 1,041,500 | 1,021,586 | 951,403   | 922,269       | 844,507   | 763,055   | 695,182   | 536,764   | 459,586   | 407,483   | 362,549   |
| 10,000     |         |         |         |           | 1,294,769 | 1,217,019 | 1,184,019     | 1,098,860 | 1,003,959 | 915,246   | 725,605   | 630,819   | 558,090   | 485,719   |
| 15,000     |         |         |         |           |           | 1,782,716 | 1,742,814     | 1,627,930 | 1,499,061 | 1,380,637 | 1,159,137 | 976,364   | 783,883   | 683,040   |
| 20,000     |         |         |         |           |           |           | 2,022,937     | 1,892,622 | 1,735,982 | 1,592,407 | 1,334,634 | 1,137,435 | 923,572   | 811,462   |
| 30,000     |         |         |         |           |           |           |               | 2,430,199 | 2,248,323 | 2,010,837 | 1,667,028 | 1,414,608 | 1,171,041 | 1,037,298 |
| 40,000     |         |         |         |           |           |           |               |           | 2,525,376 | 2,233,046 | 1,863,024 | 1,586,409 | 1,330,746 | 1,185,350 |
| 50,000     |         |         |         |           |           |           |               |           |           | 2,386,872 | 2,006,611 | 1,713,862 | 1,447,049 | 1,299,900 |
| 60,000     |         |         |         |           |           |           |               |           |           |           | 2,132,116 | 1,829,621 | 1,553,819 | 1,400,029 |
| 70,000     |         |         |         |           |           |           |               |           |           |           |           | 1,941,054 | 1,660,877 | 1,501,242 |
| 80,000     |         |         |         |           |           |           |               |           |           |           |           |           | 1,739,412 | 1,571,189 |
| 86,000     |         |         |         |           |           |           |               |           |           |           |           |           |           | 1,628,941 |

American Shad Fry Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |         |         |         |         |           | Ge        | eneration Flo | w (cfs)   |           |           |           |           |           |           |
|-----------------------|---------|---------|---------|---------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500   | 5,000   | 7,500   | 10,000    | 15,000    | 20,000        | 30,000    | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000                 | 168,802 | 168,802 | 168,802 | 168,802 | 168,802   | 168,802   | 168,802       | 155,531   | 107,118   | 75,979    | 57,777    | 39,639    | 33,958    | 25,206    |
| 3,500                 |         | 208,169 | 208,169 | 208,169 | 208,169   | 208,169   | 208,169       | 194,898   | 144,599   | 115,346   | 97,145    | 79,007    | 70,190    | 57,526    |
| 5,000                 |         |         | 268,281 | 268,281 | 266,552   | 266,552   | 266,552       | 253,281   | 204,712   | 175,459   | 157,257   | 139,119   | 130,302   | 117,638   |
| 7,500                 |         |         |         | 630,269 | 628,540   | 628,540   | 627,326       | 614,055   | 565,486   | 533,622   | 504,561   | 467,830   | 449,950   | 422,667   |
| 10,000                |         |         |         |         | 1,135,971 | 1,134,863 | 1,134,757     | 1,121,486 | 1,071,187 | 1,036,857 | 988,796   | 944,496   | 910,120   | 862,389   |
| 15,000                |         |         |         |         |           | 1,811,743 | 1,809,394     | 1,797,258 | 1,746,959 | 1,705,891 | 1,648,231 | 1,561,985 | 1,461,087 | 1,354,399 |
| 20,000                |         |         |         |         |           |           | 2,277,424     | 2,264,153 | 2,213,855 | 2,167,936 | 2,098,932 | 1,970,357 | 1,848,975 | 1,707,051 |
| 30,000                |         |         |         |         |           |           |               | 2,852,779 | 2,798,831 | 2,739,335 | 2,659,087 | 2,511,288 | 2,352,246 | 2,196,514 |
| 40,000                |         |         |         |         |           |           |               |           | 3,074,321 | 3,009,832 | 2,920,244 | 2,771,289 | 2,601,292 | 2,439,662 |
| 50,000                |         |         |         |         |           |           |               |           |           | 3,267,368 | 3,172,129 | 3,023,174 | 2,851,436 | 2,685,941 |
| 60,000                |         |         |         |         |           |           |               |           |           |           | 3,323,283 | 3,173,260 | 2,998,574 | 2,829,824 |
| 70,000                |         |         |         |         |           |           |               |           |           |           |           | 3,324,084 | 3,148,241 | 2,978,114 |
| 80,000                |         |         |         |         |           |           |               |           |           |           |           |           | 3,264,273 | 3,094,147 |
| 86,000                |         |         |         |         |           |           |               |           |           |           |           |           |           | 3,161,551 |

Shortnose Sturgeon Spawning Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                    |       |        |        |         |         | Generati | on Flow (cf | s)      |         |         |         |         |         |         |
|--------------------|-------|--------|--------|---------|---------|----------|-------------|---------|---------|---------|---------|---------|---------|---------|
| Minimum Flow (cfs) | 2,000 | 3,500  | 5,000  | 7,500   | 10,000  | 15,000   | 20,000      | 30,000  | 40,000  | 50,000  | 60,000  | 70,000  | 80,000  | 86,000  |
| 2,000              | 4,347 | 3,237  | 2,110  | 0       | 0       | 0        | 0           | 0       | 0       | 1,110   | 2,110   | 2,110   | 2,110   | 2,110   |
| 3,500              |       | 19,259 | 17,022 | 16,022  | 16,022  | 16,022   | 16,022      | 16,022  | 16,022  | 16,022  | 11,454  | 11,454  | 9,458   | 6,617   |
| 5,000              |       |        | 72,289 | 70,179  | 70,179  | 70,179   | 54,779      | 46,728  | 34,919  | 32,406  | 24,539  | 17,592  | 15,595  | 12,755  |
| 7,500              |       |        |        | 285,504 | 285,504 | 285,504  | 270,104     | 230,058 | 184,435 | 103,743 | 87,086  | 80,138  | 66,514  | 56,576  |
| 10,000             |       |        |        |         | 343,620 | 343,620  | 328,221     | 287,430 | 237,265 | 155,142 | 134,833 | 109,803 | 92,406  | 82,468  |
| 15,000             |       |        |        |         |         | 441,902  | 426,502     | 382,068 | 287,344 | 201,427 | 177,320 | 144,910 | 120,059 | 110,240 |
| 20,000             |       |        |        |         |         |          | 492,843     | 445,665 | 316,086 | 226,256 | 199,869 | 163,888 | 139,037 | 129,218 |
| 30,000             |       |        |        |         |         |          |             | 509,888 | 379,097 | 282,412 | 250,406 | 201,452 | 171,560 | 159,654 |
| 40,000             |       |        |        |         |         |          |             |         | 420,786 | 323,514 | 288,658 | 234,981 | 202,374 | 187,930 |
| 50,000             |       |        |        |         |         |          |             |         |         | 382,912 | 337,423 | 280,883 | 244,596 | 217,822 |
| 60,000             |       |        |        |         |         |          |             |         |         |         | 390,651 | 329,397 | 288,492 | 254,206 |
| 70,000             |       |        |        |         |         |          |             |         |         |         |         | 364,366 | 322,782 | 283,983 |
| 80,000             |       |        |        |         |         |          |             |         |         |         |         |         | 348,005 | 305,524 |
| 86,000             |       |        |        |         |         |          |             |         |         |         |         |         |         | 341,974 |

Shortnose Sturgeon Fry Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |         |           |           |           |            |            | Generation Fl | ow (cfs)   |            |            |            |            |            |            |
|-----------------------|---------|-----------|-----------|-----------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500     | 5,000     | 7,500     | 10,000     | 15,000     | 20,000        | 30,000     | 40,000     | 50,000     | 60,000     | 70,000     | 80,000     | 86,000     |
| 2,000                 | 837,992 | 836,890   | 836,890   | 835,732   | 829,216    | 821,788    | 787,981       | 548,243    | 295,640    | 113,658    | 70,359     | 57,073     | 52,111     | 44,245     |
| 3,500                 |         | 1,723,802 | 1,723,802 | 1,722,643 | 1,716,128  | 1,701,735  | 1,662,150     | 1,352,845  | 934,478    | 527,229    | 356,542    | 269,385    | 212,089    | 185,771    |
| 5,000                 |         |           | 2,973,203 | 2,972,045 | 2,965,529  | 2,947,961  | 2,903,039     | 2,555,610  | 2,030,220  | 1,501,606  | 1,098,242  | 817,041    | 622,881    | 523,621    |
| 7,500                 |         |           |           | 7,257,979 | 7,249,735  | 7,221,439  | 7,165,705     | 6,728,376  | 6,048,260  | 5,211,822  | 4,346,503  | 3,547,520  | 2,708,386  | 2,249,435  |
| 10,000                |         |           |           |           | 14,563,959 | 14,528,719 | 14,460,108    | 13,872,414 | 12,925,832 | 11,817,599 | 10,549,790 | 9,064,298  | 7,349,210  | 6,180,334  |
| 15,000                |         |           |           |           |            | 32,755,354 | 32,649,488    | 31,890,688 | 30,826,516 | 29,437,094 | 27,566,566 | 25,151,850 | 22,074,972 | 19,717,134 |
| 20,000                |         |           |           |           |            |            | 47,114,451    | 46,320,714 | 45,178,650 | 43,684,096 | 41,637,367 | 38,908,405 | 35,268,631 | 32,250,889 |
| 30,000                |         |           |           |           |            |            |               | 56,121,710 | 54,931,890 | 53,372,679 | 51,232,255 | 48,355,681 | 44,431,878 | 41,228,249 |
| 40,000                |         |           |           |           |            |            |               |            | 57,852,856 | 56,279,617 | 54,102,524 | 51,181,672 | 47,194,832 | 43,933,884 |
| 50,000                |         |           |           |           |            |            |               |            |            | 58,137,814 | 55,925,537 | 52,980,465 | 48,977,033 | 45,696,271 |
| 60,000                |         |           |           |           |            |            |               |            |            |            | 56,966,799 | 54,011,285 | 49,982,784 | 46,666,793 |
| 70,000                |         |           |           |           |            |            |               |            |            |            |            | 54,915,913 | 50,867,768 | 47,531,207 |
| 80,000                |         |           |           |           |            |            |               |            |            |            |            |            | 52,828,545 | 48,602,169 |
| 86,000                |         |           |           |           |            |            |               |            |            |            |            |            |            | 49,295,125 |

Striped Bass Spawning Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |         |           |           |           |            |            | Generation Fl | ow (cfs)   |            |            |            |            |            |            |
|-----------------------|---------|-----------|-----------|-----------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500     | 5,000     | 7,500     | 10,000     | 15,000     | 20,000        | 30,000     | 40,000     | 50,000     | 60,000     | 70,000     | 80,000     | 86,000     |
| 2,000                 | 635,575 | 626,080   | 634,473   | 633,315   | 633,315    | 629,743    | 607,154       | 405,289    | 230,780    | 100,160    | 64,634     | 53,093     | 43,003     | 36,620     |
| 3,500                 |         | 1,373,941 | 1,361,434 | 1,372,783 | 1,368,926  | 1,365,354  | 1,331,412     | 1,017,326  | 659,937    | 342,464    | 251,431    | 185,515    | 140,759    | 121,915    |
| 5,000                 |         |           | 2,246,107 | 2,240,676 | 2,241,092  | 2,234,274  | 2,200,331     | 1,839,769  | 1,350,812  | 918,425    | 723,717    | 560,085    | 414,101    | 359,367    |
| 7,500                 |         |           |           | 5,272,089 | 5,266,504  | 5,252,931  | 5,215,436     | 4,824,027  | 4,156,128  | 3,464,316  | 3,007,794  | 2,398,180  | 1,793,199  | 1,465,970  |
| 10,000                |         |           |           |           | 10,178,854 | 10,159,863 | 10,108,176    | 9,646,415  | 8,880,269  | 7,965,033  | 7,161,220  | 6,121,364  | 4,956,273  | 4,234,143  |
| 15,000                |         |           |           |           |            | 24,673,853 | 24,584,801    | 23,916,221 | 22,950,061 | 21,722,937 | 20,271,587 | 18,339,360 | 15,943,031 | 14,200,858 |
| 20,000                |         |           |           |           |            |            | 39,702,499    | 38,884,762 | 37,863,793 | 36,462,739 | 34,685,483 | 32,239,302 | 28,993,195 | 26,382,494 |
| 30,000                |         |           |           |           |            |            |               | 54,396,077 | 53,267,143 | 51,720,944 | 49,716,780 | 46,893,266 | 43,026,073 | 39,843,007 |
| 40,000                |         |           |           |           |            |            |               |            | 56,930,432 | 55,331,715 | 53,262,082 | 50,373,793 | 46,385,181 | 43,133,321 |
| 50,000                |         |           |           |           |            |            |               |            |            | 57,447,303 | 55,338,861 | 52,413,478 | 48,407,718 | 45,123,491 |
| 60,000                |         |           |           |           |            |            |               |            |            |            | 56,520,666 | 53,558,095 | 49,531,568 | 46,226,030 |
| 70,000                |         |           |           |           |            |            |               |            |            |            |            | 54,423,084 | 50,357,930 | 47,036,894 |
| 80,000                |         |           |           |           |            |            |               |            |            |            |            |            | 51,340,646 | 47,997,061 |
| 86,000                |         |           |           |           |            |            |               |            |            |            |            |            |            | 48,652,889 |

Striped Bass Fry Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |         |           |           |         |         | Generat | ion Flow (c | fs)     |         |         |         |         |         |         |
|-----------------------|---------|-----------|-----------|---------|---------|---------|-------------|---------|---------|---------|---------|---------|---------|---------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500     | 5,000     | 7,500   | 10,000  | 15,000  | 20,000      | 30,000  | 40,000  | 50,000  | 60,000  | 70,000  | 80,000  | 86,000  |
| 2,000                 | 965,602 | 935,388   | 900,783   | 828,447 | 704,149 | 466,328 | 349,382     | 250,317 | 163,334 | 100,220 | 66,922  | 52,090  | 20,395  | 20,395  |
| 3,500                 |         | 1,001,643 | 946,040   | 847,423 | 715,979 | 474,856 | 356,830     | 255,438 | 167,045 | 103,931 | 66,922  | 52,090  | 24,105  | 24,105  |
| 5,000                 |         |           | 1,049,421 | 877,745 | 726,708 | 480,531 | 362,039     | 256,572 | 168,179 | 103,931 | 66,922  | 52,090  | 24,105  | 24,105  |
| 7,500                 |         |           |           | 937,519 | 768,238 | 506,749 | 385,227     | 262,861 | 168,858 | 103,931 | 66,922  | 52,090  | 24,105  | 24,105  |
| 10,000                |         |           |           |         | 805,333 | 535,976 | 400,443     | 276,022 | 175,295 | 108,936 | 68,323  | 52,090  | 24,105  | 24,105  |
| 15,000                |         |           |           |         |         | 599,897 | 436,737     | 310,020 | 194,184 | 115,771 | 72,740  | 55,314  | 27,329  | 27,329  |
| 20,000                |         |           |           |         |         |         | 468,765     | 331,818 | 208,709 | 121,782 | 76,365  | 55,521  | 30,954  | 30,954  |
| 30,000                |         |           |           |         |         |         |             | 376,417 | 252,176 | 163,836 | 107,240 | 65,648  | 36,979  | 35,693  |
| 40,000                |         |           |           |         |         |         |             |         | 290,844 | 200,063 | 142,759 | 98,469  | 53,680  | 52,394  |
| 50,000                |         |           |           |         |         |         |             |         |         | 238,531 | 171,216 | 122,087 | 77,299  | 67,568  |
| 60,000                |         |           |           |         |         |         |             |         |         |         | 207,370 | 151,608 | 101,943 | 88,365  |
| 70,000                |         |           |           |         |         |         |             |         |         |         |         | 189,642 | 128,686 | 113,520 |
| 80,000                |         |           |           |         |         |         |             |         |         |         |         |         | 156,313 | 139,663 |
| 86,000                |         |           |           |         |         |         |             |         |         |         |         |         |         | 149,553 |

Smallmouth Bass Spawning Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                    |         |         |         |         |         | Generatior | Flow (cfs) |         |         |         |         |         |         |         |
|--------------------|---------|---------|---------|---------|---------|------------|------------|---------|---------|---------|---------|---------|---------|---------|
| Minimum Flow (cfs) | 2,000   | 3,500   | 5,000   | 7,500   | 10,000  | 15,000     | 20,000     | 30,000  | 40,000  | 50,000  | 60,000  | 70,000  | 80,000  | 86,000  |
| 2,000              | 694,082 | 466,984 | 416,509 | 317,670 | 249,938 | 167,205    | 121,270    | 95,417  | 84,041  | 67,206  | 52,088  | 42,728  | 32,850  | 32,850  |
| 3,500              |         | 569,096 | 491,928 | 375,882 | 300,396 | 197,420    | 126,541    | 95,417  | 84,041  | 67,206  | 52,088  | 42,728  | 32,850  | 32,850  |
| 5,000              |         |         | 556,566 | 421,781 | 343,589 | 236,766    | 145,596    | 98,644  | 87,268  | 70,433  | 55,315  | 45,955  | 32,850  | 32,850  |
| 7,500              |         |         |         | 469,250 | 387,625 | 279,999    | 180,138    | 108,906 | 90,474  | 73,640  | 58,521  | 49,161  | 32,850  | 32,850  |
| 10,000             |         |         |         |         | 440,880 | 328,203    | 221,845    | 134,783 | 96,215  | 73,640  | 58,521  | 49,161  | 32,850  | 32,850  |
| 15,000             |         |         |         |         |         | 408,111    | 299,111    | 201,201 | 124,348 | 78,405  | 61,996  | 52,636  | 36,325  | 36,325  |
| 20,000             |         |         |         |         |         |            | 364,906    | 254,737 | 165,720 | 87,884  | 65,705  | 56,345  | 40,034  | 36,325  |
| 30,000             |         |         |         |         |         |            |            | 404,325 | 306,009 | 203,281 | 111,691 | 70,888  | 47,333  | 39,832  |
| 40,000             |         |         |         |         |         |            |            |         | 464,128 | 344,304 | 237,434 | 153,674 | 76,408  | 54,040  |
| 50,000             |         |         |         |         |         |            |            |         |         | 485,040 | 372,497 | 273,543 | 145,594 | 73,105  |
| 60,000             |         |         |         |         |         |            |            |         |         |         | 572,089 | 462,242 | 316,711 | 232,574 |
| 70,000             |         |         |         |         |         |            |            |         |         |         |         | 608,065 | 458,327 | 374,190 |
| 80,000             |         |         |         |         |         |            |            |         |         |         |         |         | 599,578 | 515,358 |
| 86,000             |         |         |         |         |         |            |            |         |         |         |         |         |         | 611,893 |

Smallmouth Bass Fry Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                 |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| $\mathbf{C}_{1} = \mathbf{C}_{1} = \mathbf{C}_{1} = \mathbf{D}_{2} = \mathbf{C}_{1} = \mathbf{C}_{1}$ | $O_{} = 1^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} (1 - 1)^{1} ($ | $\alpha$ (FT <sup>2</sup> ), by Flow Pairs (cfs). |
| NIGNETIV Persistent                                                                                   | Uniality Habitat Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A (EI) = BV EIOW Pairs (CTS)                      |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| J                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |

|                       |         |           |           |           | Ge      | neration Flo | ow (cfs) |        |        |        |        |        |        |        |
|-----------------------|---------|-----------|-----------|-----------|---------|--------------|----------|--------|--------|--------|--------|--------|--------|--------|
| Minimum<br>Flow (cfs) | 2,000   | 3,500     | 5,000     | 7,500     | 10,000  | 15,000       | 20,000   | 30,000 | 40,000 | 50,000 | 60,000 | 70,000 | 80,000 | 86,000 |
| 2,000                 | 719,626 | 667,825   | 572,880   | 292,603   | 42,504  | 0            | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 3,500                 |         | 1,102,714 | 988,611   | 609,355   | 234,731 | 0            | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5,000                 |         |           | 1,237,177 | 826,049   | 402,405 | 11,142       | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7,500                 |         |           |           | 1,018,931 | 569,309 | 80,333       | 4,274    | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 10,000                |         |           |           |           | 735,284 | 188,973      | 24,871   | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 15,000                |         |           |           |           |         | 272,455      | 63,438   | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 20,000                |         |           |           |           |         |              | 118,644  | 10,364 | 3,642  | 0      | 0      | 0      | 0      | 0      |
| 30,000                |         |           |           |           |         |              |          | 60,890 | 22,926 | 6,311  | 4,911  | 4,911  | 4,911  | 3,450  |
| 40,000                |         |           |           |           |         |              |          |        | 54,646 | 15,291 | 4,911  | 4,911  | 4,911  | 3,450  |
| 50,000                |         |           |           |           |         |              |          |        |        | 50,348 | 26,520 | 10,202 | 10,202 | 8,740  |
| 60,000                |         |           |           |           |         |              |          |        |        |        | 50,628 | 25,456 | 15,098 | 10,046 |
| 70,000                |         |           |           |           |         |              |          |        |        |        |        | 56,465 | 33,633 | 19,401 |
| 80,000                |         |           |           |           |         |              |          |        |        |        |        |        | 55,229 | 39,407 |
| 86,000                |         |           |           |           |         |              |          |        |        |        |        |        |        | 47,528 |

|            |           |           |           |           | (         | Generation | Flow (cfs) |         |         |         |         |         |         |
|------------|-----------|-----------|-----------|-----------|-----------|------------|------------|---------|---------|---------|---------|---------|---------|
| Minimum    |           |           |           |           |           |            |            |         |         |         |         |         |         |
| Flow (cfs) | 2,000     | 3,500     | 5,000     | 7,500     | 10,000    | 15,000     | 20,000     | 30,000  | 40,000  | 50,000  | 60,000  | 70,000  | 80,000  |
| 2,000      | 1,508,906 | 1,463,477 | 1,389,154 | 1,147,909 | 680,445   | 45,484     | 6,487      | 2,862   | 2,862   | 2,862   | 2,862   | 1,461   | 1,461   |
| 3,500      |           | 1,678,709 | 1,597,387 | 1,331,427 | 835,375   | 123,538    | 14,251     | 2,862   | 2,862   | 2,862   | 2,862   | 1,461   | 1,461   |
| 5,000      |           |           | 1,738,130 | 1,463,834 | 952,678   | 211,102    | 48,712     | 2,862   | 2,862   | 2,862   | 2,862   | 1,461   | 1,461   |
| 7,500      |           |           |           | 1,682,263 | 1,146,094 | 341,832    | 88,181     | 2,862   | 2,862   | 2,862   | 2,862   | 1,461   | 1,461   |
| 10,000     |           |           |           |           | 1,240,598 | 417,463    | 134,332    | 10,513  | 6,311   | 6,311   | 6,311   | 4,911   | 4,911   |
| 15,000     |           |           |           |           |           | 533,413    | 226,211    | 25,671  | 9,953   | 6,311   | 6,311   | 4,911   | 4,911   |
| 20,000     |           |           |           |           |           |            | 294,469    | 62,668  | 19,132  | 7,670   | 6,311   | 4,911   | 4,911   |
| 30,000     |           |           |           |           |           |            |            | 157,452 | 75,856  | 27,726  | 11,914  | 9,804   | 8,792   |
| 40,000     |           |           |           |           |           |            |            |         | 154,252 | 80,694  | 29,043  | 12,245  | 10,202  |
| 50,000     |           |           |           |           |           |            |            |         |         | 155,949 | 91,359  | 38,444  | 17,972  |
| 60,000     |           |           |           |           |           |            |            |         |         |         | 142,372 | 81,857  | 49,350  |
| 70,000     |           |           |           |           |           |            |            |         |         |         |         | 138,200 | 94,820  |
| 80,000     |           |           |           |           |           |            |            |         |         |         |         |         | 111,579 |
| 86,000     |           |           |           |           |           |            |            |         |         |         |         |         |         |

86,000

1,461

1,461

1,461

1,461

4,911

4,911

4,911

8,792

10,202

12,631

36,401

73,242

90,002 **105,964** 

Mayfly Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

Caddisfly Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |           |           |           |           |           | Gen       | eration Flow | (cfs)     |           |           |           |           |           |           |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum<br>Flow (cfs) | 2,000     | 3,500     | 5,000     | 7,500     | 10,000    | 15,000    | 20,000       | 30,000    | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000                 | 1,623,818 | 1,560,814 | 1,564,401 | 1,547,574 | 1,493,155 | 1,339,292 | 1,207,079    | 821,027   | 542,172   | 335,428   | 243,297   | 200,235   | 144,307   | 122,918   |
| 3,500                 |           | 1,999,767 | 1,935,556 | 1,913,160 | 1,866,110 | 1,721,589 | 1,526,343    | 1,039,575 | 735,022   | 477,704   | 309,739   | 241,487   | 182,898   | 156,106   |
| 5,000                 |           |           | 2,299,204 | 2,215,438 | 2,155,555 | 2,013,717 | 1,816,734    | 1,183,939 | 830,843   | 549,300   | 369,959   | 284,618   | 217,426   | 190,635   |
| 7,500                 |           |           |           | 2,562,903 | 2,461,256 | 2,294,079 | 2,067,338    | 1,398,127 | 1,008,429 | 695,856   | 502,302   | 381,193   | 299,064   | 262,822   |
| 10,000                |           |           |           |           | 2,673,519 | 2,481,693 | 2,243,734    | 1,555,062 | 1,130,648 | 797,585   | 585,729   | 444,716   | 339,848   | 304,589   |
| 15,000                |           |           |           |           |           | 2,771,663 | 2,516,258    | 1,798,226 | 1,345,663 | 990,941   | 733,892   | 550,536   | 431,352   | 382,369   |
| 20,000                |           |           |           |           |           |           | 2,680,057    | 1,950,780 | 1,489,780 | 1,113,825 | 837,017   | 632,886   | 505,656   | 446,006   |
| 30,000                |           |           |           |           |           |           |              | 2,249,785 | 1,782,183 | 1,376,212 | 1,065,580 | 845,348   | 693,606   | 616,146   |
| 40,000                |           |           |           |           |           |           |              |           | 1,957,893 | 1,540,865 | 1,213,505 | 990,712   | 817,148   | 729,161   |
| 50,000                |           |           |           |           |           |           |              |           |           | 1,680,757 | 1,344,339 | 1,106,460 | 933,476   | 834,865   |
| 60,000                |           |           |           |           |           |           |              |           |           |           | 1,464,095 | 1,216,366 | 1,030,605 | 926,297   |
| 70,000                |           |           |           |           |           |           |              |           |           |           |           | 1,352,242 | 1,155,672 | 1,041,920 |
| 80,000                |           |           |           |           |           |           |              |           |           |           |           |           | 1,251,439 | 1,136,328 |
| 86,000                |           |           |           |           |           |           |              |           |           |           |           |           |           | 1,186,154 |

|                       | Generation Flow (cfs) |            |            |           |           |           |           |           |           |           |           |           |           |           |
|-----------------------|-----------------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum<br>Flow (cfs) | 2,000                 | 3,500      | 5,000      | 7,500     | 10,000    | 15,000    | 20,000    | 30,000    | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000                 | 29,340,897            | 21,211,551 | 13,679,571 | 5,116,534 | 1,528,548 | 478,999   | 374,064   | 232,692   | 169,167   | 120,394   | 90,032    | 64,179    | 52,078    | 39,391    |
| 3,500                 |                       | 23,167,636 | 15,539,608 | 6,712,280 | 2,765,326 | 530,279   | 375,684   | 232,692   | 169,167   | 120,394   | 90,032    | 64,179    | 52,078    | 39,391    |
| 5,000                 |                       |            | 16,333,140 | 7,410,604 | 3,367,053 | 776,767   | 386,638   | 235,080   | 169,167   | 120,394   | 90,032    | 64,179    | 52,078    | 39,391    |
| 7,500                 |                       |            |            | 8,081,234 | 3,999,812 | 1,294,130 | 530,949   | 242,155   | 172,451   | 123,679   | 90,032    | 64,179    | 52,078    | 39,391    |
| 10,000                |                       |            |            |           | 4,560,830 | 1,769,249 | 902,892   | 264,139   | 172,451   | 123,679   | 90,032    | 64,179    | 52,078    | 39,391    |
| 15,000                |                       |            |            |           |           | 2,419,666 | 1,499,413 | 511,865   | 193,879   | 136,883   | 99,289    | 65,553    | 53,452    | 39,391    |
| 20,000                |                       |            |            |           |           |           | 2,025,313 | 956,928   | 301,582   | 150,037   | 109,946   | 69,012    | 53,452    | 39,391    |
| 30,000                |                       |            |            |           |           |           |           | 2,565,353 | 1,644,746 | 467,736   | 151,950   | 84,460    | 59,047    | 40,891    |
| 40,000                |                       |            |            |           |           |           |           |           | 2,835,537 | 1,503,331 | 538,878   | 113,038   | 69,588    | 40,891    |
| 50,000                |                       |            |            |           |           |           |           |           |           | 2,331,274 | 1,267,620 | 532,870   | 141,243   | 63,810    |
| 60,000                |                       |            |            |           |           |           |           |           |           |           | 1,908,299 | 1,137,822 | 669,442   | 382,763   |
| 70,000                |                       |            |            |           |           |           |           |           |           |           |           | 1,566,741 | 1,061,739 | 725,521   |
| 80,000                |                       |            |            |           |           |           |           |           |           |           |           |           | 1,333,080 | 971,624   |
| 86,000                |                       |            |            |           |           |           |           |           |           |           |           |           |           | 1,119,543 |

Shallow-Slow Guild Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                    |           |         |         |         | Genera  | ation Flow | (cfs)          |        |        |        |        |        |        |        |
|--------------------|-----------|---------|---------|---------|---------|------------|----------------|--------|--------|--------|--------|--------|--------|--------|
| Minimum Flow (cfs) | 2,000     | 3,500   | 5,000   | 7,500   | 10,000  | 15,000     | 20,000         | 30,000 | 40,000 | 50,000 | 60,000 | 70,000 | 80,000 | 86,000 |
| 2,000              | 1,041,153 | 642,712 | 255,571 | 42,344  | 2,065   | 0          | 0              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 3,500              |           | 816,102 | 413,613 | 130,530 | 39,454  | 0          | 0              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 5,000              |           |         | 514,632 | 203,042 | 79,198  | 0          | 0              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 7,500              |           |         |         | 294,116 | 127,825 | 0          | 0              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 10,000             |           |         |         |         | 165,002 | 12,454     | 0              | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 15,000             |           |         |         |         |         | 22,348     | 5 <i>,</i> 985 | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 20,000             |           |         |         |         |         |            | 22,823         | 1,359  | 0      | 0      | 0      | 0      | 0      | 0      |
| 30,000             |           |         |         |         |         |            |                | 34,456 | 7,023  | 0      | 0      | 0      | 0      | 0      |
| 40,000             |           |         |         |         |         |            |                |        | 19,918 | 10,776 | 0      | 0      | 0      | 0      |
| 50,000             |           |         |         |         |         |            |                |        |        | 28,881 | 10,738 | 1,432  | 0      | 0      |
| 60,000             |           |         |         |         |         |            |                |        |        |        | 28,063 | 5,948  | 1,148  | 0      |
| 70,000             |           |         |         |         |         |            |                |        |        |        |        | 16,176 | 5,323  | 3,272  |
| 80,000             |           |         |         |         |         |            |                |        |        |        |        |        | 6,637  | 1,314  |
| 86,000             |           |         |         |         |         |            |                |        |        |        |        |        |        | 12,103 |

Shallow-Fast Guild Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       | Generation Flow (cfs) |            |            |            |            |            |            |           |           |           |           |           |           |           |
|-----------------------|-----------------------|------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Minimum<br>Flow (cfs) | 2,000                 | 3,500      | 5,000      | 7,500      | 10,000     | 15,000     | 20,000     | 30,000    | 40,000    | 50,000    | 60,000    | 70,000    | 80,000    | 86,000    |
| 2,000                 | 29,173,856            | 27,238,220 | 25,109,097 | 21,539,241 | 17,975,395 | 12,955,292 | 9,141,618  | 3,864,922 | 2,850,084 | 2,266,757 | 1,878,717 | 1,576,723 | 1,355,319 | 1,252,463 |
| 3,500                 |                       | 32,671,145 | 29,375,538 | 24,360,989 | 19,835,429 | 13,832,916 | 9,582,343  | 4,085,124 | 3,014,339 | 2,390,027 | 1,978,600 | 1,657,767 | 1,422,587 | 1,317,848 |
| 5,000                 |                       |            | 34,237,116 | 27,641,847 | 22,050,462 | 14,929,654 | 10,177,404 | 4,374,218 | 3,224,572 | 2,556,017 | 2,108,291 | 1,757,263 | 1,494,585 | 1,385,655 |
| 7,500                 |                       |            |            | 32,875,712 | 25,578,241 | 16,824,517 | 11,330,504 | 5,002,421 | 3,680,643 | 2,881,451 | 2,374,777 | 1,987,009 | 1,680,975 | 1,543,662 |
| 10,000                |                       |            |            |            | 28,075,993 | 18,211,071 | 12,266,750 | 5,537,789 | 4,047,968 | 3,147,236 | 2,588,605 | 2,145,460 | 1,810,750 | 1,663,823 |
| 15,000                |                       |            |            |            |            | 20,065,376 | 13,630,055 | 6,383,371 | 4,622,721 | 3,515,702 | 2,896,410 | 2,385,100 | 2,006,625 | 1,834,838 |
| 20,000                |                       |            |            |            |            |            | 14,329,296 | 6,936,507 | 5,066,243 | 3,848,281 | 3,173,321 | 2,604,180 | 2,181,809 | 1,988,003 |
| 30,000                |                       |            |            |            |            |            |            | 7,672,733 | 5,667,978 | 4,344,558 | 3,611,226 | 2,959,014 | 2,503,513 | 2,277,004 |
| 40,000                |                       |            |            |            |            |            |            |           | 6,478,344 | 5,060,021 | 4,228,195 | 3,477,257 | 2,918,084 | 2,650,419 |
| 50,000                |                       |            |            |            |            |            |            |           |           | 6,243,614 | 5,351,771 | 4,332,643 | 3,522,905 | 3,182,429 |
| 60,000                |                       |            |            |            |            |            |            |           |           |           | 6,222,656 | 5,038,321 | 4,096,508 | 3,722,850 |
| 70,000                |                       |            |            |            |            |            |            |           |           |           |           | 5,760,875 | 4,755,218 | 4,327,629 |
| 80,000                |                       |            |            |            |            |            |            |           |           |           |           |           | 5,299,677 | 4,843,003 |
| 86,000                |                       |            |            |            |            |            |            |           |           |           |           |           |           | 5,192,284 |

Deep-Slow Guild Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

|                       |        |        |        |         |         | Genera    | ation Flow (cf | s)      |         |         |        |        |        |        |
|-----------------------|--------|--------|--------|---------|---------|-----------|----------------|---------|---------|---------|--------|--------|--------|--------|
| Minimum<br>Flow (cfs) | 2,000  | 3,500  | 5,000  | 7,500   | 10,000  | 15,000    | 20,000         | 30,000  | 40,000  | 50,000  | 60,000 | 70,000 | 80,000 | 86,000 |
| 2,000                 | 26,023 | 17,087 | 10,729 | 0       | 0       | 0         | 0              | 0       | 0       | 0       | 0      | 0      | 0      | 0      |
| 3,500                 |        | 42,565 | 36,207 | 22,353  | 18,755  | 16,181    | 7,057          | 0       | 0       | 0       | 0      | 0      | 0      | 0      |
| 5,000                 |        |        | 87,601 | 71,933  | 68,335  | 62,100    | 51,230         | 0       | 0       | 0       | 0      | 0      | 0      | 0      |
| 7,500                 |        |        |        | 432,421 | 425,512 | 415,546   | 380,848        | 24,222  | 20,389  | 0       | 0      | 0      | 0      | 0      |
| 10,000                |        |        |        |         | 824,557 | 807,476   | 749,295        | 181,626 | 39,905  | 0       | 0      | 0      | 0      | 0      |
| 15,000                |        |        |        |         |         | 1,147,771 | 1,073,457      | 450,498 | 76,006  | 0       | 0      | 0      | 0      | 0      |
| 20,000                |        |        |        |         |         |           | 1,229,743      | 589,498 | 187,862 | 7,256   | 0      | 0      | 0      | 0      |
| 30,000                |        |        |        |         |         |           |                | 684,917 | 265,554 | 59,033  | 20,719 | 1,527  | 0      | 0      |
| 40,000                |        |        |        |         |         |           |                |         | 314,843 | 91,922  | 49,655 | 19,116 | 7,221  | 3,642  |
| 50,000                |        |        |        |         |         |           |                |         |         | 103,436 | 60,183 | 29,644 | 13,605 | 4,280  |
| 60,000                |        |        |        |         |         |           |                |         |         |         | 74,380 | 40,209 | 24,170 | 14,845 |
| 70,000                |        |        |        |         |         |           |                |         |         |         |        | 69,597 | 51,727 | 33,990 |
| 80,000                |        |        |        |         |         |           |                |         |         |         |        |        | 78,660 | 60,922 |
| 86,000                |        |        |        |         |         |           |                |         |         |         |        |        |        | 74,469 |

Deep-Fast Guild Persistent Quality Habitat Area (FT<sup>2</sup>), by Flow Pairs (cfs).

## APPENDIX H-MUSSEL HABITAT HYDRAULIC PARAMETERS

Table H-1: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 2,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 0.50          | 0.11                        | 0.05             | 2.70                        | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 0.59          | 0.12                        | 0.05             | 9.40                        | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 0.53          | 0.06                        | 0.02             | 1.10                        | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 0.35          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 0.58          | 0.10                        | 0.04             | 6.10                        | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 1.18          | 0.18                        | 0.05             | 12.70                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.55          | 0.05                        | 0.01             | 0.60                        | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 1.31          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 0.98          | 0.23                        | 0.07             | 51.80                       | 0.00                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 0.39          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.45          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 0.83          | 0.30                        | 0.11             | 32.10                       | 0.00                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 0.80          | 0.01                        | 0.00             | 0.10                        | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 1.34          | 0.16                        | 0.04             | 3.20                        | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 1.98          | 0.06                        | 0.01             | 0.70                        | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 0.39          | 0.15                        | 0.08             | 21.40                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 0.37          | 0.00                        | 0.00             | 0.02                        | 0.00                        |
| W-6     | 58                                        | Absent             | 6         | 6.50                                                    | 0.00          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 0.48          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 0.09          | 0.03                        | 0.03             | 2.40                        | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.49          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 0.41          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 0.85          | 0.09                        | 0.03             | 11.70                       | 0.00                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 0.94          | 0.04                        | 0.01             | 0.30                        | 0.00                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 1.48          | 0.10                        | 0.03             | 2.10                        | 0.00                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 0.20          | 0.06                        | 0.04             | 16.60                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 1.20          | 0.10                        | 0.03             | 7.50                        | 0.00                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 0.52          | 0.13                        | 0.06             | 2.40                        | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 1.33          | 0.38                        | 0.11             | 51.50                       | 0.00                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 0.62          | 0.01                        | 0.00             | 0.03                        | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 1.13          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 0.58          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 0.50          | 0.19                        | 0.09             | 17.30                       | 0.00                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 0.13          | 0.07                        | 0.06             | 49.10                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 0.47          | 0.00                        | 0.00             | 0.01                        | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 1.81          | 0.02                        | 0.00             | 0.10                        | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 0.50          | 0.25                        | 0.11             | 30.10                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 0.25          | 0.01                        | 0.01             | 2.50                        | 0.00                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 1.98          | 0.07                        | 0.02             | 0.90                        | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 0.91          | 0.36                        | 0.12             | 192.40                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 0.11          | 0.05                        | 0.05             | 197.30                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 0.14          | 0.18                        | 0.15             | 450.50                      | 0.03                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 0.10          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 0.57          | 0.21                        | 0.09             | 18.50                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 1.22          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 0.57          | 0.23                        | 0.10             | 161.60                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.21          | 0.06                        | 0.04             | 61.00                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.23          | 0.03                        | 0.02             | 23.20                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 0.34          | 0.16                        | 0.09             | 39.10                       | 0.00                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 0.96          | 0.16                        | 0.05             | 6.20                        | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 0.43          | 0.18                        | 0.09             | 22.90                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.18          | 0.01                        | 0.01             | 0.36                        | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.22          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 0.35          | 0.22                        | 0.12             | 286.90                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 0.37          | 0.01                        | 0.00             | 0.04                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.10          | 0.04                        | 0.04             | 0.60                        | 0.09                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.28          | 0.23                        | 0.14             | 173.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 0.67          | 0.12                        | 0.05             | 9.50                        | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 1.95          | 0.12                        | 0.03             | 1.80                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.18          | 0.09                        | 0.06             | 153.60                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 0.63          | 0.39                        | 0.16             | 144.00                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.16          | 0.18                        | 0.14             | 238.20                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.11          | 0.04                        | 0.01             | 0.10                        | 0.02                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.38          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 0.55          | 0.20                        | 0.09             | 16.30                       | 0.00                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.18          | 0.08                        | 0.06             | 126.20                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.18          | 0.06                        | 0.05             | 0.20                        | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.31          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 0.41          | 0.15                        | 0.07             | 39.90                       | 0.00                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 0.48          | 0.09                        | 0.04             | 14.20                       | 0.00                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.04          | 0.05                        | 0.01             | 0.30                        | 0.00                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 0.63          | 0.15                        | 0.06             | 5.60                        | 0.00                        |

Table H-2: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 3,500 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station      | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|--------------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23         | 318                                       | Present            | 8b        | 16707                                                   | 0.63          | 0.16                        | 0.06             | 4.80                        | 0.00                        |
| D-12         | 264                                       | Absent             | 8b        | 16707                                                   | 0.64          | 0.17                        | 0.07             | 17.50                       | 0.00                        |
| D-38         | 257                                       | Present            | 6         | 5336                                                    | 0.67          | 0.10                        | 0.04             | 3.00                        | 0.00                        |
| D-26         | 235                                       | Present            | 8a        | 18621                                                   | 0.48          | 0.02                        | 0.01             | 0.10                        | 0.00                        |
| D-13         | 225                                       | Present            | 8b        | 16707                                                   | 0.65          | 0.13                        | 0.05             | 10.20                       | 0.00                        |
| D-27         | 164                                       | Present            | 8a        | 18621                                                   | 1.31          | 0.20                        | 0.06             | 14.50                       | 0.00                        |
| D-16         | 145                                       | Present            | 8b        | 16707                                                   | 1.55          | 0.07                        | 0.02             | 1.30                        | 0.00                        |
| W-12         | 100                                       | Absent             | 8a        | 18621                                                   | 1.39          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-25         | 98                                        | Present            | 8a        | 18621                                                   | 1.11          | 0.28                        | 0.08             | 63.50                       | 0.00                        |
| W-27         | 92                                        | Present            | 8a        | 18621                                                   | 0.53          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-16         | 91                                        | Present            | 8b        | 16707                                                   | 1.46          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-40         | 85                                        | Present            | 8a        | 18621                                                   | 0.99          | 0.37                        | 0.12             | 40.60                       | 0.00                        |
| D-22         | 80                                        | Present            | 8b        | 16707                                                   | 0.93          | 0.06                        | 0.02             | 1.40                        | 0.00                        |
| D-35         | 80                                        | Absent             | 8a        | 18621                                                   | 1.47          | 0.20                        | 0.05             | 4.70                        | 0.00                        |
| D-18         | 79                                        | Present            | 8b        | 16707                                                   | 1.98          | 0.09                        | 0.02             | 1.80                        | 0.00                        |
| D-24         | 78                                        | Present            | 8a        | 18621                                                   | 0.52          | 0.20                        | 0.09             | 24.80                       | 0.00                        |
| W-14         | 67                                        | Present            | 8b        | 21856                                                   | 0.43          | 0.01                        | 0.00             | 0.12                        | 0.00                        |
| W-6          | 58                                        | Absent             | 1         | 6.50                                                    | 0.00          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39         | 57                                        | Present            | 7         | 21856                                                   | 0.63          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-1          | 49                                        | Absent             | ,<br>8a   | 18621                                                   | 0.05          | 0.05                        | 0.04             | 2.10                        | 0.00                        |
| W-15         | 48                                        | Absent             | 8b        | 18621                                                   | 1.50          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-20         | 46                                        | Present            | 6         | 5336                                                    | 0.46          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-28         | 40                                        | Present            | 8a        | 18621                                                   | 0.99          | 0.13                        | 0.00             | 16.90                       | 0.00                        |
| D-28         | 43                                        | Present            | 5         | 126.3                                                   | 0.95          | 0.15                        | 0.04             | 1.00                        | 0.00                        |
| D-13<br>D-14 | 43                                        | Present            | 8b        | 16707                                                   | 1.50          | 0.15                        | 0.02             | 5.10                        | 0.01                        |
| W-13         | 29                                        | Absent             | 8b        | 16707                                                   | 0.25          | 0.09                        | 0.04             | 26.30                       | 0.00                        |
| D-29         | 26                                        | Absent             | 80<br>8a  | 18621                                                   | 1.34          | 0.03                        | 0.00             | 11.80                       | 0.00                        |
| D-29         | 26                                        | Absent             | 8a        | 18621                                                   | 0.65          | 0.15                        | 0.04             | 2.90                        | 0.00                        |
| D-30<br>D-31 | 25                                        | Absent             | 8a        | 18621                                                   | 1.47          | 0.10                        | 0.00             | 67.70                       | 0.00                        |
| W-21         | 22                                        | Absent             | 3         | 5336                                                    | 0.68          | 0.45                        | 0.12             | 0.09                        | 0.00                        |
| D-2          | 20                                        | Absent             | 8a        | 18621                                                   | 1.27          | 0.02                        | 0.01             | 0.10                        | 0.00                        |
| W-18         | 19                                        | Absent             | 8b        | 18621                                                   | 0.70          | 0.04                        | 0.01             | 0.10                        | 0.00                        |
| W-18<br>W-19 | 19                                        | Absent             | 8b        | 16707                                                   | 0.70          | 0.00                        | 0.00             | 27.40                       | 0.00                        |
| W-19         | 19                                        | Present            | 80<br>8a  | 18621                                                   | 0.03          | 0.27                        | 0.03             | 5.40                        | 0.00                        |
| D-19         | 19                                        | Absent             | 8b        | 21856                                                   | 0.28          | 0.03                        | 0.03             | 0.05                        | 0.00                        |
| D-19<br>D-11 | 19                                        | Absent             | 80<br>8a  | 18621                                                   | 1.93          | 0.01                        | 0.00             | 0.60                        | 0.00                        |
| D-11<br>D-34 | 18                                        | Absent             | 8a        | 18621                                                   | 0.62          | 0.30                        | 0.01             | 33.80                       | 0.00                        |
| W-24         | 16                                        | Present            | 8a        | 18621                                                   | 0.02          | 0.06                        | 0.12             | 35.30                       | 0.00                        |
| D-17         | 15                                        | Absent             | 8b        | 16707                                                   | 1.98          | 0.00                        | 0.03             | 2.10                        | 0.00                        |
| W-23         | 15                                        | Absent             | 80<br>8a  | 18621                                                   | 1.98          | 0.10                        | 0.02             | 192.90                      | 0.00                        |
|              |                                           |                    |           |                                                         |               |                             |                  |                             |                             |
| W-25<br>D-21 | 13                                        | Absent             | 8a        | 18621                                                   | 0.21          | 0.12                        | 0.09             | 369.60                      | 0.02                        |
|              | 13                                        | Absent             | 8b        | 16707                                                   | 0.24          | 0.23                        | 0.15             | 233.60                      | 0.01                        |
| D-41         | 13                                        | Absent             | 8a        | 18621                                                   | 0.25          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-43<br>D-37 | 13                                        | Absent             | 8a        | 18621                                                   | 0.72          | 0.27                        | 0.10             | 25.30                       | 0.00                        |
| 11-57        | 12                                        | Present            | 6         | 5336                                                    | 1.36          | 0.01                        | 0.00             | 0.00                        | 0.00                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.35          | 0.11                        | 0.06             | 78.90                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.35          | 0.06                        | 0.03             | 28.50                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 0.44          | 0.30                        | 0.14             | 90.70                       | 0.00                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.08          | 0.20                        | 0.06             | 9.30                        | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 0.59          | 0.26                        | 0.11             | 31.80                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.32          | 0.05                        | 0.03             | 4.28                        | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.30          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 0.47          | 0.28                        | 0.13             | 257.80                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 0.48          | 0.01                        | 0.01             | 0.12                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.18          | 0.02                        | 0.02             | 0.12                        | 0.02                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.40          | 0.29                        | 0.15             | 139.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 0.70          | 0.16                        | 0.06             | 17.20                       | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.02          | 0.13                        | 0.03             | 2.20                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.27          | 0.12                        | 0.07             | 142.80                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 0.77          | 0.44                        | 0.16             | 135.50                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.27          | 0.24                        | 0.15             | 164.60                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.20          | 0.04                        | 0.01             | 0.10                        | 0.02                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.46          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 0.70          | 0.30                        | 0.12             | 29.50                       | 0.00                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.27          | 0.13                        | 0.08             | 163.60                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.25          | 0.25                        | 0.16             | 2.97                        | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.38          | 0.02                        | 0.00             | 0.00                        | 0.00                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 0.53          | 0.20                        | 0.09             | 46.70                       | 0.00                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 0.62          | 0.13                        | 0.05             | 18.00                       | 0.00                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.11          | 0.06                        | 0.01             | 0.40                        | 0.00                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 0.71          | 0.20                        | 0.08             | 8.50                        | 0.00                        |

Table H-3: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 5,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station     | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|-------------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23        | 318                                       | Present            | 8b        | 16707                                                   | 0.73          | 0.20                        | 0.07             | 6.80                        | 0.00                        |
| D-12        | 264                                       | Absent             | 8b        | 16707                                                   | 0.71          | 0.22                        | 0.08             | 24.50                       | 0.00                        |
| D-38        | 257                                       | Present            | 6         | 5336                                                    | 0.78          | 0.14                        | 0.05             | 5.00                        | 0.00                        |
| D-26        | 235                                       | Present            | 8a        | 18621                                                   | 0.59          | 0.07                        | 0.03             | 1.30                        | 0.00                        |
| D-13        | 225                                       | Present            | 8b        | 16707                                                   | 0.71          | 0.16                        | 0.06             | 13.00                       | 0.00                        |
| D-27        | 164                                       | Present            | 8a        | 18621                                                   | 1.42          | 0.22                        | 0.06             | 15.80                       | 0.00                        |
| D-16        | 145                                       | Present            | 8b        | 16707                                                   | 1.56          | 0.09                        | 0.02             | 2.30                        | 0.00                        |
| W-12        | 100                                       | Absent             | 8a        | 18621                                                   | 1.48          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-25        | 98                                        | Present            | 8a        | 18621                                                   | 1.21          | 0.32                        | 0.09             | 73.30                       | 0.00                        |
| W-27        | 92                                        | Present            | 8a        | 18621                                                   | 0.64          | 0.02                        | 0.01             | 0.10                        | 0.00                        |
| W-16        | 91                                        | Present            | 8b        | 16707                                                   | 1.46          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-40        | 85                                        | Present            | 8a        | 18621                                                   | 1.11          | 0.41                        | 0.13             | 46.90                       | 0.00                        |
| D-22        | 80                                        | Present            | 8b        | 16707                                                   | 1.03          | 0.11                        | 0.03             | 4.00                        | 0.00                        |
| D-35        | 80                                        | Absent             | 8a        | 18621                                                   | 1.57          | 0.23                        | 0.06             | 6.00                        | 0.00                        |
| D-18        | 79                                        | Present            | 8b        | 16707                                                   | 1.98          | 0.13                        | 0.03             | 3.30                        | 0.00                        |
| D-18        | 78                                        | Present            | 8a        | 18621                                                   | 0.62          | 0.13                        | 0.10             | 28.70                       | 0.00                        |
| W-14        | 67                                        | Present            | 8b        | 21856                                                   | 0.02          | 0.24                        | 0.10             | 0.44                        | 0.00                        |
| W-14        | 58                                        | Absent             | 1         | 6.50                                                    | 0.00          | 0.02                        | 0.01             | 0.44                        | 0.00                        |
| D-39        | 57                                        | Present            | 7         | 21856                                                   | 0.00          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39<br>D-1 | 49                                        |                    | 7<br>8a   | 18621                                                   | 0.75          |                             | 0.01             | 4.30                        |                             |
|             |                                           | Absent             |           |                                                         |               | 0.10                        |                  |                             | 0.00                        |
| W-15        | 48                                        | Absent             | 8b        | 18621                                                   | 1.50          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| W-20        | 46                                        | Present            | 6         | 5336                                                    | 0.55          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-28        | 44                                        | Present            | 8a        | 18621                                                   | 1.10          | 0.16                        | 0.05             | 21.80                       | 0.00                        |
| D-15        | 43                                        | Present            | 5         | 126.3                                                   | 0.95          | 0.10                        | 0.03             | 2.10                        | 0.02                        |
| D-14        | 40                                        | Present            | 8b        | 16707                                                   | 1.52          | 0.20                        | 0.05             | 9.10                        | 0.00                        |
| W-13        | 29                                        | Absent             | 8b        | 16707                                                   | 0.31          | 0.12                        | 0.07             | 32.00                       | 0.00                        |
| D-29        | 26                                        | Absent             | 8a        | 18621                                                   | 1.45          | 0.16                        | 0.04             | 16.20                       | 0.00                        |
| D-36        | 26                                        | Absent             | 8a        | 18621                                                   | 0.76          | 0.19                        | 0.07             | 3.80                        | 0.00                        |
| D-31        | 25                                        | Absent             | 8a        | 18621                                                   | 1.57          | 0.52                        | 0.13             | 81.70                       | 0.00                        |
| W-21        | 22                                        | Absent             | 3         | 5336                                                    | 0.73          | 0.03                        | 0.01             | 0.18                        | 0.00                        |
| D-2         | 20                                        | Absent             | 8a        | 18621                                                   | 1.38          | 0.11                        | 0.03             | 0.70                        | 0.00                        |
| W-18        | 19                                        | Absent             | 8b        | 18621                                                   | 0.80          | 0.00                        | 0.00             | 0.01                        | 0.00                        |
| W-19        | 19                                        | Absent             | 8b        | 16707                                                   | 0.73          | 0.33                        | 0.12             | 36.00                       | 0.00                        |
| W-28        | 19                                        | Present            | 8a        | 18621                                                   | 0.40          | 0.04                        | 0.02             | 1.60                        | 0.00                        |
| D-19        | 19                                        | Absent             | 8b        | 21856                                                   | 0.69          | 0.02                        | 0.01             | 0.33                        | 0.00                        |
| D-11        | 18                                        | Absent             | 8a        | 18621                                                   | 2.03          | 0.08                        | 0.02             | 1.50                        | 0.00                        |
| D-34        | 18                                        | Absent             | 8a        | 18621                                                   | 0.73          | 0.30                        | 0.11             | 30.60                       | 0.00                        |
| W-24        | 16                                        | Present            | 8a        | 18621                                                   | 0.44          | 0.11                        | 0.05             | 71.00                       | 0.00                        |
| D-17        | 15                                        | Absent             | 8b        | 16707                                                   | 1.98          | 0.13                        | 0.03             | 3.70                        | 0.00                        |
| W-23        | 14                                        | Absent             | 8a        | 18621                                                   | 1.08          | 0.40                        | 0.12             | 174.90                      | 0.01                        |
| W-25        | 13                                        | Absent             | 8a        | 18621                                                   | 0.30          | 0.17                        | 0.10             | 332.10                      | 0.02                        |
| D-21        | 13                                        | Absent             | 8b        | 16707                                                   | 0.33          | 0.27                        | 0.15             | 170.80                      | 0.01                        |
| D-41        | 13                                        | Absent             | 8a        | 18621                                                   | 0.36          | 0.01                        | 0.00             | 0.10                        | 0.00                        |
| D-43        | 13                                        | Absent             | 8a        | 18621                                                   | 0.83          | 0.32                        | 0.11             | 30.60                       | 0.00                        |
| D-37        | 12                                        | Present            | 6         | 5336                                                    | 1.47          | 0.02                        | 0.00             | 0.00                        | 0.00                        |
| W-22        | 11                                        | Absent             | 8a        | 18621                                                   | 0.76          | 0.33                        | 0.12             | 177.30                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.45          | 0.14                        | 0.07             | 78.90                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.45          | 0.07                        | 0.04             | 29.50                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 0.53          | 0.37                        | 0.16             | 103.80                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.19          | 0.24                        | 0.07             | 12.70                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 0.71          | 0.33                        | 0.12             | 40.40                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.42          | 0.09                        | 0.04             | 6.99                        | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.38          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 0.57          | 0.33                        | 0.14             | 242.80                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 0.59          | 0.02                        | 0.01             | 0.25                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.26          | 0.02                        | 0.01             | 0.04                        | 0.01                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.50          | 0.35                        | 0.16             | 132.30                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 0.75          | 0.21                        | 0.08             | 25.40                       | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.11          | 0.16                        | 0.03             | 3.00                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.35          | 0.15                        | 0.08             | 133.70                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 0.89          | 0.49                        | 0.17             | 139.90                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.37          | 0.29                        | 0.15             | 127.80                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.28          | 0.05                        | 0.01             | 0.10                        | 0.02                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.54          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 0.81          | 0.39                        | 0.14             | 42.70                       | 0.00                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.36          | 0.17                        | 0.09             | 155.30                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.33          | 0.37                        | 0.21             | 6.08                        | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.47          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 0.62          | 0.25                        | 0.10             | 53.20                       | 0.00                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 0.72          | 0.16                        | 0.06             | 22.40                       | 0.00                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.20          | 0.07                        | 0.02             | 0.70                        | 0.01                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 0.79          | 0.24                        | 0.09             | 11.30                       | 0.00                        |

Table H-4: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 7,500 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 0.87          | 0.25                        | 0.09             | 9.80                        | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 0.81          | 0.27                        | 0.10             | 34.20                       | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 0.93          | 0.18                        | 0.06             | 7.50                        | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 0.73          | 0.18                        | 0.07             | 6.70                        | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 0.82          | 0.19                        | 0.07             | 15.50                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 1.57          | 0.25                        | 0.06             | 18.60                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.57          | 0.13                        | 0.03             | 4.50                        | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 1.61          | 0.04                        | 0.01             | 0.20                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 1.35          | 0.37                        | 0.10             | 88.10                       | 0.00                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 0.79          | 0.07                        | 0.02             | 1.60                        | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.47          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 1.27          | 0.48                        | 0.13             | 55.60                       | 0.00                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 1.16          | 0.17                        | 0.05             | 8.70                        | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 1.73          | 0.27                        | 0.07             | 8.10                        | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 1.99          | 0.19                        | 0.04             | 6.80                        | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 0.76          | 0.29                        | 0.11             | 35.20                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 0.61          | 0.05                        | 0.02             | 2.35                        | 0.00                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 0.11          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 0.91          | 0.05                        | 0.02             | 0.15                        | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 0.39          | 0.15                        | 0.08             | 7.30                        | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.52          | 0.01                        | 0.00             | 0.01                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 0.69          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 1.25          | 0.20                        | 0.06             | 29.60                       | 0.00                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 0.97          | 0.16                        | 0.05             | 4.80                        | 0.04                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 1.56          | 0.28                        | 0.07             | 16.90                       | 0.00                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 0.41          | 0.17                        | 0.08             | 36.10                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 1.61          | 0.21                        | 0.05             | 23.80                       | 0.00                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 0.91          | 0.23                        | 0.08             | 5.10                        | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 1.71          | 0.60                        | 0.15             | 102.80                      | 0.01                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 0.83          | 0.04                        | 0.02             | 0.43                        | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 1.52          | 0.22                        | 0.06             | 2.40                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 0.93          | 0.01                        | 0.00             | 0.05                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 0.86          | 0.41                        | 0.14             | 47.60                       | 0.00                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 0.57          | 0.07                        | 0.03             | 3.10                        | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 0.82          | 0.08                        | 0.03             | 4.12                        | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 2.16          | 0.13                        | 0.03             | 3.30                        | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 0.88          | 0.29                        | 0.10             | 23.70                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 0.58          | 0.17                        | 0.07             | 98.20                       | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 1.99          | 0.19                        | 0.04             | 7.40                        | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 1.21          | 0.39                        | 0.11             | 139.50                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 0.43          | 0.23                        | 0.11             | 298.10                      | 0.02                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 0.46          | 0.33                        | 0.15             | 134.80                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 0.52          | 0.09                        | 0.04             | 3.80                        | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 0.99          | 0.38                        | 0.12             | 37.80                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 1.62          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 0.86          | 0.38                        | 0.13             | 186.40                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.59          | 0.18                        | 0.08             | 76.10                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.59          | 0.10                        | 0.04             | 30.00                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 0.67          | 0.42                        | 0.16             | 98.20                       | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.35          | 0.34                        | 0.09             | 22.30                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 0.87          | 0.41                        | 0.14             | 51.80                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.56          | 0.14                        | 0.06             | 11.87                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.51          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 0.71          | 0.40                        | 0.15             | 225.80                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 0.73          | 0.04                        | 0.02             | 0.76                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.39          | 0.02                        | 0.01             | 0.04                        | 0.01                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.64          | 0.43                        | 0.17             | 139.50                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 0.82          | 0.27                        | 0.10             | 38.30                       | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.24          | 0.19                        | 0.04             | 4.50                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.48          | 0.21                        | 0.09             | 127.40                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 1.05          | 0.56                        | 0.17             | 149.00                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.52          | 0.37                        | 0.16             | 114.50                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.42          | 0.06                        | 0.02             | 0.20                        | 0.03                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.67          | 0.08                        | 0.02             | 0.40                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 0.96          | 0.51                        | 0.17             | 64.10                       | 0.00                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.49          | 0.22                        | 0.10             | 143.50                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.45          | 0.39                        | 0.18             | 5.98                        | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.60          | 0.04                        | 0.01             | 0.20                        | 0.00                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 0.76          | 0.31                        | 0.11             | 62.90                       | 0.00                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 0.86          | 0.21                        | 0.07             | 30.30                       | 0.01                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.33          | 0.09                        | 0.02             | 1.00                        | 0.01                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 0.91          | 0.29                        | 0.10             | 15.10                       | 0.00                        |

Table H-5: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 10,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 0.99          | 0.29                        | 0.09             | 12.70                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 0.90          | 0.32                        | 0.11             | 42.30                       | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 1.05          | 0.21                        | 0.07             | 9.30                        | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 0.86          | 0.23                        | 0.08             | 9.20                        | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 0.92          | 0.21                        | 0.07             | 16.80                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 1.69          | 0.28                        | 0.07             | 21.60                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.58          | 0.17                        | 0.04             | 7.40                        | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 1.72          | 0.07                        | 0.02             | 0.70                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 1.46          | 0.42                        | 0.11             | 101.60                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 0.92          | 0.13                        | 0.04             | 4.70                        | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.47          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 1.40          | 0.53                        | 0.14             | 62.70                       | 0.00                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 1.27          | 0.24                        | 0.07             | 15.40                       | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 1.86          | 0.31                        | 0.07             | 10.50                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 1.99          | 0.24                        | 0.05             | 11.60                       | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 0.87          | 0.34                        | 0.12             | 41.30                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 0.71          | 0.09                        | 0.03             | 7.36                        | 0.00                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 0.22          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 1.04          | 0.10                        | 0.03             | 0.63                        | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 0.51          | 0.19                        | 0.09             | 9.30                        | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.54          | 0.01                        | 0.00             | 0.02                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 0.83          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 1.38          | 0.24                        | 0.07             | 37.20                       | 0.00                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 0.98          | 0.21                        | 0.07             | 8.60                        | 0.07                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 1.61          | 0.35                        | 0.09             | 25.60                       | 0.00                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 0.51          | 0.21                        | 0.09             | 38.40                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 1.73          | 0.25                        | 0.06             | 31.40                       | 0.00                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 1.03          | 0.26                        | 0.08             | 6.30                        | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 1.82          | 0.67                        | 0.16             | 122.30                      | 0.01                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 0.95          | 0.06                        | 0.02             | 0.83                        | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 1.63          | 0.30                        | 0.07             | 4.40                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 1.05          | 0.02                        | 0.01             | 0.17                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 0.97          | 0.47                        | 0.15             | 57.50                       | 0.00                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 0.70          | 0.11                        | 0.04             | 6.10                        | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 0.93          | 0.16                        | 0.05             | 14.08                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 2.28          | 0.16                        | 0.03             | 5.30                        | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 1.01          | 0.28                        | 0.09             | 19.10                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 0.70          | 0.21                        | 0.08             | 107.40                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.01          | 0.24                        | 0.05             | 12.00                       | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 1.32          | 0.37                        | 0.10             | 110.90                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 0.55          | 0.28                        | 0.12             | 274.30                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 0.57          | 0.38                        | 0.16             | 128.90                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 0.65          | 0.24                        | 0.10             | 22.60                       | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 1.12          | 0.43                        | 0.13             | 43.60                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 1.74          | 0.04                        | 0.01             | 0.20                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 0.94          | 0.42                        | 0.14             | 192.40                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.70          | 0.22                        | 0.08             | 74.00                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.71          | 0.12                        | 0.04             | 30.50                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 0.79          | 0.45                        | 0.16             | 97.00                       | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.48          | 0.43                        | 0.11             | 33.90                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 1.01          | 0.46                        | 0.15             | 59.60                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.67          | 0.19                        | 0.07             | 17.70                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.63          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 0.83          | 0.45                        | 0.16             | 220.80                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 0.85          | 0.07                        | 0.03             | 2.06                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.51          | 0.04                        | 0.02             | 0.14                        | 0.02                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.76          | 0.50                        | 0.18             | 150.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 0.89          | 0.32                        | 0.11             | 50.20                       | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.35          | 0.23                        | 0.05             | 5.90                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.59          | 0.26                        | 0.11             | 135.30                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 1.18          | 0.61                        | 0.18             | 158.30                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.65          | 0.43                        | 0.17             | 114.70                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.55          | 0.07                        | 0.02             | 0.30                        | 0.05                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.78          | 0.13                        | 0.03             | 0.90                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 1.08          | 0.62                        | 0.19             | 84.90                       | 0.00                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.60          | 0.27                        | 0.11             | 137.60                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.56          | 0.36                        | 0.15             | 4.74                        | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.71          | 0.05                        | 0.01             | 0.30                        | 0.00                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 0.87          | 0.36                        | 0.12             | 72.10                       | 0.00                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 0.98          | 0.26                        | 0.08             | 38.20                       | 0.01                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.45          | 0.12                        | 0.02             | 1.60                        | 0.01                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 1.02          | 0.34                        | 0.11             | 19.20                       | 0.00                        |

Table H-6: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 15,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 1.18          | 0.38                        | 0.11             | 18.60                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 1.07          | 0.40                        | 0.12             | 54.40                       | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 1.25          | 0.26                        | 0.07             | 12.10                       | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 1.06          | 0.29                        | 0.09             | 13.30                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 1.09          | 0.23                        | 0.07             | 18.00                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 1.90          | 0.33                        | 0.08             | 27.70                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.61          | 0.24                        | 0.06             | 14.50                       | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 1.91          | 0.12                        | 0.03             | 1.70                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 1.65          | 0.50                        | 0.13             | 125.10                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 1.14          | 0.19                        | 0.06             | 8.60                        | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.49          | 0.01                        | 0.00             | 0.10                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 1.61          | 0.61                        | 0.15             | 75.90                       | 0.00                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 1.44          | 0.35                        | 0.09             | 30.30                       | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 2.08          | 0.40                        | 0.09             | 16.20                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.01          | 0.35                        | 0.08             | 24.60                       | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 1.06          | 0.42                        | 0.13             | 52.70                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 0.88          | 0.23                        | 0.08             | 34.23                       | 0.00                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 0.32          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 1.25          | 0.23                        | 0.06             | 3.07                        | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 0.70          | 0.25                        | 0.10             | 12.60                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.58          | 0.02                        | 0.00             | 0.07                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 1.07          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 1.58          | 0.31                        | 0.08             | 51.80                       | 0.00                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.03          | 0.32                        | 0.10             | 18.00                       | 0.14                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 1.72          | 0.46                        | 0.11             | 42.90                       | 0.00                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 0.67          | 0.27                        | 0.11             | 45.60                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 1.94          | 0.33                        | 0.08             | 46.90                       | 0.00                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 1.25          | 0.34                        | 0.10             | 9.50                        | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 2.02          | 0.80                        | 0.18             | 158.80                      | 0.01                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 1.17          | 0.11                        | 0.03             | 2.06                        | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 1.83          | 0.41                        | 0.10             | 8.00                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 1.23          | 0.06                        | 0.02             | 1.19                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 1.16          | 0.57                        | 0.17             | 73.80                       | 0.00                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 0.93          | 0.16                        | 0.05             | 10.30                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 1.11          | 0.24                        | 0.07             | 25.99                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 2.47          | 0.22                        | 0.05             | 9.50                        | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 1.23          | 0.28                        | 0.08             | 16.90                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 0.90          | 0.28                        | 0.10             | 116.90                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.05          | 0.34                        | 0.08             | 23.80                       | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 1.52          | 0.35                        | 0.09             | 81.90                       | 0.00                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 0.75          | 0.35                        | 0.13             | 227.30                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 0.75          | 0.47                        | 0.17             | 133.20                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 0.85          | 0.38                        | 0.13             | 42.80                       | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 1.35          | 0.51                        | 0.14             | 53.20                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 1.95          | 0.06                        | 0.01             | 0.40                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 1.08          | 0.47                        | 0.15             | 199.30                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 0.90          | 0.28                        | 0.09             | 77.80                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 0.90          | 0.15                        | 0.05             | 31.60                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 1.00          | 0.52                        | 0.17             | 100.40                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.70          | 0.57                        | 0.14             | 54.20                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 1.23          | 0.55                        | 0.16             | 70.60                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 0.86          | 0.28                        | 0.10             | 30.30                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 1.86          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 1.03          | 0.54                        | 0.17             | 225.20                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 1.05          | 0.17                        | 0.05             | 9.24                        | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.74          | 0.09                        | 0.03             | 0.78                        | 0.12                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 0.96          | 0.61                        | 0.20             | 171.00                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.03          | 0.42                        | 0.13             | 71.50                       | 0.00                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.55          | 0.27                        | 0.05             | 8.30                        | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.78          | 0.35                        | 0.13             | 146.30                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 1.40          | 0.70                        | 0.19             | 177.50                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 0.86          | 0.51                        | 0.18             | 118.80                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.78          | 0.10                        | 0.02             | 0.60                        | 0.09                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 1.97          | 0.24                        | 0.05             | 3.00                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 1.29          | 0.80                        | 0.22             | 123.40                      | 0.01                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.80          | 0.34                        | 0.12             | 129.80                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.76          | 0.64                        | 0.23             | 13.63                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 2.91          | 0.08                        | 0.02             | 0.70                        | 0.01                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.05          | 0.45                        | 0.14             | 91.30                       | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 1.18          | 0.34                        | 0.10             | 53.10                       | 0.01                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.64          | 0.16                        | 0.03             | 2.90                        | 0.02                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 1.22          | 0.42                        | 0.12             | 26.40                       | 0.00                        |

Table H-7: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 20,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 1.34          | 0.44                        | 0.12             | 24.20                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 1.22          | 0.45                        | 0.13             | 62.70                       | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 1.42          | 0.29                        | 0.08             | 14.00                       | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 1.22          | 0.34                        | 0.10             | 16.50                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 1.23          | 0.25                        | 0.07             | 18.50                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 2.06          | 0.38                        | 0.08             | 34.90                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.65          | 0.31                        | 0.08             | 23.40                       | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 2.08          | 0.15                        | 0.03             | 2.50                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 1.80          | 0.57                        | 0.14             | 144.90                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 1.33          | 0.22                        | 0.06             | 10.80                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.52          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 1.79          | 0.68                        | 0.16             | 88.10                       | 0.00                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 1.59          | 0.45                        | 0.11             | 46.10                       | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 2.26          | 0.45                        | 0.10             | 19.40                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.03          | 0.46                        | 0.10             | 41.40                       | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 1.22          | 0.48                        | 0.14             | 63.20                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 1.02          | 0.38                        | 0.12             | 78.33                       | 0.00                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 0.59          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 1.43          | 0.34                        | 0.09             | 6.68                        | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 0.86          | 0.31                        | 0.11             | 16.20                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.64          | 0.03                        | 0.01             | 0.18                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 1.26          | 0.02                        | 0.00             | 0.00                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 1.74          | 0.37                        | 0.09             | 66.40                       | 0.00                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.08          | 0.40                        | 0.12             | 27.90                       | 0.22                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 1.84          | 0.55                        | 0.13             | 59.00                       | 0.00                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 0.82          | 0.34                        | 0.12             | 54.50                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 2.10          | 0.40                        | 0.09             | 63.20                       | 0.00                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 1.43          | 0.41                        | 0.11             | 13.40                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 2.18          | 0.90                        | 0.20             | 191.30                      | 0.01                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 1.34          | 0.16                        | 0.04             | 3.96                        | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 1.99          | 0.47                        | 0.11             | 10.60                       | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 1.38          | 0.12                        | 0.03             | 3.88                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 1.31          | 0.65                        | 0.18             | 85.10                       | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 1.13          | 0.19                        | 0.06             | 11.90                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 1.27          | 0.31                        | 0.09             | 35.63                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 2.63          | 0.27                        | 0.05             | 13.60                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 1.41          | 0.43                        | 0.11             | 35.60                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 1.07          | 0.35                        | 0.11             | 127.80                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.09          | 0.44                        | 0.10             | 37.90                       | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 1.70          | 0.36                        | 0.09             | 73.30                       | 0.00                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 0.92          | 0.39                        | 0.13             | 191.50                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 0.92          | 0.55                        | 0.18             | 146.60                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 1.03          | 0.49                        | 0.15             | 59.80                       | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 1.54          | 0.57                        | 0.15             | 62.10                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 2.11          | 0.09                        | 0.02             | 0.90                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 1.21          | 0.52                        | 0.15             | 206.90                      | 0.00                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 1.07          | 0.34                        | 0.10             | 90.90                       | 0.00                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 1.07          | 0.18                        | 0.06             | 34.30                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 1.17          | 0.58                        | 0.17             | 105.60                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 1.88          | 0.58                        | 0.14             | 53.50                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 1.42          | 0.61                        | 0.16             | 79.00                       | 0.00                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 1.03          | 0.36                        | 0.11             | 41.53                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 2.06          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 1.20          | 0.61                        | 0.18             | 234.80                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 1.22          | 0.26                        | 0.08             | 18.80                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 0.94          | 0.17                        | 0.06             | 2.35                        | 0.36                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 1.13          | 0.69                        | 0.21             | 183.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.16          | 0.50                        | 0.15             | 90.70                       | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.71          | 0.32                        | 0.06             | 11.10                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 0.95          | 0.43                        | 0.14             | 156.60                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 1.58          | 0.77                        | 0.20             | 191.00                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 1.04          | 0.59                        | 0.18             | 127.80                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 1.98          | 0.14                        | 0.03             | 1.00                        | 0.15                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 2.14          | 0.31                        | 0.07             | 5.20                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 1.47          | 0.94                        | 0.25             | 158.10                      | 0.01                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 0.97          | 0.39                        | 0.13             | 129.20                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 0.93          | 0.72                        | 0.24             | 16.23                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 3.07          | 0.11                        | 0.02             | 1.30                        | 0.01                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.20          | 0.53                        | 0.15             | 110.50                      | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 1.34          | 0.41                        | 0.11             | 66.90                       | 0.01                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 2.80          | 0.20                        | 0.04             | 4.20                        | 0.03                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 1.39          | 0.48                        | 0.13             | 31.60                       | 0.01                        |

Table H-8: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 30,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 1.60          | 0.54                        | 0.14             | 32.00                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 1.47          | 0.54                        | 0.14             | 75.70                       | 0.00                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 1.70          | 0.33                        | 0.08             | 15.80                       | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 1.49          | 0.42                        | 0.11             | 22.00                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 1.49          | 0.29                        | 0.08             | 21.80                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 2.33          | 0.49                        | 0.10             | 52.80                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.76          | 0.43                        | 0.10             | 43.30                       | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 2.36          | 0.18                        | 0.04             | 3.60                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.06          | 0.68                        | 0.15             | 181.80                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 1.65          | 0.27                        | 0.07             | 14.00                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.59          | 0.06                        | 0.01             | 0.70                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 2.08          | 0.80                        | 0.18             | 110.90                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 1.85          | 0.61                        | 0.14             | 77.60                       | 0.00                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 2.56          | 0.56                        | 0.11             | 28.70                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.09          | 0.66                        | 0.15             | 83.10                       | 0.00                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 1.48          | 0.60                        | 0.16             | 81.70                       | 0.00                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 1.27          | 0.57                        | 0.16             | 138.31                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 0.90          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 1.71          | 0.49                        | 0.12             | 12.77                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 1.15          | 0.42                        | 0.13             | 25.60                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.78          | 0.06                        | 0.01             | 0.81                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 1.53          | 0.03                        | 0.01             | 0.10                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.02          | 0.48                        | 0.11             | 95.50                       | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.21          | 0.53                        | 0.15             | 45.70                       | 0.36                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.05          | 0.70                        | 0.16             | 88.30                       | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.07          | 0.45                        | 0.14             | 73.00                       | 0.00                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 2.38          | 0.52                        | 0.11             | 97.00                       | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 1.73          | 0.53                        | 0.13             | 20.40                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 2.46          | 1.07                        | 0.22             | 245.30                      | 0.01                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 1.60          | 0.27                        | 0.07             | 10.29                       | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 2.27          | 0.51                        | 0.11             | 11.80                       | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 1.64          | 0.20                        | 0.05             | 9.66                        | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 1.57          | 0.76                        | 0.20             | 105.20                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 1.45          | 0.22                        | 0.06             | 12.60                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 1.51          | 0.39                        | 0.10             | 49.96                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 2.92          | 0.36                        | 0.07             | 21.60                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 1.72          | 0.55                        | 0.13             | 52.50                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 1.36          | 0.45                        | 0.12             | 152.90                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.21          | 0.60                        | 0.13             | 68.20                       | 0.00                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 1.99          | 0.41                        | 0.09             | 80.30                       | 0.00                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 1.20          | 0.49                        | 0.14             | 196.20                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.14          | 0.69                        | 0.21             | 183.10                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 1.31          | 0.64                        | 0.18             | 85.50                       | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 1.85          | 0.69                        | 0.16             | 79.20                       | 0.00                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 2.39          | 0.15                        | 0.03             | 2.50                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 1.48          | 0.61                        | 0.16             | 219.60                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 1.36          | 0.47                        | 0.13             | 128.70                      | 0.01                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 1.35          | 0.25                        | 0.07             | 44.40                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 1.47          | 0.68                        | 0.18             | <b>119.20</b>               | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 2.19          | 0.67                        | 0.14             | 63.80                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 1.74          | 0.71                        | 0.17             | 93.20                       | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 1.31          | 0.51                        | 0.14             | 66.06                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 2.43          | 0.03                        | 0.01             | 0.10                        | 0.02                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 1.50          | 0.73                        | 0.19             | 257.50                      | 0.01                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 1.53          | 0.41                        | 0.11             | 38.77                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 1.30          | 0.37                        | 0.10             | 9.79                        | 1.51                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 1.42          | 0.80                        | 0.21             | <b>199.00</b>               | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.39          | 0.63                        | 0.17             | 122.10                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 2.99          | 0.38                        | 0.07             | 15.00                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 1.24          | 0.54                        | 0.15             | 174.70                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 1.88          | 0.88                        | 0.20             | 213.20                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 1.35          | 0.72                        | 0.20             | 153.10                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 2.34          | 0.19                        | 0.04             | 1.90                        | 0.29                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 2.42          | 0.38                        | 0.08             | 7.30                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 1.76          | 1.17                        | 0.28             | 217.30                      | 0.01                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 1.26          | 0.47                        | 0.13             | 128.30                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 1.23          | 0.61                        | 0.18             | 11.13                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 3.36          | 0.15                        | 0.03             | 2.20                        | 0.02                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.45          | 0.67                        | 0.18             | 148.00                      | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 1.63          | 0.52                        | 0.13             | 89.80                       | 0.02                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 3.09          | 0.24                        | 0.04             | 5.60                        | 0.04                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 1.68          | 0.56                        | 0.14             | 38.40                       | 0.01                        |

Table H-9: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 40,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 1.82          | 0.61                        | 0.14             | 38.60                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 1.69          | 0.62                        | 0.15             | 88.60                       | 0.01                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 1.93          | 0.36                        | 0.08             | 17.30                       | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 1.72          | 0.48                        | 0.12             | 27.00                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 1.71          | 0.37                        | 0.09             | 31.60                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 2.56          | 0.59                        | 0.12             | 72.00                       | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.87          | 0.53                        | 0.12             | 63.70                       | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 2.61          | 0.24                        | 0.05             | 5.70                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.28          | 0.78                        | 0.16             | 215.50                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 1.91          | 0.34                        | 0.08             | 19.60                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.67          | 0.11                        | 0.03             | 2.40                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 2.33          | 0.91                        | 0.19             | 131.40                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 2.07          | 0.73                        | 0.16             | 103.00                      | 0.01                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 2.81          | 0.67                        | 0.13             | 38.40                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.17          | 0.84                        | 0.18             | 130.70                      | 0.01                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 1.69          | 0.69                        | 0.17             | 97.60                       | 0.01                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 1.48          | 0.70                        | 0.18             | 179.13                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 1.18          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 1.95          | 0.63                        | 0.14             | 20.02                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 1.40          | 0.51                        | 0.14             | 33.50                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 1.92          | 0.11                        | 0.03             | 2.54                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 1.77          | 0.19                        | 0.04             | 2.20                        | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.25          | 0.58                        | 0.12             | 122.90                      | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.34          | 0.63                        | 0.17             | 60.20                       | 0.48                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.25          | 0.83                        | 0.18             | 114.70                      | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.29          | 0.54                        | 0.15             | 89.60                       | 0.01                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 2.61          | 0.63                        | 0.13             | 130.50                      | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 1.98          | 0.61                        | 0.14             | 25.70                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 2.70          | 1.20                        | 0.23             | 287.90                      | 0.02                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 1.83          | 0.39                        | 0.09             | 20.02                       | 0.00                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 2.52          | 0.47                        | 0.10             | 9.70                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 1.85          | 0.25                        | 0.06             | 13.49                       | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 1.78          | 0.86                        | 0.21             | 122.70                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 1.72          | 0.23                        | 0.06             | 11.90                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 1.71          | 0.47                        | 0.11             | 62.72                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 3.16          | 0.42                        | 0.08             | 28.80                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 1.97          | 0.66                        | 0.15             | 68.20                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 1.60          | 0.57                        | 0.14             | 192.40                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.33          | 0.73                        | 0.15             | 97.20                       | 0.01                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 2.24          | 0.48                        | 0.10             | 95.70                       | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 1.44          | 0.59                        | 0.16             | 222.30                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.35          | 0.82                        | 0.23             | 220.20                      | 0.01                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 1.55          | 0.70                        | 0.18             | 90.50                       | 0.00                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 2.11          | 0.79                        | 0.17             | 96.00                       | 0.01                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 2.62          | 0.23                        | 0.05             | 5.30                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 1.71          | 0.67                        | 0.16             | 217.90                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 1.61          | 0.60                        | 0.15             | 171.00                      | 0.01                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 1.60          | 0.32                        | 0.08             | 59.90                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 1.73          | 0.77                        | 0.19             | 136.50                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 2.44          | 0.75                        | 0.15             | 76.10                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.01          | 0.80                        | 0.18             | 105.20                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 1.56          | 0.63                        | 0.16             | 90.69                       | 0.01                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 2.74          | 0.10                        | 0.02             | 0.60                        | 0.09                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 1.75          | 0.82                        | 0.20             | 279.60                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 1.79          | 0.56                        | 0.13             | 63.19                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 1.60          | 0.49                        | 0.12             | 15.60                       | 2.40                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 1.66          | 0.88                        | 0.22             | 210.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.59          | 0.73                        | 0.19             | 146.60                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 3.23          | 0.45                        | 0.08             | 19.80                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 1.50          | 0.63                        | 0.16             | <b>191.50</b>               | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.13          | 0.96                        | 0.21             | 230.60                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 1.60          | 0.82                        | 0.21             | 171.30                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 2.64          | 0.28                        | 0.06             | 3.90                        | 0.60                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 2.66          | 0.42                        | 0.08             | 8.80                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.00          | 1.35                        | 0.30             | 266.80                      | 0.01                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 1.51          | 0.51                        | 0.13             | 126.00                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 1.49          | 0.60                        | 0.16             | 10.16                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 3.60          | 0.18                        | 0.03             | 3.10                        | 0.02                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.65          | 0.79                        | 0.20             | 182.10                      | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 1.88          | 0.60                        | 0.14             | 107.20                      | 0.02                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 3.34          | 0.26                        | 0.05             | 6.80                        | 0.05                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 1.94          | 0.60                        | 0.14             | 40.60                       | 0.01                        |

Table H-10: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 50,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 2.02          | 0.68                        | 0.15             | 45.70                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 1.89          | 0.69                        | 0.16             | 101.20                      | 0.01                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 2.14          | 0.40                        | 0.09             | 20.70                       | 0.00                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 1.91          | 0.54                        | 0.12             | 31.30                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 1.91          | 0.49                        | 0.11             | 50.80                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 2.77          | 0.69                        | 0.13             | <b>91.60</b>                | 0.00                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 1.99          | 0.62                        | 0.14             | 82.90                       | 0.00                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 2.83          | 0.32                        | 0.06             | 9.80                        | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.47          | 0.87                        | 0.18             | 246.80                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 2.14          | 0.44                        | 0.10             | 31.00                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.76          | 0.17                        | 0.04             | 6.30                        | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 2.54          | 1.00                        | 0.20             | 150.20                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 2.27          | 0.83                        | 0.18             | 124.90                      | 0.01                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 3.04          | 0.76                        | 0.14             | 47.70                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.25          | 0.99                        | 0.21             | 179.10                      | 0.01                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 1.89          | 0.76                        | 0.18             | 112.40                      | 0.01                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 1.67          | 0.81                        | 0.20             | 214.66                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 1.33          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 2.16          | 0.76                        | 0.17             | 28.47                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 1.62          | 0.53                        | 0.13             | 32.30                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 2.06          | 0.18                        | 0.04             | 6.83                        | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 1.97          | 0.42                        | 0.10             | 10.50                       | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.45          | 0.66                        | 0.13             | 148.30                      | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.47          | 0.73                        | 0.19             | 76.10                       | 0.60                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.42          | 0.93                        | 0.19             | 139.20                      | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.49          | 0.62                        | 0.16             | 103.60                      | 0.01                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 2.82          | 0.73                        | 0.14             | 162.80                      | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 2.21          | 0.68                        | 0.15             | 30.20                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 2.91          | 1.30                        | 0.24             | 322.10                      | 0.02                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 2.05          | 0.52                        | 0.12             | 33.31                       | 0.01                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 2.74          | 0.42                        | 0.08             | 7.40                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 2.04          | 0.30                        | 0.07             | 18.29                       | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 1.97          | 0.95                        | 0.22             | 139.00                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 1.95          | 0.24                        | 0.05             | 11.50                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 1.89          | 0.55                        | 0.13             | 80.80                       | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 3.38          | 0.49                        | 0.08             | 36.50                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 2.19          | 0.75                        | 0.16             | 82.90                       | 0.00                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 1.81          | 0.68                        | 0.16             | 237.00                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.46          | 0.83                        | 0.17             | 122.70                      | 0.01                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 2.46          | 0.54                        | 0.11             | 112.40                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 1.65          | 0.68                        | 0.17             | 250.60                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.53          | 0.94                        | 0.24             | 258.10                      | 0.02                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 1.76          | 0.79                        | 0.19             | 105.40                      | 0.01                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 2.34          | 0.89                        | 0.18             | 112.60                      | 0.01                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 2.82          | 0.32                        | 0.06             | 9.70                        | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 1.93          | 0.71                        | 0.16             | 220.20                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 1.83          | 0.72                        | 0.17             | 214.70                      | 0.01                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 1.82          | 0.40                        | 0.09             | 78.20                       | 0.00                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 1.95          | 0.86                        | 0.20             | 153.60                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 2.67          | 0.83                        | 0.16             | 88.40                       | 0.00                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.24          | 0.87                        | 0.19             | 116.60                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 1.78          | 0.71                        | 0.17             | 104.37                      | 0.01                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 3.02          | 0.14                        | 0.03             | 1.30                        | 0.20                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 1.97          | 0.90                        | 0.21             | 298.40                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 2.01          | 0.63                        | 0.14             | 74.01                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 1.87          | 0.56                        | 0.13             | 19.06                       | 2.93                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 1.88          | 0.95                        | 0.22             | 220.50                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.76          | 0.82                        | 0.20             | <b>169.20</b>               | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 3.46          | 0.51                        | 0.09             | 24.30                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 1.72          | 0.71                        | 0.17             | 209.50                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.35          | 1.03                        | 0.22             | 246.20                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 1.83          | 0.91                        | 0.21             | 189.10                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 2.91          | 0.45                        | 0.08             | 9.50                        | 1.46                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 2.88          | 0.45                        | 0.09             | 9.70                        | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.22          | 1.49                        | 0.32             | 307.40                      | 0.02                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 1.74          | 0.54                        | 0.13             | 121.20                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 1.72          | 0.64                        | 0.16             | 11.00                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 3.83          | 0.22                        | 0.04             | 4.20                        | 0.03                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.83          | 0.89                        | 0.21             | 214.90                      | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 2.10          | 0.67                        | 0.15             | 120.30                      | 0.02                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 3.56          | 0.30                        | 0.05             | 8.50                        | 0.07                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 2.18          | 0.63                        | 0.14             | 42.20                       | 0.01                        |

Table H-11: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 60,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 2.19          | 0.74                        | 0.16             | 52.20                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 2.07          | 0.75                        | 0.17             | 113.30                      | 0.01                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 2.32          | 0.47                        | 0.10             | 27.30                       | 0.01                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 2.09          | 0.58                        | 0.13             | 34.60                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 2.09          | 0.62                        | 0.14             | 74.00                       | 0.00                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 2.95          | 0.77                        | 0.14             | 110.90                      | 0.01                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 2.11          | 0.70                        | 0.15             | 101.20                      | 0.01                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 3.04          | 0.39                        | 0.07             | 14.60                       | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.64          | 0.95                        | 0.19             | 277.30                      | 0.01                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 2.35          | 0.49                        | 0.10             | 36.20                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.86          | 0.26                        | 0.06             | 13.80                       | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 2.74          | 1.08                        | 0.21             | 167.40                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 2.44          | 0.92                        | 0.19             | 144.20                      | 0.01                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 3.23          | 0.84                        | 0.15             | 56.80                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.34          | 1.13                        | 0.24             | 225.50                      | 0.01                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 2.06          | 0.84                        | 0.19             | 126.20                      | 0.01                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 1.85          | 0.91                        | 0.21             | 245.27                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 1.65          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 2.34          | 0.88                        | 0.18             | 37.43                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 1.83          | 0.53                        | 0.12             | 30.20                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 2.20          | 0.29                        | 0.06             | 16.07                       | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 2.16          | 0.58                        | 0.13             | 19.70                       | 0.00                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.64          | 0.73                        | 0.14             | 170.50                      | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.59          | 0.83                        | 0.21             | 93.40                       | 0.74                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.58          | 1.03                        | 0.20             | 162.30                      | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.67          | 0.68                        | 0.17             | 114.70                      | 0.01                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 3.00          | 0.82                        | 0.15             | 194.00                      | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 2.41          | 0.73                        | 0.15             | 34.20                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 3.11          | 1.39                        | 0.25             | 351.50                      | 0.02                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 2.26          | 0.66                        | 0.14             | 51.09                       | 0.01                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 2.94          | 0.38                        | 0.07             | 6.00                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 2.22          | 0.36                        | 0.08             | 24.30                       | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 2.14          | 1.02                        | 0.22             | 154.60                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 2.16          | 0.23                        | 0.05             | 10.60                       | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 2.04          | 0.64                        | 0.14             | 101.96                      | 0.00                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 3.59          | 0.55                        | 0.09             | 44.40                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 2.39          | 0.84                        | 0.17             | 97.40                       | 0.01                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 2.00          | 0.76                        | 0.17             | 266.80                      | 0.01                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.59          | 0.92                        | 0.18             | 144.90                      | 0.01                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 2.66          | 0.61                        | 0.12             | 129.40                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 1.84          | 0.75                        | 0.18             | 274.00                      | 0.01                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.69          | 1.05                        | 0.26             | 294.30                      | 0.02                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 1.95          | 0.87                        | 0.20             | 120.50                      | 0.01                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 2.54          | 0.97                        | 0.19             | 128.30                      | 0.01                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 3.00          | 0.41                        | 0.08             | 15.90                       | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 2.12          | 0.78                        | 0.17             | 238.50                      | 0.01                        |

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 2.04          | 0.83                        | 0.19             | 256.60                      | 0.01                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 2.03          | 0.47                        | 0.11             | 97.00                       | 0.01                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 2.16          | 0.93                        | 0.20             | 169.70                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 2.87          | 0.91                        | 0.17             | 101.00                      | 0.01                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.45          | 0.94                        | 0.19             | 128.00                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 1.99          | 0.72                        | 0.16             | 97.61                       | 0.01                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 3.27          | 0.17                        | 0.03             | 1.70                        | 0.26                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 2.18          | 0.97                        | 0.21             | 311.20                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 2.22          | 0.67                        | 0.14             | 77.45                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 2.12          | 0.68                        | 0.15             | 26.91                       | 4.14                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 2.08          | 1.00                        | 0.22             | 227.60                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 1.92          | 0.90                        | 0.21             | 189.90                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 3.66          | 0.55                        | 0.09             | 27.30                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 1.93          | 0.77                        | 0.18             | 221.10                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.55          | 1.10                        | 0.22             | 260.40                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 2.03          | 0.99                        | 0.22             | 206.00                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 3.14          | 0.60                        | 0.11             | 16.50                       | 2.54                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 3.09          | 0.47                        | 0.09             | 10.20                       | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.42          | 1.61                        | 0.33             | 340.90                      | 0.02                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 1.95          | 0.59                        | 0.13             | 127.10                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 1.93          | 0.68                        | 0.16             | 11.94                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 4.03          | 0.26                        | 0.04             | 6.00                        | 0.05                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 1.98          | 0.99                        | 0.22             | 246.80                      | 0.01                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 2.30          | 0.72                        | 0.15             | 130.30                      | 0.02                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 3.76          | 0.34                        | 0.06             | 10.60                       | 0.08                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 2.39          | 0.68                        | 0.14             | 47.30                       | 0.01                        |

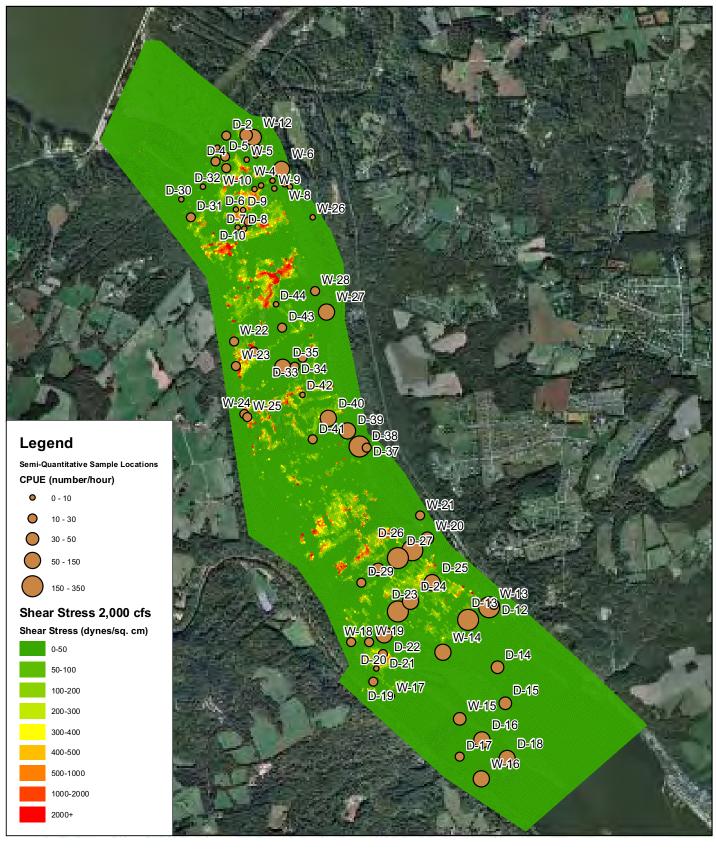
Table H-12: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 70,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

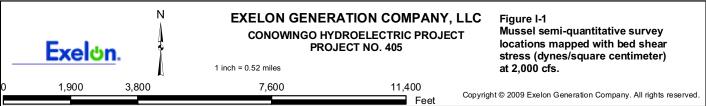
| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 2.36          | 0.80                        | 0.17             | 58.60                       | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 2.23          | 0.81                        | 0.17             | 124.50                      | 0.01                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 2.49          | 0.56                        | 0.11             | 36.60                       | 0.01                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 2.26          | 0.62                        | 0.13             | 38.40                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 2.25          | 0.73                        | 0.16             | 99.00                       | 0.01                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 3.12          | 0.85                        | 0.15             | 129.80                      | 0.01                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 2.23          | 0.77                        | 0.16             | 118.10                      | 0.01                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 3.23          | 0.46                        | 0.08             | 19.80                       | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.80          | 1.02                        | 0.19             | 305.60                      | 0.02                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 2.55          | 0.53                        | 0.11             | 39.30                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 1.96          | 0.37                        | 0.09             | 26.80                       | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 2.91          | 1.15                        | 0.22             | 183.70                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 2.60          | 0.99                        | 0.20             | 162.10                      | 0.01                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 3.42          | 0.91                        | 0.16             | 65.40                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.43          | 1.25                        | 0.26             | 269.40                      | 0.02                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 2.22          | 0.90                        | 0.19             | 139.20                      | 0.01                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 2.01          | 0.98                        | 0.22             | 267.78                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 1.85          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 2.52          | 0.99                        | 0.20             | 46.25                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 2.02          | 0.54                        | 0.12             | 30.50                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 2.34          | 0.42                        | 0.09             | 32.97                       | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 2.33          | 0.75                        | 0.16             | 31.50                       | 0.01                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.80          | 0.79                        | 0.15             | 191.00                      | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.71          | 0.92                        | 0.22             | 110.10                      | 0.87                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.73          | 1.11                        | 0.22             | 183.70                      | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.84          | 0.73                        | 0.17             | 122.90                      | 0.01                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 3.17          | 0.90                        | 0.16             | 223.40                      | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 2.59          | 0.79                        | 0.16             | 38.30                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 3.29          | 1.47                        | 0.26             | 377.60                      | 0.02                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 2.43          | 0.82                        | 0.17             | 74.69                       | 0.01                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 3.13          | 0.33                        | 0.06             | 4.50                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 2.37          | 0.43                        | 0.09             | 32.40                       | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 2.29          | 1.09                        | 0.23             | 168.70                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 2.36          | 0.21                        | 0.04             | 8.10                        | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 2.19          | 0.73                        | 0.16             | 126.02                      | 0.01                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 3.77          | 0.60                        | 0.10             | 52.70                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 2.57          | 0.91                        | 0.18             | 111.60                      | 0.01                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 2.18          | 0.81                        | 0.18             | 280.60                      | 0.02                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.71          | 1.00                        | 0.19             | 165.10                      | 0.01                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 2.85          | 0.67                        | 0.13             | 147.30                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 2.02          | 0.82                        | 0.18             | 294.70                      | 0.02                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.84          | 1.15                        | 0.27             | 328.90                      | 0.02                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 2.12          | 0.94                        | 0.21             | 134.80                      | 0.01                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 2.73          | 1.05                        | 0.20             | 143.20                      | 0.01                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 3.17          | 0.51                        | 0.09             | 24.00                       | 0.00                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 2.29          | 0.85                        | 0.18             | 261.00                      | 0.01                        |

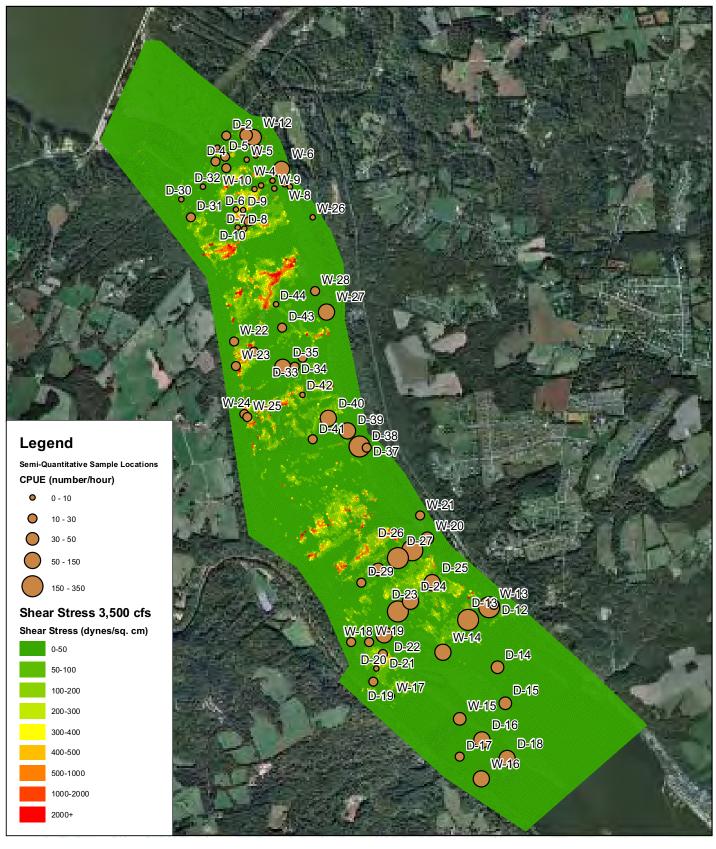
| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 2.23          | 0.93                        | 0.20             | 295.00                      | 0.02                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 2.22          | 0.53                        | 0.11             | 115.40                      | 0.01                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 2.35          | 1.00                        | 0.21             | 183.90                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 3.05          | 0.98                        | 0.18             | 113.30                      | 0.01                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.64          | 1.00                        | 0.20             | 139.50                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 2.18          | 0.64                        | 0.14             | 73.50                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 3.49          | 0.19                        | 0.03             | 2.10                        | 0.32                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 2.37          | 1.02                        | 0.21             | 319.30                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 2.40          | 0.71                        | 0.15             | 82.59                       | 0.00                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 2.35          | 0.86                        | 0.18             | 41.15                       | 6.33                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 2.27          | 1.05                        | 0.22             | 232.70                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 2.07          | 0.97                        | 0.22             | 209.20                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 3.85          | 0.58                        | 0.10             | 30.60                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 2.13          | 0.82                        | 0.18             | 229.70                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.73          | 1.15                        | 0.22             | 274.60                      | 0.01                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 2.22          | 1.06                        | 0.23             | 221.70                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 3.34          | 0.69                        | 0.12             | 21.30                       | 3.28                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 3.28          | 0.50                        | 0.09             | 11.30                       | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.60          | 1.71                        | 0.34             | 369.20                      | 0.02                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 2.14          | 0.65                        | 0.14             | 141.80                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 2.13          | 0.71                        | 0.16             | 12.91                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 4.22          | 0.31                        | 0.05             | 8.20                        | 0.06                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 2.13          | 1.08                        | 0.24             | 277.60                      | 0.02                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 2.49          | 0.76                        | 0.15             | 137.60                      | 0.03                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 3.96          | 0.38                        | 0.06             | 12.80                       | 0.10                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 2.58          | 0.76                        | 0.15             | 56.30                       | 0.01                        |

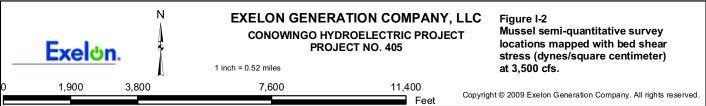
Table H-13: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 80,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

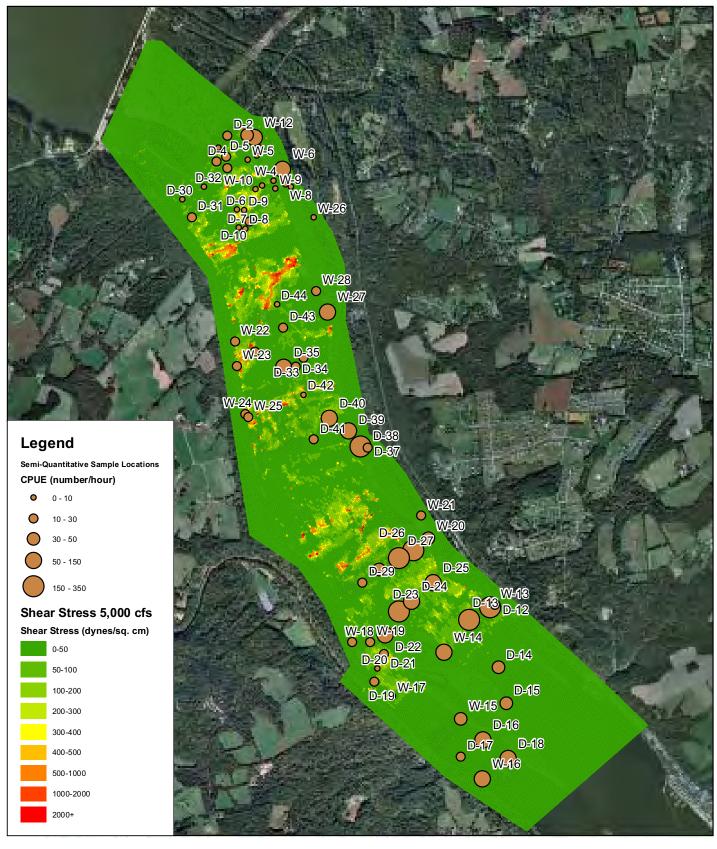
| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23    | 318                                       | Present            | 8b        | 16707                                                   | 2.51          | 0.85                        | 0.17             | <b>64.60</b>                | 0.00                        |
| D-12    | 264                                       | Absent             | 8b        | 16707                                                   | 2.39          | 0.86                        | 0.18             | 134.40                      | 0.01                        |
| D-38    | 257                                       | Present            | 6         | 5336                                                    | 2.65          | 0.65                        | 0.13             | 47.50                       | 0.01                        |
| D-26    | 235                                       | Present            | 8a        | 18621                                                   | 2.41          | 0.67                        | 0.14             | 43.10                       | 0.00                        |
| D-13    | 225                                       | Present            | 8b        | 16707                                                   | 2.40          | 0.83                        | 0.17             | 123.60                      | 0.01                        |
| D-27    | 164                                       | Present            | 8a        | 18621                                                   | 3.28          | 0.92                        | 0.16             | 148.50                      | 0.01                        |
| D-16    | 145                                       | Present            | 8b        | 16707                                                   | 2.35          | 0.83                        | 0.17             | 134.40                      | 0.01                        |
| W-12    | 100                                       | Absent             | 8a        | 18621                                                   | 3.41          | 0.53                        | 0.09             | 25.10                       | 0.00                        |
| D-25    | 98                                        | Present            | 8a        | 18621                                                   | 2.95          | 1.09                        | 0.20             | 332.50                      | 0.02                        |
| W-27    | 92                                        | Present            | 8a        | 18621                                                   | 2.73          | 0.56                        | 0.11             | 43.20                       | 0.00                        |
| W-16    | 91                                        | Present            | 8b        | 16707                                                   | 2.06          | 0.50                        | 0.11             | 47.30                       | 0.00                        |
| D-40    | 85                                        | Present            | 8a        | 18621                                                   | 3.08          | 1.22                        | 0.22             | 198.70                      | 0.01                        |
| D-22    | 80                                        | Present            | 8b        | 16707                                                   | 2.75          | 1.06                        | 0.20             | 178.10                      | 0.01                        |
| D-35    | 80                                        | Absent             | 8a        | 18621                                                   | 3.59          | 0.98                        | 0.16             | 73.80                       | 0.00                        |
| D-18    | 79                                        | Present            | 8b        | 16707                                                   | 2.53          | 1.36                        | 0.27             | 310.90                      | 0.02                        |
| D-24    | 78                                        | Present            | 8a        | 18621                                                   | 2.37          | 0.96                        | 0.20             | 151.40                      | 0.01                        |
| W-14    | 67                                        | Present            | 8b        | 21856                                                   | 2.16          | 1.03                        | 0.22             | 279.90                      | 0.01                        |
| W-6     | 58                                        | Absent             | 1         | 6.50                                                    | 2.04          | 0.00                        | 0.00             | 0.00                        | 0.00                        |
| D-39    | 57                                        | Present            | 7         | 21856                                                   | 2.67          | 1.09                        | 0.21             | 54.25                       | 0.00                        |
| D-1     | 49                                        | Absent             | 8a        | 18621                                                   | 2.20          | 0.57                        | 0.12             | 32.40                       | 0.00                        |
| W-15    | 48                                        | Absent             | 8b        | 18621                                                   | 2.48          | 0.50                        | 0.10             | 43.34                       | 0.00                        |
| W-20    | 46                                        | Present            | 6         | 5336                                                    | 2.50          | 1.00                        | 0.20             | 55.40                       | 0.01                        |
| D-28    | 44                                        | Present            | 8a        | 18621                                                   | 2.96          | 0.86                        | 0.16             | 211.50                      | 0.01                        |
| D-15    | 43                                        | Present            | 5         | 126.3                                                   | 1.82          | 1.00                        | 0.24             | 126.70                      | 1.00                        |
| D-14    | 40                                        | Present            | 8b        | 16707                                                   | 2.87          | 1.19                        | 0.22             | 204.10                      | 0.01                        |
| W-13    | 29                                        | Absent             | 8b        | 16707                                                   | 1.99          | 0.77                        | 0.17             | 128.00                      | 0.01                        |
| D-29    | 26                                        | Absent             | 8a        | 18621                                                   | 3.32          | 0.97                        | 0.17             | 251.50                      | 0.01                        |
| D-36    | 26                                        | Absent             | 8a        | 18621                                                   | 2.76          | 0.84                        | 0.16             | 42.30                       | 0.00                        |
| D-31    | 25                                        | Absent             | 8a        | 18621                                                   | 3.46          | 1.54                        | 0.26             | 400.70                      | 0.02                        |
| W-21    | 22                                        | Absent             | 3         | 5336                                                    | 2.59          | 0.99                        | 0.20             | 104.98                      | 0.02                        |
| D-2     | 20                                        | Absent             | 8a        | 18621                                                   | 3.31          | 0.37                        | 0.07             | 5.50                        | 0.00                        |
| W-18    | 19                                        | Absent             | 8b        | 18621                                                   | 2.52          | 0.50                        | 0.10             | 42.17                       | 0.00                        |
| W-19    | 19                                        | Absent             | 8b        | 16707                                                   | 2.44          | 1.15                        | 0.24             | 180.70                      | 0.01                        |
| W-28    | 19                                        | Present            | 8a        | 18621                                                   | 2.53          | 0.16                        | 0.03             | 4.40                        | 0.00                        |
| D-19    | 19                                        | Absent             | 8b        | 21856                                                   | 2.32          | 0.82                        | 0.17             | 151.66                      | 0.01                        |
| D-11    | 18                                        | Absent             | 8a        | 18621                                                   | 3.95          | 0.66                        | 0.11             | 61.00                       | 0.00                        |
| D-34    | 18                                        | Absent             | 8a        | 18621                                                   | 2.74          | 0.99                        | 0.19             | 125.60                      | 0.01                        |
| W-24    | 16                                        | Present            | 8a        | 18621                                                   | 2.34          | 0.85                        | 0.18             | 286.20                      | 0.02                        |
| D-17    | 15                                        | Absent             | 8b        | 16707                                                   | 2.83          | 1.07                        | 0.20             | 183.10                      | 0.01                        |
| W-23    | 14                                        | Absent             | 8a        | 18621                                                   | 3.02          | 0.72                        | 0.13             | 165.40                      | 0.01                        |
| W-25    | 13                                        | Absent             | 8a        | 18621                                                   | 2.18          | 0.88                        | 0.19             | 311.60                      | 0.02                        |
| D-21    | 13                                        | Absent             | 8b        | 16707                                                   | 1.98          | 1.24                        | 0.28             | 362.00                      | 0.02                        |
| D-41    | 13                                        | Absent             | 8a        | 18621                                                   | 2.29          | 1.01                        | 0.21             | 148.70                      | 0.01                        |
| D-43    | 13                                        | Absent             | 8a        | 18621                                                   | 2.91          | 1.12                        | 0.21             | 157.30                      | 0.01                        |
| D-37    | 12                                        | Present            | 6         | 5336                                                    | 3.32          | 0.62                        | 0.11             | 34.30                       | 0.01                        |
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 2.46          | 0.92                        | 0.19             | 284.20                      | 0.02                        |

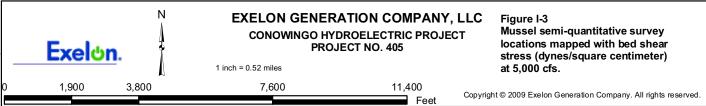

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 2.40          | 1.02                        | 0.21             | 330.00                      | 0.02                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 2.40          | 0.59                        | 0.12             | 131.60                      | 0.01                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 2.53          | 1.06                        | 0.21             | 197.10                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 3.22          | 1.05                        | 0.19             | 125.60                      | 0.01                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.82          | 1.06                        | 0.20             | 150.40                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 2.36          | 0.55                        | 0.11             | 51.09                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 3.68          | 0.21                        | 0.03             | 2.40                        | 0.37                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 2.55          | 1.06                        | 0.21             | 325.70                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 2.58          | 0.77                        | 0.15             | 92.78                       | 0.01                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 2.54          | 1.03                        | 0.21             | 56.75                       | 8.73                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 2.45          | 1.09                        | 0.22             | 237.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 2.21          | 1.04                        | 0.22             | 230.00                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 4.03          | 0.62                        | 0.10             | 33.50                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 2.31          | 0.87                        | 0.18             | 237.00                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.89          | 1.21                        | 0.23             | 288.20                      | 0.02                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 2.40          | 1.13                        | 0.23             | 237.90                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 3.53          | 0.76                        | 0.13             | 25.20                       | 3.88                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 3.45          | 0.53                        | 0.09             | 12.70                       | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.77          | 1.80                        | 0.35             | 393.60                      | 0.02                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 2.32          | 0.71                        | 0.15             | 157.60                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 2.31          | 0.76                        | 0.16             | 14.30                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 4.40          | 0.35                        | 0.05             | 10.40                       | 0.08                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 2.27          | 1.16                        | 0.25             | 308.10                      | 0.02                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 2.66          | 0.80                        | 0.16             | 143.50                      | 0.03                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 4.13          | 0.41                        | 0.06             | 14.60                       | 0.12                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 2.76          | 0.85                        | 0.16             | 68.20                       | 0.01                        |

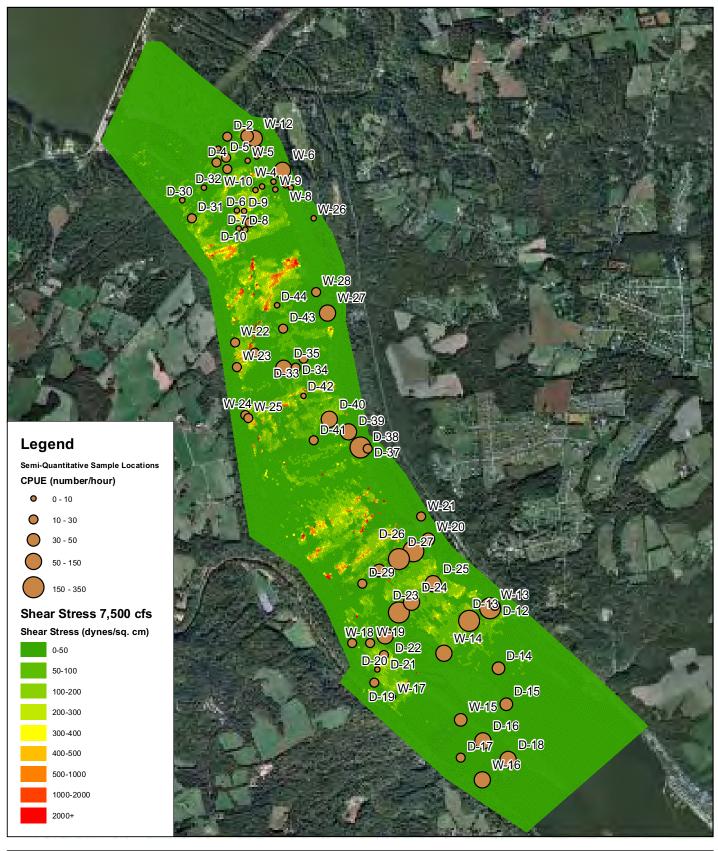

Table H-14: Hydraulic Parameters at Semi-Quantitative Mussel Sampling Locations for 86,000 cfs. Orange Numbers Indicate Low Flow Threshold Exceedences (20 dynes/cm<sup>2</sup>), While Red Numbers Indicate High Flow Threshold Exceedences (150 dynes/cm<sup>2</sup>)

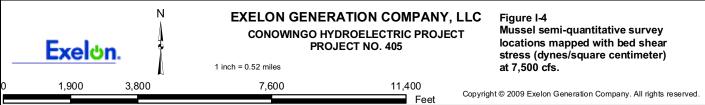

| Station      | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|--------------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| D-23         | 318                                       | Present            | 8b        | 16707                                                   | 2.59          | 0.88                        | 0.18             | 68.00                       | 0.00                        |
| D-12         | 264                                       | Absent             | 8b        | 16707                                                   | 2.47          | 0.89                        | 0.18             | 140.40                      | 0.01                        |
| D-38         | 257                                       | Present            | 6         | 5336                                                    | 2.74          | 0.69                        | 0.13             | 53.80                       | 0.01                        |
| D-26         | 235                                       | Present            | 8a        | 18621                                                   | 2.50          | 0.69                        | 0.14             | 46.00                       | 0.00                        |
| D-13         | 225                                       | Present            | 8b        | 16707                                                   | 2.49          | 0.89                        | 0.18             | 137.60                      | 0.01                        |
| D-27         | 164                                       | Present            | 8a        | 18621                                                   | 3.36          | 0.97                        | 0.17             | 159.80                      | 0.01                        |
| D-16         | 145                                       | Present            | 8b        | 16707                                                   | 2.42          | 0.87                        | 0.18             | 143.50                      | 0.01                        |
| W-12         | 100                                       | Absent             | 8a        | 18621                                                   | 3.51          | 0.57                        | 0.10             | 28.30                       | 0.00                        |
| D-25         | 98                                        | Present            | 8a        | 18621                                                   | 3.04          | 1.13                        | 0.21             | 347.80                      | 0.02                        |
| W-27         | 92                                        | Present            | 8a        | 18621                                                   | 2.83          | 0.59                        | 0.11             | 46.40                       | 0.00                        |
| W-16         | 91                                        | Present            | 8b        | 16707                                                   | 2.11          | 0.59                        | 0.13             | 64.50                       | 0.00                        |
| D-40         | 85                                        | Present            | 8a        | 18621                                                   | 3.17          | 1.25                        | 0.22             | 207.50                      | 0.01                        |
| D-22         | 80                                        | Present            | 8b        | 16707                                                   | 2.84          | 1.10                        | 0.21             | 187.20                      | 0.01                        |
| D-35         | 80                                        | Absent             | 8a        | 18621                                                   | 3.69          | 1.01                        | 0.17             | 78.90                       | 0.00                        |
| D-18         | 79                                        | Present            | 8b        | 16707                                                   | 2.58          | 1.42                        | 0.28             | 333.60                      | 0.02                        |
| D-24         | 78                                        | Present            | 8a        | 18621                                                   | 2.46          | 0.99                        | 0.20             | 158.80                      | 0.01                        |
| W-14         | 67                                        | Present            | 8b        | 21856                                                   | 2.25          | 1.06                        | 0.22             | 282.55                      | 0.01                        |
| W-6          | 58                                        | Absent             | 1         | 6.50                                                    | 2.15          | 0.01                        | 0.00             | 0.00                        | 0.00                        |
| D-39         | 57                                        | Present            | - 7       | 21856                                                   | 2.77          | 1.14                        | 0.22             | 58.56                       | 0.00                        |
| D-1          | 49                                        | Absent             | 8a        | 18621                                                   | 2.30          | 0.59                        | 0.12             | 33.70                       | 0.00                        |
| W-15         | 48                                        | Absent             | 8b        | 18621                                                   | 2.55          | 0.57                        | 0.11             | 55.57                       | 0.00                        |
| W-20         | 46                                        | Present            | 6         | 5336                                                    | 2.59          | 1.18                        | 0.23             | 75.40                       | 0.01                        |
| D-28         | 43                                        | Present            | 8a        | 18621                                                   | 3.05          | 0.89                        | 0.16             | 223.20                      | 0.01                        |
| D-15         | 43                                        | Present            | 5         | 126.3                                                   | 1.89          | 1.05                        | 0.24             | 137.40                      | 1.09                        |
| D-14         | 40                                        | Present            | 8b        | 16707                                                   | 2.95          | 1.24                        | 0.23             | 216.10                      | 0.01                        |
| W-13         | 29                                        | Absent             | 8b        | 16707                                                   | 2.08          | 0.79                        | 0.17             | 130.30                      | 0.01                        |
| D-29         | 26                                        | Absent             | 8a        | 18621                                                   | 3.41          | 1.02                        | 0.18             | 267.80                      | 0.01                        |
| D-36         | 26                                        | Absent             | 8a        | 18621                                                   | 2.86          | 0.87                        | 0.16             | 44.90                       | 0.00                        |
| D-31         | 25                                        | Absent             | 8a        | 18621                                                   | 3.56          | 1.58                        | 0.27             | 413.50                      | 0.02                        |
| W-21         | 22                                        | Absent             | 3         | 5336                                                    | 2.68          | 1.09                        | 0.21             | 124.91                      | 0.02                        |
| D-2          | 20                                        | Absent             | 8a        | 18621                                                   | 3.42          | 0.42                        | 0.07             | 6.90                        | 0.02                        |
| W-18         | 19                                        | Absent             | 8b        | 18621                                                   | 2.61          | 0.54                        | 0.11             | 48.16                       | 0.00                        |
| W-19         | 19                                        | Absent             | 8b        | 16707                                                   | 2.52          | 1.19                        | 0.24             | 187.40                      | 0.00                        |
| W-28         | 19                                        | Present            | 8a        | 18621                                                   | 2.63          | 0.12                        | 0.02             | 2.30                        | 0.00                        |
| D-19         | 19                                        | Absent             | 8b        | 21856                                                   | 2.40          | 0.12                        | 0.18             | 167.15                      | 0.00                        |
| D-11         | 18                                        | Absent             | 8a        | 18621                                                   | 4.05          | 0.69                        | 0.10             | 66.20                       | 0.00                        |
| D-11<br>D-34 | 18                                        | Absent             | 8a        | 18621                                                   | 2.84          | 1.03                        | 0.11             | 133.70                      | 0.00                        |
| W-24         | 16                                        | Present            | 8a        | 18621                                                   | 2.84          | 0.87                        | 0.20             | 288.20                      | 0.01                        |
| D-17         | 15                                        | Absent             | 8b        | 16707                                                   | 2.44          | 1.10                        | 0.18             | 193.20                      | 0.02                        |
| W-23         | 14                                        | Absent             | 8a        | 18621                                                   | 3.11          | 0.76                        | 0.21             | 175.70                      | 0.01                        |
| W-23<br>W-25 | 14                                        | Absent             | 8a        | 18621                                                   | 2.28          | 0.76                        | 0.14             |                             | 0.01                        |
| D-21         |                                           |                    | 8a<br>8b  |                                                         |               | 1.29                        | 0.19             | 320.70                      |                             |
|              | 13                                        | Absent             |           | 16707                                                   | 2.06          |                             |                  | 380.70                      | 0.02                        |
| D-41<br>D-43 | 13                                        | Absent             | 8a        | 18621                                                   | 2.38          | 1.05                        | 0.22             | 156.60                      | 0.01                        |
|              | 13                                        | Absent             | 8a        | 18621                                                   | 3.01          | 1.15                        | 0.21             | 165.40                      | 0.01                        |
| D-37         | 12                                        | Present            | 6         | 5336                                                    | 3.41          | 0.68                        | 0.12             | 41.20                       | 0.01                        |

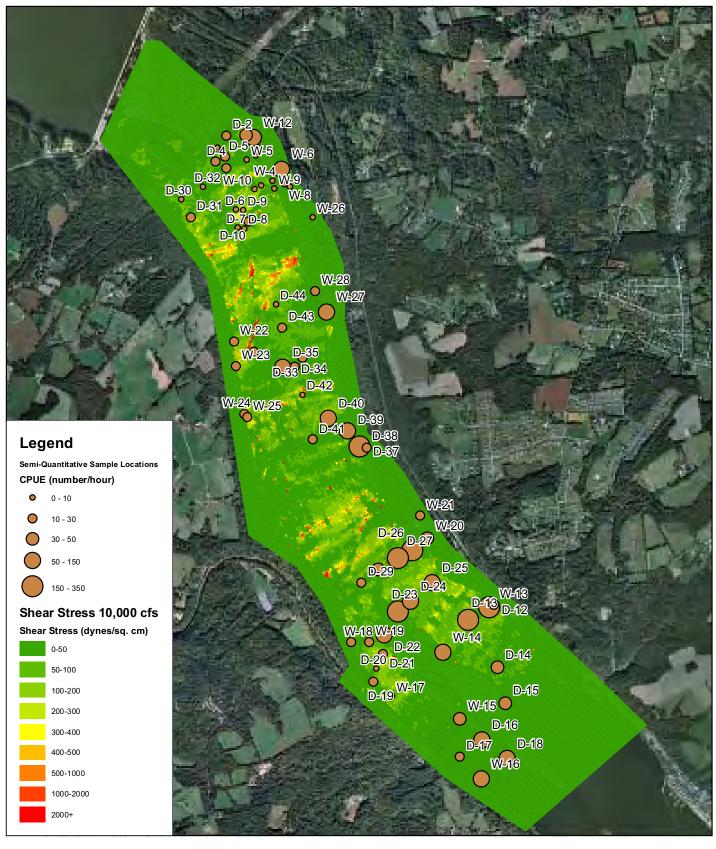

| Station | Catch Per Unit<br>Effort<br>(number/hour) | Alewife<br>Floater | Substrate | Critical<br>Shear<br>Stress<br>(dynes/cm <sup>2</sup> ) | Depth<br>(ft) | Water<br>Velocity<br>(ft/s) | Froude<br>Number | Shear Stress<br>(dynes/cm2) | Relative<br>Shear<br>Stress |
|---------|-------------------------------------------|--------------------|-----------|---------------------------------------------------------|---------------|-----------------------------|------------------|-----------------------------|-----------------------------|
| W-22    | 11                                        | Absent             | 8a        | 18621                                                   | 2.56          | 0.96                        | 0.19             | 298.80                      | 0.02                        |
| D-4     | 11                                        | Absent             | 8a        | 18621                                                   | 2.51          | 1.07                        | 0.22             | 349.30                      | 0.02                        |
| D-5     | 11                                        | Absent             | 8a        | 18621                                                   | 2.50          | 0.63                        | 0.13             | 140.20                      | 0.01                        |
| D-10    | 11                                        | Absent             | 8a        | 18621                                                   | 2.64          | 1.10                        | 0.22             | 204.60                      | 0.01                        |
| D-33    | 11                                        | Present            | 8a        | 18621                                                   | 3.32          | 1.08                        | 0.19             | 132.80                      | 0.01                        |
| D-44    | 10                                        | Absent             | 8a        | 18621                                                   | 2.92          | 1.09                        | 0.20             | 157.10                      | 0.01                        |
| D-3     | 8                                         | Absent             | 8a        | 16707                                                   | 2.46          | 0.53                        | 0.11             | 46.39                       | 0.00                        |
| W-7     | 7                                         | Absent             | 3         | 6.50                                                    | 3.80          | 0.22                        | 0.04             | 2.70                        | 0.42                        |
| D-9     | 7                                         | Absent             | 8a        | 18621                                                   | 2.65          | 1.08                        | 0.21             | 329.60                      | 0.02                        |
| D-7     | 6                                         | Absent             | 8a        | 16707                                                   | 2.68          | 0.81                        | 0.16             | 101.36                      | 0.01                        |
| W-8     | 5                                         | Absent             | 3         | 6.50                                                    | 2.65          | 1.09                        | 0.21             | 63.19                       | 9.72                        |
| D-6     | 5                                         | Absent             | 8a        | 18621                                                   | 2.55          | 1.11                        | 0.22             | 240.90                      | 0.01                        |
| W-17    | 4                                         | Absent             | 8b        | 16707                                                   | 2.29          | 1.08                        | 0.23             | 243.10                      | 0.01                        |
| W-3     | 4                                         | Absent             | 7         | 21856                                                   | 4.13          | 0.64                        | 0.10             | 35.20                       | 0.00                        |
| W-11    | 4                                         | Absent             | 8a        | 18621                                                   | 2.41          | 0.89                        | 0.18             | 241.30                      | 0.01                        |
| D-42    | 4                                         | Present            | 8a        | 18621                                                   | 2.99          | 1.24                        | 0.23             | 296.40                      | 0.02                        |
| D-8     | 3                                         | Absent             | 8a        | 18621                                                   | 2.50          | 1.17                        | 0.24             | 248.40                      | 0.01                        |
| W-26    | 3                                         | Absent             | 3         | 6.50                                                    | 3.64          | 0.79                        | 0.13             | 27.40                       | 4.22                        |
| W-5     | 3                                         | Absent             | 8a        | 18621                                                   | 3.55          | 0.55                        | 0.09             | 13.60                       | 0.00                        |
| D-30    | 3                                         | Absent             | 8a        | 18621                                                   | 2.86          | 1.85                        | 0.35             | 407.00                      | 0.02                        |
| W-10    | 1                                         | Absent             | 8a        | 18621                                                   | 2.42          | 0.74                        | 0.15             | 166.10                      | 0.01                        |
| W-9     | 1                                         | Absent             | 6         | 5336.1                                                  | 2.42          | 0.79                        | 0.16             | 15.37                       | 0.00                        |
| W-1     | 1                                         | Absent             | 5         | 126.3                                                   | 4.51          | 0.37                        | 0.06             | 11.50                       | 0.09                        |
| D-20    | 0                                         | Absent             | 8b        | 16707                                                   | 2.34          | 1.21                        | 0.25             | 326.40                      | 0.02                        |
| D-32    | 0                                         | Absent             | 6         | 5336                                                    | 2.76          | 0.82                        | 0.16             | 146.30                      | 0.03                        |
| W-2     | 0                                         | Absent             | 5         | 126.3                                                   | 4.24          | 0.42                        | 0.07             | 15.50                       | 0.12                        |
| W-4     | 0                                         | Absent             | 6         | 5336                                                    | 2.87          | 0.90                        | 0.17             | 75.20                       | 0.01                        |

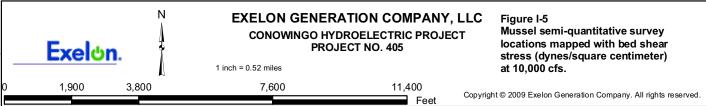

## APPENDIX I-SHEAR STRESS MAPS PLOTTED WITH SEMI-QUANTITATIVE MUSSEL SURVEY LOCATIONS

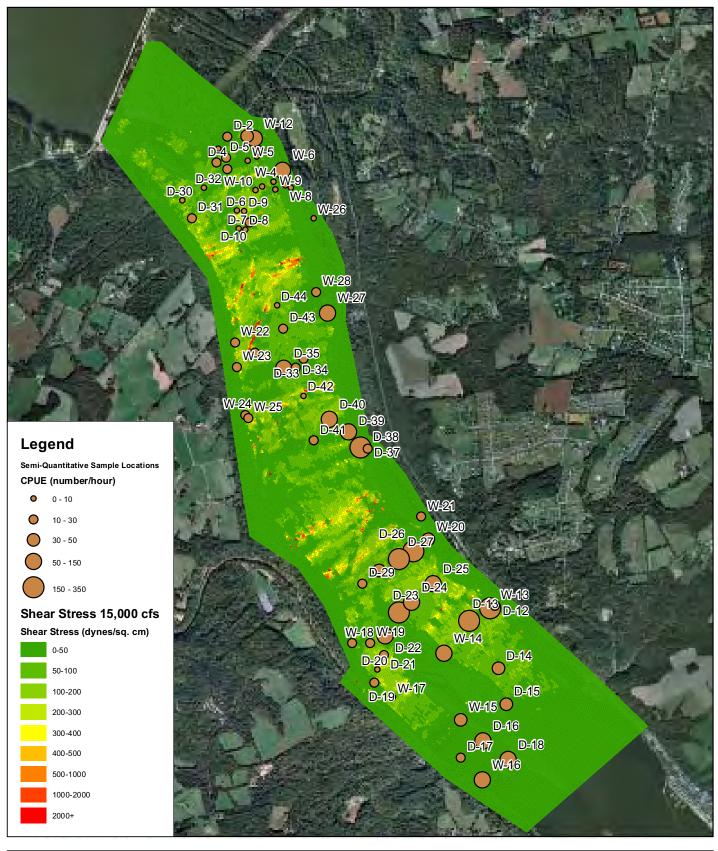


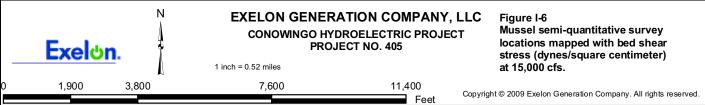



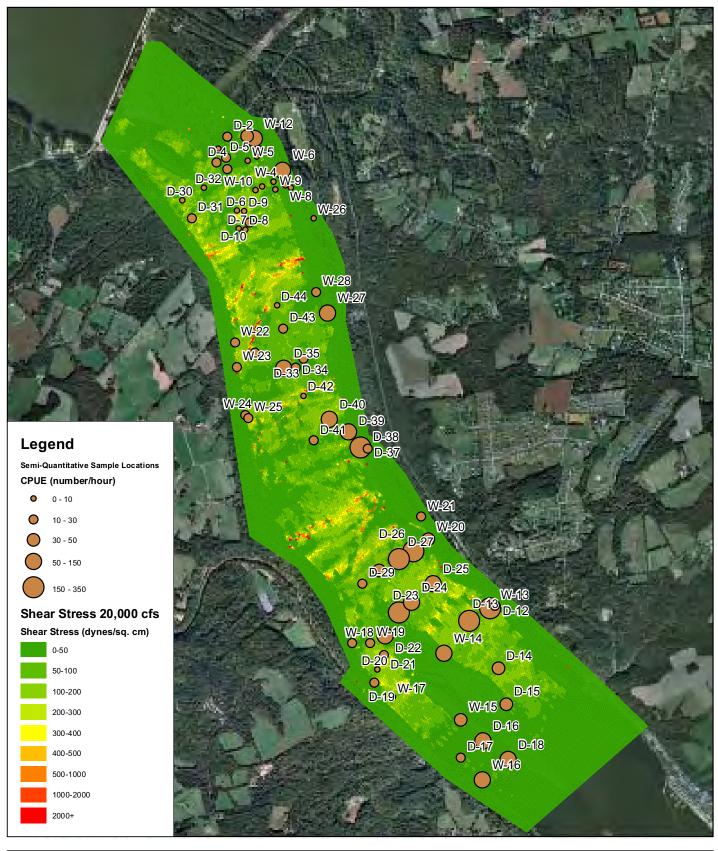



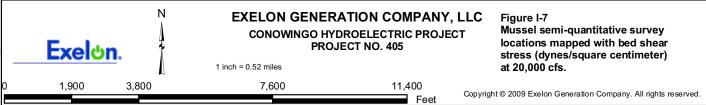



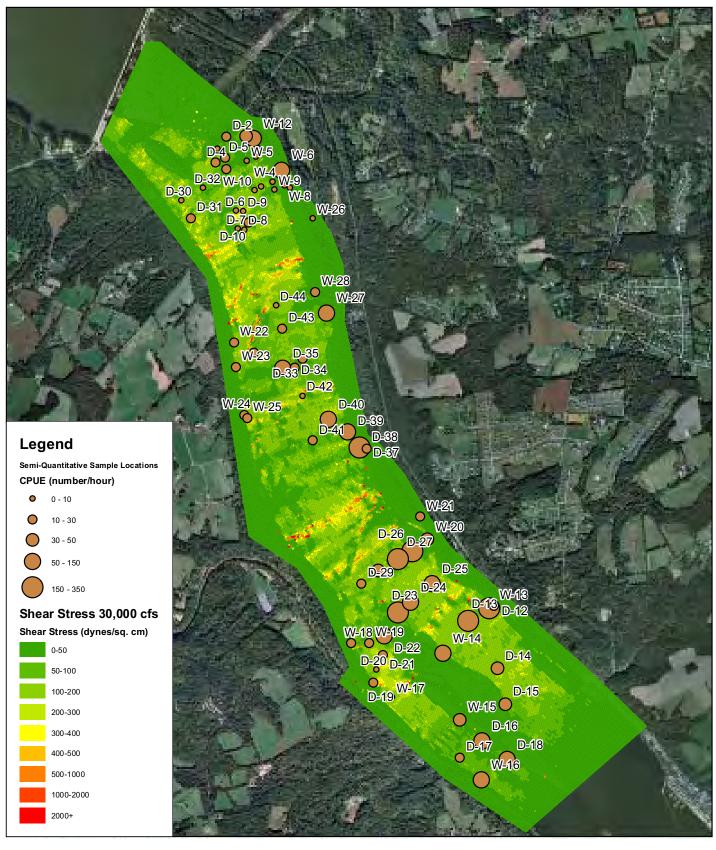



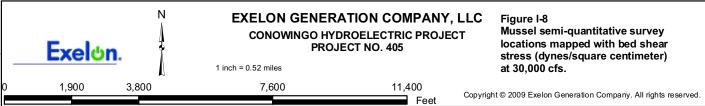



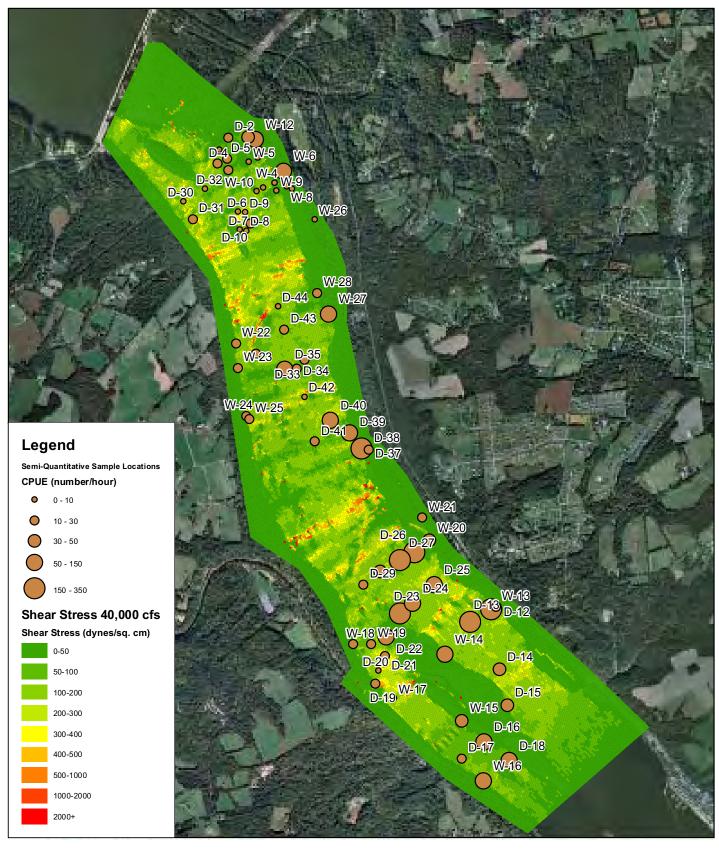



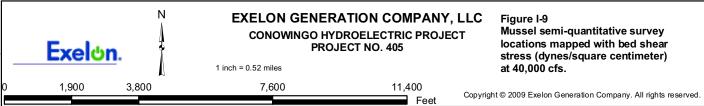



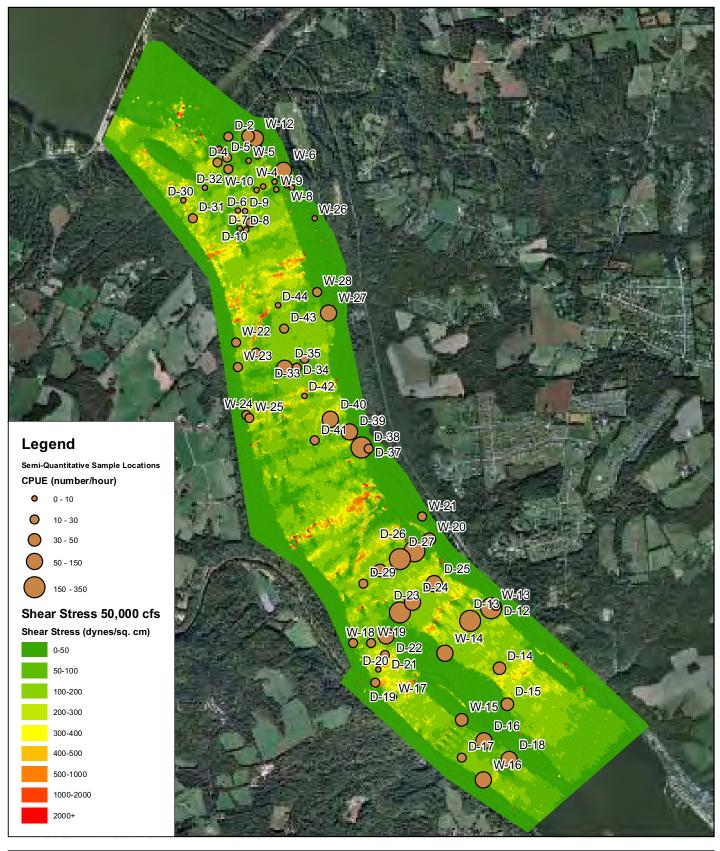



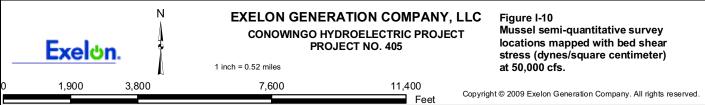



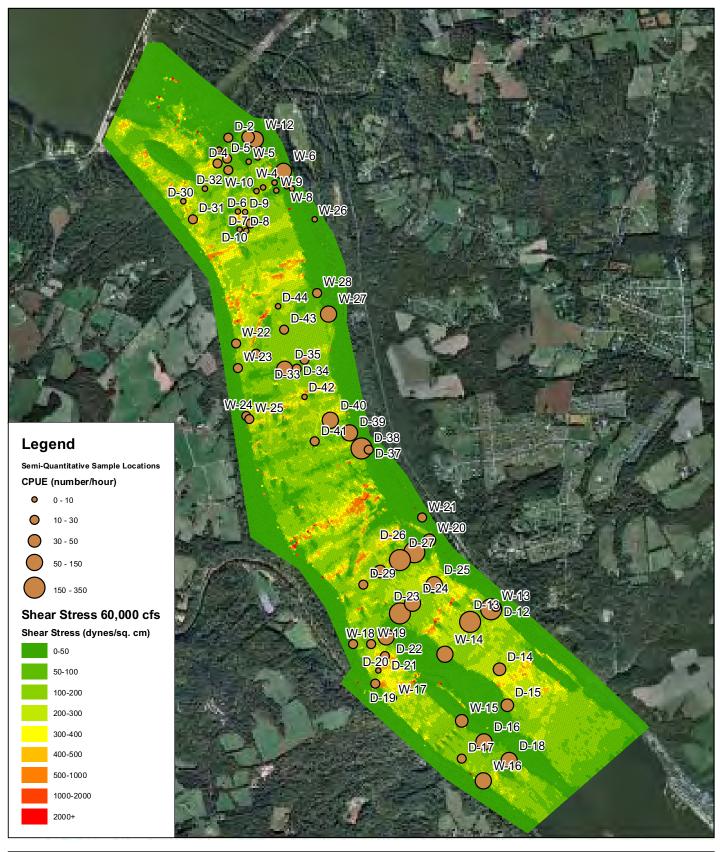



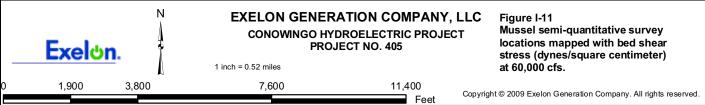



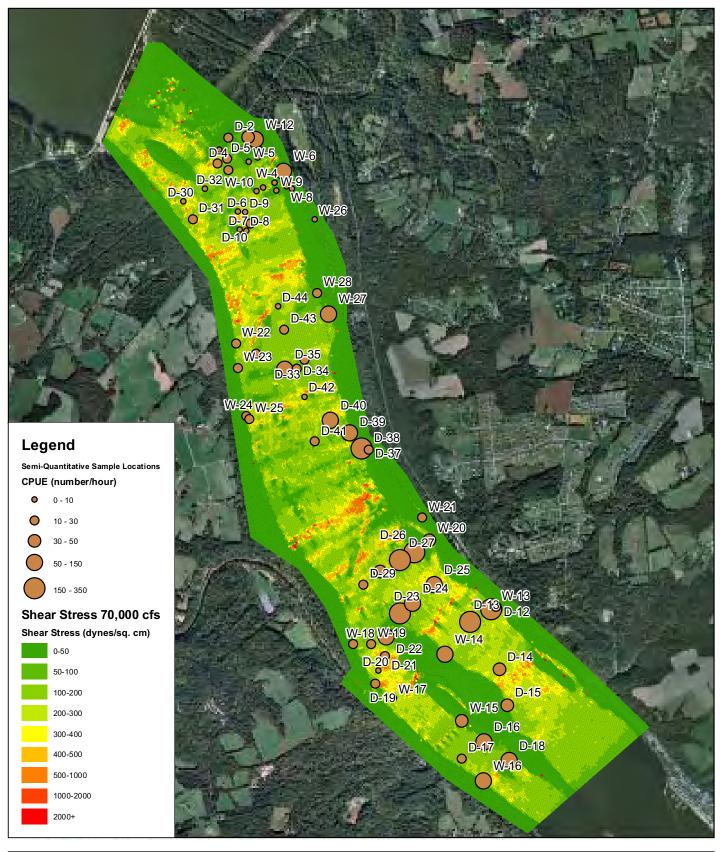



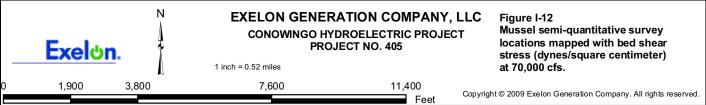



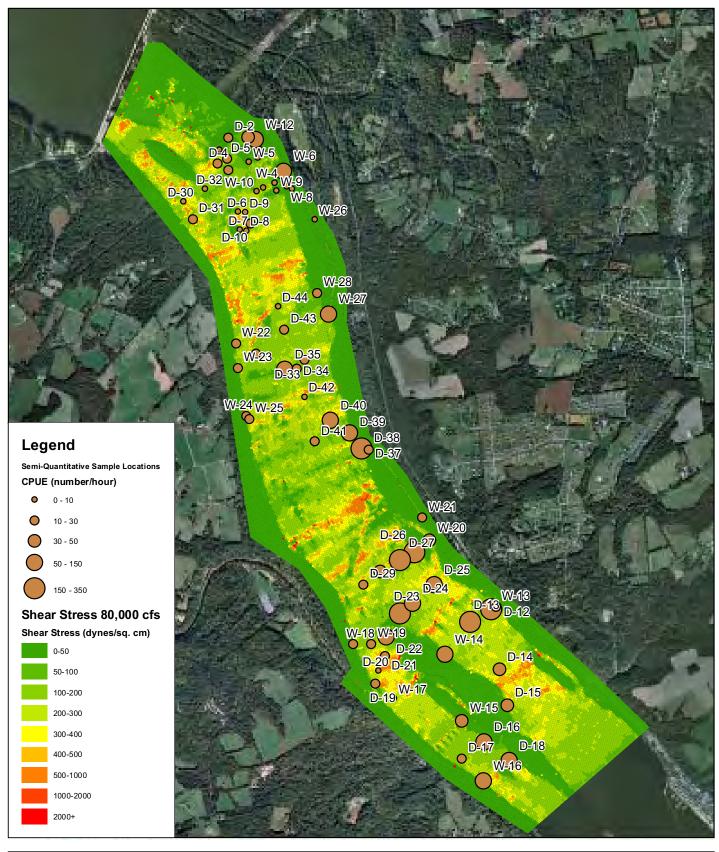



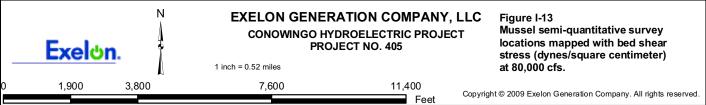



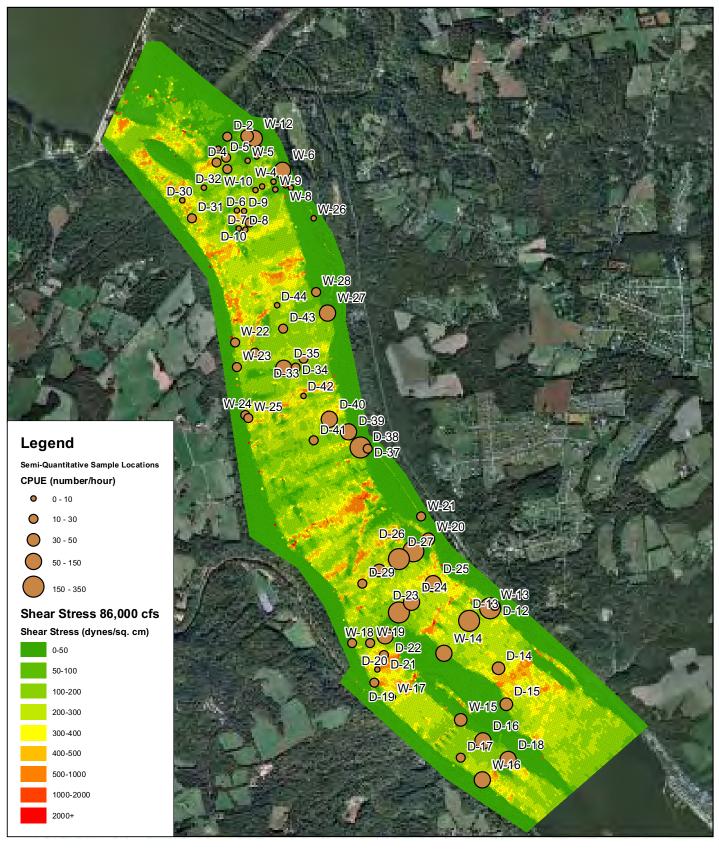



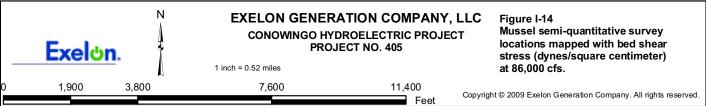














# INSTREAM FLOW HABITAT ASSESSMENT BELOW CONOWINGO DAM

## **RSP 3.16**

# **ADDENDUM-HABITAT TIME SERIES REPORT**

# CONOWINGO HYDROELECTRIC PROJECT FERC PROJECT NUMBER 405





Prepared by:

Gomez and Sullivan Engineers, P.C.

January 2012

#### **EXECUTIVE SUMMARY**

Exelon Generation Company, LLC (Exelon) has initiated with the Federal Energy Regulatory Commission (FERC) the process of relicensing the 573-megawatt Conowingo Hydroelectric Project (Conowingo Project). The current license for the Conowingo Project was issued on August 14, 1980 and expires on September 1, 2014. FERC issued the final study plan determination for the Conowingo Project on February 4, 2010, approving the revised study plan with certain modifications.

The final study plan determination required Exelon to conduct an Instream Flow Assessment below Conowingo Dam. The study's revised study plan (RSP) methodology specified several tasks. One of the tasks was to complete a habitat time series analysis as part of Conowingo RSP 3.16: Instream Flow Habitat Assessment below Conowingo Dam (C3.16). The goal of the habitat time series analysis was to merge the habitat versus flow relationship developed in C3.16 with the hourly operations model data developed in Conowingo RSP 3.11: Hydrologic Study of the Lower Susquehanna River (C3.11), which was provided in an addendum to the 3.11 study report titled "Operations Modeling Baseline Report." The purpose of this addendum is to provide the results of the habitat time series analysis below Conowingo Dam.

The habitat time series analyses translated the Baseline model run's hourly Conowingo Dam outflow time series (Jan 1930 – Dec 2007) into twenty-three individual habitat time series – one time series for each species/life stage investigated in the Conowingo 3.16 study report.

The analyses were compiled into monthly and seasonal periods, with only mobile species defined as potentially present in the stakeholder-derived periodicity table shown for each month/season. Species-by-species habitat duration graphs are the primary reported output. Additionally, commentary and explanatory time series plots showing habitat changes over time are presented. These results will be used as a common frame of reference to compare all alternative operating scenarios examined with the operations model.

Statistics similar to those presented in this report will be generated as alternative operating scenarios are developed by Exelon in consultation with stakeholders. Those results will then be compared on a relative basis to these "Baseline" run results.

## TABLE OF CONTENTS

| 1.  | INTRODUCTION                      | 1 |
|-----|-----------------------------------|---|
| 2.  | BACKGROUND                        | 1 |
| 2.1 | Habitat versus Flow Relationships | 1 |
| 2.2 | OASIS Operations Model Results    | 1 |
| 3.  | METHODS                           | 3 |
| 4.  | RESULTS AND DISCUSSION            | 4 |
| 4.1 | January, February, March          | 4 |
| 4.2 | April, May and June               | 5 |
| 4.3 | July, August, September           | 5 |
| 4.4 | October, November, December       | 6 |
| 5.  | CONCLUSIONS                       | 7 |
| 6.  | REFERENCES                        | 8 |

## LIST OF TABLES

| TABLE 2.1-1: TARGET SPECIES' SEASONAL PERIODICITY BELOW         CONOWINGO DAM. | Q  |
|--------------------------------------------------------------------------------|----|
| TABLE 2.1-2: FLOW VERSUS HABITAT RELATIONSHIPS.                                |    |
| TABLE 2.2-1: CONOWINGO DAM'S SEASONAL MINIMUM FLOW                             |    |
| REQUIREMENTS                                                                   | 12 |
| TABLE 3-1: FLOWS PROVIDING PERCENTAGES OF MAXIMUM WEIGHTED                     |    |
| USABLE AREA (WUA)                                                              | 13 |

## LIST OF FIGURES

| FIGURE 3-1: HABITAT TIME SERIES EXAMPLE14                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIGURE 4.1-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>SPECIES/LIFE STAGES PRESENT IN JANUARY, FEBRUARY AND MARCH15                                      |
| FIGURE 4.2-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE STRIPED BASS LIFE STAGES PRESENT IN APRIL, MAY AND JUNE16                                  |
| FIGURE 4.2-2: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE AMERICAN SHAD AND SMALLMOUTH BASS LIFE STAGES PRESENT IN<br>APRIL, MAY AND JUNE            |
| FIGURE 4.3-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE AMERICAN SHAD AND STRIPED BASS LIFE STAGES PRESENT IN JULY,<br>AUGUST AND SEPTEMBER        |
| FIGURE 4.3-2: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE SMALLMOUTH BASS LIFE STAGES PRESENT IN JULY, AUGUST AND<br>SEPTEMBER                       |
| FIGURE 4.4-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE STRIPED BASS LIFE STAGES PRESENT IN OCTOBER, NOVEMBER AND<br>DECEMBER                      |
| FIGURE 4.4-2: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT<br>MOBILE AMERICAN SHAD AND SMALLMOUTH BASS LIFE STAGES PRESENT IN<br>OCTOBER, NOVEMBER AND DECEMBER |

## LIST OF ACRONYMS

| FERC  | Federal Energy Regulatory Commission                      |
|-------|-----------------------------------------------------------|
| ILP   | Integrated Licensing Process                              |
| ISR   | Initial Study Report                                      |
| MW    | Megawatt                                                  |
| NGO   | Non-Government Organization                               |
| NOI   | Notice of Intent                                          |
| OASIS | Operational Analysis and Simulation of Integrated Systems |
| PAD   | Pre-Application Document                                  |
| PSP   | Proposed Study Plan                                       |
| RSP   | Revised Study Plan                                        |
| USGS  | United States Geological Survey                           |
| WSE   | Water Surface Elevation                                   |
| WUA   | Weighted Usable Area                                      |
| WY    | Water Year                                                |

#### 1. INTRODUCTION

Exelon Generation Company, LLC (Exelon) has initiated with the Federal Energy Regulatory Commission (FERC) the process of relicensing the 573-megawatt (MW) Conowingo Hydroelectric Project (Project). Exelon is applying for a new license using the FERC's Integrated Licensing Process (ILP). The current license for the Conowingo Project was issued on August 14, 1980 and expires on September 1, 2014.

Exelon filed its Pre-Application Document (PAD) and Notice of Intent with FERC on March 12, 2009. On June 11 and 12, 2009, a site visit and two scoping meetings were held at the Project for resource agencies and interested members of the public. Following these meetings, formal study requests were filed with FERC by several resource agencies. Many of these study requests were included in Exelon's Proposed Study Plan (PSP), which was filed on August 24, 2009. On September 22 and 23, 2009, Exelon held a meeting with resource agencies and interested members of the public to discuss the PSP.

Formal comments on the PSP were filed with FERC on November 22, 2009 by Commission staff, and several resource agencies. Exelon filed a Revised Study Plan (RSP) for the Project on December 22, 2009. FERC issued the final study plan determination for the Project on February 4, 2010, approving the RSP with certain modifications.

The final study plan determination required Exelon to conduct an Instream Flow Assessment below Conowingo Dam. The study's RSP methodology specified several tasks. One of the tasks was to complete a habitat time series analysis, as part of Conowingo study 3.16: Instream Flow Habitat Assessment below Conowingo Dam (C3.16). The goal of the habitat time series analysis was to merge the habitat versus flow relationship developed in C3.16 with the hourly operations model data developed in Conowingo study 3.11: Hydrologic Study of the Lower Susquehanna River (C3.11), which was provided in an addendum to the 3.11 study report titled "Operations Modeling Baseline Report." The purpose of this addendum to the Conowingo 3.16 report is to provide the results of the habitat time series analysis below Conowingo Dam.

#### 2. BACKGROUND

This addendum combines the results of two studies: Conowingo Study 3.16: Instream Flow Habitat Assessment below Conowingo Dam; and the Conowingo Study 3.11: Hydrologic Study of the Lower Susquehanna River addendum titled "Operations Modeling Baseline Report." Detailed background and analysis of both studies' results are described in the previously mentioned study reports. However, this section will briefly review study results relevant to the habitat time series analysis, which is the subject of this report.

#### 2.1 Habitat versus Flow Relationships

The Conowingo Study 3.16: Instream Flow Habitat Assessment below Conowingo Dam report presented 23 unique habitat versus flow relationships for several species and lifestages of special concern<sup>1</sup>, three macroinvertebrate species (Ephemeroptera [Mayfly], Plecoptera [Stonefly], Trichoptera [Caddisfly]) and four "habitat guilds" (shallow-slow, shallow-fast, deep-slow, deep-fast). <u>Table 2.1-1</u> lists the monthly periodicity of each target species and life stage. <u>Table 2.1-2</u> provides each species and life stages' available habitat, as predicted by a hydraulic/habitat model, for a range of flows. <u>Appendix A</u> shows the modeled habitat versus flow curves.

#### 2.2 OASIS Operations Model Results

Exelon developed an operations model to better understand how operational changes at the lower Susquehanna River's four hydroelectric facilities affect the timing of river flows and energy generation. The model calibration procedure involved adjusting several model parameters and constraints to match historic (2004-2007) Project data (flow, stage, generation), and then using the parameters and constraints from the final calibrated model to predict Project operations over a longer-term period (1930-2007) to establish a "Baseline" model. The Baseline model will serve as a basis of comparison to analyze alternative hydropower operation scenarios, developed in consultation with stakeholders, in the future.

The operations model's details and computational methods were described in an addendum to Conowingo Study Report 3.11 and Muddy Run Study Report 3.2, titled "Operations Modeling Calibration Report", while the Baseline model's details and results were summarized in an addendum to Conowingo Study Report 3.11 and Muddy Run Study Report 3.2 titled "Operations Modeling Baseline Report."

<sup>&</sup>lt;sup>1</sup> Analyses conducted reflect the updated juvenile American shad habitat suitability criteria discussed at the September 2011 relicensing meeting.

The model takes into account each Project's (Safe Harbor, Holtwood, Muddy Run, and Conowingo) engineering data and operational constraints, such as Conowingo's minimum flow requirement (<u>Table 2.2-1</u>). The Baseline production run was simulated using hydrologic data from Jan 1930 through Dec  $2007^2$ . All other production runs with be simulated over this same period.

 $<sup>^{2}</sup>$  The Baseline production run contains information to run from Jan 1930 through March 2008, but in order to prevent partial-year records skewing any month-by-month analyses, analyses are limited to Jan 1930 – Dec 2007.

#### 3. METHODS

This analysis followed the habitat time series methodology described in Bovee et al. (1998). A habitat time series analysis uses habitat/weighted usable area (WUA) versus discharge relationships to translate a streamflow time series (flow as a function of time) into a habitat time series (habitat as a function of time). Construction of a habitat time series requires two components: 1) a time series of streamflow discharges and 2) a habitat versus discharge relationship.

In this analysis, units of habitat, or WUA, are expressed as the area of habitat within the study area. For every discharge in the streamflow time series, there is a corresponding habitat value from the habitat versus discharge relationship. Thus, the habitat time series was produced by translating hourly discharges from the Conowingo Project into associated WUA values and recording the translated values back to the hourly time step. The translation process is shown in Figure 3-1.

The habitat versus discharge relationships for all target species and life stages analyzed in the Conowingo Study 3.16: Instream Flow Habitat Assessment below Conowingo Dam report were merged with the hourly operations model hydrology data reported in the Conowingo Study 3.11 addendum titled "Operations Modeling Baseline Report" to yield habitat time series. Select habitat time series plots (WUA versus time) are presented for each species, along with explanatory text for each species/life stage.

The aggregated habitat time series were presented in the form of monthly habitat duration curves for all target species and life stages. Using habitat time series duration curves allows habitat to be depicted over time for the entire analysis period. Additionally, the percent of time the study reach was at or above habitat thresholds from the Conowingo RSP 3.16 study (<u>Table 3-1</u>) report were computed. The habitat time series results may be used to compare alternative flow management scenarios.

#### 4. RESULTS AND DISCUSSION

The habitat time series analyses translated the Baseline model run's hourly Conowingo Dam outflow time series (Jan 1930 – Dec 2007) into twenty-three individual habitat time series – one hourly time series for each species/lifestage investigated in the Conowingo 3.16 study report. This section shows habitat time series results for select mobile<sup>3</sup> species for several seasonal periods. Habitat time series plots were not presented for immobile species, as we believe the persistent habitat maps and tables presented in the Conowingo RSP 3.16 study report, when compared to seasonal minimum and maximum flows, are a more effective tool for assessing immobile species' habitat. Additionally, habitat guilds have been excluded from the time series plots. Aggregated results for all species are presented in the form of monthly habitat duration tables and curves.

Monthly habitat duration analyses were completed for all species considered potentially present for that period (<u>Table 2.1-1</u>). Species-by-species habitat duration tables showing the percent of time a given species' habitat was at or above a certain value are in <u>Appendix B</u>, while habitat duration figures (habitat plotted versus percent of time equaled or exceeded) are in <u>Appendix C</u>. These results will be used as a common frame of reference to compare all alternative operating scenarios examined with the operations model.

The following sections presents select habitat time series by grouped months. The select habitat time series plots presented are for the same select species/life stages identified in section 5 of the Conowingo RSP 3.16 study report. Months with similar sets of select species were grouped together (e.g., January, February, March).

#### 4.1 January, February, March

January, February and March had the following set of select mobile species identified in the Conowingo RSP 3.16 study report:

- Striped bass adults;
- Smallmouth bass adults;

<sup>&</sup>lt;sup>3</sup> Mobile species/life stages are all of the species that were not specifically designated as immobile in <u>Table 2.1-1</u>. The immobile species included all spawning/incubation and fry life stages, as well as all of the macroinvertebrate species.

A one-week habitat time series plot is shown in Figure 4.1-1. Habitat in these months was generally good for adult striped bass habitat and adult smallmouth bass habitat, with adult striped bass habitat varying more than adult smallmouth bass habitat. Generally, most species/life stages' habitat in these months had a roughly bimodal distribution, with significant time at or near the habitat associated with 86,000 cfs and significant time at the habitat associated with the seasonal minimum flow (1,750 cfs in January and February or 3,500 cfs in March).

#### 4.2 April, May and June

April, May and June had the following set of select mobile species identified in the Conowingo 3.16 report:

- American shad adults;
- Striped bass juvenile (June only);
- Striped bass adults;
- Smallmouth bass adults;

Sample one-week habitat time series plots are shown in Figure 4.2-1 and Figure 4.2-2. Habitat in these months was generally good for adult striped bass habitat and adult smallmouth bass habitat, with adult striped bass habitat varying more than adult smallmouth bass habitat. Generally, species/life stages that prefer higher flows (American shad, striped bass) had high amounts of habitat, which was a function of the season's high water availability and the relatively high minimum flows (10,000 cfs in April and 7,500 cfs in May). Habitat availability was generally less in June because of the lower minimum flows and general flow availability.

#### 4.3 July, August, September

July, August and September had the following set of select mobile species identified in the Conowingo 3.16 report:

- American shad juveniles;
- Striped bass juveniles;
- Striped bass adults;

- Smallmouth bass juveniles (August/September only);
- Smallmouth bass adults;

Sample one-week habitat time series plots are shown in <u>Figure 4.3-1</u> and <u>Figure 4.3-2</u>. Habitat in these months was generally poor for species/life stages that preferred high flows (striped bass, all life stages), and was generally good for species/life stages that prefer lower flows (juvenile American shad, caddisfly). Smallmouth bass adults also had high habitat values during these months.

#### 4.4 October, November, December

October, November and December had the following set of select mobile species identified in the Conowingo 3.16 report:

- American shad juveniles (October/November only);
- Striped bass juveniles;
- Striped bass adults;
- Smallmouth bass juveniles;
- Smallmouth bass adults;

Sample one-week habitat time series plots are shown in Figure 4.4-1 and Figure 4.4-2. Like January, February and March, most species/life stages' habitat in these months had a roughly bimodal distribution, with significant time at or near the habitat associated with 86,000 cfs and significant time at the habitat associated with the seasonal minimum flow (3,500 cfs in October and November and 1,750 cfs in December). Smallmouth bass adults also had high habitat values during these months.

#### 5. CONCLUSIONS

This report presented the results of a habitat time series analysis conducted for the "Baseline" model run. The results were described in several methods. The first presentation method was showing weekly time series plots for select species/life stages. Secondly, monthly habitat duration curves and tables were created for all species/life stages. Habitat time series plots were not presented for immobile life stages, as we believe the habitat persistence maps and tables included in the Conowingo RSP 3.16 study report are a better tool for analyzing immobile species' habitat. All analyses were grouped into seasons with similar species/life stages and hydrology.

As new alternative operating scenarios are considered in consultation with stakeholders, summary statistics similar to those presented in this report will be generated for the operational alternatives. Operational alternatives' habitat time series results can then be compared relative to these "Baseline" run results.

### 6. REFERENCES

Bovee, K.D., B.L.Lamb, J.M. Bartholow, C.B. Stalnaker, J. Taylor, and J. Henriksen. 1998. Stream habitat analysis using the Instream Flow Incremental Methodology. U.S. Geological Survey, USGS/BRD/ITR--1998-0004. VIII + 131 pp.

### TABLE 2.1-1: TARGET SPECIES' SEASONAL PERIODICITY BELOW CONOWINGO DAM<sup>4</sup>. Feb Mar Apr May Jun Jul Aug Sep Oct Nov Jan Dec **American Shad** Spawning Fry Juveniles Adults **Hickory Shad** Spawning (Deep-Slow) Fry(Shallow-Slow) Juveniles (Deep-Slow) Adults (Deep-Fast) **Blueback Herring** Spawning (Deep-Slow) Fry (Shallow-Slow) Juveniles (Shallow-Slow) Adults (Deep-Slow) Alewife Spawning (Deep-Slow) Fry (Shallow-Slow) Juveniles (Deep-Slow) Adults (Shallow-Slow) White Perch Spawning (Shallow-Fast, Deep-Fast) Fry (Shallow-Slow) Juveniles (Shallow-Slow, Deep-Slow) Adults (Deep-Slow) **Yellow Perch** Spawning (Deep-Slow) Fry (Shallow-Slow) Juveniles (Deep-Slow) Adults (Deep-Slow) **Striped Bass** Spawning Fry Juveniles Adults

<sup>&</sup>lt;sup>4</sup> Italicized life stages are considered immobile, and habitat guilds associated with species/life stages are shown in parentheses.

|                                            | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Largemouth Bass                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Shallow-Slow, Deep-Slow)         |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Shallow-Slow, Deep-Slow)              |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles (Shallow-Slow, Deep-Slow)        |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Smallmouth Bass                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                        |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles                                  |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Walleye                                    |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Deep-Fast)                       |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Deep-Slow)                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles (Deep-Slow)                      |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Shortnose sturgeon                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry                                        |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Atlantic sturgeon                          |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning (Deep-Fast)                       |     |     |     |     |     |     |     |     |     |     |     |     |
| Fry (Deep-Slow, Deep-Fast)                 |     |     |     |     |     |     |     |     |     |     |     |     |
| Juveniles/Adults (Deep-Slow, Deep-Fast)    |     |     |     |     |     |     |     |     |     |     |     |     |
| American eel                               |     |     |     |     |     |     |     |     |     |     |     |     |
| Elver (Shallow-Slow, Deep-Slow, Deep-Fast) |     |     |     |     |     |     |     |     |     |     |     |     |
| Yellow (Shallow-Slow,Deep-Slow,Deep-Fast)  |     |     |     |     |     |     |     |     |     |     |     |     |
| Silver (Deep-Slow)                         |     |     |     |     |     |     |     |     |     |     |     |     |
| Alewife floater                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults/juveniles                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Eastern elliptio                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Adults/juveniles                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning                                   |     |     |     |     |     |     |     |     |     |     |     |     |
| Larvae                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Fingernail clams                           |     | •   |     |     |     |     |     |     |     |     |     |     |
| Adults                                     |     |     |     |     |     |     |     |     |     |     |     |     |
| Spawning/larvae                            |     |     |     |     |     |     |     |     |     |     |     |     |
| Ephemeroptera-Plecoptera-Trichoptera       |     |     |     |     |     |     |     |     |     |     |     |     |
| all life stages                            |     |     |     |     |     |     |     |     |     |     |     |     |

## TABLE 2.1-2: FLOW VERSUS HABITAT RELATIONSHIPS<sup>5</sup>.

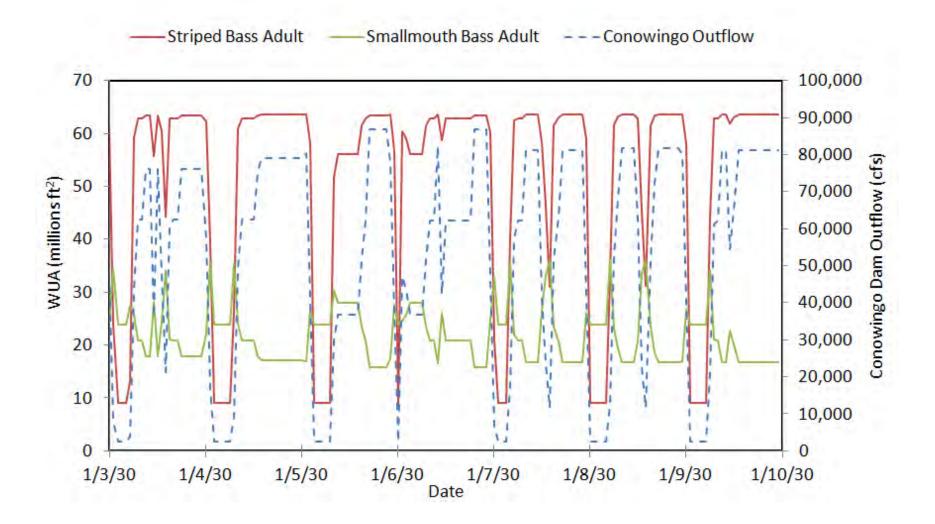
|                    | Flow (cfs)   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Species            | Stage        | 2,000  | 3,500  | 5,000  | 7,500  | 10,000 | 15,000 | 20,000 | 30,000 | 40,000 | 50,000 | 60,000 | 70,000 | 80,000 | 86,000 |
| American Shad      | Spawning     | 2,085  | 4,133  | 6,315  | 9,811  | 12,809 | 17,312 | 20,382 | 23,395 | 24,053 | 23,371 | 21,914 | 19,904 | 17,511 | 16,044 |
|                    | Fry          | 6,847  | 8,796  | 10,371 | 12,433 | 14,077 | 16,319 | 17,547 | 17,990 | 16,803 | 15,182 | 13,603 | 12,166 | 10,836 | 10,096 |
|                    | Juvenile     | 15,952 | 19,019 | 20,392 | 21,316 | 21,652 | 21,591 | 21,072 | 19,429 | 17,853 | 15,623 | 13,857 | 12,274 | 10,797 | 9,970  |
|                    | Adult        | 7,575  | 9,218  | 10,860 | 13,391 | 15,605 | 19,151 | 21,871 | 25,237 | 26,205 | 25,880 | 24,913 | 23,513 | 21,816 | 20,731 |
| Shortnose Sturgeon | Spawning     | 1,875  | 3,386  | 4,817  | 6,883  | 8,512  | 10,709 | 12,035 | 13,472 | 13,983 | 14,048 | 13,905 | 13,578 | 13,089 | 12,729 |
|                    | Fry          | 248    | 353    | 442    | 559    | 642    | 742    | 798    | 849    | 839    | 809    | 774    | 725    | 674    | 654    |
|                    | Juvenile     | 611    | 813    | 933    | 1,074  | 1,177  | 1,314  | 1,385  | 1,432  | 1,385  | 1,321  | 1,255  | 1,194  | 1,126  | 1,096  |
|                    | Adult        | 611    | 813    | 933    | 1,074  | 1,177  | 1,314  | 1,385  | 1,432  | 1,385  | 1,321  | 1,255  | 1,194  | 1,126  | 1,096  |
| Striped Bass       | Spawning     | 7,157  | 10,753 | 13,999 | 18,988 | 23,687 | 31,969 | 38,894 | 49,065 | 54,669 | 56,217 | 55,057 | 52,467 | 49,988 | 47,196 |
|                    | Fry          | 4,436  | 7,310  | 10,195 | 14,928 | 19,566 | 28,061 | 35,485 | 46,895 | 53,476 | 55,546 | 54,597 | 52,113 | 48,968 | 47,000 |
|                    | Juvenile     | 11,000 | 14,966 | 17,676 | 20,657 | 22,653 | 25,130 | 26,820 | 29,018 | 30,036 | 29,752 | 28,204 | 25,809 | 23,022 | 21,340 |
|                    | Adult        | 7,426  | 11,986 | 16,339 | 22,817 | 28,243 | 36,762 | 43,177 | 52,101 | 58,016 | 61,283 | 62,763 | 63,369 | 63,531 | 63,445 |
| Smallmouth Bass    | Spawning     | 1,037  | 1,124  | 1,142  | 1,061  | 951    | 730    | 600    | 479    | 423    | 374    | 336    | 299    | 272    | 255    |
|                    | Fry          | 3,611  | 2,636  | 2,051  | 1,531  | 1,277  | 998    | 868    | 943    | 1,035  | 944    | 926    | 873    | 801    | 797    |
|                    | Juvenile     | 24,392 | 25,873 | 26,005 | 25,144 | 23,770 | 20,455 | 16,765 | 10,152 | 6,054  | 4,277  | 3,658  | 3,429  | 3,184  | 3,033  |
|                    | Adult        | 22,322 | 26,500 | 29,972 | 33,951 | 35,972 | 36,374 | 34,707 | 30,358 | 26,785 | 23,838 | 21,366 | 19,079 | 16,993 | 15,853 |
| Macroinvertebrates | Stonefly     | 3,257  | 4,180  | 4,432  | 4,083  | 3,353  | 2,281  | 1,739  | 1,303  | 1,111  | 974    | 833    | 720    | 637    | 593    |
|                    | Mayfly       | 5,508  | 6,016  | 6,053  | 5,600  | 4,929  | 3,853  | 3,248  | 2,630  | 2,210  | 1,885  | 1,612  | 1,396  | 1,237  | 1,163  |
|                    | Caddisfly    | 8,711  | 10,866 | 12,027 | 12,752 | 12,738 | 12,032 | 11,026 | 8,903  | 7,010  | 5,529  | 4,418  | 3,655  | 3,170  | 2,947  |
| Guilds             | Shallow-Slow | 29,172 | 23,143 | 16,319 | 8,092  | 4,541  | 2,408  | 2,060  | 2,557  | 2,855  | 2,346  | 1,902  | 1,570  | 1,317  | 1,102  |
|                    | Shallow-Fast | 1,079  | 938    | 718    | 527    | 366    | 206    | 162    | 126    | 92     | 85     | 79     | 60     | 45     | 45     |
|                    | Deep-Slow    | 29,192 | 32,691 | 34,258 | 32,896 | 28,093 | 20,078 | 14,338 | 7,677  | 6,482  | 6,247  | 6,226  | 5,764  | 5,303  | 5,195  |
|                    | Deep-Fast    | 40     | 73     | 175    | 465    | 744    | 1,148  | 1,219  | 716    | 326    | 123    | 80     | 71     | 73     | 72     |

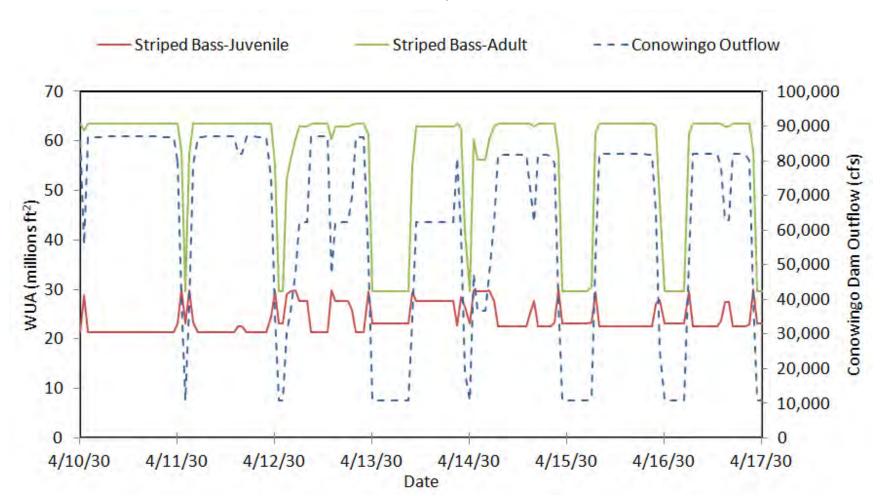
<sup>5</sup> Habitat area reported in thousands of square feet.

# TABLE 2.2-1: CONOWINGO DAM'S SEASONAL MINIMUM FLOWREQUIREMENTS.

| Date Range                 | Continuous Minimum Flow Release (cfs)                                          |
|----------------------------|--------------------------------------------------------------------------------|
| December 1 – February 28   | 3,500 cfs intermittent <sup>6</sup> or inflow <sup>7</sup> , whichever is less |
| March 1 – March 31         | 3,500 cfs or inflow, whichever is less                                         |
| April 1 – April 30         | 10,000 cfs or inflow, whichever is less                                        |
| May 1 – May 31             | 7,500 cfs or inflow, whichever is less                                         |
| June 1 – September 14      | 5,000 cfs or inflow, whichever is less                                         |
| September 14 – November 30 | 3,500 cfs or inflow, whichever is less                                         |

<sup>&</sup>lt;sup>6</sup> Intermittent refers to 6 hours at 3,500 cfs, followed by 6 hours with no required release. This was modeled in the Baseline model as a continuous 1,750 cfs release.

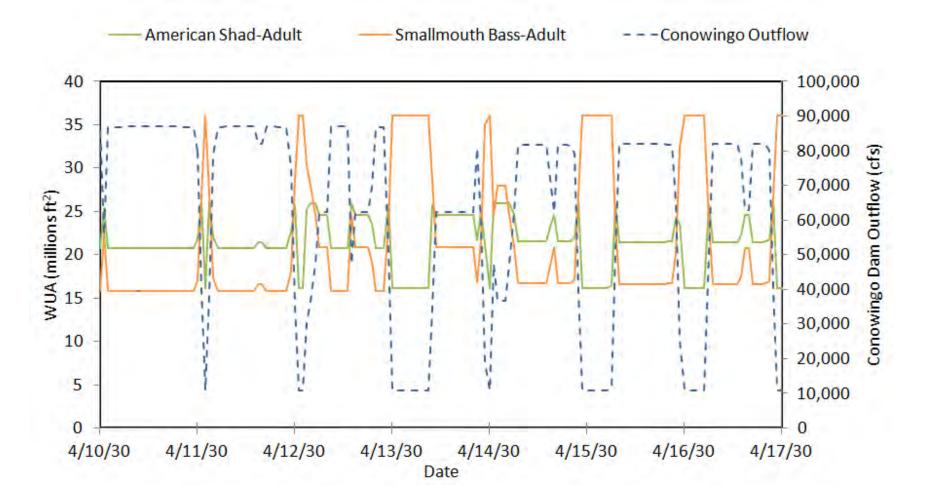

<sup>&</sup>lt;sup>7</sup> Inflow refers to the flow at the Marietta USGS gage #01576000.

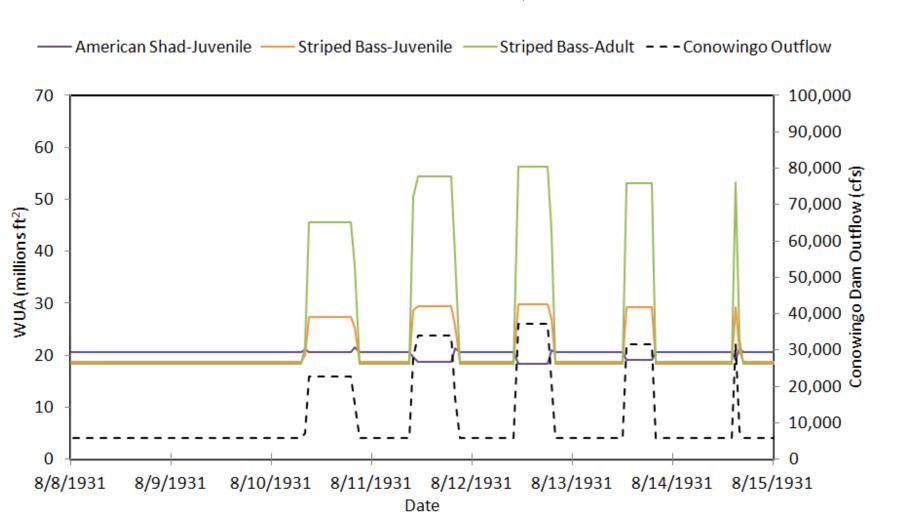

| Species/Life Stage                                                                                                                                        | Months<br>Present | Flow at<br>Maximum<br>WUA (cfs) | Flow Range<br>Providing 90%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 80%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 70%<br>of Maximum<br>WUA (cfs) | Flow Range<br>Providing 60%<br>of Maximum<br>WUA (cfs) |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| American Shad:                                                                                                                                            | Tresent           | W 011 (CIS)                     | W 0/1 (CIS)                                            | W 0/4 (CIS)                                            | W 011 (CIS)                                            | W 0/1 (CIS)                                            |  |  |  |  |
| Spawning & Inc.                                                                                                                                           | Apr-Jun           | 40,000                          | 24,200 - 61,325                                        | 18,144 - 72,765                                        | 14,472 - 82,757                                        | 11,801 - 86,000*                                       |  |  |  |  |
| Fry                                                                                                                                                       | May-Jul           | 30,000                          | 14,716 - 43,771                                        | 10,703 - 55,000                                        | 7,744 - 67,028                                         | 5,513 - 80,335                                         |  |  |  |  |
| Juvenile                                                                                                                                                  | Jul-Nov           | 10,000                          | 4,011 - 29,652                                         | 2,670 - 42,383                                         | 2,000*-52,641                                          | 2,000*-65,469                                          |  |  |  |  |
| Adult                                                                                                                                                     | Apr-Jun           | 40,000                          | 25,090 - 69,495                                        | 18,332 – 84,715                                        | 13,861 - 86,000*                                       | 10,166 - 86,000*                                       |  |  |  |  |
| Shortnose Sturgeon:                                                                                                                                       |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| Spawning & Inc.                                                                                                                                           | Apr-May           | 50,000                          | 24,234 - 86,000*                                       | 16,997 - 86,000*                                       | 13,008 - 86,000*                                       | 9,872-86,000*                                          |  |  |  |  |
| Fry                                                                                                                                                       | May-Jul           | 30,000                          | 16,917 - 62,164                                        | 11,835 - 79,017                                        | 8,546 - 86,000*                                        | 6,424 - 86,000*                                        |  |  |  |  |
| Juvenile                                                                                                                                                  | All               | 30,000                          | 14,068 - 54,906                                        | 9,240 - 77,199                                         | 6,228 - 86,000*                                        | 4,078 - 86,000*                                        |  |  |  |  |
| Adult                                                                                                                                                     | All               | 30,000                          | 14,068 - 54,906                                        | 9,240 - 77,199                                         | 6,228 - 86,000*                                        | 4,078 - 86,000*                                        |  |  |  |  |
| Striped Bass:                                                                                                                                             |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| Spawning & Inc.                                                                                                                                           | Apr-Jun           | 50,000                          | 32,730 - 77,550                                        | 25,977 - 86,000*                                       | 20,450 - 86,000*                                       | 16,272 - 86,000*                                       |  |  |  |  |
| Fry                                                                                                                                                       | Apr-Jul           | 50,000                          | 34,705 - 76,746                                        | 27,846 - 86,000*                                       | 22,977 - 86,000*                                       | 18,547 - 86,000*                                       |  |  |  |  |
| Juvenile                                                                                                                                                  | Jun-Dec           | 40,000                          | 20,968 - 64,890                                        | 12,777 – 76,387                                        | 7,961 - 86,000*                                        | 5,290 - 86,000*                                        |  |  |  |  |
| Adult                                                                                                                                                     | All               | 80,000                          | 38,584 - 86,000*                                       | 28,570 - 86,000*                                       | 21,450 - 86,000*                                       | 16,057 - 86,000*                                       |  |  |  |  |
| Smallmouth Bass:                                                                                                                                          |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| Spawning & Inc.                                                                                                                                           | May-Jun           | 5,000                           | 2,000* - 8,262                                         | 2,000*-10,853                                          | 2,000*-13,430                                          | 2,000*-16,725                                          |  |  |  |  |
| Fry                                                                                                                                                       | Jun-Jul           | 2,000*                          | 2,000* - 2,556                                         | 2,000*-3,111                                           | 2,000*-3,778                                           | 2,000* - 4,703                                         |  |  |  |  |
| Juvenile                                                                                                                                                  | Aug-Dec           | 5,000                           | 2,000*-10,552                                          | 2,000*-14,474                                          | 2,000*-18,051                                          | 2,000*-21,757                                          |  |  |  |  |
| Adult                                                                                                                                                     | All               | 15,000                          | 6,737 - 24,531                                         | 4,623 - 33,522                                         | 3,127 - 44,491                                         | 2,000*-58,145                                          |  |  |  |  |
| Macroinvertebrates                                                                                                                                        |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| Ephemeroptera (Mayfly)                                                                                                                                    | All               | 5,000                           | 3,190 - 7,823                                          | 2,469 - 9,340                                          | 2,000*-11,168                                          | 2,000*-13,235                                          |  |  |  |  |
| Plecoptera (Stonefly)                                                                                                                                     | All               | 5,000                           | 2,000* - 8,067                                         | 2,000*-10,404                                          | 2,000*-13,217                                          | 2,000*-16,828                                          |  |  |  |  |
| Trichoptera (Caddisfly)                                                                                                                                   | All               | 10,000                          | 4,289 - 17,762                                         | 3,038 - 23,884                                         | 2,000*-29,890                                          | 2,000*-36,612                                          |  |  |  |  |
| Habitat Guilds                                                                                                                                            |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| Shallow Slow                                                                                                                                              | All               | 2,000*                          | 2,000* - 2,726                                         | 2,000*-3,452                                           | 2,000*-4,098                                           | 2,000* - 4,740                                         |  |  |  |  |
| Shallow Fast                                                                                                                                              | Apr-Jun           | 2,000*                          | 2,000*-3,143                                           | 2,000*-4,007                                           | 2,000*-4,743                                           | 2,000*-5,921                                           |  |  |  |  |
| Deep Slow                                                                                                                                                 | All               | 5,000                           | 2,703 - 8,574                                          | 2,000*-10,428                                          | 2,000*-12,565                                          | 2,000*-14,702                                          |  |  |  |  |
| Deep Fast                                                                                                                                                 | All               | 20,000                          | 14,376 - 22,424                                        | 12,866 - 24,848                                        | 11,355 – 27,271                                        | 9,888 - 26,695                                         |  |  |  |  |
| *Indicates that the flow range was limited by the lowest or highest production run flow, thus the true flow range providing this habitat falls outside of |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |
| the modeled flows and is greater than shown.                                                                                                              |                   |                                 |                                                        |                                                        |                                                        |                                                        |  |  |  |  |

# TABLE 3-1: FLOWS PROVIDING PERCENTAGES OF MAXIMUM WEIGHTED USABLE AREA (WUA)

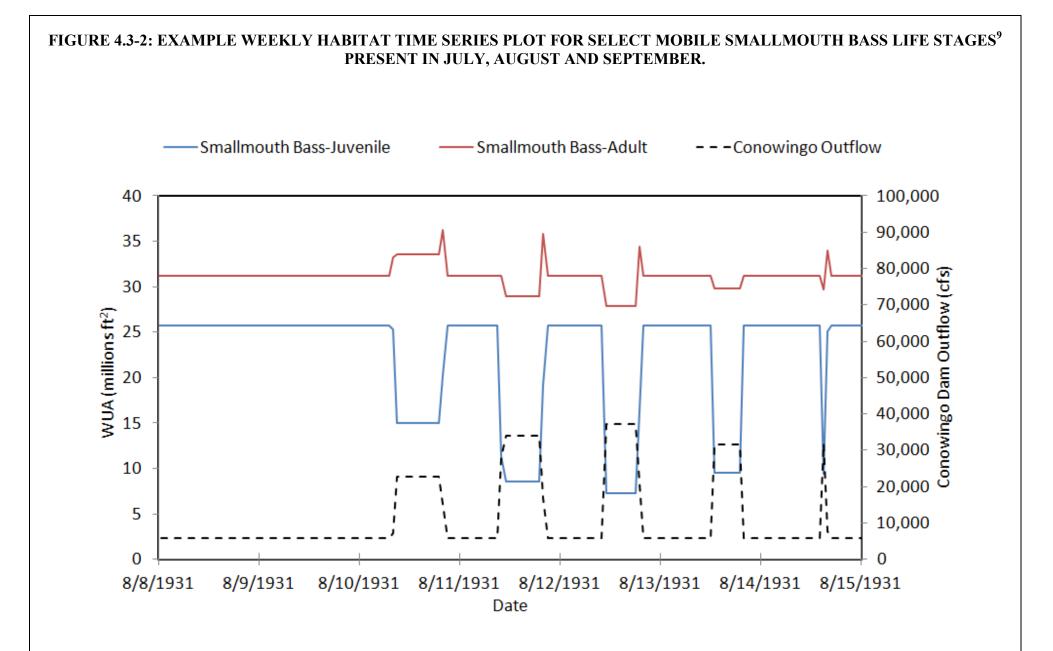
### FIGURE 3-1: HABITAT TIME SERIES EXAMPLE Conowingo Dam Outflow **Time Series** Combine Flow Time American Shad Series with Flow vs. Habitat Time Series Habitat Relationship American Shad Flow vs. Habitat Relationship 90,000 75,000 60,000 Flow (cfs) 30 45,000 Weighted Usable Area (millions (ft<sup>2</sup>) 25 30,000 20 15,000 15 0 1/10:00 1/16:00 1/112:00 1/118:00 1/20:00 Date 10 Adult Shad Habitat 5 Juvenile Shad Habitat 0 American Shad 1/10:00 1/112:00 1/118:00 1/20:00 1/16:00 30 Date -Adult Juvenile Weighted Usable Area (millions ft<sup>2</sup>) 0 5 0 5 5 5 15,000 30,000 45,000 60,000 75,000 90,000 0 Flow (cfs)

#### FIGURE 4.1-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT SPECIES/LIFE STAGES PRESENT IN JANUARY, FEBRUARY AND MARCH

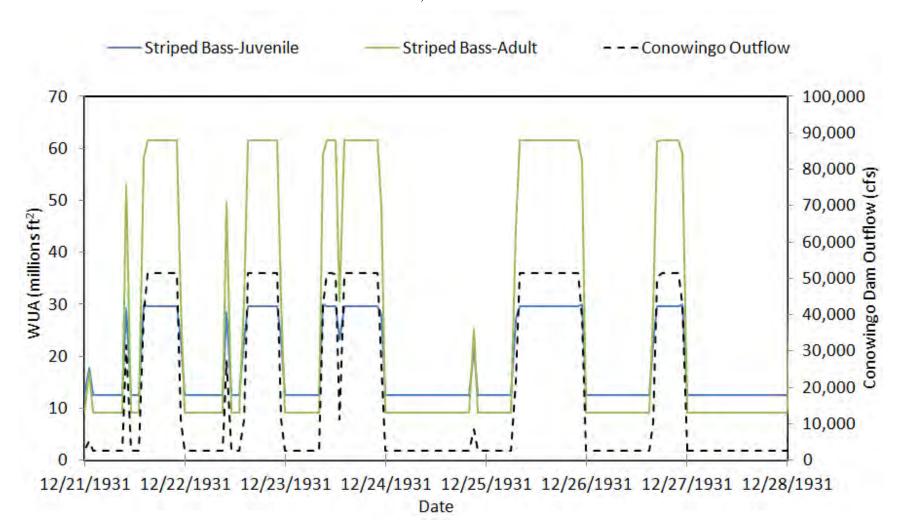


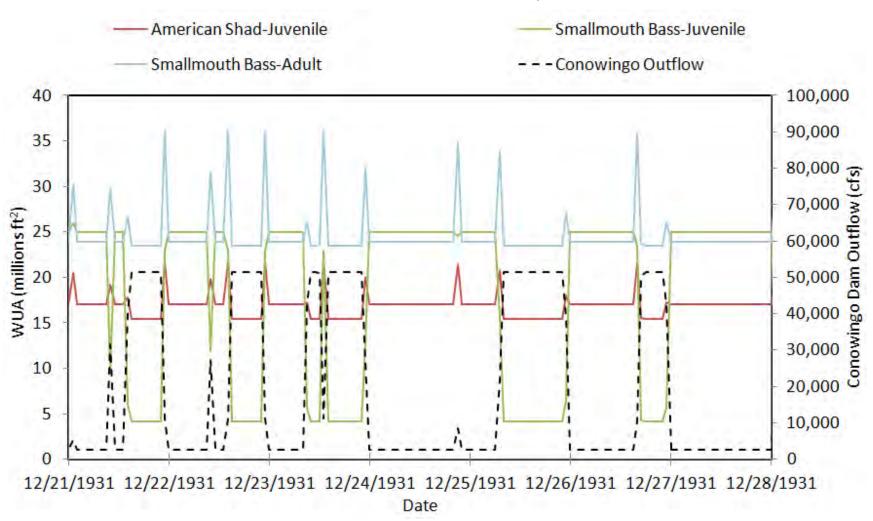

# FIGURE 4.2-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT MOBILE STRIPED BASS LIFE STAGES PRESENT IN APRIL, MAY AND JUNE<sup>8</sup>.


<sup>&</sup>lt;sup>8</sup> Striped bass juveniles are not present in April or May, but are included in this time series plot for display purposes, since the flow/habitat relationship does not change with season.

# FIGURE 4.2-2: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT MOBILE AMERICAN SHAD AND SMALLMOUTH BASS LIFE STAGES PRESENT IN APRIL, MAY AND JUNE.







#### FIGURE 4.3-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT MOBILE AMERICAN SHAD AND STRIPED BASS LIFE STAGES PRESENT IN JULY, AUGUST AND SEPTEMBER.



<sup>&</sup>lt;sup>9</sup> Juvenile smallmouth bass are not present in July, but are included in this time series plot for display purposes, since the flow/habitat relationship does not change with season.



#### FIGURE 4.4-1: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT MOBILE STRIPED BASS LIFE STAGES PRESENT IN OCTOBER, NOVEMBER AND DECEMBER.



## FIGURE 4.4-2: EXAMPLE WEEKLY HABITAT TIME SERIES PLOT FOR SELECT MOBILE AMERICAN SHAD AND SMALLMOUTH BASS LIFE STAGES PRESENT IN OCTOBER, NOVEMBER AND DECEMBER<sup>10</sup>.

<sup>&</sup>lt;sup>10</sup> Juvenile American shad are not present in December, but are included in this time series plot for display purposes, since the flow/habitat relationship does not change with season.

## APPENDIX A: HABITAT (WEIGHTED USABLE AREA) VERSUS FLOW CURVES

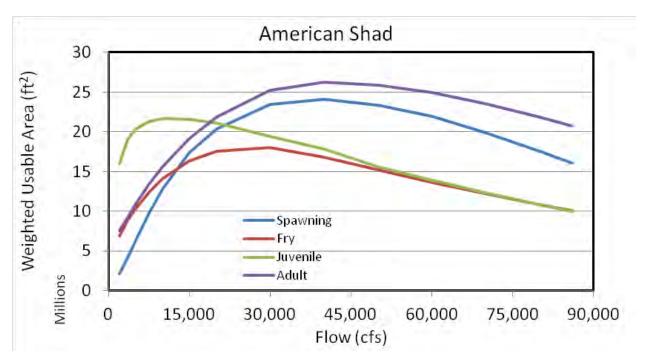
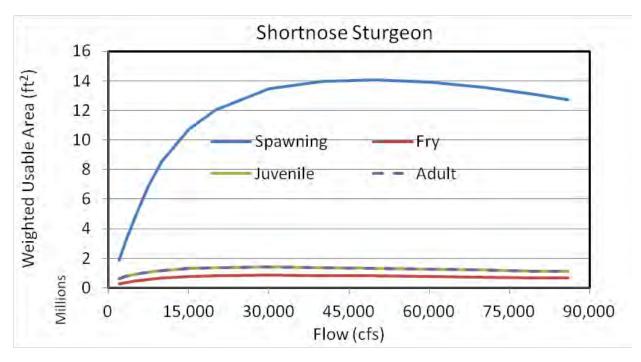




Figure A-1: American shad flow vs. habitat relationship



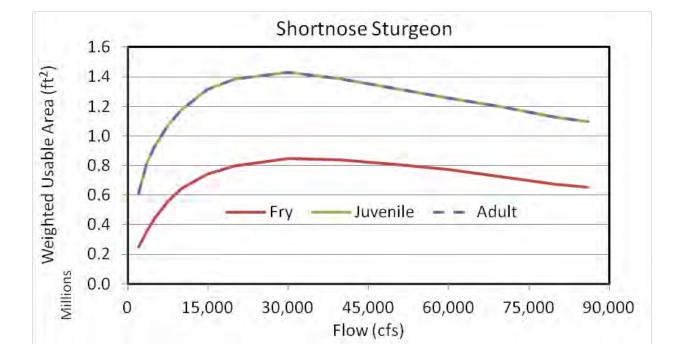



Figure A-2: Shortnose sturgeon flow vs. habitat relationship

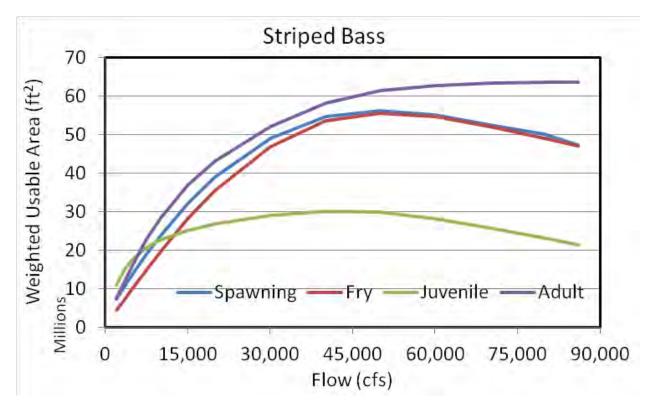



Figure A-3: Striped bass flow vs. habitat relationship

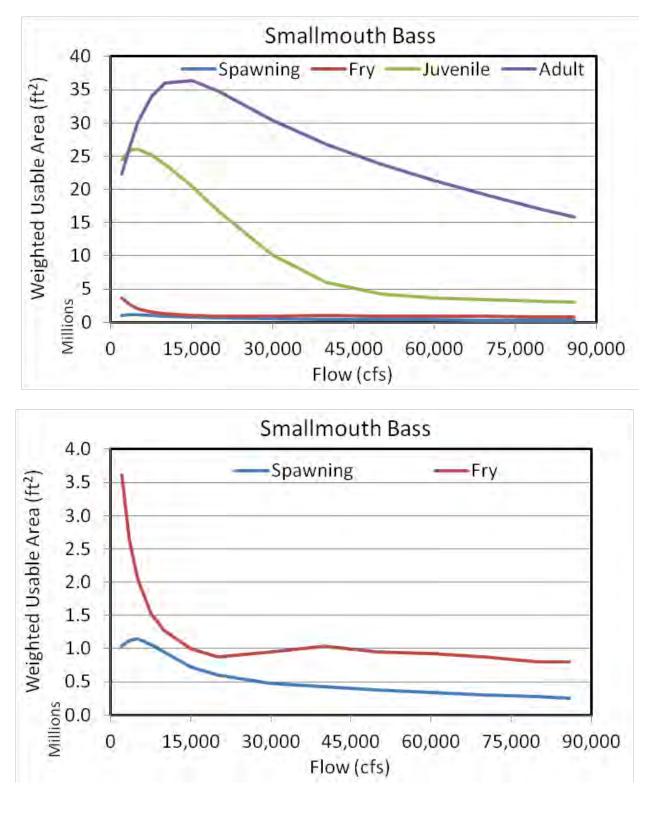



Figure A-4: Smallmouth bass flow vs. habitat relationship

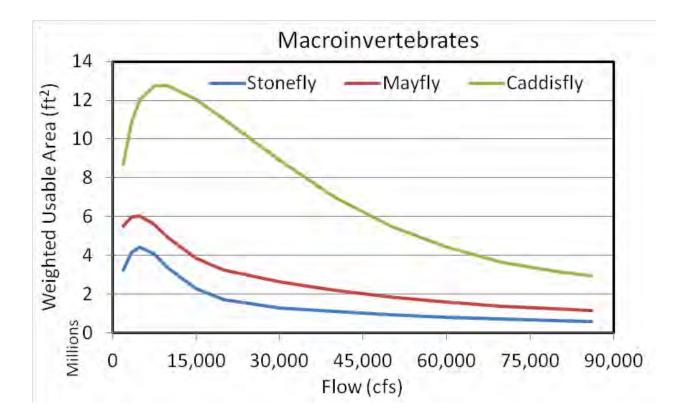



Figure A-5: Ephemeroptera (Mayflies), Plecoptera (Stoneflies), and Trichoptera (Caddisflies) flow vs. habitat relationship

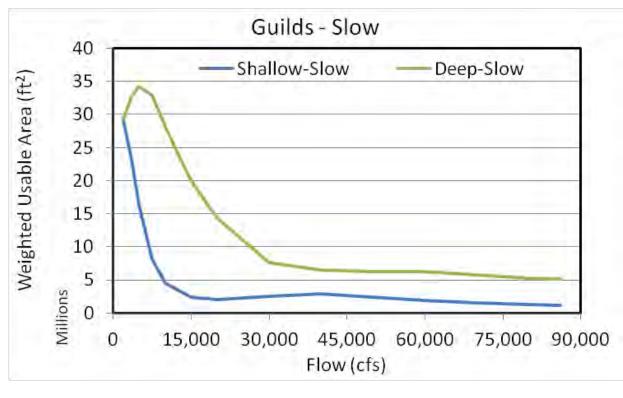
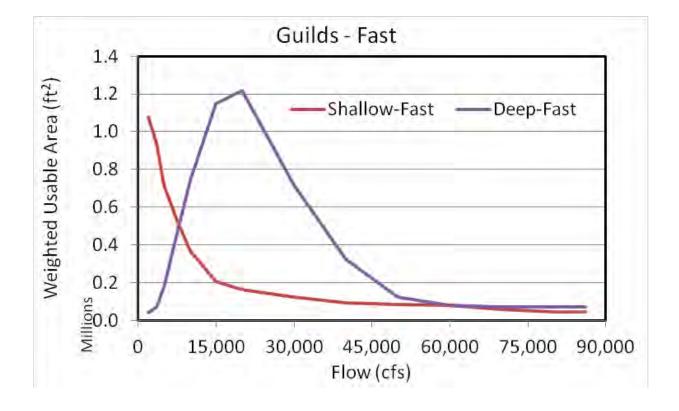
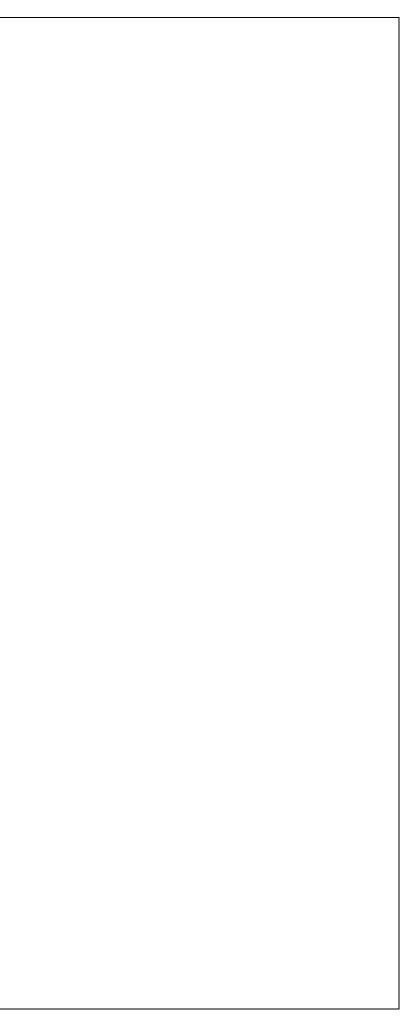




Figure A-6: Shallow-slow, shallow-fast, deep-slow, and deep-fast habitat guilds' flow vs. habitat relationship




## APPENDIX B: MONTHLY HABITAT DURATION TABLES – PERIOD OF RECORD JAN 1930 TO DEC 2007

| Exceedance<br>Percentile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-Adult | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|------------------------------------|---------------------------------|-----------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 1,431,613                          | 1,431,613                       | 63,530,962            | 36,373,606               | 4,429,632                            | 6,052,606                          | 12,751,664                            | 26,961,058                  | 34,247,643           | 1,219,233            |
| 5                        | 1,400,286                          | 1,400,286                       | 63,508,307            | 33,290,844               | 3,595,462                            | 5,694,125                          | 10,924,163                            | 26,961,058                  | 30,474,769           | 834,251              |
| 10                       | 1,368,579                          | 1,368,579                       | 63,445,446            | 28,416,903               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 452,541              |
| 15                       | 1,339,400                          | 1,339,400                       | 63,445,446            | 26,033,500               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 273,984              |
| 20                       | 1,290,710                          | 1,290,710                       | 63,445,446            | 24,288,891               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 138,571              |
| 25                       | 1,240,711                          | 1,240,711                       | 63,445,446            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 85,901               |
| 30                       | 1,202,410                          | 1,202,410                       | 62,950,855            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 77,702               |
| 35                       | 1,133,292                          | 1,133,292                       | 62,587,938            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 72,845               |
| 40                       | 1,118,198                          | 1,118,198                       | 61,030,491            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 21,194,605                  | 30,474,769           | 72,485               |
| 45                       | 1,095,959                          | 1,095,959                       | 58,848,652            | 23,853,989               | 1,705,603                            | 3,200,163                          | 9,500,975                             | 2,784,941                   | 13,826,499           | 72,485               |
| 50                       | 1,095,959                          | 1,095,959                       | 55,134,035            | 23,853,989               | 1,204,276                            | 2,414,536                          | 7,932,081                             | 2,667,498                   | 7,064,556            | 72,485               |
| 55                       | 1,095,959                          | 1,095,959                       | 43,862,655            | 23,853,989               | 1,075,699                            | 2,127,085                          | 6,632,179                             | 2,464,664                   | 6,422,402            | 72,485               |
| 60                       | 846,949                            | 846,949                         | 13,228,733            | 23,853,989               | 984,178                              | 1,910,378                          | 5,643,523                             | 2,241,948                   | 6,265,554            | 71,387               |
| 65                       | 684,999                            | 684,999                         | 9,098,087             | 21,657,967               | 849,387                              | 1,644,053                          | 4,548,968                             | 1,954,187                   | 6,228,929            | 51,978               |
| 70                       | 684,999                            | 684,999                         | 9,098,087             | 20,657,006               | 797,659                              | 1,544,867                          | 4,181,298                             | 1,798,826                   | 6,083,258            | 51,978               |
| 75                       | 684,999                            | 684,999                         | 9,098,087             | 17,624,739               | 662,216                              | 1,285,201                          | 3,316,944                             | 1,393,399                   | 5,442,737            | 51,978               |
| 80                       | 684,999                            | 684,999                         | 9,098,087             | 16,765,345               | 628,402                              | 1,222,309                          | 3,125,370                             | 1,273,842                   | 5,281,471            | 51,978               |
| 85                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 90                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 95                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 100                      | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |

Table B-1: January Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

Table B-2: February Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

| Exceedance<br>Percentile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-Adult | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|------------------------------------|---------------------------------|-----------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 1,431,613                          | 1,431,613                       | 63,530,962            | 36,373,284               | 4,430,602                            | 6,052,752                          | 12,751,799                            | 26,961,058                  | 34,249,822           | 1,219,276            |
| 5                        | 1,397,257                          | 1,397,257                       | 63,508,906            | 33,308,934               | 3,595,462                            | 5,694,125                          | 10,821,250                            | 26,961,058                  | 30,474,769           | 824,014              |
| 10                       | 1,368,579                          | 1,368,579                       | 63,445,446            | 28,023,518               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 409,394              |
| 15                       | 1,325,726                          | 1,325,726                       | 63,445,446            | 25,734,953               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 236,268              |
| 20                       | 1,267,554                          | 1,267,554                       | 63,445,446            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 112,570              |
| 25                       | 1,239,966                          | 1,239,966                       | 63,445,446            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 78,474               |
| 30                       | 1,222,509                          | 1,222,509                       | 63,203,698            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 77,811               |
| 35                       | 1,158,819                          | 1,158,819                       | 62,915,428            | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           | 72,871               |
| 40                       | 1,121,593                          | 1,121,593                       | 62,540,692            | 23,853,989               | 2,413,978                            | 3,986,798                          | 9,500,975                             | 2,848,609                   | 21,072,176           | 72,745               |
| 45                       | 1,095,959                          | 1,095,959                       | 60,955,933            | 23,853,989               | 1,286,128                            | 2,593,490                          | 8,738,445                             | 2,710,160                   | 7,573,581            | 72,485               |
| 50                       | 1,095,959                          | 1,095,959                       | 58,848,652            | 23,853,989               | 1,075,699                            | 2,127,085                          | 6,632,179                             | 2,481,358                   | 6,422,402            | 72,485               |
| 55                       | 1,095,959                          | 1,095,959                       | 52,614,987            | 23,853,989               | 987,305                              | 1,917,783                          | 5,677,307                             | 2,243,667                   | 6,270,914            | 72,485               |
| 60                       | 1,095,959                          | 1,095,959                       | 35,705,302            | 21,736,890               | 853,883                              | 1,652,787                          | 4,584,451                             | 1,968,355                   | 6,229,599            | 72,203               |
| 65                       | 684,999                            | 684,999                         | 9,098,087             | 20,790,570               | 804,270                              | 1,557,465                          | 4,225,827                             | 1,818,218                   | 6,110,242            | 51,978               |
| 70                       | 684,999                            | 684,999                         | 9,098,087             | 19,703,763               | 750,475                              | 1,454,955                          | 3,863,490                             | 1,660,422                   | 5,890,670            | 51,978               |
| 75                       | 684,999                            | 684,999                         | 9,098,087             | 17,460,776               | 655,752                              | 1,272,706                          | 3,278,810                             | 1,373,522                   | 5,406,465            | 51,978               |
| 80                       | 684,999                            | 684,999                         | 9,098,087             | 16,712,930               | 626,350                              | 1,218,913                          | 3,115,094                             | 1,263,944                   | 5,276,528            | 51,978               |
| 85                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 90                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 95                       | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |
| 100                      | 684,999                            | 684,999                         | 9,098,087             | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 51,978               |



| Exceedance<br>Percentile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-Adult | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|------------------------------------|---------------------------------|-----------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 1,431,603                          | 1,431,603                       | 63,530,977            | 36,372,562               | 4,431,612                            | 6,052,899                          | 12,751,836                            | 19,503,178                  | 34,253,817           | 1,219,276            |
| 5                        | 1,380,028                          | 1,380,028                       | 63,511,529            | 29,264,630               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 469,921              |
| 10                       | 1,312,063                          | 1,312,063                       | 63,487,369            | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 187,804              |
| 15                       | 1,240,772                          | 1,240,772                       | 63,445,446            | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 20                       | 1,235,536                          | 1,235,536                       | 63,445,446            | 28,351,869               | 4,314,472                            | 6,026,160                          | 11,485,220                            | 15,831,652                  | 33,526,764           | 127,684              |
| 25                       | 1,158,375                          | 1,158,375                       | 63,445,446            | 28,351,869               | 1,235,399                            | 2,482,581                          | 8,238,689                             | 2,664,808                   | 7,258,106            | 127,684              |
| 30                       | 1,122,133                          | 1,122,133                       | 63,445,446            | 24,781,205               | 1,017,453                            | 1,989,169                          | 6,002,981                             | 2,331,304                   | 6,322,581            | 127,684              |
| 35                       | 1,117,669                          | 1,117,669                       | 63,445,446            | 20,878,392               | 808,617                              | 1,565,748                          | 4,255,107                             | 1,830,969                   | 6,127,985            | 78,469               |
| 40                       | 1,095,959                          | 1,095,959                       | 63,445,446            | 20,760,152               | 802,764                              | 1,554,596                          | 4,215,686                             | 1,813,802                   | 6,104,097            | 77,998               |
| 45                       | 1,095,959                          | 1,095,959                       | 63,445,446            | 18,477,765               | 695,845                              | 1,350,204                          | 3,515,335                             | 1,496,814                   | 5,631,445            | 72,884               |
| 50                       | 1,095,959                          | 1,095,959                       | 63,445,446            | 16,896,003               | 633,514                              | 1,230,773                          | 3,150,988                             | 1,298,517                   | 5,293,793            | 72,805               |
| 55                       | 1,095,959                          | 1,095,959                       | 63,416,015            | 16,675,139               | 624,872                              | 1,216,465                          | 3,107,684                             | 1,256,807                   | 5,272,964            | 72,485               |
| 60                       | 1,095,959                          | 1,095,959                       | 62,923,496            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 65                       | 1,095,959                          | 1,095,959                       | 62,892,133            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 70                       | 1,095,959                          | 1,095,959                       | 60,237,214            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 75                       | 1,095,959                          | 1,095,959                       | 54,176,203            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 80                       | 941,241                            | 941,241                         | 16,722,149            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 85                       | 876,765                            | 876,765                         | 14,307,543            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 90                       | 876,765                            | 876,765                         | 14,307,543            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 95                       | 876,765                            | 876,765                         | 14,307,543            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,485               |
| 100                      | 876,765                            | 876,765                         | 14,307,543            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 71,305               |

Table B-3: March Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

Table B-4: April Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

| Exceedance<br>Percentile | American<br>Shad-<br>Spawning | American<br>Shad-Adult | Shortnose<br>Sturgeon-<br>Spawning | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Spawning | Striped<br>Bass-Fry | Striped<br>Bass-Adult | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Shallow-<br>Fast | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|------------------------|------------------------------------|------------------------------------|---------------------------------|------------------------------|---------------------|-----------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 24,052,112                    | 26,203,751             | 14,047,970                         | 1,431,594                          | 1,431,594                       | 56,214,461                   | 55,543,968          | 63,530,905            | 36,373,686               | 3,181,597                            | 4,757,207                          | 12,625,419                            | 4,199,891                   | 340,261                     | 26,810,635           | 1,219,139            |
| 5                        | 23,410,362                    | 25,774,044             | 13,919,278                         | 1,361,976                          | 1,361,976                       | 54,881,944                   | 54,085,603          | 63,511,691            | 36,036,667               | 3,181,597                            | 4,757,207                          | 12,625,419                            | 4,199,891                   | 340,261                     | 26,810,635           | 808,658              |
| 10                       | 21,446,590                    | 24,575,721             | 13,815,842                         | 1,259,999                          | 1,259,999                       | 54,264,928                   | 53,789,775          | 63,501,264            | 36,036,667               | 3,181,597                            | 4,757,207                          | 12,625,419                            | 4,199,891                   | 340,261                     | 26,810,635           | 808,658              |
| 15                       | 20,821,112                    | 23,873,374             | 13,556,353                         | 1,236,662                          | 1,236,662                       | 51,995,594                   | 51,207,477          | 63,445,446            | 36,036,667               | 3,181,597                            | 4,757,207                          | 12,625,419                            | 4,199,891                   | 340,261                     | 26,810,635           | 808,658              |
| 20                       | 17,973,577                    | 22,008,800             | 13,098,389                         | 1,198,546                          | 1,198,546                       | 49,934,838                   | 48,930,432          | 63,445,446            | 36,036,667               | 3,181,597                            | 4,757,207                          | 12,625,419                            | 4,199,891                   | 340,261                     | 26,810,635           | 808,658              |
| 25                       | 17,215,676                    | 21,572,605             | 12,995,082                         | 1,198,546                          | 1,198,546                       | 49,211,800                   | 48,407,765          | 63,445,446            | 27,825,324               | 1,166,614                            | 2,332,196                          | 7,561,055                             | 2,494,920                   | 101,828                     | 6,830,343            | 439,429              |
| 30                       | 17,019,628                    | 21,311,766             | 12,729,222                         | 1,198,546                          | 1,198,546                       | 47,196,225                   | 47,000,432          | 63,445,446            | 22,155,244               | 877,716                              | 1,699,081                          | 4,772,540                             | 2,043,455                   | 80,783                      | 6,233,147            | 93,982               |
| 35                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,198,546                          | 1,198,546                       | 47,196,225                   | 47,000,432          | 63,445,446            | 20,700,688               | 799,821                              | 1,548,987                          | 4,195,861                             | 1,805,168                   | 73,518                      | 6,092,083            | 77,761               |
| 40                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,149,000                          | 1,149,000                       | 47,196,225                   | 47,000,432          | 63,445,446            | 17,690,449               | 664,806                              | 1,290,208                          | 3,332,226                             | 1,401,366                   | 49,870                      | 5,457,274            | 72,863               |
| 45                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,121,472                          | 1,121,472                       | 47,196,225                   | 47,000,432          | 63,445,446            | 16,813,772               | 630,297                              | 1,225,446                          | 3,134,865                             | 1,282,988                   | 45,268                      | 5,286,038            | 72,789               |
| 50                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,116,312                          | 1,116,312                       | 47,196,225                   | 47,000,432          | 63,445,446            | 16,619,495               | 622,694                              | 1,212,861                          | 3,096,774                             | 1,246,299                   | 45,268                      | 5,267,717            | 72,485               |
| 55                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 63,445,446            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 60                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 63,445,446            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 65                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 62,939,269            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 70                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 62,290,252            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 75                       | 16,044,034                    | 20,731,411             | 12,729,222                         | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 56,293,103            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 80                       | 13,529,767                    | 16,172,307             | 8,863,738                          | 1,095,959                          | 1,095,959                       | 25,012,497                   | 20,925,139          | 29,605,944            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 85                       | 13,529,767                    | 16,172,307             | 8,863,738                          | 1,095,959                          | 1,095,959                       | 25,012,497                   | 20,925,139          | 29,605,944            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 90                       | 13,529,767                    | 16,172,307             | 8,863,738                          | 1,095,959                          | 1,095,959                       | 25,012,497                   | 20,925,139          | 29,605,944            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 95                       | 13,529,767                    | 16,172,307             | 8,863,738                          | 1,095,959                          | 1,095,959                       | 25,012,497                   | 20,925,139          | 29,605,944            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,742                      | 5,195,451            | 72,485               |
| 100                      | 13,529,767                    | 16,172,307             | 8,863,738                          | 1,095,959                          | 1,095,959                       | 25,012,497                   | 20,925,139          | 29,605,944            | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,548                      | 5,195,451            | 71,306               |

| Table B-5: May Habitat Exceedance Percentiles. Areas l | listed in ft <sup>2</sup> |
|--------------------------------------------------------|---------------------------|

| Exceedance<br>Percentile | American<br>Shad-<br>Spawning | American<br>Shad-Fry | American<br>Shad-Adult | Shortnose<br>Sturgeon-<br>Spawning | Shortnose<br>Sturgeon-<br>Fry | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Spawning | Striped<br>Bass-Fry | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Spawning | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Shallow-<br>Fast | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|----------------------|------------------------|------------------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|---------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 24,052,441                    | 17,989,106           | 26,204,235             | 14,048,237                         | 848,524                       | 1,431,557                          | 1,431,557                       | 56,216,434                   | 55,545,580          | 63,530,926            | 1,025,945                       | 36,372,562               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 1,219,162            |
| 5                        | 23,487,417                    | 16,667,179           | 25,887,502             | 13,995,636                         | 821,968                       | 1,370,889                          | 1,370,889                       | 55,465,520                   | 54,810,182          | 63,513,397            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 10                       | 22,239,364                    | 14,948,663           | 24,988,129             | 13,821,612                         | 792,507                       | 1,303,756                          | 1,303,756                       | 54,357,803                   | 53,879,417          | 63,503,146            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 15                       | 21,153,495                    | 13,246,916           | 24,169,647             | 13,653,830                         | 760,490                       | 1,238,869                          | 1,238,869                       | 52,565,050                   | 51,681,137          | 63,445,446            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 20                       | 18,969,641                    | 12,958,968           | 22,614,643             | 13,226,068                         | 712,791                       | 1,188,010                          | 1,188,010                       | 50,467,321                   | 49,487,014          | 63,445,446            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 25                       | 17,523,050                    | 12,958,968           | 21,778,156             | 13,045,519                         | 675,931                       | 1,133,128                          | 1,133,128                       | 49,563,548                   | 48,637,948          | 63,445,446            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 30                       | 17,142,341                    | 12,958,968           | 21,516,549             | 12,980,209                         | 669,307                       | 1,119,999                          | 1,119,999                       | 49,108,043                   | 48,333,004          | 63,445,446            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 35                       | 16,044,034                    | 12,958,968           | 20,731,411             | 12,729,222                         | 663,506                       | 1,116,095                          | 1,116,095                       | 47,196,225                   | 47,000,432          | 63,445,446            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 40                       | 16,044,034                    | 12,958,968           | 20,731,411             | 12,729,222                         | 654,034                       | 1,106,672                          | 1,106,672                       | 47,196,225                   | 47,000,432          | 63,179,190            | 1,025,945                       | 34,598,154               | 3,849,647                            | 5,385,192                          | 12,747,524                            | 6,955,753                   | 475,441                     | 31,358,915           | 554,488              |
| 45                       | 16,044,034                    | 12,958,968           | 20,731,411             | 12,729,222                         | 654,034                       | 1,106,672                          | 1,106,672                       | 47,196,225                   | 47,000,432          | 62,740,511            | 469,075                         | 29,721,567               | 1,268,615                            | 2,555,201                          | 8,565,915                             | 2,665,818                   | 119,744                     | 7,464,670            | 554,488              |
| 50                       | 16,044,034                    | 12,958,968           | 20,731,411             | 12,729,222                         | 654,034                       | 1,106,672                          | 1,106,672                       | 47,196,225                   | 47,000,432          | 60,727,294            | 382,615                         | 24,339,218               | 996,896                              | 1,940,492                          | 5,780,910                             | 2,295,478                   | 86,071                      | 6,287,350            | 157,388              |
| 55                       | 16,044,034                    | 12,958,968           | 20,731,411             | 12,729,222                         | 654,034                       | 1,106,672                          | 1,106,672                       | 47,196,225                   | 47,000,432          | 53,153,963            | 336,258                         | 21,403,098               | 834,868                              | 1,615,850                          | 4,434,380                             | 1,908,434                   | 78,963                      | 6,226,768            | 81,051               |
| 60                       | 10,770,758                    | 12,616,968           | 14,099,348             | 7,404,318                          | 585,873                       | 1,106,672                          | 1,106,672                       | 20,491,952                   | 16,412,029          | 24,552,989            | 310,545                         | 19,796,160               | 755,049                              | 1,463,670                          | 3,894,295                             | 1,673,837                   | 66,235                      | 5,909,337            | 74,160               |
| 65                       | 10,770,758                    | 11,122,716           | 14,099,348             | 7,404,318                          | 585,873                       | 1,106,672                          | 1,106,672                       | 20,491,952                   | 16,412,029          | 24,552,989            | 277,790                         | 17,442,836               | 655,044                              | 1,271,339                          | 3,274,638                             | 1,371,347                   | 47,981                      | 5,402,496            | 72,836               |
| 70                       | 10,770,758                    | 10,719,404           | 14,099,348             | 7,404,318                          | 585,873                       | 1,106,672                          | 1,106,672                       | 20,491,952                   | 16,412,029          | 24,552,989            | 269,321                         | 16,813,772               | 630,297                              | 1,225,446                          | 3,134,865                             | 1,282,988                   | 45,268                      | 5,286,038            | 72,780               |
| 75                       | 10,770,758                    | 10,597,849           | 14,099,348             | 7,404,318                          | 585,873                       | 1,106,672                          | 1,106,672                       | 20,491,952                   | 16,412,029          | 24,552,989            | 266,583                         | 16,626,522               | 622,969                              | 1,213,316                          | 3,098,152                             | 1,247,626                   | 45,268                      | 5,268,379            | 72,485               |
| 80                       | 10,770,758                    | 10,095,846           | 14,099,348             | 7,404,318                          | 585,873                       | 1,095,959                          | 1,095,959                       | 20,491,952                   | 16,412,029          | 24,552,989            | 255,275                         | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 85                       | 10,770,758                    | 10,095,846           | 14,099,348             | 7,404,318                          | 585,873                       | 1,095,959                          | 1,095,959                       | 20,491,952                   | 16,412,029          | 24,552,989            | 255,275                         | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,268                      | 5,195,451            | 72,485               |
| 90                       | 10,770,758                    | 10,095,846           | 14,099,348             | 7,404,318                          | 585,873                       | 1,095,959                          | 1,095,959                       | 20,491,952                   | 16,412,029          | 24,552,989            | 255,275                         | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 45,201                      | 5,195,451            | 72,485               |
| 95                       | 10,770,758                    | 10,095,846           | 14,099,348             | 7,404,318                          | 585,873                       | 1,095,959                          | 1,095,959                       | 20,491,952                   | 16,412,029          | 24,552,989            | 255,275                         | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,728                      | 5,195,451            | 72,485               |
| 100                      | 10,770,758                    | 10,095,846           | 14,099,348             | 7,404,318                          | 585,873                       | 1,095,959                          | 1,095,959                       | 20,491,952                   | 16,412,029          | 24,552,989            | 255,275                         | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,549                      | 5,195,451            | 71,306               |

Table B-6: June Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

| Exceedance<br>Percentile | American<br>Shad-<br>Spawning | American<br>Shad-Fry | American<br>Shad-Adult | Shortnose<br>Sturgeon-<br>Fry | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Spawning | Striped<br>Bass-Fry | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Spawning | Smallmouth<br>Bass-Fry | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Shallow-<br>Fast | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|----------------------|------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|---------------------|------------------------------|-----------------------|---------------------------------|------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 24,052,567                    | 17,990,214           | 26,204,557             | 848,513                       | 1,431,598                          | 1,431,598                       | 56,216,898                   | 55,545,960          | 30,036,088                   | 63,530,962            | 1,141,787                       | 2,247,502              | 36,372,642               | 4,432,285                            | 6,052,996                          | 12,751,750                            | 18,611,517                  | 791,769                     | 34,257,996           | 1,219,247            |
| 5                        | 23,715,396                    | 17,341,934           | 25,979,248             | 838,153                       | 1,397,257                          | 1,397,257                       | 55,576,539                   | 54,914,189          | 29,832,961                   | 63,507,081            | 1,115,969                       | 1,884,459              | 31,259,080               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 694,135              |
| 10                       | 23,336,915                    | 16,205,454           | 25,595,782             | 817,736                       | 1,354,537                          | 1,354,537                       | 54,840,136                   | 53,972,535          | 29,343,790                   | 63,445,446            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 319,223              |
| 15                       | 22,193,555                    | 14,915,160           | 24,848,022             | 792,818                       | 1,303,233                          | 1,303,233                       | 52,984,699                   | 52,154,949          | 28,333,392                   | 63,445,446            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 20                       | 20,503,061                    | 13,433,674           | 23,473,515             | 753,070                       | 1,238,696                          | 1,238,696                       | 50,825,538                   | 49,745,332          | 26,740,503                   | 62,844,319            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 25                       | 18,182,027                    | 11,682,039           | 22,019,152             | 694,333                       | 1,160,873                          | 1,160,873                       | 49,450,486                   | 48,514,659          | 24,090,786                   | 61,386,033            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 30                       | 17,142,341                    | 11,030,696           | 21,513,114             | 669,862                       | 1,121,452                          | 1,121,452                       | 47,196,225                   | 47,000,432          | 22,692,507                   | 58,477,498            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 35                       | 16,044,034                    | 11,030,696           | 20,731,411             | 654,034                       | 1,095,959                          | 1,095,959                       | 47,196,225                   | 47,000,432          | 21,339,712                   | 52,309,332            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 40                       | 11,909,474                    | 11,030,696           | 14,940,358             | 617,202                       | 1,095,959                          | 1,095,959                       | 22,276,947                   | 18,173,727          | 21,339,712                   | 26,614,078            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 45                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 50                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 55                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 1,115,969                       | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 656,821                     | 33,822,081           | 268,075              |
| 60                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 984,209                         | 1,353,432              | 31,245,476               | 3,572,310                            | 5,130,584                          | 12,258,995                            | 5,607,064                   | 414,269                     | 29,534,678           | 268,075              |
| 65                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 477,022                         | 999,011                | 29,992,053               | 1,296,060                            | 2,615,203                          | 8,836,288                             | 2,704,617                   | 124,564                     | 7,635,344            | 268,075              |
| 70                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 416,399                         | 958,321                | 26,368,231               | 1,091,268                            | 2,163,950                          | 6,800,360                             | 2,481,358                   | 90,988                      | 6,449,084            | 268,075              |
| 75                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 371,580                         | 932,208                | 23,665,717               | 963,766                              | 1,866,228                          | 5,451,639                             | 2,210,441                   | 84,439                      | 6,245,958            | 119,950              |
| 80                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 330,758                         | 901,604                | 21,058,658               | 817,540                              | 1,582,751                          | 4,315,207                             | 1,857,143                   | 76,400                      | 6,164,405            | 79,187               |
| 85                       | 7,433,616                     | 11,030,696           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 285,991                         | 838,287                | 18,073,656               | 679,914                              | 1,319,410                          | 3,421,350                             | 1,447,823                   | 52,793                      | 5,542,047            | 72,851               |
| 90                       | 7,433,616                     | 10,687,968           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 269,145                         | 800,737                | 16,801,732               | 629,825                              | 1,224,666                          | 3,132,504                             | 1,280,714                   | 45,268                      | 5,284,903            | 72,485               |
| 95                       | 7,433,616                     | 10,095,846           | 11,669,625             | 479,924                       | 977,987                            | 977,987                         | 15,595,435                   | 11,709,213          | 18,630,144                   | 18,411,598            | 255,275                         | 797,300                | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,783                      | 5,195,451            | 72,485               |
| 100                      | 5,581,479                     | 9,841,684            | 10,307,936             | 412,570                       | 892,483                            | 892,483                         | 12,908,271                   | 9,225,403           | 16,765,771                   | 14,876,254            | 255,275                         | 797,300                | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 44,547                      | 5,195,451            | 71,309               |

| Exceedance<br>Percentile | American<br>Shad-Fry | American<br>Shad-<br>Juvenile | Shortnose<br>Sturgeon-<br>Fry | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-Fry | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-Fry | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|----------------------|-------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------|------------------------------|-----------------------|------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 17,989,859           | 21,651,751                    | 848,524                       | 1,431,561                          | 1,431,561                       | 55,538,095          | 30,036,002                   | 63,530,962            | 4,391,296              | 36,373,846               | 4,432,285                            | 6,052,996                          | 12,751,750                            | 33,995,037                  | 34,257,996           | 1,219,290            |
| 5                        | 17,565,220           | 20,687,296                    | 839,270                       | 1,402,995                          | 1,402,995                       | 54,676,688          | 29,795,419                   | 63,445,446            | 2,390,372              | 32,141,704               | 4,362,102                            | 6,042,834                          | 12,258,995                            | 20,276,557                  | 33,822,390           | 812,129              |
| 10                       | 16,497,989           | 20,687,296                    | 818,193                       | 1,361,456                          | 1,361,456                       | 52,609,570          | 29,091,064                   | 61,742,303            | 2,050,764              | 31,245,476               | 4,320,607                            | 5,986,247                          | 12,258,995                            | 16,318,673                  | 33,822,081           | 396,732              |
| 15                       | 14,939,980           | 20,687,296                    | 787,623                       | 1,300,321                          | 1,300,321                       | 49,092,675          | 27,727,734                   | 58,376,215            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 20                       | 12,723,563           | 20,687,296                    | 706,315                       | 1,195,987                          | 1,195,987                       | 46,842,257          | 24,552,604                   | 52,060,275            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 25                       | 11,030,696           | 20,687,296                    | 654,034                       | 1,095,959                          | 1,095,959                       | 27,025,715          | 21,339,712                   | 35,723,875            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 30                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 35                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 40                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 45                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 50                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 55                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 60                       | 11,030,696           | 20,687,296                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 65                       | 11,030,696           | 20,543,095                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,027,069                            | 13,686,128                  | 33,822,081           | 268,075              |
| 70                       | 11,030,696           | 20,174,093                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,884,459              | 29,972,086               | 4,223,756                            | 5,907,938                          | 11,450,223                            | 13,686,128                  | 32,973,116           | 268,075              |
| 75                       | 11,030,696           | 19,533,051                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 1,034,973              | 28,729,118               | 2,411,640                            | 3,984,452                          | 10,589,839                            | 2,852,624                   | 21,054,702           | 202,348              |
| 80                       | 11,030,696           | 18,665,734                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 987,935                | 27,247,806               | 1,304,823                            | 2,632,821                          | 8,766,806                             | 2,656,042                   | 7,707,918            | 159,502              |
| 85                       | 10,678,228           | 17,407,567                    | 479,924                       | 977,987                            | 977,987                         | 11,709,213          | 18,630,144                   | 18,411,598            | 941,012                | 25,558,806               | 1,095,517                            | 2,174,009                          | 6,846,255                             | 2,400,437                   | 6,456,365            | 111,503              |
| 90                       | 10,146,190           | 14,853,565                    | 442,487                       | 932,900                            | 932,900                         | 10,194,552          | 17,676,314                   | 16,338,654            | 915,389                | 22,745,093               | 929,861                              | 1,800,370                          | 5,184,068                             | 2,126,612                   | 6,240,910            | 78,234               |
| 95                       | 9,457,378            | 11,520,693                    | 390,845                       | 863,132                            | 863,132                         | 8,521,616           | 16,104,543                   | 13,814,274            | 836,292                | 18,015,163               | 677,608                              | 1,314,952                          | 3,407,746                             | 1,440,732                   | 5,529,108            | 72,485               |
| 100                      | 5,287,746            | 9,969,840                     | 163,765                       | 449,926                            | 449,926                         | 2,136,988           | 7,827,598                    | 3,777,742             | 797,300                | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 12,711               |

Table B-7: July Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

Table B-8: August Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

| Exceedance<br>Percentile | American<br>Shad-<br>Juvenile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Juvenile | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 21,651,751                    | 1,431,542                          | 1,431,542                       | 30,036,088                   | 63,530,962            | 26,005,058                      | 36,373,525               | 4,432,285                            | 6,052,996                          | 12,751,825                            | 33,995,037                  | 34,257,996           | 1,219,290            |
| 5                        | 20,687,296                    | 1,395,978                          | 1,395,978                       | 29,554,142                   | 62,163,699            | 26,005,058                      | 33,336,079               | 4,432,285                            | 6,052,996                          | 12,258,995                            | 24,276,087                  | 34,257,996           | 876,684              |
| 10                       | 20,687,296                    | 1,336,327                          | 1,336,327                       | 27,727,734                   | 56,617,358            | 25,992,557                      | 31,245,476               | 4,408,890                            | 6,049,536                          | 12,258,995                            | 21,887,007                  | 34,112,794           | 375,603              |
| 15                       | 20,687,296                    | 1,207,954                          | 1,207,954                       | 24,500,553                   | 45,446,637            | 25,947,922                      | 31,245,476               | 4,323,156                            | 6,037,181                          | 12,258,995                            | 19,475,882                  | 33,822,081           | 268,075              |
| 20                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,900,471                      | 31,245,476               | 4,320,607                            | 6,024,046                          | 12,258,995                            | 17,142,095                  | 33,822,081           | 268,075              |
| 25                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,943,497                          | 12,258,995                            | 16,318,673                  | 33,822,081           | 268,075              |
| 30                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 16,318,673                  | 33,822,081           | 268,075              |
| 35                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 40                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 45                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 50                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,258,995                            | 13,686,128                  | 33,822,081           | 268,075              |
| 55                       | 20,486,085                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 31,245,476               | 4,320,607                            | 5,907,938                          | 12,027,069                            | 13,686,128                  | 33,822,081           | 268,075              |
| 60                       | 20,391,614                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 29,972,086               | 4,320,607                            | 5,907,938                          | 12,027,069                            | 13,686,128                  | 33,822,081           | 268,075              |
| 65                       | 20,285,438                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,729,644                      | 29,972,086               | 4,316,996                            | 5,907,938                          | 11,735,245                            | 13,686,128                  | 33,551,834           | 175,275              |
| 70                       | 19,910,160                    | 932,900                            | 932,900                         | 17,676,314                   | 16,338,654            | 25,729,644                      | 29,226,786               | 4,228,973                            | 5,907,938                          | 11,374,750                            | 13,686,128                  | 33,011,767           | 175,275              |
| 75                       | 19,479,963                    | 932,900                            | 932,900                         | 17,676,314                   | 16,338,654            | 25,618,200                      | 28,226,880               | 4,041,426                            | 5,907,938                          | 11,003,021                            | 13,686,128                  | 32,189,486           | 152,846              |
| 80                       | 19,105,600                    | 918,385                            | 918,385                         | 17,349,313                   | 15,813,467            | 23,834,007                      | 27,196,885               | 3,351,736                            | 5,100,381                          | 10,473,709                            | 13,686,128                  | 28,266,779           | 121,148              |
| 85                       | 18,354,178                    | 877,246                            | 877,246                         | 16,422,511                   | 14,324,953            | 15,083,349                      | 26,113,011               | 1,628,162                            | 3,090,539                          | 9,780,887                             | 2,681,623                   | 12,644,239           | 92,467               |
| 90                       | 17,433,624                    | 834,744                            | 834,744                         | 15,464,995                   | 12,787,112            | 7,023,179                       | 24,970,965               | 1,156,078                            | 2,309,161                          | 7,001,556                             | 2,380,530                   | 6,764,821            | 72,808               |
| 95                       | 13,542,310                    | 774,730                            | 774,730                         | 14,220,760                   | 11,128,938            | 3,908,250                       | 20,911,326               | 889,759                              | 1,722,474                          | 4,867,585                             | 2,066,783                   | 6,234,940            | 66,967               |
| 100                      | 9,969,840                     | 449,926                            | 449,926                         | 7,827,598                    | 3,777,742             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 12,711               |

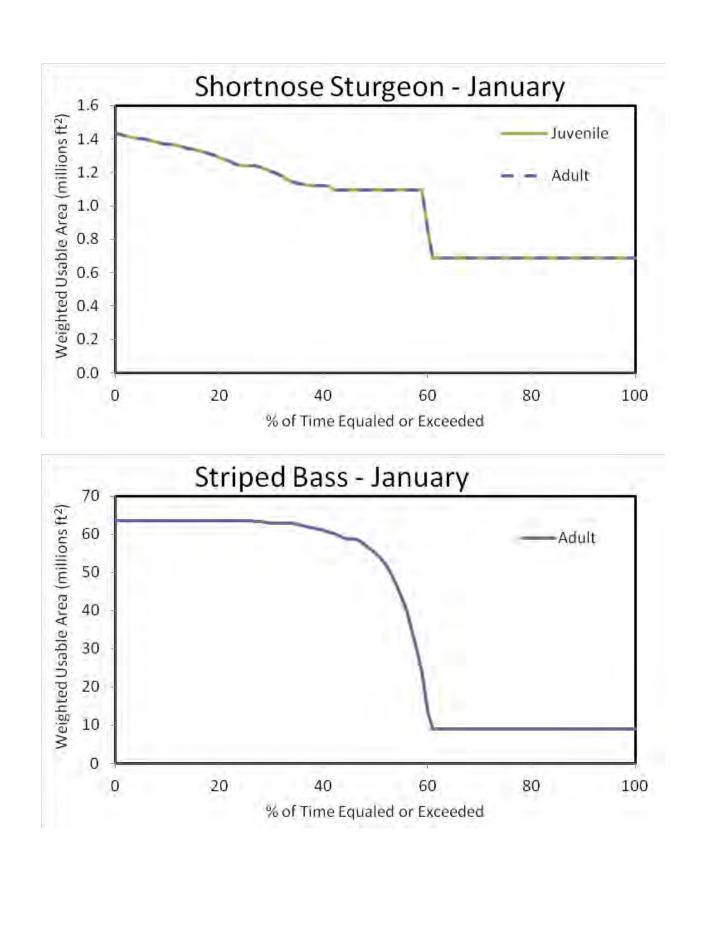
| Exceedance<br>Percentile | American<br>Shad-<br>Juvenile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Juvenile | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 21,651,763                    | 1,431,542                          | 1,431,542                       | 30,034,582                   | 63,530,119            | 26,005,058                      | 36,371,679               | 4,432,285                            | 6,052,996                          | 12,751,723                            | 33,995,037                  | 34,257,996           | 1,219,290            |
| 5                        | 21,083,995                    | 1,395,615                          | 1,395,615                       | 29,271,209                   | 63,429,745            | 25,991,060                      | 34,595,697               | 4,408,217                            | 6,049,121                          | 12,258,995                            | 25,988,359                  | 34,108,615           | 971,236              |
| 10                       | 20,687,296                    | 1,332,618                          | 1,332,618                       | 27,443,543                   | 58,963,984            | 25,943,432                      | 31,245,476               | 4,320,607                            | 6,035,938                          | 12,258,995                            | 24,215,796                  | 33,822,081           | 538,228              |
| 15                       | 20,687,296                    | 1,217,819                          | 1,217,819                       | 24,518,602                   | 47,787,361            | 25,943,432                      | 31,245,476               | 4,320,607                            | 6,035,938                          | 12,258,995                            | 23,142,612                  | 33,822,081           | 268,075              |
| 20                       | 20,687,296                    | 1,095,959                          | 1,095,959                       | 21,339,712                   | 33,656,166            | 25,943,432                      | 31,245,476               | 4,320,607                            | 6,035,938                          | 12,258,995                            | 23,142,612                  | 33,822,081           | 268,075              |
| 25                       | 20,687,296                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,943,432                      | 31,245,476               | 4,320,607                            | 6,035,938                          | 12,027,069                            | 19,503,178                  | 33,822,081           | 268,075              |
| 30                       | 20,391,614                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,943,432                      | 29,992,053               | 4,314,472                            | 6,035,938                          | 11,801,041                            | 19,503,178                  | 33,526,764           | 268,075              |
| 35                       | 20,011,760                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,897,566                      | 29,731,368               | 4,314,472                            | 6,023,242                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 175,275              |
| 40                       | 19,750,895                    | 977,987                            | 977,987                         | 18,630,144                   | 18,411,598            | 25,873,004                      | 28,351,869               | 4,314,472                            | 6,016,443                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 157,191              |
| 45                       | 19,750,895                    | 932,900                            | 932,900                         | 17,676,314                   | 16,338,654            | 25,779,181                      | 28,351,869               | 4,314,472                            | 5,984,211                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 50                       | 19,750,895                    | 891,280                            | 891,280                         | 16,738,672                   | 14,832,730            | 25,729,644                      | 28,351,869               | 4,314,472                            | 5,907,938                          | 11,485,220                            | 18,679,756                  | 33,526,764           | 127,684              |
| 55                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,729,644                      | 28,351,869               | 4,247,992                            | 5,907,938                          | 11,485,220                            | 16,318,673                  | 33,150,701           | 127,684              |
| 60                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,729,644                      | 28,351,869               | 4,179,828                            | 5,907,938                          | 11,167,047                            | 13,686,128                  | 32,691,070           | 127,684              |
| 65                       | 19,268,086                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,729,644                      | 28,023,518               | 4,168,141                            | 5,907,938                          | 10,865,964                            | 13,686,128                  | 32,691,070           | 127,684              |
| 70                       | 19,018,645                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,354,508                      | 26,500,192               | 3,871,652                            | 5,836,963                          | 10,865,964                            | 13,686,128                  | 31,522,263           | 101,297              |
| 75                       | 18,939,243                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 24,963,414                      | 26,500,192               | 3,637,905                            | 5,702,946                          | 10,358,496                            | 13,686,128                  | 30,635,743           | 73,294               |
| 80                       | 18,194,706                    | 812,610                            | 812,610                         | 14,966,365                   | 11,986,274            | 21,663,837                      | 25,775,968               | 2,566,447                            | 4,245,624                          | 9,863,056                             | 3,185,504                   | 23,000,065           | 73,294               |
| 85                       | 17,546,594                    | 812,610                            | 812,610                         | 14,966,365                   | 11,986,274            | 13,348,866                      | 24,692,417               | 1,513,725                            | 2,928,542                          | 9,258,150                             | 2,496,164                   | 10,897,157           | 72,485               |
| 90                       | 16,557,924                    | 776,745                            | 776,745                         | 14,260,420                   | 11,174,541            | 5,538,409                       | 23,600,510               | 1,070,862                            | 2,115,630                          | 6,579,919                             | 2,214,662                   | 6,414,111            | 67,303               |
| 95                       | 11,722,623                    | 717,506                            | 717,506                         | 13,094,421                   | 9,833,814             | 3,337,848                       | 18,300,409               | 688,853                              | 1,336,689                          | 3,474,087                             | 1,475,313                   | 5,592,210            | 57,408               |
| 100                      | 9,969,840                     | 449,926                            | 449,926                         | 7,827,598                    | 3,777,742             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 12,711               |

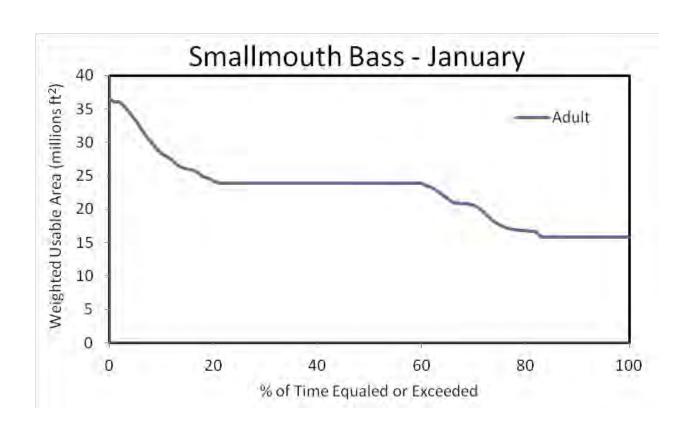
Table B-9: September Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

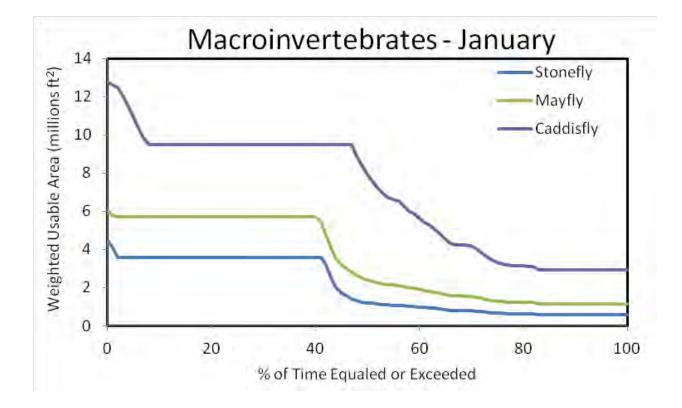
Table B-10: October Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.

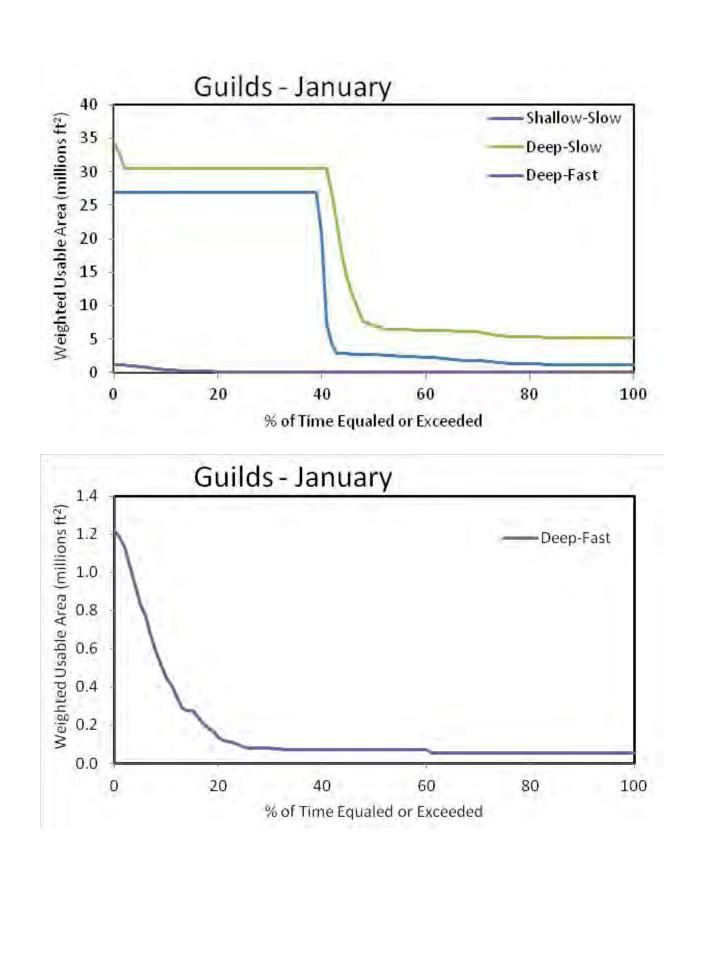
| Exceedance<br>Percentile | American<br>Shad-<br>Juvenile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Juvenile | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 21,651,726                    | 1,431,557                          | 1,431,557                       | 30,034,951                   | 63,530,878            | 26,004,794                      | 36,372,562               | 4,431,780                            | 6,052,923                          | 12,751,718                            | 30,051,989                  | 34,254,862           | 1,218,604            |
| 5                        | 21,144,843                    | 1,405,043                          | 1,405,043                       | 29,535,518                   | 63,445,446            | 25,943,432                      | 34,852,357               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 25,301,038                  | 33,526,764           | 1,020,787            |
| 10                       | 19,750,895                    | 1,367,950                          | 1,367,950                       | 28,389,401                   | 62,915,149            | 25,943,432                      | 30,852,075               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 23,142,612                  | 33,526,764           | 703,664              |
| 15                       | 19,750,895                    | 1,301,027                          | 1,301,027                       | 27,131,847                   | 59,537,379            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 261,738              |
| 20                       | 19,750,895                    | 1,210,875                          | 1,210,875                       | 24,395,997                   | 52,563,650            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 25                       | 19,750,895                    | 1,117,936                          | 1,117,936                       | 22,551,760                   | 43,830,530            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 30                       | 19,750,895                    | 1,095,959                          | 1,095,959                       | 21,339,712                   | 29,679,213            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 35                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 40                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 45                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 50                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 55                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,873,004                      | 28,351,869               | 4,307,352                            | 6,016,443                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 60                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,828,561                      | 28,351,869               | 4,168,948                            | 6,000,836                          | 11,191,601                            | 19,503,178                  | 32,674,739           | 127,684              |
| 65                       | 19,585,268                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,285,375                      | 28,351,869               | 3,835,819                            | 5,809,141                          | 10,865,964                            | 19,503,178                  | 31,377,620           | 127,684              |
| 70                       | 19,018,645                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 23,211,322                      | 26,500,192               | 3,172,376                            | 4,747,953                          | 10,370,257                            | 4,181,541                   | 26,741,702           | 127,684              |
| 75                       | 18,493,205                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 16,280,890                      | 26,266,212               | 1,707,173                            | 3,202,386                          | 9,865,930                             | 2,675,990                   | 13,850,478           | 78,600               |
| 80                       | 17,712,200                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 9,831,882                       | 25,082,384               | 1,287,796                            | 2,597,137                          | 8,709,252                             | 2,427,845                   | 7,583,954            | 73,294               |
| 85                       | 16,648,989                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 5,226,448                       | 24,342,135               | 1,046,809                            | 2,058,679                          | 6,320,097                             | 2,178,209                   | 6,372,891            | 72,485               |
| 90                       | 13,459,439                    | 812,610                            | 812,610                         | 14,966,365                   | 11,986,274            | 3,600,217                       | 20,791,622               | 804,322                              | 1,557,564                          | 4,226,178                             | 1,818,371                   | 6,110,455            | 72,240               |
| 95                       | 10,491,836                    | 740,476                            | 740,476                         | 13,546,543                   | 10,353,688            | 3,128,716                       | 16,572,416               | 620,852                              | 1,209,811                          | 3,087,544                             | 1,237,408                   | 5,263,277            | 61,245               |
| 100                      | 9,969,840                     | 581,701                            | 581,701                         | 10,421,350                   | 6,760,175             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 34,723               |

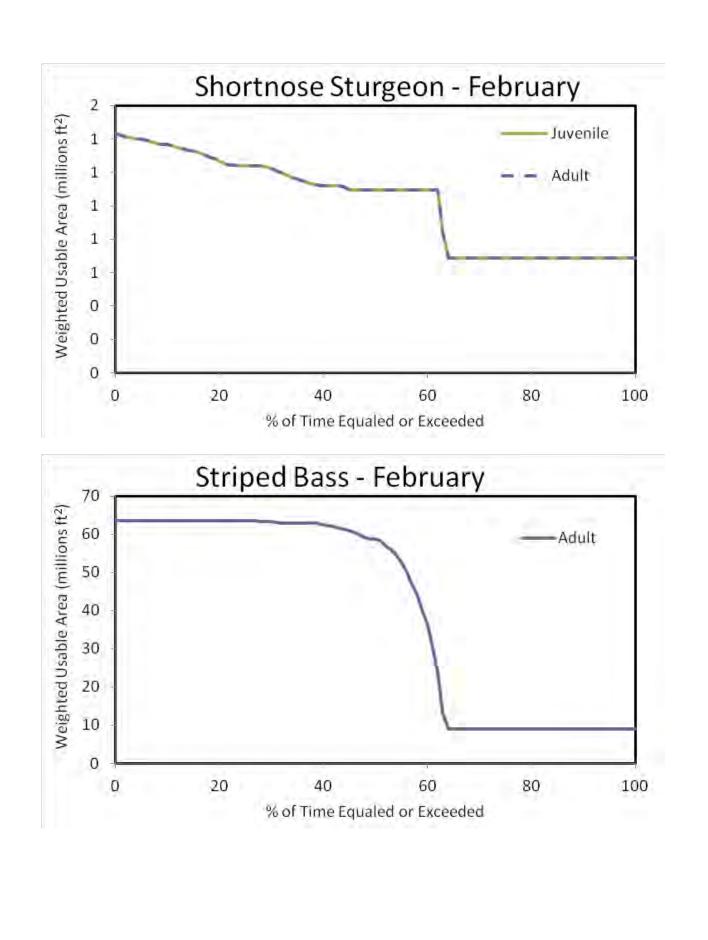
| Exceedance<br>Percentile | American<br>Shad-<br>Juvenile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Juvenile | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow | Guilds-<br>Deep-Fast |
|--------------------------|-------------------------------|------------------------------------|---------------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|----------------------|
| 0                        | 21,651,567                    | 1,431,575                          | 1,431,575                       | 30,036,145                   | 63,530,962            | 26,004,529                      | 36,372,513               | 4,431,275                            | 6,052,850                          | 12,751,728                            | 28,701,465                  | 34,253,636           | 1,219,290            |
| 5                        | 20,719,821                    | 1,399,988                          | 1,399,988                       | 29,808,396                   | 63,506,685            | 25,943,432                      | 33,394,237               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 23,142,612                  | 33,526,764           | 890,083              |
| 10                       | 19,750,895                    | 1,357,349                          | 1,357,349                       | 29,168,079                   | 63,445,446            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 457,536              |
| 15                       | 19,750,895                    | 1,310,688                          | 1,310,688                       | 27,836,790                   | 63,445,446            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 206,298              |
| 20                       | 19,750,895                    | 1,242,208                          | 1,242,208                       | 27,349,375                   | 63,004,178            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 25                       | 19,750,895                    | 1,216,237                          | 1,216,237                       | 25,563,197                   | 62,784,821            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 30                       | 19,750,895                    | 1,144,077                          | 1,144,077                       | 23,407,396                   | 60,255,837            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 35                       | 19,750,895                    | 1,117,971                          | 1,117,971                       | 22,554,003                   | 56,129,423            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 40                       | 19,750,895                    | 1,095,959                          | 1,095,959                       | 21,339,712                   | 46,196,954            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 45                       | 19,750,895                    | 1,095,959                          | 1,095,959                       | 21,141,749                   | 24,134,520            | 25,943,432                      | 28,351,869               | 4,314,472                            | 6,035,938                          | 11,485,220                            | 19,503,178                  | 33,526,764           | 127,684              |
| 50                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 25,873,004                      | 28,351,869               | 4,179,828                            | 6,016,443                          | 11,485,220                            | 19,503,178                  | 32,691,070           | 127,684              |
| 55                       | 19,750,895                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 24,557,505                      | 28,351,869               | 3,454,599                            | 5,436,886                          | 10,865,964                            | 7,229,582                   | 29,632,575           | 127,684              |
| 60                       | 19,018,645                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 14,527,362                      | 27,337,924               | 1,591,479                            | 3,038,611                          | 9,804,146                             | 2,709,772                   | 12,084,214           | 127,684              |
| 65                       | 17,736,734                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 7,361,256                       | 25,789,895               | 1,171,932                            | 2,343,824                          | 7,613,450                             | 2,505,830                   | 6,863,418            | 127,684              |
| 70                       | 16,295,351                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 4,835,563                       | 24,342,754               | 1,016,672                            | 1,987,319                          | 5,994,542                             | 2,252,807                   | 6,321,242            | 78,607               |
| 75                       | 13,799,599                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 3,649,278                       | 21,282,971               | 828,643                              | 1,603,909                          | 4,389,992                             | 1,889,712                   | 6,209,724            | 75,187               |
| 80                       | 13,227,071                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 3,566,702                       | 20,455,974               | 787,708                              | 1,525,905                          | 4,114,274                             | 1,769,637                   | 6,042,642            | 72,860               |
| 85                       | 11,234,795                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 3,256,981                       | 17,611,305               | 661,686                              | 1,284,177                          | 3,313,819                             | 1,391,771                   | 5,439,765            | 72,485               |
| 90                       | 10,572,731                    | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 3,143,480                       | 16,683,874               | 625,213                              | 1,217,031                          | 3,109,397                             | 1,258,457                   | 5,273,788            | 72,485               |
| 95                       | 9,969,840                     | 812,610                            | 812,610                         | 14,966,365                   | 11,986,274            | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 72,055               |
| 100                      | 9,969,840                     | 626,835                            | 626,835                         | 11,309,730                   | 7,781,682             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            | 42,262               |


Table B-11: November Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.


Table B-12: December Habitat Exceedance Percentiles. Areas listed in ft<sup>2</sup>.


| Exceedance<br>Percentile | Shortnose<br>Sturgeon-<br>Juvenile | Shortnose<br>Sturgeon-<br>Adult | Striped<br>Bass-<br>Juvenile | Striped<br>Bass-Adult | Smallmouth<br>Bass-<br>Juvenile | Smallmouth<br>Bass-Adult | Macroinver-<br>tebrates-<br>Stonefly | Macroinver-<br>tebrates-<br>Mayfly | Macroinver-<br>tebrates-<br>Caddisfly | Guilds-<br>Shallow-<br>Slow | Guilds-<br>Deep-Slow |
|--------------------------|------------------------------------|---------------------------------|------------------------------|-----------------------|---------------------------------|--------------------------|--------------------------------------|------------------------------------|---------------------------------------|-----------------------------|----------------------|
| 0                        | 1,431,589                          | 1,431,589                       | 30,036,088                   | 63,530,962            | 26,004,529                      | 36,372,160               | 4,432,006                            | 6,052,850                          | , 12,751,669                          | 30,176,591                  | 34,256,906           |
| 5                        | 1,398,753                          | 1,398,753                       | 29,841,318                   | 63,511,287            | 24,934,773                      | 32,842,279               | 3,595,462                            | 5,694,125                          | 11,485,220                            | 26,961,058                  | 30,474,769           |
| 10                       | 1,367,327                          | 1,367,327                       | 29,527,060                   | 63,450,014            | 24,934,773                      | 28,351,869               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 15                       | 1,321,246                          | 1,321,246                       | 28,781,769                   | 63,445,446            | 24,934,773                      | 26,033,500               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 20                       | 1,272,613                          | 1,272,613                       | 27,672,899                   | 63,445,446            | 24,934,773                      | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 25                       | 1,239,826                          | 1,239,826                       | 26,827,405                   | 63,445,446            | 24,934,773                      | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 30                       | 1,181,187                          | 1,181,187                       | 24,438,266                   | 63,087,225            | 24,934,773                      | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 35                       | 1,127,626                          | 1,127,626                       | 23,036,994                   | 62,797,257            | 24,934,773                      | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 26,961,058                  | 30,474,769           |
| 40                       | 1,118,471                          | 1,118,471                       | 22,575,872                   | 61,509,329            | 24,934,773                      | 23,853,989               | 3,595,462                            | 5,694,125                          | 9,500,975                             | 19,503,178                  | 30,474,769           |
| 45                       | 1,095,959                          | 1,095,959                       | 21,339,712                   | 58,945,361            | 17,566,559                      | 23,853,989               | 1,856,811                            | 3,379,167                          | 9,500,975                             | 2,784,142                   | 15,584,844           |
| 50                       | 1,095,959                          | 1,095,959                       | 21,339,712                   | 55,302,003            | 7,934,553                       | 23,853,989               | 1,198,818                            | 2,402,604                          | 7,878,313                             | 2,647,395                   | 7,030,615            |
| 55                       | 1,095,959                          | 1,095,959                       | 21,339,712                   | 41,783,798            | 5,548,541                       | 23,853,989               | 1,071,643                            | 2,117,480                          | 6,588,357                             | 2,389,071                   | 6,415,450            |
| 60                       | 876,765                            | 876,765                         | 16,411,671                   | 14,307,543            | 4,182,057                       | 23,459,755               | 952,032                              | 1,843,436                          | 5,359,039                             | 2,192,512                   | 6,244,211            |
| 65                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,644,597                       | 21,236,087               | 826,322                              | 1,599,487                          | 4,374,361                             | 1,882,904                   | 6,200,252            |
| 70                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,535,440                       | 20,142,877               | 772,211                              | 1,496,373                          | 4,009,889                             | 1,724,178                   | 5,979,386            |
| 75                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,237,902                       | 17,448,729               | 655,277                              | 1,271,788                          | 3,276,008                             | 1,372,061                   | 5,403,800            |
| 80                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,155,051                       | 16,771,233               | 628,632                              | 1,222,690                          | 3,126,525                             | 1,274,954                   | 5,282,026            |
| 85                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            |
| 90                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            |
| 95                       | 684,999                            | 684,999                         | 12,454,576                   | 9,098,087             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            |
| 100                      | 577,537                            | 577,537                         | 10,339,386                   | 6,665,929             | 3,033,449                       | 15,853,210               | 592,708                              | 1,163,221                          | 2,946,532                             | 1,101,587                   | 5,195,451            |


| Guilds-<br>Deep-Fast |
|----------------------|
| 1,219,219            |
| 812,129              |
| 418,376              |
| 219,905              |
| 117,374              |
| 81,971               |
| 76,429               |
| 72,842               |
| 72,563               |
| 72,485               |
| 72,485               |
| 72,485               |
| 71,508               |
| 51,978               |
| 51,978               |
| 51,978               |
| 51,978               |
| 51,978               |
| 51,978               |
| 51,978               |
| 34,027               |


## APPENDIX C: MONTHLY HABITAT DURATION CURVES – PERIOD OF RECORD JAN 1930 TO DEC 2007.

