

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III

Four Penn Center 1600 John F. Kennedy Boulevard Philadelphia, Pennsylvania 19103-2852

Mr. D. Lee Currey, Director Water and Science Administration Maryland Department of the Environment 1800 Washington Blvd., Suite 4502 Baltimore, Maryland 21230-1718

Dear Mr. Currey,

Recently, the Maryland Department of the Environment (MDE) adopted amendments to the State's Water Quality Standards (WQS) in the Code of Maryland Regulations (COMAR) *Title 26*, *Department of the Environment, Subtitle 08, Water Pollution* (COMAR 26.08.02). In this letter, the U.S. Environmental Protection Agency, Region 3 (EPA) is acting on only those WQS revisions submitted for approval by MDE in accordance with the Clean Water Act (CWA) Section 303(c).

As part of its triennial review, the MDE published in the *Maryland Register* the Notice of Final Action to amend its WQS on October 23, 2022. The Maryland Office of the Attorney General, certified in a letter dated October 31, 2022, that these revisions were duly adopted in accordance with Maryland's laws. These revisions were submitted by the MDE to the U.S. Environmental Protection Agency (EPA), Region 3, as required under the Clean Water Act (CWA) Section 303(c)(2)(A), 33 U.S.C. §1313(c)(2)(A), and 40 CFR Part 131.20(c). EPA received this package on April 24, 2023.

EPA has completed its review of the revisions to Maryland's WQS. Based on the review of the MDE submission and supporting documentation, EPA finds that the new or revised provisions in Maryland's regulation which Maryland submitted for approval are consistent with the CWA and EPA's implementation regulations at 40 C.F.R. Part 131. The specific provisions EPA is approving, both substantive and non-substantive, and a brief rationale for the approval can be found in Enclosure 1 to this letter.

Note that EPA is taking no action on any changes to COMAR that were published in the Maryland Register on October 23, 2022, but not submitted to EPA for review and approval. EPA is also not taking action on two provisions that were submitted for EPA's review and approval because those provisions included errors. Maryland deleted the footnote for Pentachlorophenol (PCP) in Table 6. Toxic Substances for Ambient Water Quality Criteria --- Pesticides and Chlorinated Compounds (COMAR 26.08.02.03-2G(6)). That footnote referred to COMAR 26.08.02.03-2D of the regulation, which indicates that the toxicity of certain substances in Tables 1 and 4 of §G of this regulation is increased or decreased by hardness or pH. It is our understanding that Maryland intended to delete the indication that PCP is affected by hardness, but inadvertently also deleted the indication that PCP is affected by pH (consistent with EPA's CWA 304(a) recommendation for PCP). Because EPA is not taking CWA §303(c) action on this footnote, the PCP water quality criteria effective for CWA purposes remains that the criteria that are a function of pH. EPA is also not taking action on the deletion of Table 1 Chronic Ammonia Criteria for Waters Where Freshwater Fish Early Life Stages May be Present (COMAR 26.08.02.03-2I(5)), as well as the equation included as a footnote to that table. Due to an error, Maryland did not submit the revised Table 1 and the accompanying equation for review and approval. Until such time that Maryland submits a revised table and equation, or other appropriate revision and EPA approves under CWA §303(c), the previously approved Table 1 and equation will remain effective for CWA purposes. All other new or revised provisions of the ammonia criteria that were submitted for EPA review were approved, and the details of EPA's approval can be found in Enclosure 1 to this letter.

Under Section 7 of the Endangered Species Act (ESA), 42 U.S.C. §1536, EPA must ensure that the Agency's approval of these modifications to the State's WQS regulation will not jeopardize the continued existence of Federally listed threatened and endangered species and their critical habitat in Maryland. To fulfill this obligation, EPA prepared biological evaluations of the new or revised provisions of Maryland's regulation which concluded that EPA's approval of Maryland's WQS is not likely to adversely affect (NLAA) listed species and their critical habitat. The Chesapeake Bay Field Office of the U.S. Fish and Wildlife Service concurred with EPA's NLAA conclusion on November 8, 2022.

EPA requested concurrence, or in the alternative, requested formal consultation with the Greater Atlantic Regional Fisheries Office of NOAA National Marine Fisheries Service (NOAA Fisheries) for the proposed aquatic life criteria for cadmium and ammonia. NOAA issued a biological opinion (BiOp) on April 27, 2023. That BiOp concluded that EPA's action to approve Maryland's acute cadmium criterion, and acute and chronic ammonia criteria are not likely to adversely affect ESA-listed species under NOAA Fisheries jurisdiction. The BiOp also concluded that EPA's action to approve Maryland's revised freshwater chronic cadmium criterion is likely to adversely affect, but is not likely to jeopardize, the continued existence of shortnose sturgeon or the Chesapeake Bay Distinct Population Segments of Atlantic sturgeon. NOAA Fisheries also issued an incidental take statement in accordance with ESA Section 7(a)(2).

NOAA Fisheries concluded in its BiOp that two reasonable and prudent measures (RPMs) are necessary or appropriate to minimize the impact of the amount or extent of incidental take on threatened and endangered species resulting from exposure to cadmium within the freshwater chronic criterion. In accordance with those RPMs, EPA reminds MDE of the importance of compliance with permit limits based on such criteria in all NPDES permits, including general permits, to protect threatened and endangered species, including the Atlantic and shortnose sturgeon. EPA encourages MDE to monitor ammonia and cadmium in areas where ESA-listed Atlantic and shortnose sturgeon occur. If EPA becomes aware of new information that indicates revisions to criteria subject to this consultation may be necessary to protect threatened and endangered species, EPA will work with MDE to revise water quality standards or take other actions, as appropriate. Additional information on the ESA consultation and the RPMs can be found in Enclosure 2 to this letter.

EPA thanks MDE for their efforts to review and revise its WQS regulation and looks forward to working with MDE on future revisions. If you have any questions regarding this action, please do not hesitate to contact me or have your staff contact Gregory Voigt at 215-814-5737, or Voigt.Gregory@epa.gov, or Hunter Pates at 214-814-3385, or Pates.Hunter@epa.gov.

Sincerely,

Catherine A. Libertz, Director Water Division

Enclosures (2)

cc: Matthew Stover, MDE-WSA

Enclosure 1

Summary of Maryland's New and Revised Water Quality Standards – 2023 Triennial Review Submission

As part of its triennial review, the Maryland Department of the Environment (MDE) adopted amendments to its Water Quality Standards (WQS) in the Code of Maryland Regulations (COMAR). These amendments were published in *Maryland Register* on October 23, 2022 and submitted to the U.S. Environmental Protection Agency (EPA), Region III, for review on April 24, 2023. Pursuant to Clean Water Act (CWA) Section 303(c) and 40 C.F.R. Part 131, EPA is providing this summary and brief rationale of its approval of the following revisions to Maryland's WQS regulations:

Table 1
Revisions to MD WQS that EPA is approving pursuant to Section 303(c) of the Clean Water Act

Section Approved	Description of Revision	EPA Rationale
COMAR 26.08.02.08. A(6) Stream Segment Designations and Existing Uses	Text was added to the general portion of this regulation to provide notification to the reader that some water bodies have existing uses that may not be protected by the codified designated use class. However, these existing uses and the water quality necessary to support them must be protected per Maryland's antidegradation policy in COMAR 26.08.02.04-1. These existing uses will be described, maintained, and made available on the MDE website.	This revision clarifies language surrounding the application of existing uses and designated uses, as well as MDE's antidegradation policy. These revisions are consistent with the definition of existing uses at 40 CFR § 131.3(e) and the requirement to protect the existing uses at 40 CFR § 131.12(a).
COMAR 26.08.02.08B	Amendments were made to clarify the extent of tidal influence and where the public water supply use applied. This consisted of correcting/clarifying the extent of the mainstem Susquehanna that should be designated in tidal (Class II) versus nontidal (Class I) waters. In this case, the	In cases where the Public Water Supply designated use was added, EPA is
Sub-Basin 02-12-02:	Department clarified that Class I should extend downstream and terminate at the head of tide near Spencer Island with Class II starting at Spencer Island and continuing downstream. This also	approving these revisions

Section Approved		Desc	ription of	f Revisi	on		EPA Rationale
Lower Susquehanna River Area (1) Class I-P (2) Class II (3) Class II-P	included adding latitudinal and lodelineation between the Class II-corrections made to waters in the water supply designated use to all upstream of the mouth. These proportion of the regulation with ass tributaries upstream of other "-P" were not assigned the public water supply designation elsewhere in twater source, MDE added the "-F provision result in designated use	P area an area of t l nontida posed chociated C' waters (er supply the State	Ind the polythe Susque I tributarinanges resour and upstrates. In orange and to protestion to the susception of the susc	ygon de channa es that is sulted a rees. In eam of rder to le to vide up hose wa	fining the C River inclu flow into the fter the Dep this case, N a surface we be consisted ostream pro- ters. In no	Class II area. Other ide adding the "-P" public ne Susquehanna River coartment reviewed this MDE realized that several vater supply system intake) int with the public water otections for a drinking case did revisions to this	as consistent with 40 CFR §131.10.
COMAR 26.08.02.08B	The following waterbodies were	redesigna	ated from	Class I	-P to Class	III-P	Based on temperature and biological data, these
Sub-Basin	(s) Unnamed tributary to Deer Creek and all tributaries	39.643704	-76.41237	Runs para	llel to Rocks Road		stream segments were redesignated as Class III
02-12-02: Lower Susquehanna	(t) Unnamed tributary to Falling Branch and all tributaries	39.683601	-76.439217		ough Rocks State Falling Branch		streams. This is an increase in protection. EPA is approving these
River Area	(u) Unnamed tributary to Conowingo Reservoir and all tributaries	39.717647	-76.224782	Flows from Susquehan	n Eckman Lane to nna River		revisions as consistent with 40 CFR §131.10.
(5) Class III- P						•	
COMAR 26.08.02.08H	The following waterbody was rec	designate	d from Cl	lass I-P	to Class III	I-P	Based on temperature and biological data, this stream
Sub-Basin 02-13-06: Elk River Area	Mill Creek	39.585249	-76.052864		Upstream of an unnamed tributary near Reservoir Rd.		segment was redesignated as a Class III stream. This is an increase in protection. EPA is approving this revision as consistent with 40 CFR § 131.10.

Section Approved	Des	cription	of Revis	sion		EPA Rationale
(4) Class III- P						
COMAR 26.08.02.08K	The following waterbodies were redesign	nated fro	om Class	I-P to Class	III-P	Based on temperature and biological data, these stream segments were
Sub-Basin 02-13-09: Patapsco	(p) Unnamed Tributary to North Branch Patapsco River and all tributaries	39.534575	-76.891732	Near Wesley Road		redesignated as Class III streams. This is an increase in protection.
River Area	(q) Unnamed tributary to the West Branch North Branch Patapsco River and all tributaries	39.574623	-76.955109	Near Tannery Road		EPA is approving this revision as consistent with
(4) Class III- P	(r) Unnamed tributary to the West Branch North Branch Patapsco River and all tributaries	39.559758	-76.927383	Near Dutrow Road		40 CFR § 131.10.
	(s) Unnamed tributary to the West Branch North Branch Patapsco River and all tributaries	39.553998	-76.91500	Near Reese Road		
	(t) Unnamed tributary to Cranberry Branch and all tributaries	39.608109	-76.958926	Near Guadelupe Drive		
	(u) Unnamed tributary to Liberty Reservoir and all tributaries	39.432231	-76.940664	Flows from area near Woodridge Lane		
	(v) Unnamed tributary to Liberty Reservoir and all tributaries	39.432498	-76.940303	Flows from area near Sykesville Road		
COMAR 26.08.02.08P	The following waterbodies were redesign	nated fro	om Class	I-P to Class	III-P	Based on temperature and biological data, these stream segments were
Sub-Basin 02-14-03: Middle Potomac						redesignated as Class III streams. This is an increase in protection. EPA is approving this
River Area						

Section Approved		Desc	ription o	f Revision		EPA Rationale
(4) Class III-	(s) Flickinger Branch and all tributaries	39.450649	-77.135427	Near unnamed road off of Black Ankle Road		revision as consistent with 40 CFR § 131.10.
	(t) Unnamed Tributary to Big Pipe Creek and all tributaries	39.675983	-76.919152	Near Dug Hill Drive		
	(u) Unnamed Tributary to Big Pipe Creek and all tributaries	39.657544	-76.92231	Near Route 27 Manchester Road		
	(v) Weldon Creek	39.478131	-77.11824	Upstream of tributary near Hoopers Delight Road		
COMAR 26.08.02.08R Sub-Basin	The following waterbody was add waterbody was designated Class		nm miles t	to Class III-P; prev	iously that portion of the	Based on temperature and biological data, this stream segment was redesignated as a Class III-P stream.
02-14-10: North Branch Potomac River Area (4) Class III- P	(4) Class III-P: (a) North Branch Potomac River mainstem from below Jennings Randolph Dam downstream to the confluence with [Laurel Run near Bloomington] Savage River	- 1	.1054876] -79.	067187 Mainstem only. [From Jennings Randolph Dam downstream to the confluence with Laurel Run near Bloomington]		This is an increase in protection. EPA is approving this revision as consistent with 40 CFR § 131.10.
COMAR 26.08.02.08S Sub-Basin	The following waterbody was add waterbody was designated Class		um miles t	to Class III-P; prev	iously that portion of the	Based on temperature and biological data, this stream segment was redesignated as a Class III-P stream.
05-02-02: Youghioghen y River Area (4) Class III-	(b) Piney Creek and all tributaries [39.7213: 39.72249		.	tream from the Frostburg rshed property (near Jay]		This is an increase in protection. EPA is approving this revision as consistent with 40 CFR § 131.10
P Class III-						131.10

Section Approved		Desci	ription of R	evision			EPA Rationale
COMAR 26.08.02.03-	[Deleted text in brackets] a	and added text in	n italics				Criteria consistent with EPA's recommendations
2G				Aquatic L	ife (μg/L)		published in the Aquatic
Numerical Criteria for	Substance	CAS#	Fresh	Water	Salt	Water	Life Ambient Water Quality Criteria Cadmium – 2016
Toxic			Acute	Chronic	Acute	Chronic	(EPA-820-R-16-002).
Substances Waters	Cadmium	7440439	[2.0] 1.8	[0.25] 0.72	[40] <i>33.13</i>	[8.8] 7.9	
Tables of Ambient Water Quality Criteria Table 1. Toxic Substances Criteria for Ambient							
Surface Waters							
COMAR 26.08.02.03-	[Deleted text in brackets] a	and added <i>text in</i>	ı italics				New and revised criteria are consistent with EPA's
2G.08.02.03-			Hu	ıman Healtl	n for Cons	umption of:	National Recommended
Numerical Criteria for	Substance	CAS#		ing Water + nism (μg/L)		Organism Only (µg/L)	Human Health Water Quality Criteria – 2015 Update (80 FR 36986).
Toxic Substances	1,1 Dichloroethylene (DCE)	75354	[3	30] <i>300</i>		[7100] 20000	Criteria for carcinogens are adopted based on a risk
Waters	1,2,4,5- Tetrachlorobenzene	95943		0.03		0.03	level of 10 ⁻⁵ (indicated by footnote "a").
	1,2-Dichlorobenzene	95501	[42	20] 1000		[1300] 3000	

Section Approved		Descr	iption of Revision		EPA Rationale
Table 4.	1,2-Dichloroethane	107062	$[3.8] 99^a$	$[370] 6500^a$	
Toxic Substances	1,2-Diphenylhydrazine	122667	$[0.36] \ 0.3^a$	[2] 2 ^a	
for Ambient Water	1,2-Trans- Dichloroethylene	156605	[140] 100	[10000] 4000	
Quality	1,4-Dichlorobenzene	106467	[63] 300	[190] 900	
Criteria –	2,4,5-Trichlorophenol	95954	300	600	
Organic	2,4-Dimethylphenol	105679	[380] 100	[850] 3000	
Compounds	2-Chloronapthalene	91587	[1000] 800	[1600] 1000	
	2-Methyl-4,6- Dinitrophenol	534521	[13] 2	[280] 30	
	3,3'-Dichlorobenzidine	91941	$[0.21] 0.49^a$	$[0.28] 1.5^a$	
	3-Methyl-4-Chlorophenol	59507	500	2000	
	Acrylonitrile	107131	$[0.51] 0.61^a$	$[2.5] 70^a$	
	Benzidine	92875	$[0.00086] \ 0.0014^a$	$[0.002] \ 0.11^a$	
	Bis(2-Chloroethyl) Ether	111444	0.3^{a}	$[5.3] 22^a$	
	Bis2(Chloroisopropyl) Ether	108601	[1400] 200	[65000] 4000	
	Bis(Chloromethyl) Ether	542881	0.0015^{a}	0.17^{a}	
	Carbon tetrachloride	56235	$[2.3] 4^a$	[16] 50^a	
	Chlorodibromomethane	124481	[See Trihalomethanes] 8^a	[130] <i>210</i> ^a	
	Chloroform	67663	[See Trihalomethanes] 60	[4700] 2000	
	Chlorophenoxy Herbicide (2,4-D)	94757	1300	12000	
	Chlorophenoxy Herbicide (2,4,5-TP)	93721	100	400	
	Dinitrophenols	25550587	10	1000	

Section Approved			Descri	ption of I	Revision			EPA Rationale
	Hexachlorobenz	ene	118741	[0.00	28] 0.00079 ^a	[0.00	$029] 0.00079^a$	
	Hexachlorocyclop diene	enta-	77474		[40] 4		[1100] 4	
	Hexachlorocycloho (HCH)-Technic		608731		0.066^a		0.1^a	
	Isophorone		78591	[3	350] <i>340^a</i>	[90	600] <i>18000</i> ^a	
	Methoxychlor	•	72435		0.02		0.02	
	Methyl bromid	le	74839		[47] 100	[1	500] 10000	
	Methylene chlor	ride	75092	[46] 200^a	[59	$[900] 10000^a$	
	Nitrobenzene	:	98953		[17] 10		[690] <i>600</i>	
	Phenol		108952	[10	0000] 4000	[860	0000] 300000	
	Tetrachloroethyl	ene	127184	[6.9] 100^a		$[33] 290^a$	
	Trichloroethylene ((TCE)	79016		[25] 6 ^a		[300] 70 ^a	
	Vinyl chloride	e	75014	[0]	.25] 0.22^a		[24] <i>16</i> ^a	
COMAR	Deleted:							EPA is approving this
26.08.02.03-	Defeted.							removal of 2,4-
2		CAS	Human	Health fo	r Consumption o	f:		Dinitrophenol. 2,4 Dinitrophenol is one of six
Numerical Criteria for	Substance	#	Drinking V Organism		Organism Ο (μg/L)	nly		isomers of the "Dinitrophenols" criterion
Toxic Substances Waters	[2,4- Dinitrophenol	51285	69		5300]			that was added by MD.
Table 4. Toxic Substances for Ambient								

Section Approved		Descr	iption of Revision		EPA Rationale
Water Quality Criteria – Organic Compounds COMAR	[Deleted text in brackets] and	added text in	italics		New and revised criteria
26.08.02.03- 2 Numerical	Substance	CAS#		r Consumption of: Organism Only (μg/L)	are consistent with EPA's National Recommended Human Health Water Quality Criteria – 2015
Criteria for Toxic	Acenaphthene Anthracene	83329 120127	[670] 70 [8,300] 300	[990] 90 [40,000] 400	Update (80 FR 36986). Criteria for carcinogens are
Substances Waters	Benzo(a)Anthracene	56553	$[0.038] \ 0.012^a$	$[0.18] \ 0.013^a$	adopted based on a risk level of 10 ⁻⁵ (indicated by footnote "a").
Table 5 Toxic	Benzo(a)Pyrene Benzo(b)Fluoranthene	50328 205992	$[0.038] 0.0012^a$ $[0.038] 0.012^a$	$[0.18] 0.0013^a$ $[0.18] 0.013^a$	roothote a).
Substances for Ambient	Benzo(k)Fluoranthene Dibenzo(a,h)Anthracene	207089 53703	$[0.038] \ 0.12^a$ $[0.038] \ 0.0012^a$	$[0.18] \ 0.13^a$ $[0.18] \ 0.0013^a$	
Water Quality	Fluoranthene	206440	[130] 20	[140] 20	
Criteria – Polycyclic Aromatic	Fluorene Ideno(1,2,3-cd)Pyrene	86737 193395	$[1,100] 50$ $[0.038] 0.012^a$	[5,300] 70 [0.18] 0.013 ^a	
Hydrocarbon s and	Pyrene Bis(2-	129000	[830] 20	[4,000] 30	
Phthalates	Ethylhexyl)Phthalate Butylbenzyl Phthalate	117817 85687	[12] 3.2^a [1,500] I^a	[22] 3.7^a [1,900] I^a	
	Diethyl Phthalate Dimethyl Phthalate	84662 131113	[17,000] <i>600</i> [270,000] <i>2000</i>	[44,000] <i>600</i> [1,100,000] <i>2000</i>	
	Di-n-Butyl Phthalate	84742	[2,000] 20	[4,500] 30	

Section Approved		Des	cription of Revision		EPA Rationale
COMAR 26.08.02.03- 2	[Deleted text in brackets] and added <i>text</i>	in italics		New and revised criteria are consistent with EPA's National Recommended Human Health Water
Numerical			Human Health for	Consumption of:	Quality Criteria – 2015
Criteria for Toxic	Substance	CAS#	Drinking Water + Organism (μg/L)	Organism Only (µg/L)	Update (80 FR 36986). Criteria for carcinogens are
Substances Waters	4,4'-DDD	72548	$[0.0031] \ 0.0012^a$	$[0.0031] 0.0012^a$	adopted based on a risk level of 10 ⁻⁵ (indicated by
	4,4'-DDE	72559	$[0.0022] \ 0.00018^a$	$[0.0022] \ 0.00018^a$	footnote "a").
Table 6 Toxic	4,4'-DDT	50293	$[0.0022] \ 0.0003^a$	$[0.0022] \ 0.0003^a$	
Substances	Aldrin	309002	$[0.00049] \ 0.0000077^a$	$[0.00050] \ 0.00000077^a$	
for Ambient	alpha-BHC	319846	$[0.026] \ 0.0036^a$	$[0.049] \ 0.0039^a$	
Water Quality	alpha-Endosulfan	959988	[62] 20	[89] 30	
Criteria –	beta-BHC	319857	$[0.091] \ 0.08^a$	$[0.17] \ 0.14^a$	
Pesticides	beta-Endosulfan	33213659	[62] 20	[89] 40	
and Chlorinated	Chlordane	57749	$[0.0080] \ 0.0031^a$	$[0.0081] 0.0032^a$	
Compounds	Dieldrin	60571	$[0.00052] \ 0.000012^a$	$[0.00054] 0.000012^a$	
	Endosulfan Sulfate	1031078	[62] 20	[89] 40	
	Endrin Aldehyde	7421934	[0.29] 1	[0.30] 1	
	gamma-BHC (Lindane)	58899	[0.98] 4.2	[1.8] 4.4	
	Heptachlor	76448	$[0.00079] \ 0.000059^a$	$[0.00079] 0.000059^a$	
	Heptachlor Epoxide	1024573	$[0.00039] \ 0.00032^a$	$[0.00039] \ 0.00032^a$	

Section Approved		Desc	cription of Revision		EPA Rationale
	Toxaphene	8001352	$[0.0028] \ 0.007^a$	$[0.0028] \ 0.0071^a$	
	Pentachlorobenzene	608935	0.1	0.1	
COMAR 26.08.02.03- 2H(1) Acute Numeric Toxic Substance Criteria for Ammonia for the Protection of Fresh Water Aquatic Life		face Waters." N	"Procedures for Applying the Maryland requires documenta absent criteria.		ia EPA has reviewed this document and has determined that it will result in the accurate determination of the absence of mussels, and therefore the appropriate application of the musselabsent ammonia criteria. This is consistent with 40 CFR §131.11(a).
COMAR 26.08.02.03- 2H(6)-(9)		equations that w	oth "Salmonids Present" and vere used to calculate the crite		Criteria consistent with EPA's recommended water quality criteria published in the Aquatic Life Ambient
Acute Numeric Toxic Substance			rough 4. The tables present c ns used to calculate the criter		Water Quality Criteria for
Criteria for Ammonia for the			iteria for Freshwater Aquatic igrams of nitrogen per liter) ¹		re
Protection of		Ter	mperature (°C)		

Section Approved								Desc	eripti	on of	f Rev	ision								EPA	A Ratio	nale
Fresh Water	рН	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30				
Aquatic Life.	6.5	32.6	32.6	31.6	29.1	26.8	24.6	22.7	20.9	19.2	17.7	16.3	15.0	13.8	12.7	11.7	10.8	9.9				
	6.6	31.3	31.3	30.3	27.9	25.7	23.6	21.8	20.0	18.4	17.0	15.6	14.4	13.2	12.2	11.2	10.3	9.5				
	6.7	29.8	29.8	28.8	26.5	24.4	22.5	20.7	19.0	17.5	16.1	14.9	13.7	12.6	11.6	10.7	9.8	9.0				
	6.8	28.0	28.0	27.2	25.0	23.0	21.2	19.5	18.0	16.5	15.2	14.0	12.9	11.9	10.9	10.0	9.2	8.5				
	6.9	26.2	26.2	25.3	23.3	21.5	19.8	18.2	16.7	15.4	14.2	13.1	12.0	11.1	10.2	9.4	8.6	7.9				
	7.0	24.1	24.1	23.3	21.5	19.8	18.2	16.8	15.4	14.2	13.1	12.0	11.1	10.2	9.4	8.6	7.9	7.3				
	7.1	21.9	21.9	21.3	19.6	18.0	16.6	15.3	14.0	12.9	11.9	11.0	10.1	9.3	8.5	7.9	7.2	6.7				
	7.2	19.7	19.7	19.1	17.6	16.2	14.9	13.7	12.6	11.6	10.7	9.8	9.1	8.3	7.7	7.1	6.5	6.0				
	7.3	17.5	17.5	17.0	15.6	14.4	13.2	12.2	11.2	10.3	9.5	8.7	8.0	7.4	6.8	6.3	5.8	5.3				
	7.4	15.3	15.3	14.9	13.7	12.6	11.6	10.7	9.8	9.0	8.3	7.7	7.0	6.5	6.0	5.5	5.1	4.7				
	7.5	13.3	13.3	12.9	11.8	10.9	10.0	9.2	8.5	7.8	7.2	6.6	6.1	5.6	5.2	4.8	4.4	4.0				
	7.6	11.4	11.4	11.0	10.1	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5				
	7.7	9.6	9.6	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5	3.2	2.9				
	7.8	8.1	8.1	7.9	7.2	6.7	6.1	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.2	2.9	2.7	2.5				
	7.9	6.8	6.8	6.6	6.0	5.6	5.1	4.7	4.3	4.0	3.7	3.4	3.1	2.9	2.6	2.4	2.2	2.1				
	8.0	5.6	5.6	5.4	5.0	4.6	4.2	3.9	3.6	3.3	3.0	2.8	2.6	2.4	2.2	2.0	1.9	1.7				
	8.1	4.6	4.6	4.5	4.1	3.8	3.5	3.2	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1.4				
	8.2	3.8	3.8	3.7	3.4	3.1	2.9	2.7	2.4	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2				
	8.3	3.1	3.1	3.1	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.4	1.3	1.2	1.1	1.0	1.0				
	8.4	2.6	2.6	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8				
	8.5	2.1	2.1	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8	0.8	0.7	0.6				
	8.6	1.8	1.8	1.7	1.6	1.5	1.3	1.2	1.1	1.0	1.0	0.9	0.8	0.7	0.7	0.6	0.6	0.5				
	8.7	1.5	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4				

Section Approved									D	escr	iptio	on of	Rev	risio	n									F	EPA R	ationa	lle
	8.8	3 1.2	1.2	2 1	.2	1.1	1.0	0.9	0.9	9 0	.8	0.7	0.7	0.6	0.6	5 0.	.5	0.5	0.4	0.4	0.4	1					
	8.9	1.0	1.0	0 1	.0	0.9	0.9	0.8	0.7	7 0	.7	0.6	0.6	0.5	0.5	5 0.	.4	0.4	0.4	0.3	0.3	3					
		0.9				0.8		0.7		6 0				0.4		1 0.			0.3	0.3		3					
	cal	culat	ed u	sing	the	follo	wing	equ	atio	n, w	hich	may	ia wl also s pre	be ı	ised							s:					
	(СМС	'=M		$\left(\frac{1}{1+1}\right)$	0.27 10 ^{7.20} 249 *	$\frac{5}{4-pH} = \left(\frac{1}{1+1}\right)$	$+\frac{1}{1+}$ $\frac{0.01}{10^{7.2}}$	$\frac{39}{10^{p}}$	$\frac{9}{H-7.20}$	$\frac{1.6}{+10}$	5181) ^{pH-7}	204	· (23.	12*	10 ^{0.03}	36*(20-	-T))									
		(7)	Tabl	le 2.	Acu	ite W	ater	Qua	lity (Crite nitro	eria 1 gen	for F per l	sepa reshv	watei	•				Amı	moni	a W	here					
				1						1 en	ipera	ature	(°C)				I		1				ı				
	p H	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30					
	6. 5	50. 9		44. 0	40. 5	37. 3	34. 3	31. 6	29. 1	26. 8	24. 6	22. 7	20. 9	19. 2	17. 7	16. 3	15. 0	13. 8	12. 7	11. 7	10. 8	9. 9					
	6. 6	48. 9	45. 9		38. 9	35. 8		30. 3		25. 7	23. 6	21. 8	20. 0			15. 6	14. 4	13. 2	12. 2	11. 2	10. 3	9. 5					
	6. 7		43. 6			34. 0	31. 3				22. 5	20. 7	19. 0	17. 5	16. 1	14. 9	13. 7	12. 6	11. 6	10. 7	9.8	9. 0					
	6. 8	43. 8	41. 1	37. 9	34. 8	32. 1	29. 5			23. 0	21. 2	19. 5	18. 0	16. 5		14. 0	12. 9	11. 9	10. 9	10. 0	9.2	8. 5					
	6. 9	40. 8	38. 3	35. 3	32. 5	29. 9		25. 3				+	16. 7	15. 4		13. 1	12. 0	11. 1	10. 2	9.4	8.6	7. 9					

Section Approved									D	escri	iptio	on of	Rev	isio	n									E	PA R	ation	ale	
	7. 0	37. 6	35. 3	32. 5	29. 9	27. 6	25. 4	23. 3	21. 5	19. 8	18. 2	16. 8	15. 4	14. 2	13. 1	12. 0	11. 1	10. 2	9.4	8.6	7.9	7. 3						
	7. 1	34. 3	32. 2	29. 6	27. 3	25. 1	23. 1	21. 3	19. 6	18. 0	16. 6	15. 3	14. 0	12. 9	11. 9	11. 0	10. 1	9.3	8.5	7.9	7.2	6. 7						
	7. 2	30. 8	28. 9	26. 6	24. 5		20. 8	19. 1	17. 6	16. 2	14. 9	13. 7	12. 6	11. 6	10. 7	9.8	9.1	8.3	7.7	7.1	6.5	6. 0						
	7. 3	27. 3	25. 7	23. 6	21. 7				15. 6	14. 4	13. 2	12. 2	11. 2	10. 3	9.5	8.7	8.0	7.4	6.8	6.3	5.8	5. 3						
	7. 4	24. 0	22. 5	20. 7	19. 1	17. 5	16. 1	14. 9	13. 7	12. 6	11. 6	10. 7	9.8	9.0	8.3	7.7	7.0	6.5	6.0	5.5	5.1	4. 7						
	7. 5	20. 7	19. 5	17. 9	16. 5	15. 2	14. 0	12. 9	11. 8	10. 9	10. 0	9.2	8.5	7.8	7.2	6.6	6.1	5.6	5.2	4.8	4.4	4. 0						
	7. 6	17. 8	7	15. 4	1	13. 0	0	11. 0	10. 1	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3. 5						
	7. 7	15. 1	14. 1		12. 0	11. 0	10. 1	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5	3.2	2. 9						
	7. 8	12. 7	11. 9	10. 9	10. 1	9.3	8.5	7.9	7.2	6.7	6.1	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.2	2.9	2.7	2. 5						
	7. 9	10. 6	9.9	9.1	8.4	7.7	7.1	6.6	6.0	5.6	5.1	4.7	4.3	4.0	3.7	3.4	3.1	2.9	2.6	2.4	2.2	2. 1						
	8. 0	8.8	8.2	7.6	7.0	6.4	5.9	5.4	5.0	4.6	4.2	3.9	3.6	3.3	3.0	2.8	2.6	2.4	2.2	2.0	1.9	1. 7						
	8. 1	7.2	6.8	6.3	5.8	5.3	4.9	4.5	4.1	3.8	3.5	3.2	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1. 4						
	8. 2	6.0	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.1	2.9	2.7	2.4	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1. 2						
	8. 3	4.9	4.6	4.2	3.9	3.6	3.3	3.1	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.4	1.3	1.2	1.1	1.0	1. 0						

Section Approved									D	escr	iptio	n of	Rev	ision	n									EP	'A Ra	itiona	le	
	8. 4	4.1	3.8	3.5	3.2	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0. 8						
	8. 5	3.3	3.1	2.9	2.7	2.4	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8	0.8	0.7	0. 6						
	8. 6	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.5	1.3	1.2	1.1	1.0	1.0	0.9	0.8	0.7	0.7	0.6	0.6	0. 5						
	8. 7	2.3	2.2	2.0	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0. 4						
	8. 8	1.9	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0. 4						
	8. 9	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0. 3						
	9. 0	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0. 3						
	usi	ng th equa	ne for	llow: whi	ing ch m		lso b	e us										e abs										
				_					4 4- <i>pH</i>	- + - 1	1.	$\frac{618}{0^{pH}}$	1 -7.204	.)*/	MIN	$\sqrt{\frac{51}{23}}$	1.93 3.12	, :*10) ^{0.036}	* (20-	-T)							
	V	Wher	e M	IN in	dica	tes tl	ne le	sser	of th	ie tw	o va	lues	sepa	rate	d by	a co	mma	a.										
	Sal lite	mon																e for ms o					;					
									-	Гет	perat	ure ((°C)															
	pН	I 14	15	1	6	17	18	19	20	2	1 2	22	23	24	25	20	6 2	27	28	29	30							

Section Approved								Desc	eripti	on of	Rev	ision								EPA	Ration	ale
	6.5	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	32.6	31.4	28.9	26.6				
	6.6	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	31.3	30.1	27.7	25.5				
	6.7	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	29.8	28.7	26.4	24.3				
	6.8	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	27.0	24.9	22.9				
	6.9	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	25.2	23.2	21.3				
	7.0	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	24.1	23.2	21.4	19.7				
	7.1	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.1	19.5	17.9				
	7.2	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.7	19.0	17.5	16.1				
	7.3	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	16.9	15.5	14.3				
	7.4	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	14.8	13.6	12.5				
	7.5	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	13.3	12.8	11.8	10.8				
	7.6	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.0	10.1	9.3				
	7.7	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.3	8.5	7.9				
	7.8	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	7.8	7.2	6.6				
	7.9	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.5	6.0	5.5				
	8.0	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.4	5.0	4.6				
	8.1	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.5	4.1	3.8				
	8.2	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.7	3.4	3.1				
	8.3	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.0	2.8	2.6				
	8.4	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.3	2.1				
	8.5	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	1.9	1.7				
	8.6	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.7	1.6	1.4				
	8.7	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.3	1.2				
	8.8	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.0				

9.0 mus	0.9	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9																	EPA R	ationaic
1 r			1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.8			
mus		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.7			
mussels are absent were calculated using the following equation, which may also be used to calculate unlisted values: Acute water quality criteria for ammonia (salmonids present and freshwater mussels absent) =CMC=															used	to ca	lculat	e		
		water	quali	ty cri	teria	for an	nmon	ia (sa	ılmon	ids pi	resent	and	fresh	water	muss	sels al	osent))		
$MIN \left[\left(\frac{0.275}{1 + 10^{7.204 - pH}} + \frac{39}{1 + 10^{pH - 7.204}} \right), \\ \left(0.7249 * \left(\frac{0.0114}{1 + 10^{7.204 - pH}} + \frac{1.6181}{1 + 10^{pH - 7.204}} \right) * (62.15 * 10^{0.036*(20 - T)}) \right) \right]$																				
Where MIN indicates the lesser of the two values separated by a comma. (9) Table 4. Acute Water Quality Criteria for Freshwater Aquatic Life for Ammonia Where Salmonids Are Absent and Freshwater Mussels Are Absent (milligrams of nitrogen per liter) ¹ . Temperature (°C)														re						
рН	14	15	16	17	18	19				r í	24	25	26	27	28	29	30			
-			50.9							<u> </u>										
-			48.9	1						-										
			46.5	<u> </u>						<u> </u>										
-			43.8																	
-			40.8	ļ						ļ										
-			37.6	1						1										
-			34.3	ļ						ļ										

Section Approved								Desc	eripti	on of	Revi	ision								EPA Rationale
	7.2	30.8	30.8	30.8	30.8	30.8	30.8	30.8	30.8	30.8	28.8	26.5	24.4	22.4	20.6	19.0	17.5	16.1		
	7.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	25.5	23.5	21.6	19.9	18.3	16.9	15.5	14.3		
	7.4	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	22.4	20.6	18.9	17.4	16.1	14.8	13.6	12.5		
	7.5	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	19.4	17.8	16.4	15.1	13.9	12.8	11.8	10.8		
	7.6	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	17.8	16.6	15.3	14.0	12.9	11.9	11.0	10.1	9.3		
	7.7	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	14.1	12.9	11.9	11.0	10.1	9.3	8.5	7.9		
	7.8	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	11.8	10.9	10.0	9.2	8.5	7.8	7.2	6.6		
	7.9	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	9.9	9.1	8.4	7.7	7.1	6.5	6.0	5.5		
	8.0	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.2	7.5	6.9	6.4	5.9	5.4	5.0	4.6		
	8.1	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	6.8	6.2	5.7	5.3	4.9	4.5	4.1	3.8		
	8.2	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.6	5.1	4.7	4.3	4.0	3.7	3.4	3.1		
	8.3	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.6	4.2	3.9	3.6	3.3	3.0	2.8	2.6		
	8.4	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	3.8	3.5	3.2	2.9	2.7	2.5	2.3	2.1		
	8.5	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.1	2.9	2.6	2.4	2.2	2.1	1.9	1.7		
	8.6	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.4		
	8.7	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.1	2.0	1.8	1.7	1.5	1.4	1.3	1.2		
	8.8	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0		
	8.9	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8		
	9.0	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.2	1.1	1.0	0.9	0.9	0.8	0.7		
			cute v	water	quali	ty cri	teria	for to	tal an	nmon	ia wh	ere sa	ılmor	ids a	re abs	sent a	nd fro	eshwa	ter	
	aı unli	sted v	values	s:			C							-				lculate sent)		

Section Approved	Description of Revision	EPA Rationale
	$\left[0.7249*\left(\frac{0.0114}{1+10^{7.204-pH}}+\frac{1.6181}{1+10^{pH-7.204}}\right)*MIN\begin{pmatrix}51.93,\\62.15*10^{0.036*(20-T)}\end{pmatrix}\right]$ Where MIN indicates the lesser of the two values separated by a comma.	
COMAR 26.08.02.03- 2H(2)-(5) Acute Numeric Toxic Substance Criteria for Ammonia for the Protection of Fresh Water Aquatic Life.	These subsections indicate which tables of ammonia criteria for the protection of freshwater aquatic life are applicable to which State designated uses. Subsections (2) and (3) revisions are nonsubstantial rephrasing and renumbering, subsection (4) and (5) were added to accommodate the addition of "Absence of Freshwater Mussels" criteria. As approved, these provisions now read as follows: (2) Presence of Salmonid Fish. In Class III, III-P, IV, and IV-P waters, the concentration of total ammonia (in milligrams of nitrogen per liter) may not exceed the acute criterion listed in Table 1. (3) Absence of Salmonid Fish. In Class I and I-P waters, the concentration of total ammonia (in milligrams of nitrogen per liter) may not exceed the acute criterion listed in Table 2. (4) Presence of Salmonid Fish and Absence of Freshwater Mussels. In Class III, III-P, IV, and IV-P waters, the concentration of total ammonia (in milligrams of nitrogen per liter) may not exceed the acute criterion listed in Table 3. (5) Absence of Salmonid Fish and Absence of Freshwater Mussels. In Class I and I-P waters, the concentration of total ammonia (in milligrams of nitrogen per liter) may not exceed the acute criterion listed in Table 3.	EPA is approving these revisions as consistent with 40 CFR §131.11(a).

Section Approved	Description of Revision	EPA Rationale
COMAR 26.08.02.03- 2I Chronic Numeric Toxic Substance Criteria for Ammonia for the Protection of Fresh Water Aquatic Life	The existing Table 2, which presented "Chronic Ammonia Criteria for Waters Where Freshwater Fish Early Life Stages Are Absent," and the equation that was used to calculate the criteria, which was presented as footnote 1, was deleted. Maryland adopted two new equations, one at subsection (6) for "Chronic Ammonia Criteria for Waters Where Freshwater Fish Early Life States Are Present and Freshwater mussels are absent" and another at subsection (7) for "Chronic Ammonia Criteria for Waters Where Freshwater Fish Early Life Stages Are Absent and Freshwater Mussels Are Absent." Tables based on those equations will be submitted to EPA at a later date and EPA will take its CWA 303(c) action on those tables at that time. Based on Maryland's submittal, EPA is approving the following equations: 1 The freshwater chronic water quality criteria for total ammonia where fish early life stages are present but freshwater mussels are absent were calculated using the following equation, which may also be used to calculate unlisted values: Freshwater chronic water quality criterion for ammonia (fish early life stages present and freshwater mussels absent) = CCC= $ \begin{bmatrix} 0.9405 * \left(\frac{0.0278}{1+10^{7.688-pH}} + \frac{1.1994}{1+10^{pH-7.688}} \right) * MIN \begin{pmatrix} 6.920, \\ 7.547 * 10^{0.028*(20-T)} \end{pmatrix} \end{bmatrix} $ Where MIN indicates the lesser of the two values separated by a comma	Criteria consistent with EPA's recommended water quality criteria published in the Aquatic Life Ambient Water Quality Criteria for Ammonia – Freshwater 2013 (EPA 822-R-18-002).
	absent and	

Section Approved	Description of Revision	EPA Rationale
	freshwater mussels are absent were calculated using the following equation, which may also be used to calculate unlisted values: Freshwater chronic water quality criterion for ammonia (fish early life stages absent and freshwater mussels absent) = CCC= $ \left(0.9405 * \left(\frac{0.0278}{1+10^{7.688-pH}} + \frac{1.1994}{1+10^{pH-7.688}}\right) * \left(7.547 * 10^{0.028 * (20-MAX(T,7))}\right)\right) $ Where MAX indicates the greater of the two values separated by a comma.	
COMAR 26.08.02.03- 2I(3) Chronic Numeric Toxic Substance Criteria for Ammonia for the Protection of Fresh Water Aquatic Life	Incorporated by reference the document "Procedures for Applying the Mussel-Absent Ammonia Criteria to Maryland Surface Waters." Maryland requires documentation consistent with this guidance as a condition of using mussel-absent criteria.	EPA has reviewed this document and has determined that it will result in the accurate determination of the absence of mussels, and therefore the appropriate application of the musselabsent ammonia criteria. This is consistent with 40 CFR §131.11(a).
COMAR 26.08.02.03- 3C(8)(e)(v) and (vi)	Revise the Chesapeake Bay Mainstem Segment 4 Mesohaline (CB4MH) seasonal deep-water fish and shellfish subcategory dissolved oxygen restoration variance from 7 percent to 5 percent. Remove the Patapsco River Mesohaline (PATMH) seasonal deep-water fish and shellfish subcategory dissolved oxygen restoration variance of 7 percent.	Restoration variances are being updated consistent with the latest science and analysis of the 2017 Midpoint Assessment

Section Approved	Description of Revision	EPA Rationale
Water Quality Criteria Specific to Designated Uses: Criteria for Class II Waters		(MPA) required by the 2010 Chesapeake Bay TMDL. (https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-midpoint-assessment)
Seasonal Deep-Water Fish and Shellfish Subcategory		
COMAR 26.08.02.03- 3C(8)(f)(ii) and (iii) Water Quality Criteria Specific to Designated Uses: Criteria for Class II Waters	Revise the Chesapeake Bay Mainstem Segment 4 Mesohaline (CB4MH) deep-channel refuge subcategory dissolved oxygen restoration variance from 2 percent to 6 percent. Remove the lower Chester River Mesohaline (CHSMH) deep-channel refuge subcategory dissolved oxygen restoration variance of 16 percent.	Restoration variances are being updated consistent with the latest science and analysis of the 2017 Midpoint Assessment (MPA) required by the 2010 Chesapeake Bay TMDL.
Seasonal Deep- Channel		

Section Approved	Description of Revision	EPA Rationale
Refuge Subcategory		
COMAR 26.08.02.03- 3C(8)(g)	Incorporating by reference the 2017 Addendum to the "Ambient Water Quality Criteria for Dissolved Oxygen, Water Clarity and Chlorophyll a for the Chesapeake Bay and Its Tidal Tributaries"	The incorporated document replaces and supersedes portions of the previously incorporated addenda.
Water Quality Criteria Specific to Designated Uses: Criteria for Class II Waters		
Implementati on of the Dissolved Oxygen Water Quality Standard		
COMAR 26.08.02.04B Antidegradati on Policy	Added "Consistent with the Federal Act, existing uses and the level of water quality necessary to protect existing uses for any water body shall be maintained"	New provision is consistent with 40 CFR § 131.12(a)(1)
COMAR 26.08.02.04E	Revised provision [The Department shall discourage the downgrading of any stream from a designated use with more stringent criteria to one with less stringent criteria. Downgrading may only be considered if:] The Department shall ensure that existing uses are maintained and protected and support changes to designated uses and associated criteria in any circumstances where the designated use and criteria do not reflect and protect uses that are being attained. Changes in designated uses and associated criteria to less stringent uses and criteria may only be undertaken when:	Revision is consistent with 40 CFR §131.10(g)

Section Approved	Description of Revision	EPA Rationale
COMAR 26.08.02.04-1 Antidegradati on Policy Implementati on Procedures	Maryland relocated its Tier II antidegradation implementation procedures to COMAR 26.08.02.04-2 and added provisions to protect Tier I existing uses. Antidegradation Policy Implementation Procedures: Tier I Level of Protection – Existing Uses and Designated Uses. A. All waters of the State shall receive Tier I protection which requires the protection and maintenance of existing uses and designated uses. B. Protections. Waters that have demonstrated an existing use that is not protected by the water quality criteria specified for the current designated use for this water body shall be protected so as to maintain the existing use and the water quality necessary to protect the existing use. C. Implementation of the Tier I level of Protection for Cold Water Existing Uses. The determination and protection of cold water existing uses in Maryland will be implemented according to the "Cold Water Existing Use Determinations: Policy and Procedures (Maryland Department of the Environment, May 12, 2021)", which is incorporated by reference. D. Compilation and Maintenance of the List of Waters with Existing Uses. The Department shall compile and maintain, on its website, a public list of the waters with an existing use that is not protected by the currently designated use and associated water quality criteria.	Maryland is adding implementation procedures for the protection of Tier 1 waters where an existing use is not protected by the designated use, but the waters do not yet meet the requirements of a more protective use classification. New provisions are consistent with 40 CFR § 131.12(a)(1) & (b).
COMAR 26.08.02.04- 2 Antidegradati on Policy Implementati on Procedures:	Removed: One Tier II stream segment was removed from the list of Tier II waters due to a locational error where monitoring stations had incorrect coordinates. Table 1. Stream segment removed from the list of Tier II waters.	Revisions are consistent with 40 CFR § 131.12(a)(2) and the State's policy and implementation procedures.

Section Approved				De	scription	of Revision	o n		EPA Rationale
Tier II Level of Protection – High Quality Waters.	Tier II Stream Name	County	From Lat	From Long	To Lat	To Long	Reason for Adjustment	Summary	
	Bear Creek 1	Garrett	39.65018	-79.28886	39.65046	-79.298011	Location correction	Several sampling events with high scores were incorrectly shown on an adjacent stream segment. Stream should not have been designated as Tier II.	
			•				'		
COMAR 26.08.02.04- 2		nat were e	erroneous	ly remove	d during	past regula	tory change	ected and 2 Tier II strea es are being re-included.	Revisions are consistent with 40 CFR § 131.12(a)(2) and the State's policy and implementation
Antidegradati on Policy Implementati on Procedures: Tier II Level of Protection – High	Tier II Stream Name	County	From Lat	From Lon	g To Lat	To Long	Reason fo		procedures.
Quality Waters.									

Section Approved				Desc	cription o	of Revision	n		EPA Rationale
	Bear Creek 4	Garrett	39.56476	-79.32195	39.65018	-79.28886	Baseline Score Correction	A site with high scores was missing from original calculations. When correctly added to the average for Bear Creek 4, the baseline scores changed.	
	Principio Creek UT 1	Cecil	39.61544	-76.05885	39.60709	-76.03070	Baseline Score Correction	Recalculated baseline score to reflect year of designation in accordance with sampling events used to calculate scores.	
	Timber Run 1	Baltimore Co.	39.44400	-76.84151	39.43794	-76.86878	Baseline Score Correction	Baseline FIBI corrected to 4.57 instead of the current 4.67 score due to a transcription error.	
COMAR 26.08.02.04- 2 Antidegradati on Policy Implementati on Procedures: Tier II Level	Correction: Table 3. St included.		nents erro	neously re	moved fro	om Tier II	list in 2018	and now being re-	Revisions are consistent with 40 CFR § 131.12(a)(2) and the State's policy and implementation procedures.

Section Approved				Desci	ription of	Revision				EPA Rationale
of Protection – High Quality Waters.	Tier II Stream Name	County	From Lat	From Long	To Lat	To Long	Reason for Adjustment	Summary		
	North Branch Patapsco River UT 2	Baltimore Co.	39.494629	-76.86357	39.49571	-76.837947	Erroneously removed from the Tier II list in 2018	This Tier II water was erroneously removed from the Tier II list. Re-evaluation confirmed Tier II designation		
	Saint Clements Creek 2	Saint Mary's	38.358656	-76.727069	38.34856	-76.73058	Erroneously removed from the Tier II list in 2018	This Tier II water was erroneously removed from the Tier II list. Re-evaluation confirmed Tier II designation.		
COMAR 26.08.02.04- 2 Antidegradati on Policy Implementati on Procedures:	Added: Ele data that de Table 4. No	emonstrate	ed high ind	ices of biot			I waters bas	ed on recently assess	sed	Revisions are consistent with 40 CFR § 131.12(a)(2) and the State's policy and implementation procedures.

Section Approved			EPA Rationale							
Tier II Level of Protection – High Quality Waters.	Tier II Stream Name	County	From Lat	From Long	To Lat	To Long	Reason for Adjustment	Summary		
	Laurel Run 1	Garrett	39.688371	-79.449636	39.6877	-79.439537	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation.		
	Sand Spring Run 1	Garrett	39.257794	-79.473281	39.272048	-79.474658	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation		
	Bush Cabin Run 1	Baltimore	39.599083	-76.707107	39.61048	-76.681793	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation		

Deer Creek 1	Baltimore	39.713068	-76.597628	39.70742		Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
Deer Creek 9	Baltimore	39.72117	-76.609265	39.713068	ı	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
Mill Run 5	Charles	38.52755	-77.078741	38.52029		Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
Timothy Branch 1	Prince George's	38.710667	-76.854371	38.664667		Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
Wilson Owens Branch 1	Anne Arundel	38.825626	-76.68624	38.825834		Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	

Section Approved			EPA Rationale					
	District Branch 1	Prince George's	38.866772	-76.719393	38.854804	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
	Morgan Creek UT 1	Kent	39.306198	-76.016172	39.289815	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	
	Fannels Branch 1	Kent	39.189562	-76.107898	39.187236	Newly identified Tier II stream	Recently collected data demonstrates high quality water (BIBI and FIBI≥4.00) justifying Tier II designation	

Table 2: General Non-Substantive Changes

Throughout Maryland's revised WQS regulation submission, informational, terminology, and formatting changes were made. Such updating or maintenance of regulations is important over time. These revisions (e.g., formatting, minor language adjustments and correction of typographical errors) aid the structure, readability, and interpretation of the state's WQS. While EPA recognizes that these revisions do not make significant substantive changes, EPA is approving the revisions to ensure public transparency as to which

provisions are effective for CWA purposes. EPA notes that its actions on these non-substantive changes to the previously approved WQS do not constitute action on the underlying previously approved WQS.

Renumbering of provisions and tables throughout the submission to accommodate the addition or deletion of regulation are not specifically noted here but are nonsubstantial revisions and considered approved.

Section	Description of Revision
Approved	
COMAR	Amendments were made to correct the references made to the applicable designated uses during
26.08.02.02-1F(2) and G(3)	the October 1 - May 31 time frame.
Support of	
Estuarine and	
Marine Aquatic	
Life and Shellfish	
Harvesting	
COMAR	Maryland deleted this provision as it was a placeholder for existing use determinations. No
26.08.02.07E	determinations were ever listed in regulation and will now be maintained and accessible on MDE's website [see COMAR 26.08.02.08A(6)]
COMAR	Throughout this provision, minor typos in geographic coordinates (i.e., occurrences of double
26.08.02.08	hyphens) were corrected; In the Youghiogheny River Area Sub-Basin (05-02-02), North and South Branches of the Casselman River and all tributaries, "Ups" corrected to "Upstream."
Stream Segment	
Designations	
COMAR	Minor revision to (1)(b) to reflect that several of the waterbodies in this provision were
26.08.02.08.K	redesignated to Class III-P.
Patapsco River Area	
COMAR	This footnote was removed for arsenic because it was added in error as the criteria were never in
26.08.02.03-2	fact hardness based.

Section	Descript	Description of Revision										
Approved	_											
Numerical Criteria				Aquatic Life (μg/L) Human Heal Consumption								
for Toxic				Fresh Water Estuarine Salt Water Drinking Drinking Drinking								
Substances Waters	Substance	CAS#	Fresh	Fresh Water		Water		ater	Water +	Organism Only	Drinking Water	
Table 1			Acute	Chronic	Acute	Chronic	Acute	Chronic	Organism (µg/L)		MCL (mg/L)	
	Arsenic[1]	7440382	340	150			69	36	0.18^{d}	$1.4^{\mathbf{a},d}$	0.010	
COMAR 26.08.02.03-2 Numerical Criteria for Toxic Substances Waters Table 4, Footnote 1 COMAR 26.08.02.03-2 Numerical Criteria for Toxic Substances Waters	Correction of a misspelling of "dichlorobromomethane" Footnote "d" added to Table 1, and then throughout the Table where applicable to indicate a criterion that is based on a carcinogenic risk level of 10 ⁻⁵											
Table 1 COMAR 26.08.02.03-2 Numerical Criteria for Toxic Substances Waters Tables 4, 5, & 6 COMAR 26.08.02.03-2 Numerical Criteria for Toxic Substances Waters	indicate a	criterio	on th	at is b	ased	on a	carc	nts us	ed to ca	level of	£ 10 ⁻⁵ :	s where applicable to s-based metals aquatic life

Section	Description of Revision											
Approved	1											
Tables 2 & 3	(2) Table 2. Coefficients Used to Adjust Applicable Numerical Toxic Substance Fresh Water											
Tables 2 & 3	Aquatic Life Criteria.*											
	Substance	CAS#	mA	bA	mC	bC						
	Cadmium	7440439	0.9789	-3.866	0.7977	-3.909						
	Chromium III	16065831	0.8190	3.7256	0.8190	0.6848						
	Lead	7439921	1.273	-1.460	1.273	-4.705						
	Nickel Silver	7440020 7440224	0.8460 1.72	2.255 -6.59	0.8460	0.0584						
	Zinc	7440666	0.8473	0.884	0.8473	0.884						
		(3) Table 3. Cor quatic Life Crite		Used to Adjus	st Applicable Numerica	l Toxic Substance Fresh						
	water At	quanc Lije Crne	ria.									
	Substance	CAS#	Freshwater A	1cute	Freshwater Chronic							
	Substance	СЛБП	Conversion F		Conversion Factor (CF)						
	Cadmium	7440439	1.136672-		1.101672-							
			LN(Hardness	s)*0.041838	LN(Hardness)*0.041	838						
	Chromium III	16065831	0.316		0.86							
	Lead	7439921	1.46203-		1.46203-							
	37: 7 7	7.440020	LN(Hardness	s)*0.145712	LN(Hardness)*0.145	712						
	Nickel Silver	7440020	0.998		0.997							
	Zinc	7440224 7440666	0.83		0.986							
COMAR	*Hardness-dependent criteria may be calculated from the following: $Acute\ Criteria = e^{mA*LN(hardness)+bA}*CF$ $Chronic\ Criteria = e^{mC*LN(hardness)+bC}*CF$ $Correct\ CAS\ \#\ for\ Atrazine\ to\ 1912249$											
26.08.02.03-2												
	1											
Numerical Criteria	1											
for Toxic	1											
Substances Waters	1											
Jaconanicos 11 alcis												
	1											
Γable 6												
COMAR	Clarification	n added as	to when th	ne 7-day	average dissol	ved oxygen crite	erion applies to th					
26.08.02.03-							nated use (i.e., on					
3C(8)(b)(i)	salinities ar	e less than	or equal to	0.5 par	ts per thousand	d).						
			•	•	-	•						

Section	Description of Revision
Approved	•
Water Quality	
Criteria Specific to	
Designated Uses	
Dissolved Oxygen	
Criteria for Class II	
Waters	
COMAR	Correcting a typo for Chesapeake Bay segment Upper Nanticoke River (NANTF)
26.08.02.03-3(9)(d)	
SAV No Grow	
Zones	
COMAR	The term "Class" is replaced with "Use Class Designations" to be consistent with revisions made
26.08.02.04A	in the last Triennial Review.
Antidegradation	
Policy	
COMAR	Flow chart relocated without modification from Maryland's Antidegradation Policy
26.08.02.04H	Implementation Procedures to its Antidegradation Policy.
Maryland's	
Antidegradation	
Procedure Flow	
Chart	

Enclosure 2

Under Section 7 of the Endangered Species Act (ESA), 42 U.S.C. §1536, EPA must ensure that the Agency's approval of modifications to a State's water quality standards (WQS) regulation will not jeopardize the continued existence of Federally listed threatened and endangered species and their critical habitat. EPA fulfills this obligation by preparing biological evaluations of the new or revised provisions.

For Maryland's 2023 adoption of new and revised WQS regulations, EPA prepared a biological evaluation of Maryland's regulation and concluded that EPA's approval is not likely to adversely affect listed species and their critical habitat due to revised cadmium and ammonia aquatic life criteria. The Greater Atlantic Regional Fisheries Office of NOAA National Marine Fisheries Service (NOAA Fisheries) issued a letter on December 19, 2022 which determined that formal consultation was required for the proposed aquatic life criteria for cadmium and ammonia. On April 28, 2023, NOAA issued a biological opinion (BiOp) (Consultation Tracking No. OPR-2022-030402). That BiOp concluded that EPA's action to approve Maryland's acute cadmium criterion, and acute and chronic ammonia criteria are not likely to adversely affect ESA-listed species under NOAA Fisheries jurisdiction. The BiOp also concluded that EPA's action to approve Maryland's revised freshwater chronic cadmium criterion is likely to adversely affect, but is not likely to jeopardize, the continued existence of shortnose sturgeon or the Chesapeake Bay Distinct Population Segments (DPSs) of Atlantic sturgeon. NOAA Fisheries also issued an incidental take statement in accordance with ESA Section 7(a)(2).

NOAA Fisheries' BiOp required two reasonable and prudent measures (RPMs) as necessary and appropriate to minimize the impacts of incidental take due to the chronic cadmium criterion. The details of the RPMs and the terms and conditions to implement the RPMs (April 28, 2023 BiOp. P. 121) are excerpted below.

12.2 Reasonable and Prudent Measures

"Reasonable and prudent measures" are measures that are necessary or appropriate to minimize the impact of the amount or extent of incidental take. (50 CFR 402.02). Section 7(b)(4) of the ESA requires that when a proposed agency action is found to be consistent with section 7(a)(2) of the ESA and the proposed action may incidentally take individuals of ESA-listed species, NMFS will issue a statement that specifies the impact of any incidental taking of endangered or threatened species. NMFS believes the RPMs described below are necessary and appropriate to minimize the impacts of incidental take on threatened and endangered species resulting from exposure to cadmium within the freshwater chronic criterion limits:

1 EPA Region 3, Water Division will work within its authorities to ensure that the implementation of water quality standards for ammonia and cadmium adopted by Maryland,

- and ammonia, cadmium, and nonylphenol adopted by Delaware, minimize aggregate adverse effects to ESA-listed species and designated critical habitat under NMFS' jurisdiction.
- 2 EPA Region 3 will ensure that persons applying EPA-approved standards in regulatory actions and those who are subject to regulations applying EPA-approved standards are aware of the prohibition of take of ESA-listed species under section 9 of the ESA and where ESA-listed species under NMFS' jurisdiction occur.

12.3 Terms and Conditions

In addition to RPMs, section 7(b)(4) of the ESA requires the Services to identify terms and conditions (including, but not limited to reporting requirements) that must be complied with by the Federal agency or applicant, or both, to implement the RPMs. Only incidental take resulting from the agency actions that is in compliance with the terms and conditions identified in the incidental take statement are exempt from the taking prohibition of section 9(a), pursuant to section 7(o) of the ESA. Therefore, to be exempt from the ESA prohibitions of take, the EPA must comply with the following terms and conditions, which implement the RPMs described above. These include the take minimization, monitoring and reporting measures required by the section 7 regulations (50 C.F.R. § 402.14(i)). As stated above, these terms and conditions are non-discretionary in order for the EPA to be exempt from the ESA prohibition against take. If EPA fails to ensure compliance with these terms and conditions and their implementing reasonable and prudent measures, the protective coverage of section 7(o)(2) may lapse.

TERMS AND CONDITIONS FOR RPM 1:

In order to be exempt from the prohibitions of section 9 of the ESA, the Federal action agency must comply with the following terms and conditions. The EPA Region 3, Water Division shall achieve RPM 1 by providing guidance to DNREC and MDE on use of the revised criteria in NPDES permits for new sources and existing NPDES permits upon renewal, by encouraging monitoring to identify and address impairments, and by participating in sustained attention to water quality within waters where Atlantic and shortnose sturgeon occur. Specifically:

- 1) The EPA Water Division will notify the MDE, DNREC, and EPA-Region 3 NPDES Permit Branch of: 1) updated water quality criteria for ammonia, cadmium, and nonylphenol, and 2) the importance of compliance with permit limits based on such criteria in all NPDES permits, including general permits, to protect threatened and endangered species, including the Atlantic and shortnose sturgeon.
- 2) EPA Guidance to MDE and DNREC:
 - a) EPA will strongly encourage MDE to monitor ammonia and cadmium, and DNREC to monitor ammonia, cadmium, and nonylphenol in areas where ESA-listed Atlantic and shortnose sturgeon occur.
 - b) If EPA becomes aware of new information that indicates revisions to criteria subject to this consultation may be necessary to protect threatened and endangered species, EPA

will work with Maryland and Delaware regulatory authorities to revise water quality standards or take other actions, as appropriate.

3) Baseline Water Quality Review

- a) Within 6 months of the signature of the Biological Opinion, EPA will collaborate with NMFS on the development of a baseline water quality condition review for those stressors addressed in this consultation in waters where Atlantic and shortnose sturgeon occur.
- b) Thereafter, EPA will meet with NMFS at least biennially, for at least a period of 6 years, but not to exceed a period of 12 years, to review water quality conditions for those stressors addressed in this consultation potentially affecting Atlantic and shortnose sturgeon and discuss changes in water quality, gaps in information regarding water quality, and approaches to resolving those gaps.

TERMS AND CONDITIONS FOR RPM 2:

- 1) EPA Region 3 Water Division will support other EPA Region 3 branches applying EPA-approved criteria subject to this consultation in providing notice of EPA's obligations under the ESA in its communications, as appropriate, including, but not limited to, 303(c) decision letters, NPDES permit reviews and decisions, permit application materials, training, and/or informational websites. Such notice shall contain the following:
 - a) Section 7(a)(2) of the ESA requires Federal agencies to ensure that their actions are not likely to jeopardize the continued existence of endangered or threatened species or adversely modify or destroy their designated and proposed critical habitat.
 - b) Take of ESA-listed endangered species is prohibited under section 9 of the ESA, and these prohibitions apply to all individuals, organizations, and agencies subject to United States jurisdiction. These take prohibitions have also been extended to the Gulf of Maine DPS of Atlantic Sturgeon under section 4(d) of the ESA (50 CFR §223.211).
 - c) "Take" is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct 16 U.S.C. 1532(19). "Harm" for purposes of the ESA is further defined by regulation to mean "an act which actually kills or injures fish or wildlife. Such an act may include significant habitat modification or degradation which actually kills or injures fish or wildlife by significantly impairing essential behavioral patterns, including, breeding, spawning, rearing, migrating, feeding or sheltering" 50 CFR §222.102.
 - d) Endangered shortnose sturgeon, threatened Gulf of Maine Atlantic sturgeon, and the endangered New York Bight, Chesapeake Bay, South Atlantic, and Carolina DPSs of Atlantic sturgeon may spawn, migrate, and forage within accessible inland rivers, estuaries, and coastal waters from Canada to Florida. The species may occur in the following waters of Maryland: Anacostia River, Chesapeake Bay, Choptank River,

C&D Canal, Nanticoke River including Marshyhope Creek, Patuxent River, Pocomoke River, Potomac River, St. Marys River, Susquehanna River, and Wicomico River and waters of Delaware: Chesapeake Bay, Delaware Bay, Delaware River including C&D canal, and Nanticoke River including Broad Creek. Poor water quality is among the most significant threats to the species due to harm to offspring development. Sensitive early life stages may occur in the following waters of Maryland: Potomac River and Nanticoke River, including Marshyhope Creek and Delaware: Chesapeake Bay, Delaware Bay, Delaware River including C&D canal, and Nanticoke River, including Broad Creek.