Chesapeake Bay Maryland Phase I WIP Strategy Key Concepts: Septics and Stormwater June 13th, 2011

Topics Covered

- Purpose of Reviewing Phase I WIP
- Context of our WIP Planning
- Urban Stormwater
- Septic Systems

Purposes for Reviewing Phase I WIP Strategies

- The State's "default strategy" will use elements of the Phase I WIP Strategy, which you might also want to consider using.
- Some of the Phase I WIP Strategy elements are occurring in your jurisdiction.
- To help team members be conversant in the subject, which will improve communications during the strategy development process.
- To provide "rules of thumb" to help teams with conceptual planning of strategies.
- Provide insights about Phase II WIP and beyond.

Context of Developing WIP Strategies

- Phase II WIP is a coarse-level of planning.
 - For comparison: NPDES Stormwater permits require additional planning, which itself is fairly coarse.
- EPA promotes adaptive management; therefore, the strategies and milestones can change after the WIP is completed.
- EPA's expectation of the Phase II WIP recognizes that we have limited time and tools.
- The following focuses on strategies for the 2017 Interim Target, but also considers Final Targets.

Urban Stormwater Phase I WIP

Category	Key 2017 WIP Strategies
Non-MS4	Urban Nutrient Management
	Rural Residential Tree Planting
Phase I MS4	Urban Nutrient Management
	 30% Impervious Retrofit
Phase II MS4	Urban Nutrient Management
	 20% Impervious Retrofit

Other Urban Practices:

- Stream Restoration (not by name in Phase I WIP)
- Regenerative Stormwater Conveyances
- Urban Tree Canopy

Rural Residential Tree Planting

- Increase rural resident tree planting, including conversion of turf grass to tree covers. May also consider mandatory stream and waterway buffers
- 600 acres by 2017 (100 ac/yr)
- 8.6 lbs/acre/yr Reduction in Nitrogen.
- 18,000 lb Reduction by 2017

Urban Nutrient Management

- MDA regulates approximately 700 commercial lawn fertilizer applicators who manage parcels of 10 or more acres of non-agricultural land, including private lawns, golf courses, public parks, airports, athletic fields and state owned land such as restoration areas and highway right-of-ways.
- Accounting for non-compliance, an estimated 220,000 acres/year are managed.
- Annual Load Reduction (delivered)
 - 385,000 lbs/yr N
 - 59,400 lbs/yr P
- Note it is an annual practice. That is, it must be redone each year or there is no reduction.
- Although not directly comparable, new stormwater retrofits each year achieve about 16,600 lbs/yr additional nitrogen reduction, adding up over a a five-year period to 249,000 lbs N. {NOTE: Not 16,600 x 5 ... See Next Slide}
- UNM results in urban reductions for non-MS4 jurisdictions in Phase I WIP.

Retrofit Cumulative Reduction Calculation (Pounds of Nitrogen)

						Sub- Totals
Year 1	16,600					16,600
Year 2	Year 1 16,600	16,600				33,200
Year 3	Year 1 16,600	Year 2 16,600	16,600			49,800
Year 4	Year 1 16,600	Year 2 16,600	Year 3 16,600	16,600		66,400
Year 5	Year 1 16,600	Year 2 16,600	Year 3 16,600	Year 4 16,600	16,600	83,000
5-year Cumulative Total						249,000

About 6,600 acres per year retrofitted.

UNM Annual Reduction Calculation

(Pounds of Nitrogen Delivered)

						Sub-Totals
Year 1	385,000					385,000
Year 2		385,000				385,000
Year 3			385,000			385,000
Year 4				385,000		385,000
Year 5					385,000	385,000
5-year Cumulative Total						1,925,000

Note: This is also a "preventive" activity. That is, it is assumed that without this program, about 385,000 additional pounds of nitrogen would go into the Bay each year due to over fertilization of large lawns.

Phase I WIP Stormwater Retrofit Strategies

- Phase I MS4s: Nutrient and Sediment reductions equivalent to stormwater treatment on 30% of the impervious surface that does not have adequate stormwater controls*. (10% from previous permit commitments plus 20% more by 2017).
- **Phase II MS4s:** Nutrient and Sediment reductions equivalent to stormwater treatment on 20% of the impervious surface that does not have adequate stormwater controls.

* Rule-of-thumb: Land developed before 1985 State stormwater law. Note: State Highway Administration (SHA) will retrofit 20% or 30% depending on the jurisdiction.

Stormwater Retrofits Untreated Urban Nutrient Load*

Land without stormwater controls (untreated):

- Unit Load:
 - Pounds/acre/Year:
- Typical Unit Load for Untreated Urban (Nitrogen):
 10 lbs/ac/yr
- Urban Load for a particular area: Land Area (acres) x Unit Load (lbs/ac/yr) = Load (lbs/yr)
 Example: 200 (acres) x 10 (lbs/ac/yr) = 2,000 (lbs/yr)

* Land developed before the 1985 State Stormwater Law usually has no stormwater controls.

Urban Load with Stormwater Retrofits

 Reduction due to Retrofit: Unit Load (lbs/ac/yr) x Reduction Efficiency = Reduction Example: 10 (lbs/ac/yr) x 0.25 = 2.5 (lb/ac/yr)

- Remaining Load: Original unit load – Reduction = Remaining Load

 Example: 10 (lbs/ac/yr) – 2.5 (lbs/ac/yr) = 7.5 (lbs/ac/yr)
- Urban Load for a particular area of 200 acres: Multiply by the acres involved, for Example: REDUCTION: 200 (acres) x 10 (lbs/ac/yr) x 0.25 = 500 (lbs/yr) REMAINING: 2,000 (lbs/yr) - 500 (lbs/yr) = 1,500 (lbs/yr)

Estimated Reduction from Phase I WIP Urban Retrofit Strategy*

Case: Small Phase 2 MS4 Municipality with total area of about 2 mi², which is equal to 1,250 acres.
 Strategy: Retrofit 20% of Untreated Urban Land*
 Untreated Urban Land: Land developed before 1985 (estimate)

- Step 1: Determine Area of Untreated Land, e.g., 80% developed before 1985
 - E.g., 80% of 1,250 acres is 1,000 acres
- Step 2: Determine 20% of Untreated Land:
 E.g., 1,000 acres x 0.2 = 200 acres
- Step 3: Calculate Load Reduction (Assume 25% efficiency of BMPs for nitrogen)
 200 acres x 10 (lbs/ac/yr) x 0.25 = 500 lbs/yr reduced

* This is simplified example that equates total area to impervious area.

Some Stormwater BMP Efficiencies

ВМР Туре	Nitrogen	Phosphorus
Dry Extended Detention Ponds	20%	20%
Wet Ponds and Wetlands	20%	45%
Infiltration Practices	80%	85%
Filtering Practices	40%	60%
Vegetated Open Channels	45%	45%

Alternative to 25% Efficiency Estimate

Example: Weighted Average of Future BMPs:

20% Infiltration at 80% Efficiency

30% Wet Ponds at 20% Efficiency

25% Filtering Practices at 40% Efficiency

25% Vegetated Open Swales at 45% Efficiency

0.2*0.8 + 0.3*0.2 + 0.25*0.4 + 0.25*0.45 = 0.43 (43% Efficiency)

Reduction Calculations:

Previous: 200 acres x 10 (lbs/ac/yr) x 0.25 = 500 lbs/yr Alternative: 200 acres x 10 (lbs/ac/yr) x 0.43 = 860 lbs/yr

Putting it Together for a Phase I MS4 Urban Retrofit Strategy for 2017

The strategy development process can be very simple:

- Step 0: It is assumed you have an estimate of the Area to be treated (Range is about 3,000 40,000 acres).
- Step 1: It is assumed you know the Remaining Percentage to treat from past permit cycles:

- E.g., 4% remaining from past 10% treatment permit requirement.

- Step 2: Total percentage of untreated area to be treated by 2017

 E.g., 4% + 20% = 24%
- Step 3: Estimate percentage of all urban area,
 - E.g., If untreated area is 70% of total urban area, and you will be treating 24% of that, then: (Total Urban Area) x 0.7 x 0.24 = (Urban Area Treated)
 - % Total Urban Treated area is: (Urban Area Treated)/(Total Urban Area)
- Step 4: Estimate aggregate retrofit efficiency: e.g., 33%
- Step 5: Enter percentage of area treated & efficiency.

Putting it Together for a Phase 1 MS4 Urban Retrofit Strategy for 2017 (con't)

Refinement Issues to Consider:

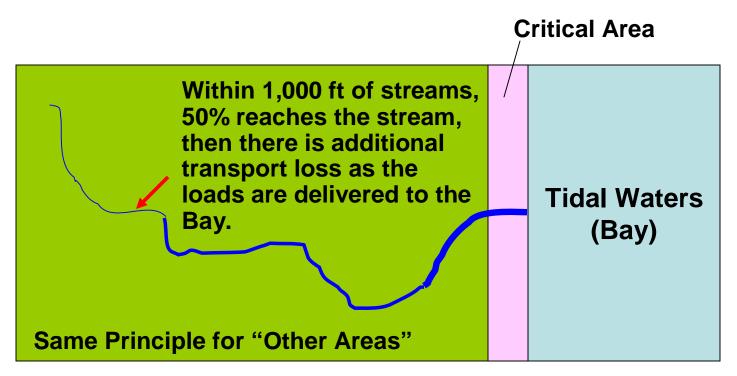
- 1. Pervious vs Impervious.
- 2. Local Land Area Estimates vs EPA Bay Program Estimates
- 3. Geographic Location of Treatment:
 - Beware of varying delivery factors within your county, e.g., above/below a reservoir, between major basins.
- 4. More Explicit BMPs
 - Although we advocate using a simple approach for BMP analyses, some might wish to mimic more complex local plan elements in MAST.
 - Recommend: You have simplified approach as a fall-back.

Septic System Nitrogen Loads

• Basic Loading Calculation for a System:

X people/system x Y lbs/person/year = lbs/system/year

- Load to the septic system drain field
- People/system 2.6 3.2
- Load/person 8.6 9.5
- Accounting for losses:
 - X people/system x Y lbs/person/yr x Delivery Factor
 - Deliver Factor ≤ 1
 - Load to the nearest surface water
 - Does NOT account for transport to the Bay



Septic System Nitrogen Loads by Zone

- Three Zones for Load Estimates to Surface Waters:
 - 1. Critical Area: Within 1,000 ft of tidal waters
 - 2. Near Streams: Within 1,000 ft of a perennial stream
 - 3. Other Areas
- Transport of Load to Nearest Surface Waters:
 - 1. Critical Area: 80% reaches the water
 - 2. Near Streams: 50% reaches the water
 - 3. Other Areas: 30% reaches the nearest water
- E.g., Calculation in Critical Area:
 - 2.6 people/system x 8.6 lbs/person/yr x 0.8 = 17.9 lbs/yr
- Except for the Critical Area, these do not include transport loss to the Bay: {See Next Slide}

Septic System Nitrogen Transport Losses to Bay

- Transport Losses to Tidal Waters (Bay):
 - Critical Area: Entire 80% is delivered to the Bay
 - Near Streams: 50% reaches the stream loss to Bay
 - Other Areas: 30% reaches the stream loss to Bay

Septic System Nitrogen Transport Losses to Bay

- Sample Calculations:
 - Critical Area: Entire 80% is delivered to the Bay
 2.6 x 8.9 x 0.8 x 1 = Annual Load to Bay
 - Near Streams: 50% reaches the stream loss to Bay*
 2.6 x 8.9 x 0.5 x DF* = Annual Load to Bay
 - Other Areas: 30% reaches the stream loss to Bay*
 2.6 x 8.9 x 0.3 x DF* = Annual Load to Bay

* DF - The additional loss during transport to the Bay varies across the State. DF was about 0.75 as a statewide average in the Phase I WIP model.

Numbers of Maryland Septic Systems in the Bay Watershed

Zone	Number of Septic Systems
Critical Area	46,255
1000 feet of Stream	134,807
Other	237,473
Total	418,535

Septic Systems Strategies Overview

- Two General Strategy Options:
 - Upgrade to Nutrient Removal Technology, also called "best available technology" (BAT)
 - Connect to Advanced Wastewater Plant
- Both Reduce the Nitrogen Load by about Half (50%)

Septic Systems Phase I WIP 2017 Strategy

Category	Key 2017 WIP Strategies	
Critical Area	• Upgrade 33,252 systems (60%) to BAT	
	 – 27,522 Septic Owners to upgrade* 	
	 5,700 New or Failing to be upgraded 	
Near Streams	No explicit strategy	
Other	No explicit strategy	

* In 2011, assess options to phase in requirement to retrofit all septic systems in the Critical Area using best available technology beginning in 2012. Assessment to include viability of tax credits, income-based criteria for grant eligibility and other means to facilitate upgrades.

Other Septic Reductions:

930 Septic Connections

Phase I WIP Short on Upgrades

- Final Allocation calls for 39% Reduction:
 - 39% reduction implies upgrading 78% of systems*
- 2017 Plan calls for upgrading about 8% of systems
 - Implies upgrading remaining 70% between 2017 and 2020

• Implications:

- Phase II WIP needs greater pace of upgrades than 8%.
- Phase II WIP 2017 strategy needs upgrades outside of Critical Area.
- If only 78% systems upgrade, which ones do and which ones don't upgrade? What are the funding implications?
- Phase II WIP needs to commit to a *process* for resolving these issues.

* 50% reduction per system necessitates upgrading 2 x 39%, or 78% as a ball-park estimate

END