

Clean Water Optimization Tool for Maryland's Eastern Shore

Karen Cappiella Program Director Center for Watershed Protection Upper Eastern Shore WIP Workshop November 21, 2014

Funded by the Town Creek Foundation

We Work Here.....

- ♦ National non-profit 501(c)3 organization
- ♦ 22 staff
- Offices in MD, VA, NY, PA

What we do

- Distill research into practical tools
- Provide local watershed services
- Train others to manage watersheds

www.cwp.org

Clean Water Optimization Tool for Eastern Shore *Overview*

Purpose: To help Eastern Shore municipalities develop more realistic and cost-effective scenarios to meet the Chesapeake Bay TMDL and other local water quality goals

- Excel spreadsheet-based tool
- Quickly and easily develop BMP scenarios based on costeffectiveness
- Compare scenarios
- Considers practical limitations on BMP implementation
- Tailored to the Eastern Shore
- Focuses on pollutant reductions from the stormwater sector

How Does it Relate to the Maryland Assessment and Scenario Tool?

- Consistent land use pollutant loading rates
- Includes cost adjustments for Eastern Shore counties
- Includes BMPs not yet available in MAST
- Allows user to optimize BMP selection based on cost-effectiveness for a particular pollutant
- Requires assumptions about practicality of installing each BMP type
- Results can be used to inform MAST scenario development for reporting/crediting

Tool Inputs

Required:

- County
- Timeframe (2017 or 2025)
- NPDES regulatory status
- Pollutant on which to optimize (N, P, TSS or N & P)
- Maximum practical number of units treated by each BMP
- For certain BMPs, % impervious cover in the drainage area

Optional:

- User-defined pollutant load reduction requirements
- Priority BMPs to receive higher weight in the optimization process
- Portion of load reductions to be met through trading
- Load reductions from BMPs installed between 2009 and the present

CENTER FOR WATERSHER PROTECTION

Clean Water Optimization Tool for Eastern Shore *Overview*

Tool outputs:

- Number of units treated by each BMP
- Total (and per-BMP) annual load reductions for TN, TP and TSS
- Total (and per-BMP) annual cost
- Cross Sector Trading (Agriculture)
 Urban Cover Crop
 Forest Buffer
 Ditch Enhancement
 Soil Augmentation
 Impervious Cover Removal

Clean Water Optimization Tool *Overview*

BMPs in the Tool: Stormwater Retrofits**

- Permeable pavement
- Permeable pavers
- Rainwater harvesting
- Stormwater planter
- Green roof
- Downspout disconnection
- Bioretention
- Rain garden
- Green streets
- Vegetated filter strips
- Hydrodynamic structures
- Filtering practices
- Infiltration practices
- * Not currently credited by CBP** More on the way

- Tree pits/structural soils
- Sand filters
- Dry swales
- Wet swales
- Vegetated open channels
- Bioswales
- Regenerative Stormwater Conveyance
- Wet ponds
- Constructed wetlands
- Extended detention ponds
- Ditch enhancement*
- Conversion of dry pond to wet pond

BMPs in the Tool

Land Use Change BMPs:

- Forest buffers
- Urban tree planting
- Impervious cover removal
- Urban cover crops*
- Soil augmentation*

Municipal Programs and Other Practices:

- Pet waste programs*
- Street sweeping
- Outfall netting systems*
- IDDE*
- Living shorelines
- Stream restoration
- User-defined BMP*

Clean Water Optimization Tool for Eastern Shore

Cost Components

• Initial Costs - design, construction, land costs

- Operation and Maintenance annual routine maintenance, intermittent maintenance, county implementation cost (inspection and enforcement)
- Annualized life cycle costs are estimated as the annual bond payment required to finance the initial cost of the BMP (20year bond at 3%) plus average annual routine and intermittent maintenance costs.
- Primary data sources: King and Hagan (2011); Schueler et al (2007)

BMP Effectiveness

- Stormwater retrofit BMPs based on Expert Panel recommendations
 - To date, these have not been implemented in MAST
- Land use change BMPs based on differences in land use pollutant loading rates from MAST
 - These are specific to Eastern Shore counties
- Programmatic and other practices based on various sources
 - Expert Panel recommendations on stream restoration, living shorelines, IDDE
 - Research studies and available literature on outfall netting systems, pet waste programs, etc.

- Step 1: Scenario Setup
 - Enter County of interest, NPDES status and timeframe of interest (2017 or 2025)
 - Optional: enter user-defined reduction goal
 - Enter maximum practical units treated for each applicable BMP
 - Optional: give more weight to high priority practices
 - Account for externalities (i.e. established rain garden program)

Clean Water Optimization Tool *Steps*

Required Pollutant Load Reductions:

Pollutant	Total County Load (Ibs/yr)	County Reduction Goal (Ibs/yr)	Reduction Goal (lbs/yr) for scale other than county
TN	215,208	61,014	
ТР	13,946	6,117	
TSS	5,757,469	#N/A	

2. Best Management Practices:

► ►

BMP Key: BMPs that receive Chesapeake Bay Program credit

BMPs that do not currently receive Chesapeake Bay Program credit

Stormwater Retrofits	Units	Maximum Practical Units Treated	Estimated Impervious Cover % in Drainage Area	
Pavement/Impervious Cover BMPs				
Permeable Pavement	Acres		100%	
Permeable Pavers	Acres		100%	
Rooftop BMPs				
Rainwater Harvesting	Acres		100%	
Instructions Scenario Setup BMP Costs Optimization Resu	ts / Cost Result Chart /	Nitrogen Result Chart	Phosphorus Result Chart 📗 🖣	

- Maximum Practical Units treated example
 - 100 home owners have expressed interest in rainwater harvesting
 - It's likely another 900 would be interested if approached
 - Assuming 1500 square feet of roof per home being treated
 - 1000 participating homes would treat ~34 acres of impervious

Clean Water Optimization Tool Steps to Use the Tool

- Maximum Practical Units treated example
 - Use GIS to calculate acres of land
 within 100 feet of stream = 2,834 acres
 - Of this, 1,497 acres is forest and 229 acres is impervious cover
 - Remaining 1,106 can potentially be reforested
 - 25% (276 acres) is on public land
 - Assume that 10% (83 acres) of the privately owned acres can be reforested (willing landowner)

- Step 2: BMP Costs
 - Review BMP cost data
 - Optional: Replace with local values
 - Optional: Review and replace other variables used to calculate cost

Variable	Value	
Opportunity cost of developable land (\$/acre)	\$100,000	
Typical proportion of land that is developable		
(%)	50%	
Interest rate associated with bond payment to		
finance construction (%)	3%	
Number of years over which to project costs	20	

- Step 3: Optimization Results
 - Optional: Enter reductions from installed BMPs
 - Optional: Enter cross sector trading limits
 - Select BMP on which to optimize (TN, TP, TSS, or TN&TP)

4. Results:	Up	date Table				
Practice 🔽	TN (lbs reduced) 🛛 💌	TP (lbs reduced	d) 🔽	TSS (lbs reduced)	Total Cost (\$) 💌	Units Treated 💌
Cross Sector Trading (Agriculture)	1,000.0		0.0	0.0	\$5,000	0
Urban Cover Crop	1,334.7		38.9	6,442.8	\$50,648	200
Forest Buffer	694.1		48.3	12,437.3	\$236,222	200
Ditch Enhancement	1,262.2		102.4	47,873.0	\$577,632	250
Soil Augmentation	115.2		8.6	2,584.6	\$457,003	200
Impervious Cover Removal	37.0		32.3	27,234.3	\$536,158	50
Total:	4,443.2		230.6	96 <mark>,</mark> 572.0	\$1,862,663	
Percent of Required Reductions						
Met:	2.9%		3.7%			
Remaining Reductions Needed to						
Meet Targets	147,750.6	5,	956.7	0.0		

CENTER FOR WATERSHER PROTECTION

Clean Water Optimization Tool *Steps*

- Use results to re-evaluate feasibility of more costeffective BMPs
- Help determine where to focus efforts (and when)
- Communicate & report results

Next Steps

- Pilot the Tool in Queen Anne's, Talbot, Wicomico and Kent Counties
- Revise and disseminate the Tool to all Counties
- Provide training and a user guide
- Future updates to include new BMPs, a revised interface and expansion to all of Maryland

Questions?

Karen Cappiella kc@cwp.org 410-461-8323 ext. 3203