

ARM Group Inc.

Engineers and Scientists

December 11, 2019

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

Re: Comment Response Letter:

Delineation/Characterization of Lead

Impacted Soil at A9-001-TP

Area A: Parcel A9 Tradepoint Atlantic

Sparrows Point, MD 21219

Dear Ms. Brown:

On behalf of EnviroAnalytics Group, LLC (EAG), ARM Group Inc. (ARM) is pleased to provide the following responses to comments provided by the Maryland Department of the Environment (MDE) via email on February 12, 2019. The MDE provided comments regarding the previous submission of the *Work Plan for Delineation/Characterization of Lead Impacted Soil at A9-001-TP*, dated February 6, 2019, for Parcel A9 of the Tradepoint Atlantic property located in Sparrows Point, Maryland. Responses to specific MDE comments are given below; the original comments are included in italics with responses following.

1. Do you have an ETA on submittal of this Phase II Report?

The combined Phase II Investigation Report for Parcels A5, A9, and Greys Rail Yard was submitted to the agencies on October 9, 2019.

2. Please send site photos of the test pitting on A9, along with groundwater sampling results from the nearby piezometer that was installed at A9-024.

A photograph log was provided within the Phase II Investigation Report which documents the test pitting activities; however, photographs are not available from the completion of the A9-001-TP sample location. Photographs are available for the remaining test pitting locations completed under this investigation (eight locations in Parcel A5 and one location in the Greys Rail Yard).

The groundwater analytical results at A9-024-PZ (detections only) are provided in the attached **Table 1**. The complete groundwater results are provided within the Phase II Investigation Report.

3. Was the elevated lead sample a composite from the test pit? And what conditions were observed that led to the sample being collected? Were there any other elevated contaminants found in the test pit sample?

The objective of the test pit investigation was to determine if the materials within several berms and mounds were indicative of potential contamination. The agency-approved Work Plan specified that soil samples would only be required if indications of potential contamination were observed; however, the sampling procedure was modified in the field, and samples were collected from each test pit location as an additional conservatism. No specific observations of contamination were observed at A9-001-TP.

A soil sample was collected from the excavated material as a 10-point composite. The soil analytical results from A9-001-TP (detections only) are provided in the attached **Table 2**. The complete test pitting sample results are provided within the Phase II Investigation Report. Aside from the elevated lead detection in A9-001-TP, there was one additional Project Action Limit (PAL) exceedance in the composite sample. Hexavalent chromium was detected slightly above its PAL (6.3 mg/kg), at a concentration of 7.6 mg/kg.

If you have questions regarding any information covered in this document, please feel free to contact ARM Group Inc. at (410) 290-7775.

Respectfully submitted,

ARM Group Inc.

Taylor R. Smith, P.E.

Project Engineer

Eric S. Magdar, P.G.

Vice President

E. Munde

TABLES

Table 1 - A9-024-PZ Groundwater Detections

Parameter	Units	PAL	A9-024-PZ*	
Total Metals				
Aluminum	μg/L	20,000	1,180	
Barium	μg/L	2,000	27.7	
Beryllium	μg/L	4	0.63 J	
Chromium	μg/L	100	13	
Copper	μg/L	1,300	9.0	
Iron	μg/L	14,000	2,410	
Manganese	μg/L	430	19	
Nickel	μg/L	390	3.1 J	
Vanadium	μg/L	86	6.1	
Zinc	μg/L	6,000	4.8 J	

Detections in bold

^{*} indicates non-validated data

J: The positive result reported for this analyte is a quantitative estimate.

Table 2 - A9-001-TP Soil Detections

Parameter	Units	PAL	A9-001-TP		
Semi-Volatile Organic Compounds^					
2-Methylnaphthalene	mg/kg	3,000	0.00082 J		
Anthracene	mg/kg	230,000	0.0025 J		
Benz[a]anthracene	mg/kg	21	0.038		
Benzaldehyde	mg/kg	120,000	0.02 J		
Benzo[a]pyrene	mg/kg	2.1	0.061		
Benzo[b]fluoranthene	mg/kg	21	0.035		
Benzo[g,h,i]perylene	mg/kg		0.017		
Benzo[k]fluoranthene	mg/kg	210	0.034		
Chrysene	mg/kg	2,100	0.056		
Dibenz[a,h]anthracene	mg/kg	2.1	0.0052 J		
Fluoranthene	mg/kg	30,000	0.01		
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0048 J		
Phenanthrene	mg/kg		0.011		
Pyrene	mg/kg	23,000	0.045		
TPH/Oil & Grease					
Diesel Range Organics	mg/kg	6,200	14.5 J		
Oil & Grease	mg/kg	6,200	194		
Metals					
Aluminum	mg/kg	1,100,000	6,850		
Antimony	mg/kg	470	18		
Arsenic	mg/kg	3	2.4		
Barium	mg/kg	220,000	25.4		
Cadmium	mg/kg	980	0.49 J		
Chromium	mg/kg	120,000	585		
Chromium VI	mg/kg	6.3	7.6		
Copper	mg/kg	47,000	169		
Iron	mg/kg	820,000	84,900		
Lead	mg/kg	800	24,100		
Manganese	mg/kg	26,000	12,400		
Nickel	mg/kg	22,000	5.1 J		
Vanadium	mg/kg	5,800	384		
Zinc	mg/kg	350,000	30.4		
Other					
Cyanide	mg/kg	150	0.17 J		

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

^ PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.