PHASE II INVESTIGATION REPORT

AREA B: PARCEL B17 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:

ENVIROANALYTICS GROUP 1515 Des Peres Road, Suite 300 Saint Louis, Missouri 63131

Prepared By:

ARM GROUP INC.

9175 Guilford Road Suite 310 Columbia, Maryland 21046

ARM Project No. 150300M-22

Respectfully Submitted,

F n/<7

Taylor R. Smith, P.E. Project Engineer

Mul Pets

T. Neil Peters, P.E. Senior Vice President

Revision 1 - August 7, 2019

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1. Site History	. 1
1.2. Objectives	
2.0 ENVIRONMENTAL SETTING	
2.1. Land Use and Surface Features	.4
2.2. Regional Geology	.4
2.3. Site Geology/Hydrogeology	. 5
3.0 SITE INVESTIGATION	
3.1. Sample Target Identification	. 6
3.2. Soil Investigation	.7
3.3. Test Pit Investigation	.9
3.4. Groundwater Investigation	10
3.5. Management of Investigation-Derived Waste (IDW)	11
4.0 ANALYTICAL RESULTS	13
4.1. Soil Conditions	13
4.1.1. Soil Conditions: Organic Compounds	13
4.1.2. Soil Conditions: Inorganic Constituents	14
4.1.3. Soil Conditions: Asbestos	14
4.1.4. Soil Conditions: Results Summary	15
4.2. Groundwater Conditions	15
4.2.1. Groundwater Conditions: Organic Compounds	16
4.2.2. Groundwater Conditions: Inorganic Constituents	16
4.2.3. Groundwater Conditions: Results Summary	16
4.3. Non-Aqueous Phase Liquid (NAPL)	17
4.4. Supplemental Lead and Arsenic Delineation	19
5.0 DATA USABILITY ASSESSMENT	20
5.1. Data Verification	21
5.2. Data Validation	21
5.3. Data Usability	22
6.0 FINDINGS AND RECOMMENDATIONS	25
6.1. Soil	25
6.2. Groundwater	26
6.3. Non-Aqueous Phase Liquid	27
6.4. Recommendations	28
7.0 REFERENCES	29

TABLE OF CONTENTS (CONT.)

FIGURES

Figure 1	Area A and Area B Parcel Map	Following Text
Figure 2	1916 Shoreline Map	Following Text
Figure 3	Groundwater Sample Locations and Potentiometric Map	Following Text
Figure 4	Soil Sample Locations	Following Text
Figure S-1	Summary of Exceedances – SVOCs in Soil	Following Text
Figure S-2	Summary of Exceedances – PCBs in Soil	Following Text
Figure S-3	Summary of Exceedances – Oil & Grease in Soil	Following Text
Figure S-4	Summary of Exceedances – Inorganics in Soil	Following Text
Figure S-5	Summary of Detections – Asbestos in Soil	Following Text
Figure GW-1	Summary of Exceedances – SVOCs in Groundwater	Following Text
Figure GW-2	Summary of Exceedances – TPH in Groundwater	Following Text
Figure GW-3	Summary of Exceedances – Inorganics in Groundwater	Following Text

TABLES

Table 1	Groundwater Elevation Data	Following Text
Table 2	Historical Site Drawing Details	Following Text
Table 3	Field Shifted Boring Locations	Following Text
Table 4	Characterization Results for Solid IDW	Following Text
Table 5	Characterization Results for Liquid IDW	Following Text
Table 6	Summary of Organics Detected in Soil	Following Text
Table 7	Summary of Inorganics Detected in Soil	Following Text
Table 8	Summary of Asbestos Detected in Soil	Following Text
Table 9	Summary of Soil PAL Exceedances	Following Text
Table 10	Soil PAL Exceedances for Specific Targets	Following Text
Table 11	Summary of Organics Detected in Groundwater	Following Text
Table 12	Summary of Inorganics Detected in Groundwater	Following Text
Table 13	Groundwater Cumulative Vapor Intrusion Comparison	Following Text
Table 14	Rejected Analytical Soil Results	Following Text

TABLE OF CONTENTS (CONT.)

APPENDICES

Appendix A	Final Sample Summary Table	.Following Text
Appendix B	Soil Boring Logs	.Following Text
Appendix C	Groundwater Survey Data	.Following Text
Appendix D	PID Calibration Log	.Following Text
Appendix E	Test Pitting Photograph Log	.Following Text
Appendix F	Temporary Groundwater Sample Collection Point	
	Construction Logs	.Following Text
Appendix G	Groundwater Purge & Multiparameter Meter Calibration Logs	.Following Text
Appendix H	Parcel Specific IDW Drum Log	.Following Text
Appendix I	NAPL Gauging Activities	.Following Text
Appendix J	Summary of QA/QC Samples	.Following Text
Appendix K	Evaluation of Data Completeness	.Following Text

ELECTRONIC ATTACHMENTS

Soil Laboratory Certificates of Analysis	Electronic Attachment
Soil Data Validation Reports	Electronic Attachment
Groundwater Laboratory Certificates of Analysis	Electronic Attachment
Groundwater Data Validation Reports	Electronic Attachment

1.0 INTRODUCTION

ARM Group Inc. (ARM), on behalf of EnviroAnalytics Group (EAG), has completed a Phase II Investigation of a portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area B: Parcel B17 (the Site). Parcel B17 is comprised of 9.8 acres of the approximately 3,100-acre former steel making facility (**Figure 1**). The Site is bounded to the south by an off-site shipyard and to the north by an off-site sheet metal shop (both of which are located beyond the boundary of the Tradepoint Atlantic property), to the west by a series of piers and the adjoining surface waters of the Patapsco River, and to the east by a portion of the Tradepoint Atlantic property investigated as Parcel B1.

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan – Area B: Parcel B17. This Work Plan (Revision 1 dated July 10, 2017) was approved by the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) on July 19, 2017 in compliance with requirements pursuant to the following:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

Parcel B17 is part of the acreage that was removed (Carveout Area) from inclusion in the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014. Based on this agreement, the USEPA determined that no further investigation or corrective measures will be required under the terms of the Consent Decree for the Carveout Area. However, the SA reflects that the property within the Carveout Area will remain subject to the USEPA's Resource Conservation and Recovery Act (RCRA) Corrective Action authorities.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the Maryland Department of the Environment Voluntary Cleanup Program (MDE-VCP) was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial), and plans for the property include demolition and redevelopment over the next several years.

1.1. SITE HISTORY

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and

semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

Several iron and steel work processes were completed within the boundary of Parcel B17. Parcel B17 was formerly occupied by a Machine Shop (Machine Shop No. 2). There is little information known about the specific processes conducted in the Machine Shop No. 2. The Site also included an Old Service Building, Old Blacksmith Shop, and a Heat Treating Plant.

The Machine Shop No. 2 was partially demolished by a service provider contracted by RG Steel during the RG Steel ownership period. The more valuable components of the building were salvaged, and the resulting debris was abandoned in numerous piles. During the Phase I Environmental Site Assessment (ESA) site visit conducted by Weaver Boos in February 2014, the Machine Shop No. 2 was observed to be demolished. Demolition material piles were observed where the Machine Shop No. 2 historically stood. Asbestos-containing debris was observed in the demolition piles at this time. Weaver Boos reported that the abandoned debris was the subject of a current enforcement action by the MDE to be remedied by the combined efforts of Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and MCM Management Corporation (MCM).

The environmental response by Tradepoint Atlantic and MCM in this area included, among other efforts, the removal of drums, cylinders, and other containers present in the Machine Shop No. 2 area, sampling and analysis of petroleum product remaining in surface pits (sampling results were reportedly provided to the MDE), and removal of free-phase product and contaminated water from pits/sumps. On January 2, 2014, prior to the Phase II Investigation, cleanup was completed for four exposed pits/sumps at the Site (designated as #10, 11, 12, and 17) which had evidence of oil staining and petroleum impacts. Free oil and visibly impacted materials were removed from the subgrade structures and the structures were steam cleaned prior to backfilling. A total of approximately 1,212 gallons of free-phase product and contaminated water were recovered and sent for off-site disposal. Oily pits/sumps were also identified in the Machine Shop No. 2 area within Weaver Boos' Phase I ESA. The referenced cleanup of the oily pits/sumps had already been conducted at the time of Weaver Boos' Phase I ESA. The demolition debris piles from the Machine Shop No. 2 (main building) were still on-site at the time of this cleanup work.

As documented in the Parcel B17 Phase II Investigation Work Plan, ARM conducted a site visit on June 1, 2016 to determine the current status of building demolition activities and debris piles. At the time of ARM's site visit, all of the buildings in Parcel B17 had been demolished, the concrete slabs remained on grade, and the debris piles had been removed. Prior to the June 2016 site visit, EAG had already conducted cleanup activities (as documented above) and all subgrade structures had been backfilled; there were no subgrade structures identified during ARM's sitewalk of Parcel B17.

1.2. OBJECTIVES

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. A summary table of the site investigation locations, including the boring identification numbers and the analyses performed, is provided as **Appendix A**. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations.

2.0 ENVIRONMENTAL SETTING

2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists of the former Sparrows Point steel mill. According to the Phase I ESA prepared by Weaver Boos dated May 19, 2014, the property is zoned Manufacturing Heavy-Industrial Major (MH-IM). Surrounding property zoning classifications (beyond Tradepoint Atlantic) include the following: Manufacturing Light (ML); Resource Conservation (RC); Density Residential (DR); Business Roadside (BR); Business Major (BM); Business Local (BL); and Residential Office (RO). Light industrial and commercial properties are located northeast of the property and northwest of the property across Bear Creek. Residential areas of Edgemere and Fort Howard are located northeast of the property across Old Road Bay, respectively. Residential and commercial areas of Dundalk are located northwest of the property across Bear Creek.

According to topographic maps provided by EAG, the Site is at an elevation of approximately 8 to 10 feet above mean sea level (amsl) in most areas. Elevations at the Site appear to be uniform across the entire parcel area. According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 5 dated June 1, 2017, runoff waters from Parcel B17 are ultimately directed to the west through National Pollutant Discharge Elimination System (NPDES) permitted Outfall 013, which discharges to Bear Creek located just across the boundary of the Tradepoint Atlantic property.

2.2. REGIONAL GEOLOGY

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation and the Patuxent Formation). The Potomac Group formations are comprised of unconsolidated sediments of varying thicknesses and types, which may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

2.3. SITE GEOLOGY/HYDROGEOLOGY

Groundcover at the Site is comprised of approximately 20% natural soils and 80% fill based on the approximate shoreline of the Sparrows Point Peninsula in 1916, as shown on **Figure 2** (adapted from Figure 2-20 in the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure, dated January 1998).

In general, the encountered subsurface geology included non-native fill materials (slag and gravel) and natural soils, which included fine-grained sediments (clays and silts) and coarse-grained sediments (sands). Slag fill materials were encountered at depths of up to 15 feet below the ground surface (bgs). Shallow groundwater was observed in soil cores from 4 to 9.5 feet bgs across the Site; however, groundwater was not encountered at every boring location. Soil boring observation logs are provided in **Appendix B**. Please note that unless otherwise indicated, all Unified Soil Classification System (USCS) group symbols provided on the attached boring logs are from visual observations, and not from laboratory testing.

Groundwater was investigated across the Site during the Area B Groundwater Investigation and the Parcel B17 Phase II Investigation. One shallow hydrogeologic zone monitoring well from the Area B Groundwater Investigation (SW-026-MWS) is included in this Phase II Investigation Report. In addition to this monitoring well, six temporary groundwater sample collection points (commonly referred to as piezometers) were installed across the parcel to investigate shallow groundwater conditions. Boring location B17-018-SB was originally proposed to have a temporary piezometer installed, but shallow refusal was encountered at this location and a piezometer was installed at boring location B17-020-SB in lieu of B17-018-SB. The locations of the completed groundwater sampling points are indicated on **Figure 3**. The groundwater monitoring locations were surveyed by a Maryland-licensed surveyor. Supporting documentation from the surveys is included in **Appendix C**.

A synoptic round of groundwater level measurements was collected on February 12, 2018 from each of the groundwater monitoring locations installed for the Area B Groundwater Investigation or the Parcel B17 Phase II Investigation. Surveyed top of casing (TOC) and ground surface elevations for all applicable locations can be found in **Table 1**, along with the depth to water (DTW) measurements from this date.

Based on the field measurements, a groundwater potentiometric surface map was constructed for the shallow hydrogeologic zone. The localized potentiometric map for shallow groundwater has been included on **Figure 3**. As seen on **Figure 3**, shallow groundwater appears to flow from the eastern portion of the Site (maximum groundwater elevation of 2.66 feet amsl at B17-019-PZ) to the southwestern portion of the Site (groundwater elevation of 1.74 feet amsl at B17-016-PZ). The hydraulic gradient in the shallow zone appears to be relatively uniform across the Site, although groundwater elevations in the northern half of the Site are less defined.

3.0 SITE INVESTIGATION

A total of 38 soil samples (from 20 boring locations) and six groundwater samples were collected for analysis between September 18, 2017 and October 11, 2017 as part of the Parcel B17 Phase II Investigation. The permanent groundwater well SW-026-MWS was previously sampled on March 30, 2016 as part of the separate Area B Groundwater Investigation. This Phase II Investigation utilized methods and protocols that followed the procedures included in the Quality Assurance Project Plan (QAPP) dated April 5, 2016 which was approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, the selected laboratory and analytical methods, quality control and quality assurance procedures, investigation-derived waste (IDW) management methods, and reporting requirements are described in detail in the approved Parcel B17 Work Plan dated July 10, 2017, and the QAPP.

All site characterization activities were conducted under the property-wide Health and Safety Plan (HASP) provided as Appendix D of the approved Work Plan.

3.1. SAMPLE TARGET IDENTIFICATION

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, a boring was placed at or next to its location using Geographic Information Systems (GIS) software (ArcMap Version 10.3.1).

Sampling targets included, as applicable, 1) Recognized Environmental Conditions (RECs) shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified from the DCC Report prepared by Rust Environment and Infrastructure. The following RECs were identified in the Parcel B17 Work Plan: Machine Shop No. 2: Asbestos Piles (REC 14A, Finding 250) and Machine Shop No. 2: Stained Ground – Possible Oily Pits/Sumps (REC 14B, Finding 251). Additional information regarding these identified RECs is presented in the Parcel B17 Work Plan and summarized above in Section 1.1. There were no additional SWMUs or AOCs identified at the Site based on the DCC Report.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate

was removed from the gas pipelines. The condensate from the drip legs was typically discharged to drums, although it is possible some spilled out of the drums and on to the ground. A summary of the specific drawings covering the Site is presented in **Table 2**. Sampling target locations were identified if the historical drawings depicted industrial activities or a specific feature at a location that may have been a source of environmental contamination that potentially impacted the Site.

Based on the review of plant drawings and historical documents (or based on direct agency guidance), additional non-REC sampling targets were identified at the Site that included the following: Chesapeake Heavy Machine Service, Old Blacksmith Shop/Heat Treating Plant, Utility Drain, and Machine Shop No. 2 – Maintenance Floor. A summary of the areas that were investigated, along with the applicable boring identification numbers and the analyses performed, has been provided as **Appendix A**. During the completion of fieldwork, it was necessary to shift some borings from the approved locations given in the Work Plan, due to utility conflicts and/or refusal. **Table 3** provides the identification numbers of the field adjusted borings, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

In addition to the borings which were shifted, boring B17-003-SB could not be completed during this investigation due to equipment refusal. Another attempt was made to complete this location via test pitting using a backhoe excavator (further described in Section 3.3), but intact concrete was observed in a 20-foot radius around the proposed boring location and the excavator was unable to dig past the concrete. This location was removed from the sampling plan following the test pitting refusal. Boring B17-003-SB targeted the Machine Shop No. 2: Asbestos Piles, which were covered by several additional soil borings throughout the parcel (even those which did not have the Asbestos Piles explicitly listed as the sampling plan target in **Appendix A**). Therefore, the removal of this boring from the sampling plan is not a significant data gap.

The density of soil borings met the requirements set forth in QAPP Worksheet 17 – Sampling Design and Rationale. Parcel B17 contained a total of 3.6 acres without engineered barriers and 6.2 acres with engineered barriers. Of the 6.2 acres with engineered barriers, 4.7 acres consisted of historical building slabs and 1.5 acres consisted of parking/roads. In accordance with the relevant sampling density requirements, a minimum of 4 soil borings were required to cover the areas without engineered barriers. A total of 8 soil borings were required to meet the density specification; 20 soil borings were successfully completed during this Phase II Investigation to collect analytical soil samples.

3.2. SOIL INVESTIGATION

Continuous core soil borings were advanced at 20 locations across the Site to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (**Figure 4**). The 20 continuous core soil borings were advanced to depths between 3 and 15 feet bgs using the Geoprobe[®] MC-7 Macrocore soil sampler (surface to 10 feet bgs) and

the Geoprobe[®] D-22 Dual-Tube Sampler (depths >10 feet bgs). As described above, one soil boring (B17-003-SB) was not successfully installed due to equipment refusal, and no soil samples were collected at this location. Two locations (B17-007-SB and B17-021-SB) were revisited following the initial investigation to complete exploratory test pits using a backhoe excavator. These locations are highlighted on **Figure 4**, and the completed test pitting activities are further described in Section 3.3. At each of the 20 completed boring locations, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as **Appendix B**, and the PID calibration log has been included as **Appendix D**. Unless otherwise indicated, all USCS group symbols provided on the attached boring logs are from visual observations.

One shallow sample was collected from the 0 to 1 foot depth interval, and a deeper sample was collected from the 4 to 5 foot depth interval from each continuous core soil boring. If clean surface cover materials (such as paving or gravel) were present, the first 1 foot of fine-grained material beneath this layer was collected as the surface sample. One additional set of samples would also be collected from the 9 to 10 foot depth interval if groundwater had not been encountered (in accordance with the Work Plan); however, groundwater and/or equipment refusal was always encountered prior to reaching 10 feet bgs in Parcel B17. If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4 to 5 foot interval was shifted to the alternate depth interval. It should be noted that soil samples were not collected from a depth that was below the water table.

Soil sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 008, 009, 012, and 013** provided in Appendix A of the QAPP. Down-hole soil sampling equipment was decontaminated after soil sampling had been concluded at a location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Each soil sample collected during this investigation was submitted to Pace Analytical Services, Inc. (PACE) for analysis of Target Compound List (TCL) semi-volatile organic compounds (SVOCs) via USEPA Methods 8270D and 8270D SIM, Oil & Grease via USEPA Method 9071, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Methods 8015B and 8015D, Target Analyte List (TAL) Metals via USEPA Methods 6010C and 7471C, hexavalent chromium via USEPA Method 7196A, and cyanide via USEPA Method 9012. Samples from any depth interval with a sustained PID reading of greater than 10 ppm were also analyzed for TCL volatile organic compounds (VOCs) via USEPA Method 8260B. Additionally, the shallow soil samples collected across the Site from the 0 to 1 foot bgs (or field adjusted) interval were also analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082.

Shallow soil samples from select boring locations (listed in **Appendix A**) were also designated to be analyzed for asbestos via USEPA Method 600/R-93/116. These locations were selected due to the former presence of the Machine Shop No. 2: Asbestos Piles (REC 14A) identified in the Work Plan. During field activities, if intact concrete was observed at the ground surface at a boring location proposed for collection and analysis of asbestos, the asbestos sample was not collected because the concrete provided a physical barrier to prevent the asbestos from contacting the underlying soil. In total, six samples were ultimately analyzed for asbestos. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 - Sample Containers, Preservation, and Holding Times.

3.3. TEST PIT INVESTIGATION

Following the initial investigation, and based on observations of non-aqueous phase liquid (NAPL) or elevated analytical soil detections of Oil & Grease, sample locations B17-007-SB and B17-021-SB were further investigated via the installation of test pits. Both of these soil borings targeted the Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps) defined as REC 14A in Weaver Boos' Phase I ESA. Boring B17-007-SB had observations of black NAPL in the soil core from 1.8 to 3 feet bgs (where refusal was encountered) and boring B17-021-SB had an elevated shallow soil detection of Oil & Grease (8,860 mg/kg) above the Project Action Limit (PAL) of 6,200 mg/kg.

Test pits were completed at these locations to investigate the potential presence of the historical Oily Pits/Sumps using a backhoe excavator on November 2, 2017. Aerial images showing the approximate locations of the historical subgrade structures were used in the field to guide the test pit investigation. The test pits were completed in accordance with **Field SOP Number 015**. Petroleum-impacted materials were observed at location B17-007-SB within a subgrade structure, and the structure was cleaned. These cleanup activities were conducted by Ace Environmental Services and ENRC. Solid and aqueous impacted materials were observed at location B17-021-SB; all excavated material was backfilled at this location. A photograph log of the completed test pitting activities is provided in **Appendix E**. The specific observations documented during the test pitting are further discussed in Section 4.3.

A third location (B17-003-SB) was also revisited with the backhoe excavator in an attempt to facilitate the collection of analytical soil samples. Three attempts had previously been made at this location using Geoprobe[®] equipment; however, refusal was encountered during each attempt at depths between 1 to 3 feet bgs. Intact concrete was observed surrounding B17-003-SB in a 20-foot radius, and the backhoe excavator was unable to successfully dig past the concrete pad. This location was removed from the sampling plan following the test pitting refusal.

3.4. GROUNDWATER INVESTIGATION

Parcel B17 is located within the study area investigated under the Area B Groundwater Investigation. One shallow monitoring well from the Area B Groundwater Investigation (SW-026-MWS) has been included in this Parcel B17 Phase II Investigation Report. Additionally, six temporary groundwater sample collection points (piezometers) were installed in the shallow hydrogeologic zone in Parcel B17 to supplement the data collected in the Area B Groundwater Investigation. The soil boring locations where shallow piezometers were installed during the investigation were B17-009-SB, B17-014-SB, B17-015-SB, B17-016-SB, B17-019-SB, and B17-020-SB. Boring location B17-018-SB was originally proposed to have a temporary piezometer installed to investigate shallow groundwater conditions. However, during the field investigation shallow refusal was encountered at B17-018-SB. A piezometer was installed at location B17-020-SB in lieu of B17-018-SB. B17-010-PZ is located approximately 75 feet to the east of the originally planned piezometer location. The shallow groundwater sampling locations are displayed on **Figure 3**. The groundwater sample collection point construction logs have been included as **Appendix F**.

Groundwater sample collection point installation activities were conducted in accordance with the procedures and methods referenced in **Field SOP Number 028**. The temporary sample collection points were installed at each location using the Geoprobe[®] DT22 Dual Tube sampling system. Each boring was advanced to a depth approximately 7 feet below where groundwater was identified in the associated soil core, the 1.25-inch inner rod string was removed, and the temporary, 1-inch PVC groundwater sample collection point was installed through the outer casing. Following the installation of each sample collection point, the 0-hour depth to water was documented and the collection point was checked for the presence of NAPL using an oil-water interface probe in accordance with the methods referenced in **Field SOP Number 019** provided in Appendix A of the QAPP.

After the installation of each temporary groundwater sample collection point, down-hole equipment was decontaminated according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Groundwater samples were collected in accordance with methods referenced in **Field SOP Number 006** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated polyethylene tubing, and a water quality multiparameter meter with a flow-through cell. Groundwater samples submitted for analysis of dissolved metals were filtered in the field with an in-line 0.45 micron filter. The sampling and purge logs have been included in **Appendix G**. Calibration of the multiparameter meter was performed before the start of each day of the sampling event, and a calibration post-check was completed at the end of the day. Appropriate documentation of the multiparameter meter calibration has also been included in **Appendix G**.

Groundwater samples were submitted to PACE, and analyzed for TCL-VOCs via USEPA Method 8260B, TCL-SVOCs via USEPA Methods 8270D and 8270D SIM, TPH-DRO/GRO via USEPA Methods 8015B and 8015D, Oil & Grease via USEPA Method 1664A (piezometers only), TAL-Dissolved Metals via USEPA Methods 6010C and 7470A, dissolved hexavalent chromium via USEPA Method 7196A (piezometers only), available cyanide via USEPA Method OIA1677 (piezometers only), and total cyanide via USEPA Method 9012A. The agencies have specified the requirements for analysis of TPH-DRO/GRO and/or Oil & Grease throughout the investigation process. During the implementation of the Area B Groundwater Investigation Work Plan, Oil & Grease analysis was not required or completed. Similarly, SW-026-MWS was not sampled for available cyanide or dissolved hexavalent chromium. Based on the requirements of the Area B Groundwater Investigation, the permanent monitoring well SW-026-MWS was additionally analyzed for TAL-Total Metals via USEPA Methods 6010C and 7470A, total hexavalent chromium via USEPA Method 7196A, and PCBs via USEPA Method 680. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

3.5. MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

In accordance with **Field SOP Number 005** provided in Appendix A of the QAPP, potentially impacted materials, or IDW, generated during this Phase II Investigation was containerized in 55-gallon (DOT-UN1A2) drums. The types of IDW that were generated during this Phase II Investigation included the following:

- soil cuttings generated from soil borings or the installation of the groundwater points;
- excavation spoils generated from test pitting activities at B17-007-SB;
- purged groundwater;
- decontamination fluids; and
- used personal protective equipment

Following the completion of field activities, a composite sample was gathered with aliquots from each of the Parcel B17 Phase II IDW soil drums for waste characterization. An additional waste characterization sample was collected from the excavation spoils generated during the test pit investigation at B17-007-SB. Following these analyses, the waste soil was characterized as non-hazardous, and the excavation spoils (approximately 30 cubic yards) were transported to Greys Landfill for disposal. A list of all results from the soil waste characterization procedure can be found in **Table 4**. IDW drums containing aqueous materials (including aqueous waste generated during the Parcel B17 Phase II Investigation) were characterized by preparing composite samples from randomly selected drums. Each composite sample included aliquots from several individual drums that were chosen as a subset of the aqueous drums being staged on-site at the date of

collection. Following the analysis of each sample, the aqueous waste was characterized as non-hazardous. A list of all results from the aqueous waste characterization procedure can be found in **Table 5**.

In addition, approximately 500 gallons of impacted aqueous waste was generated during the test pitting and cleanup activities at location B17-007-SB. This aqueous material was approved for disposal at the Humphrey Creek Waste Water Treatment Plant by Tradepoint Atlantic personnel. The excavation spoils generated from the test pitting investigation were properly disposed of at the on-site industrial landfill (Greys).

The parcel specific IDW drum log from the Phase II investigation is included as **Appendix H**. All IDW procedures were carried out in accordance with methods referenced in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP.

4.0 ANALYTICAL RESULTS

4.1. SOIL CONDITIONS

Soil analytical results were screened against PALs established in the property-wide QAPP (or other direct guidance from the agencies; i.e. TPH/Oil & Grease) to determine exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the work day who is a full time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected parameters are summarized and compared to the PALs in **Table 6** (Organics) and **Table 7** (Inorganics). The asbestos results from the six relevant shallow soil samples are presented in **Table 8**. The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.1.1. Soil Conditions: Organic Compounds

As provided on **Table 6**, several VOCs were identified above the laboratory's method detection limits (MDLs) in the soil samples collected from across the Site. There were no VOCs detected above their respective PALs.

Table 6 provides a summary of SVOCs detected above the laboratory's MDLs in the soil samples collected from across the Site. The PALs for relevant polynuclear aromatic hydrocarbons (PAHs) have been adjusted upward based on revised toxicity data published in the USEPA RSL Composite Worker Soil Table. Therefore, exceedances for PAHs are based on the adjusted PALs rather than those presented in the QAPP. Four SVOCs, all of which are PAHs, were detected above their respective PALs. These SVOCs were benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene. Benzo[a]pyrene was the most common PAL exceedance and was detected above the PAL in seven total samples, with a maximum detection of 32.8 mg/kg in sample B17-008-SB-1.5. Benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene exceeded their respective PALs in two samples each (B17-008-SB-1.5 and B17-016-SB-1). A summary of the SVOC PAL exceedance locations and results has been provided on **Figure S-1**.

Shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were analyzed for PCBs. If concrete or other clean surface materials were observed at the ground surface, the shallow sample was shifted to include the first 1-foot of the underlying soil. **Table 6** provides a summary of the PCBs detected above the laboratory's MDLs. There were only two samples which exceeded the PALs for PCBs. Aroclor 1254 and total PCBs exceeded their PALs in sample B17-019-SB-2 (with detections of 2.4 mg/kg for each) and sample B17-020-SB-1.5 (with detections of 2.3 mg/kg

for each). A summary of the PCB PAL exceedance locations and results has been provided on **Figure S-2**.

Table 6 provides a summary of the TPH/Oil & Grease detections above the laboratory's MDLs in the soil samples collected in the parcel. None of the detections of DRO or GRO exceeded the PAL of 6,200 mg/kg. Oil & Grease was detected above the PAL of 6,200 mg/kg in four soil samples (from three boring locations): B17-008-SB-1.5, B17-008-SB-7.5, B17-013-SB-1.5, and B17-021-SB-1.5. The maximum detection of Oil & Grease in the parcel was 28,100 mg/kg in sample B17-008-SB-7.5. A summary of the Oil & Grease PAL exceedance locations and results has been provided on **Figure S-3**. There were three additional boring locations where physical evidence of NAPL was identified in the soil cores (B17-007-SB, B17-011-SB, and B17-012-SB). These boring locations with evidence of NAPL are also highlighted on the exceedance figure, and the specific observations are discussed in greater detail in Section 4.3.

4.1.2. Soil Conditions: Inorganic Constituents

Table 7 provides a summary of inorganic constituents detected above the laboratory's MDLs in the soil samples collected from across the Site. Three inorganic compounds (arsenic, lead, and manganese) were detected above their respective PALs. Arsenic was by far the most common inorganic exceedance and was detected above the PAL in 31 (approximately 82%) of the soil samples analyzed for this compound. In comparison, lead and manganese accounted for PAL exceedances in eight samples and two samples, respectively. The maximum detections of arsenic and lead were co-located in two samples collected from B17-014-SB and B17-019-SB, with arsenic detections of 218 mg/kg (B17-019-SB-4) and 204 mg/kg (B17-014-SB-5), and lead detections of 9,720 mg/kg (B17-014-SB-5) and 6,780 mg/kg (B17-019-SB-4). The maximum detection of manganese (52,800 mg/kg) was observed in sample B17-019-SB-2. A summary of the inorganic PAL exceedance locations and results has been provided on **Figure S-4**.

4.1.3. Soil Conditions: Asbestos

Shallow soil samples from select boring locations (listed in **Appendix A**) were designated to be analyzed for asbestos due to the former presence of the Machine Shop No. 2: Asbestos Piles (REC 14A). During field activities, if intact concrete was observed at the ground surface, the asbestos sample was not collected because the concrete provided a physical barrier to prevent the asbestos from contacting the underlying soil. **Table 8** provides a summary of the asbestos findings among these six shallow samples which were ultimately analyzed. There were three detections of chrysotile or amosite among the samples, all of which were reported as less than 1% asbestos. These detections were identified in samples B17-001-SB-1, B17-007-SB-1, and B17-015-SB-1. The detections of less than 1% indicate that asbestos was identified; however, it is not above the reporting limit provided by the analytical method. Since these three detections were less than 1%, they do not qualify the samples as asbestos containing materials (ACM). A summary of the asbestos results has been provided on **Figure S-5**. Only the samples which were analyzed for asbestos are shown on the figure.

4.1.4. Soil Conditions: Results Summary

Table 6 and Table 7 provide a summary of the detected organic compounds and inorganics in the soil samples submitted for laboratory analysis, and Figure S-1 through Figure S-4 present a summary of the soil sample results that exceeded the PALs. Table 8 provides the results of the asbestos analysis for the six relevant shallow samples, and the results are presented graphically in Figure S-5. Table 9 provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. Table 10 indicates which soil impacts (PAL exceedances) are associated with the specific targets listed in the Parcel B17 Work Plan. There were no detections of VOCs above the applicable PALs, and these compounds are not considered to be significant contaminants in Parcel B17. The PAL exceedances in soil within Parcel B17 consisted of three inorganics (arsenic, lead, and manganese), four SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene), two PCB groups (Aroclor 1254 and total PCBs), and Oil & Grease. Asbestos was identified in three samples, but each of the detections was reported as less than 1% asbestos which indicates that the samples are not qualified as ACM.

Lead, PCBs, and TPH/Oil & Grease are subject to special requirements as designated by the agencies: lead results above 10,000 mg/kg are subject to additional delineation (and possible excavation), PCB results above 50 mg/kg are subject to delineation and excavation, and TPH/Oil & Grease results above 6,200 mg/kg should be evaluated for the potential presence and mobility of NAPL in any future development planning. Concentrations for lead and PCBs did not exceed the specified thresholds in any soil samples collected at the Site. None of the detections of DRO or GRO exceeded the PAL of 6,200 mg/kg. Oil & Grease was detected above the PAL of 6,200 mg/kg in three boring locations (and four total samples): B17-008-SB, B17-013-SB, and B17-021-SB. There were three additional boring locations where physical evidence of NAPL was identified in the soil cores (B17-007-SB, B17-011-SB, and B17-012-SB). Temporary NAPL screening piezometers were installed at B17-008-SB, B17-011-SB, and B17-012-SB to assess the presence or absence of mobile product. Locations B17-007-SB and B17-021-SB were further investigated via test pitting, and a piezometer installation was not warranted at location B17-013-SB (see Section 4.3). None of the screening piezometers, temporary groundwater sample collection points, or the groundwater monitoring well SW-026-MWS had any detections of NAPL. These observations are discussed in depth in Section 4.3.

4.2. GROUNDWATER CONDITIONS

The analytical results for the detected parameters in groundwater are summarized and compared to the PALs in **Table 11** (Organics) and **Table 12** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.2.1. Groundwater Conditions: Organic Compounds

As provided on **Table 11**, acetone was the only VOC identified above the laboratory's MDLs in the groundwater samples collected from across the Site. There were no VOCs detected above their respective PALs. There were no detections of PCBs at location SW-026-MWS, the single location at which a sample was collected to be analyzed for this class of compounds.

Table 11 provides a summary of SVOCs identified in groundwater samples above the laboratory's MDLs. Similar to the evaluation of soil data, the PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Resident Tapwater Table. Six SVOCs, all of which are PAHs, were detected above their respective aqueous PALs. These SVOCs were benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene, and naphthalene. Indeno[1,2,3-c,d]pyrene was detected above the PAL in one sample (B17-016-PZ), and the remaining SVOC exceedances occurred in two or three groundwater samples each. The maximum detections of each listed SVOC, with the exception of naphthalene, were detected at location B17-016-PZ. A summary of the SVOC PAL exceedance locations and results has been provided on **Figure GW-1**.

Table 11 provides a summary of the TPH/Oil & Grease detections in groundwater at the Site. DRO was detected above its PAL in four total sample locations, with a maximum detection of 530 μ g/L (flagged with the "J" qualifier indicating that it is an estimated value) at location SW-026-MWS. GRO and Oil & Grease were not detected above the PAL of 47 μ g/L. A summary of the DRO PAL exceedance locations and results has been provided on **Figure GW-2**. Each location was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sampling locations, and no delineation or further action was warranted.

4.2.2. Groundwater Conditions: Inorganic Constituents

Table 12 provides a summary of inorganic constituents detected above the MDLs in the groundwater samples collected from across the Site. One inorganic compound (dissolved manganese) was detected above its PALs at four locations (B17-015-PZ, B17-016-PZ, B17-019-PZ, and B17-020-PZ). The maximum detection of dissolved manganese was $682 \mu g/L$ at location B17-016-PZ. A summary of the inorganic PAL exceedance locations and results has been provided on **Figure GW-3**.

4.2.3. Groundwater Conditions: Results Summary

Groundwater data were screened to determine whether individual sample results may exceed the USEPA Vapor Intrusion (VI) Screening Levels (Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-

visls). The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site.

None of the aqueous results exceeded the individual VI TCR or THQ criteria as specified by the VISL Calculator. Following the initial screening, a cumulative VI risk assessment was also performed for each individual sample location, with the results separated by cancer versus non-cancer risk. All compounds with detections were included in the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. None of the cumulative VI cancer risks were greater than 1E-5, and there were no compounds that were identified above the 10% THQ level to be included in the cumulative VI evaluation for non-cancer hazard. The results of the cumulative VI comparisons are provided in **Table 13**.

The presence and absence of groundwater impacts within the Site boundaries have been adequately described. There were no concerns related to potential VI risks at the Site. Based on the relatively low-level analytical results identified during this investigation, there do not appear to be significant ongoing sources of groundwater contamination present.

4.3. NON-AQUEOUS PHASE LIQUID (NAPL)

Soil cores were screened for evidence of possible NAPL contamination during the completion of the Phase II soil borings. During the field screening, three locations (B17-007-SB, B17-011-SB, and B17-012-SB) had observations of physical evidence of NAPL in the soil cores. These locations are highlighted on **Figure S-3**. One additional boring (B17-008-SB) had observations of petroleum odors from 7.5 to 10 feet bgs; however, there was no visible NAPL or sheen observed in the soil core. The soil results from boring B17-008-SB exceeded the Oil & Grease PAL of 6,200 mg/kg in both the shallow and intermediate samples with detections of 26,000 mg/kg and 28,100 mg/kg, respectively. Two additional soil samples (B17-013-SB-1.5 and B17-021-SB-1.5) exceeded the Oil & Grease PAL with detections of 8,630 mg/kg and 8,860 mg/kg, respectively. TPH-DRO/GRO did not exceed the PAL in any soil samples. Each of these boring locations with elevated Oil & Grease detections and/or evidence of NAPL is described below:

• B17-007-SB: This location targeted the Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps). The boring had visible low to medium vicious black product in the soil core from 1.8 to 3 feet bgs which was noted on the boring log. A moderate odor was also detected accompanying the product. A shallow soil sample (B17-007-SB-1) was collected from the 0 to 1 foot bgs interval. Oil & Grease (detected at 347 mg/kg) was identified in the sample well below the PAL. An intermediate soil sample was not collected due to shallow refusal at 3 feet bgs. Due to the observed NAPL and based on the sampling plan target, a test pit was completed in the vicinity of B17-007-SB. During test pitting, a subgrade structure containing NAPL-impacted material was identified. All impacted debris, soil, and aqueous material was removed from the subgrade structure, and the

structure was cleaned prior to backfilling. The test pitting was documented in a photograph log (**Appendix E**). A temporary NAPL screening piezometer was not installed at this location since all impacted material was removed during test pitting.

- B17-008-SB: This boring targeted the Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps). The boring had a very light petroleum odor in the soil core from 7.5 to 10 feet bgs, however, there were no visible observations of NAPL or sheen in the soil core. Since an elevated detection of Oil & Grease (28,100 mg/kg) was noted in the intermediate depth soil sample (6.5 to 7.5 foot interval), a temporary NAPL screening piezometer was installed at B17-008-SB. Groundwater was observed at 7.5 feet bgs in the soil core.
- B17-011-SB: This boring targeted the Chesapeake Heavy Machine Service area. The boring had visible light amber NAPL with a light sheen in the soil core from 7 to 8 feet bgs. A shallow (0.5 to 1.5 foot interval) and intermediate (4 to 5 foot interval) soil sample were collected from this location. Oil & Grease detections in both soil samples were well below the PAL of 6,200 mg/kg with the highest detection of Oil & Grease (740 mg/kg) reported in the shallow soil sample. A temporary NAPL screening piezometer was installed at B17-011-SB. Groundwater was observed at 7 feet bgs in the soil core.
- B17-012-SB: This boring targeted the Old Blacksmith Shop/Heat Treating Plant. A very light sheen was noted in the soil core from 7 to 8 feet bgs. A shallow (0.5 to 1.5 foot interval) and intermediate (3 to 4 foot interval) soil sample were collected at this location. Oil & Grease detections in both soil samples were well below the PAL of 6,200 mg/kg with the highest detection of Oil & Grease (233 mg/kg) reported in the shallow soil sample. Refusal was encountered in B17-012-SB at 8 feet bgs. A temporary NAPL screening piezometer was installed at B17-012-SB. Groundwater was observed at 4 feet bgs in the soil core.
- B17-013-SB: This boring targeted the Old Blacksmith Shop/Heat Treating Plant. There were no visible observations of NAPL or sheen in the soil core, but Oil & Grease was detected at 8,630 mg/kg in the shallow sample (0.5 to 1.5 foot interval). An intermediate sample was also collected (3 to 4 foot interval), and the Oil & Grease detection was well below the PAL of 6,200 mg/kg with a detection of 152 mg/kg. Refusal was encountered in B17-013-SB at 8 feet bgs. A temporary NAPL screening piezometer was not installed at this location because there was no physical evidence of NAPL and the underlying intermediate soil data did not indicate that impacted material has migrated vertically downward. No additional action is proposed at this location.
- B17-021-SB: This boring targeted the Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps). There were no visible observations of NAPL or sheen in the soil core, but Oil & Grease was detected at 8,860 mg/kg in the shallow sample (0.5 to 1.5 foot interval).

The boring was successfully completed to 10 feet bgs with groundwater observed at 9.5 feet bgs. Due to the elevated analytical detection and based on the sampling plan target, a test pit was completed in the vicinity of B17-021-SB. During test pitting, little to no petroleum impacts were observed, and no subgrade structures/pits were encountered. The test pitting was documented in a photograph log (**Appendix E**). A temporary NAPL screening piezometer was not installed at B17-021-SB based on the field observations during the test pitting.

Based on the observations of NAPL and/or elevated analytical detections of Oil & Grease and in accordance with the Parcel B17 Work Plan, temporary NAPL screening piezometers were installed at locations B17-008-SB, B17-011-SB, and B17-012-SB. Locations B17-007-SB and B17-021-SB were further investigated via the completion of test pits, and a piezometer installation was not warranted at location B17-013-SB. Each screening piezometer was installed in accordance with standard specifications for temporary groundwater sample collection points. The piezometers were checked for the presence of NAPL using an oil-water interface probe immediately after installation, approximately 48 hours after installation, and again after at least 30 days. NAPL was not detected in any of the screening piezometers during any of the gauging checks, and no additional installations or delineation were warranted. The water level measurements from the gauging events completed through the final 30-day check have been provided in Appendix I. This attachment also includes the specific installation date of each of the screening piezometers, as well as relevant construction details (screen intervals, total depths, etc.). These three NAPL screening piezometers were abandoned in conjunction with six temporary groundwater sample points on November 1, 2018 in accordance with COMAR 26.04.04.34 through 36, as documented in the Abandonment Completion Letter for Parcel B17 dated December 20, 2018.

4.4. SUPPLEMENTAL LEAD AND ARSENIC DELINEATION

Following completion of the Phase II Investigation, elevated concentrations of lead and arsenic were identified in subsurface soil samples collected from borings B17-014-SB and B17-019-SB. Outside of the scope of this initial Phase II Investigation, a Work Plan for the Delineation/Characterization of Lead & Arsenic Impacted Soil at B17-014-SB and B17-019-SB was submitted to the MDE and the USEPA on February 16, 2018. Following review of the proposed sampling approach, the Work Plan was formally approved by the agencies on June 27, 2018. Delineation activities were completed between May 4, 2018 and July 16, 2018. The delineation results are presented in the Supplemental Investigation Report for Lead and Arsenic Impacted Soil at B17-014-SB and B17-019-SB dated August 7, 2019. No further investigation is expected at this time; however, the need for additional action in the future will be contingent on future development planning, as outlined in the Supplemental Investigation Report, and will be determined by risk assessments to be presented in associated Response and Development Work Plans.

5.0 DATA USABILITY ASSESSMENT

The approved property-wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, TAL-Metals, cyanide, asbestos, or TPH/Oil & Grease) are present in Site media (soil and groundwater) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the most current USEPA RSLs) or based on other direct guidance from the agencies, to identify the presence of exceedances in each environmental medium.

Quality assurance and quality control (QA/QC) samples were collected during field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix J**. The following QA/QC samples were submitted for analysis to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples per day
 - \circ Soil VOCs only
 - \circ Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, hexavalent chromium, and cyanide
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, and hexavalent chromium
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, and hexavalent chromium
- Field Blank and Equipment Blank at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide

The QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.

5.1. DATA VERIFICATION

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field log books, field data sheets, and Chain of Custody forms to ensure that all planned samples were collected, and to ensure consistency with the field methods and decontamination procedures specified in the QAPP Worksheet 21 - Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated at the beginning of each day and re-checked as needed. The logs have been provided in **Appendix D** (PID calibration log) and **Appendix G** (multiparameter meter calibration logs).

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 50% of the environmental sample analyses performed by PACE and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI). The DVRs provided by EDQI have been included as electronic attachments.

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved QAPP dated April 5, 2016 and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

The PACE-Greensburg (PA) laboratory facility implements quality assurance and reporting requirements through the TNI certification program with the State of Pennsylvania; which is accepted by Maryland. Since late-January 2017, these requirements include the flagging of contaminants with a "B" qualifier when an analyte is detected in an associated laboratory method blank, regardless of the level of the contaminant detected in the sample. A method blank is analyzed at a rate of one blank for each 20 sample analytical batch. The USEPA has previously specified that results flagged with the "B" qualifier do not represent legitimate detections. They

have also specified that results flagged with a "JB" qualifier are invalid, and any such results should be revised to display the "B" qualifier only.

Although elevated sample results may be "B" qualified by the laboratory as non-detects due to low-level blank detections, EDQI corrects any erroneous "B" qualifiers during the data validation procedure to avoid under-reporting analytical detections. EDQI removes the "B" qualifiers for relevant samples according to the guidance given in the table below. Therefore, a result originally flagged with a "B" qualifier in the laboratory certificate may be reported as a legitimate detection without this qualifier. Likewise, a result originally flagged with a "JB" qualifier in the laboratory certificate may be reported as a "J" qualifier if the erroneous "B" qualifier can be eliminated, but would be reported as a "B" qualified non-detect result if the original "B" qualifier is legitimate.

Blank Result	Sample Result	Qualifying Action
Result less than RL	Result less than RL	Result is Qualified "B"
Kesuit less than KL	Result greater than RL	Remove "B"
Result greater than RL	Result less than Blank Result	Result is Qualified "B"
Kesuit greater than KL	Result greater than Blank Result	Remove "B"

RL = Reporting Limit

As directed by EDQI, ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI), and applied the same validation corrections to any relevant "B" or "JB" qualified results. This review of the non-validated data ensures that any elevated detections of parameters, including those which may exceed the PALs, are not mistakenly reported as non-detect values simply because they did not undergo the formal validation procedure by EDQI. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.

5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential limitations in the results have been indicated through final data flags. These flags indicate whether particular data points were quantitative estimates, biased high/low, associated with blank

contamination, etc. Individual data flags are provided with the results in the detection summary tables. A qualifier code glossary is included with each DVR provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further data evaluation. A list of the analytical soil results that were rejected during data validation is provided as **Table 14**. A single aqueous result (acetone in sample SW-026-MWS) was rejected during validation. This rejected result from the prior Area B Groundwater Investigation is not provided in a supplemental table. A discussion of data completeness (the proportion of valid data) is included below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. Sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 006, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that collection of soil and groundwater at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. No significant deviations from the QAPP were noted in the dataset.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general, the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.

Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix K**. This evaluation of completeness includes only the representative 50% of sample results which were randomly selected for validation.

All groundwater compounds, with the exception of acetone, had completeness ratios of 100%. A single acetone result (from permanent well SW-026-MWS) was rejected during validation. This rejected result was obtained during the Area B Groundwater Investigation completed previously

in 2016 and does not represent a significant data gap. None of the groundwater results collected specifically for the Parcel B17 Phase II Investigation were rejected during validation.

The only soil compounds with overall completeness values below 90% were benzaldehyde and 1,4-dioxane. Benzaldehyde (71% completeness) had 13 soil detections among the validated dataset, but the maximum detection in soil at the Site (0.13 mg/kg) was significantly below the PAL of 120,000 mg/kg. All of the 1,4-dioxane soil results which underwent the validation process were rejected. The rejection of the soil results for 1,4-dioxane has not been uncommon for data obtained from the Tradepoint Atlantic property. In addition, 1,4-dioxane had a completeness ratio of 100% in groundwater with only two low-level detections out of the seven groundwater samples. Sufficient information is available in the groundwater dataset to evaluate the significance of 1,4-dioxane at the Site.

Overall, the soil and groundwater data can be used as intended, and no significant data gaps were identified. While a limited set of compounds did not meet the completeness goal of 90%, these compounds do not appear to be significant contaminants at the Site.

6.0 FINDINGS AND RECOMMENDATIONS

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of seven groundwater samples (including location SW-026-MWS which was sampled for the Area B Groundwater Investigation) and 38 soil samples (all locations/depths) were collected and analyzed to define the nature and extent of contamination in Parcel B17. The sampling and analysis plan for the parcel was developed to target specific features which represented a potential release of hazardous substances and/or petroleum products to the environment. Soil samples were analyzed for TCL-VOCs, TCL-SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Metals, hexavalent chromium, and cyanide. Shallow soil samples (0 to 1 foot bgs) were additionally analyzed for PCBs and select shallow soil samples were analyzed for asbestos. Groundwater samples were analyzed for TCL-VOCs, TCL-SVOCs, TPH-DRO/GRO, TAL-Dissolved Metals, and total cyanide. The temporary piezometers were also sampled for Oil & Grease, dissolved hexavalent chromium, and available cyanide. The permanent well SW-026-MWS was also sampled for TAL-Total Metals, total hexavalent chromium, and PCBs.

6.1. SOIL

The concentrations of constituents in the soil have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Lead and PCB concentrations are below the levels that would warrant evaluation of a removal remedy. There were no locations sampled during the initial Phase II Investigation where detections of lead exceeded 10,000 mg/kg, the designated threshold at which delineation would be required. There were no concentrations of total PCBs identified above the mandatory delineation criterion of 50 mg/kg, indicating that further action is not needed. Asbestos was identified in three samples, but each of the detections of chrysotile or amosite was reported as less than 1% asbestos. The detections of less than 1% indicate that asbestos was identified; however, it is not above the reporting limit provided by the analytical method, and the samples are not classified as ACM.

There were no soil PAL exceedances for VOCs indicating that these compounds are not significant contaminants in soil at the Site. Exceedances of the PALs in soil within Parcel B17 consisted of three inorganics (arsenic, lead, and manganese), four SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene), two PCB groups (Aroclor 1254 and total PCBs), and Oil & Grease. Arsenic exceeded its PAL in the largest proportion of the samples analyzed site-wide. Arsenic was detected in 84% of the soil samples analyzed for this compound, with a maximum detection of 218 mg/kg in sample B17-019-SB-4. The remaining inorganic exceedances were less common in comparison. Lead and manganese exceeded their PALs in eight samples (maximum detection of lead at 9,720 mg/kg in B17-014-SB-5) and two samples (maximum detection of manganese at 52,800 mg/kg in B17-019-SB-2), respectively. Each of the

four listed SVOCs exceeded their respective PALs in the same two soil samples (B17-008-SB-1.5 and B17-016-SB-1). There were five additional benzo[a]pyrene PAL exceedances in soil throughout Parcel B17, although the two highest detections of benzo[a]pyrene were also found in samples B17-008-SB-1.5 and B17-016-SB-1. Total PCBs and Aroclor 1254 exceeded their respective PALs in B17-019-SB-2 and B17-020-SB-1.5. The detections of total PCBs (and Aroclor 1254) were equal to 2.4 mg/kg and 2.3 mg/kg in these two samples, respectively. Petroleum impacts, including a discussion of the analytical exceedances of the Oil & Grease PAL as well as borings with physical evidence of NAPL in the soil cores, are further discussed in Section 6.3.

6.2. GROUNDWATER

The concentrations of constituents in the groundwater have also been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Exceedances of the aqueous PALs in groundwater below Parcel B17 consisted of one metal (dissolved manganese), six SVOCs (benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]anthracene, and naphthalene), and DRO. Dissolved manganese exceeded its aqueous PAL at four sample locations throughout the parcel, with a maximum detection of 682 µg/L at location B17-016-PZ. Indeno[1,2,3-c,d]pyrene was detected above the PAL in one sample (B17-016-PZ), and the remaining SVOC exceedances occurred in two or three groundwater samples each. The maximum detections of each listed SVOC, with the exception of naphthalene, were detected at location B17-016-PZ. The SVOCs generally appeared to be elevated in the western half of the Site; there were no PAL exceedances in the eastern locations. DRO was identified with four PAL exceedances. The maximum detection of DRO was 530 µg/L (flagged with the "J" qualifier) in the sample obtained from the permanent well SW-026-MWS, which was collected during the separate Area B Groundwater Investigation.

Each groundwater sample location was checked for the potential presence of NAPL using an oilwater interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sample locations in Parcel B17.

Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized), therefore there is no potential for direct human exposure for a Composite Worker. In the event that future construction/excavation leads to a potential Construction Worker exposure to groundwater, health and safety plans should be implemented to limit exposure risk. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. None of the individual sample results exceeded the VI TCR or THQ criteria. When the aqueous results were summed by sample location, none of the cumulative VI cancer risks were greater than or equal to 1E-5, and none of the cumulative VI non-cancer HI values exceeded 1. There were no concerns related to potential VI risks at the Site.

6.3. NON-AQUEOUS PHASE LIQUID

There were four soil samples (from three boring locations) with elevated detections of Oil & Grease reported above the PAL (6,200 mg/kg) at the Site. These elevated analytical detections could be indicative of potential NAPL impacts. Oil and Grease was detected above the PAL in three surface soil samples: B17-008-SB-1.5 at 26,000 mg/kg, B17-013-SB-1.5 at 8,630 mg/kg, and B17-021-SB-1.5 at 8,860 mg/kg. The fourth Oil & Grease PAL exceedance was detected in sample B17-008-SB-7.5 at 28,100 mg/kg. Boring B17-008-SB also had a very light petroleum-like odor (but no visible NAPL or sheen) in the soil core from 7.5 to 10 feet bgs and groundwater was encountered at 7.5 feet bgs. During field screening of the soil cores installed during this investigation, borings B17-007-SB, B17-011-SB, and B17-012-SB had visible observations of NAPL and/or sheen in the soil cores. Boring B17-007-SB had a visible low to medium vicious black product in the soil core from 1.8 to 3 feet bgs (refusal was encountered at 3 feet bgs), boring B17-011-SB had a light amber NAPL with a light sheen in the soil core 8.7 to 9.8 feet bgs, and boring B17-012-SB had a very light sheen in the soil core from 7 to 8 feet bgs. The specific observations of NAPL were discussed in detail in relation to the analytical Oil & Grease PAL exceedances in Section 4.3.

The potential mobility of NAPL to groundwater at the Site was investigated via the installation of three temporary NAPL piezometers: B17-008-PZ, B17-011-PZ, and B17-012-PZ. Locations B17-007-SB and B17-021-SB were further investigated via the completion of test pits, and a piezometer installation was not warranted at location B17-013-SB because there was no physical evidence of NAPL observed in the soil cores and the intermediate soil sample at this location suggested that the elevated Oil & Grease impacts were limited to the shallow soil. During test pitting at location B17-007-SB, a subgrade structure was identified containing NAPL-impacted material. All impacted debris, soil, and aqueous material was removed from the subgrade structure, and the structure was cleaned prior to backfilling. There was little to no evidence of petroleum impacts identified during the test pitting at location B17-021-SB.

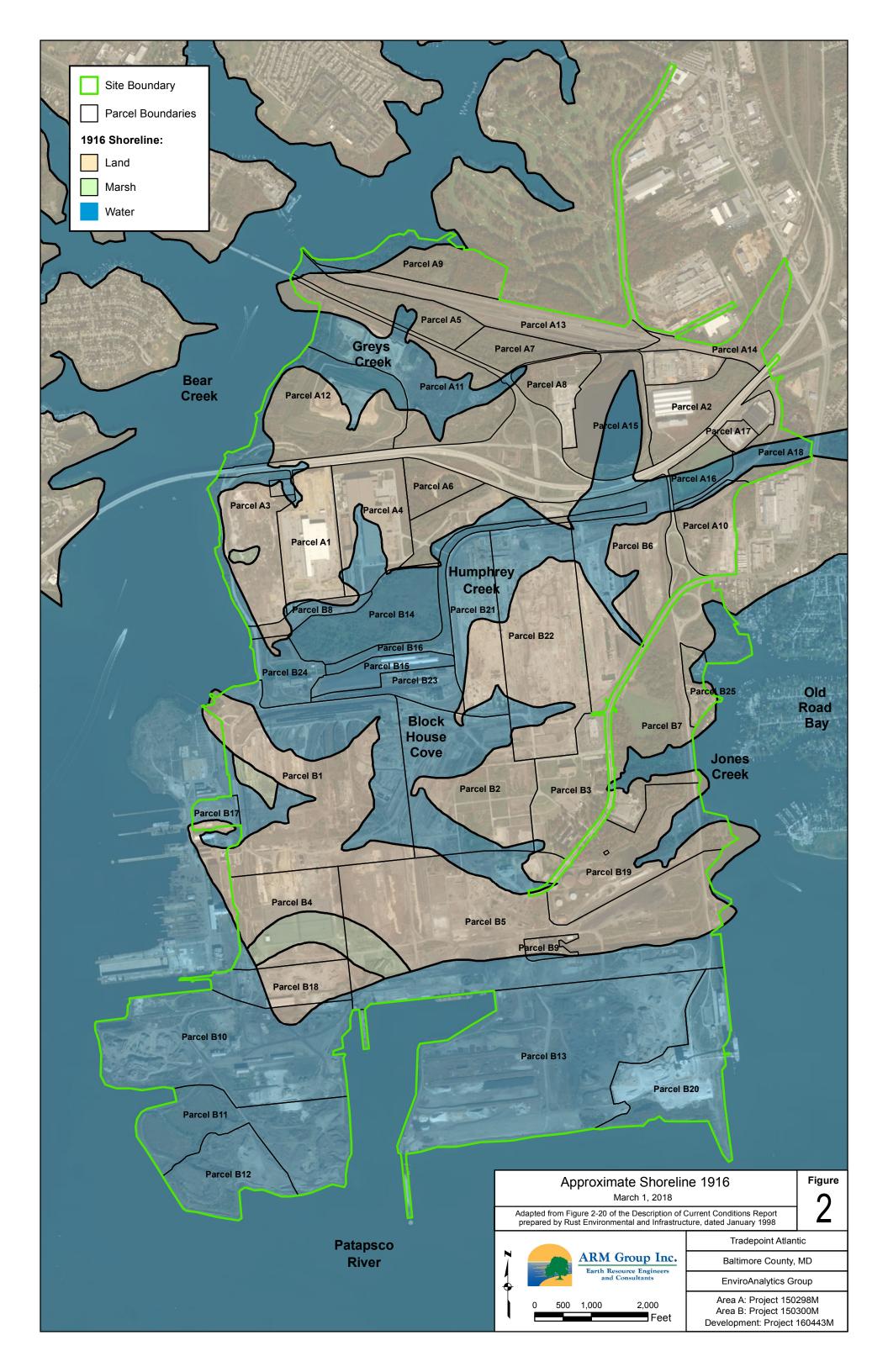
Based on the 0-hour, 48-hour, and 30-day gauging measurements of each screening piezometer using an oil-water interface probe (see **Appendix I**), it was determined that mobile NAPL is not present in groundwater at quantities that are likely to migrate. In addition to the NAPL screening piezometers, none of the temporary groundwater sample collection points (or the permanent well SW-026-MWS) installed in Parcel B17 showed any evidence of NAPL during the mandatory checks prior to sampling. Since there was no NAPL detected in any groundwater location, no additional action is recommended at this time with respect to NAPL in Parcel B17. These three NAPL screening piezometers were abandoned in conjunction with six temporary groundwater sample points on November 1, 2018 in accordance with COMAR 26.04.04.34 through 36, as documented in the Abandonment Completion Letter for Parcel B17 dated December 20, 2018.

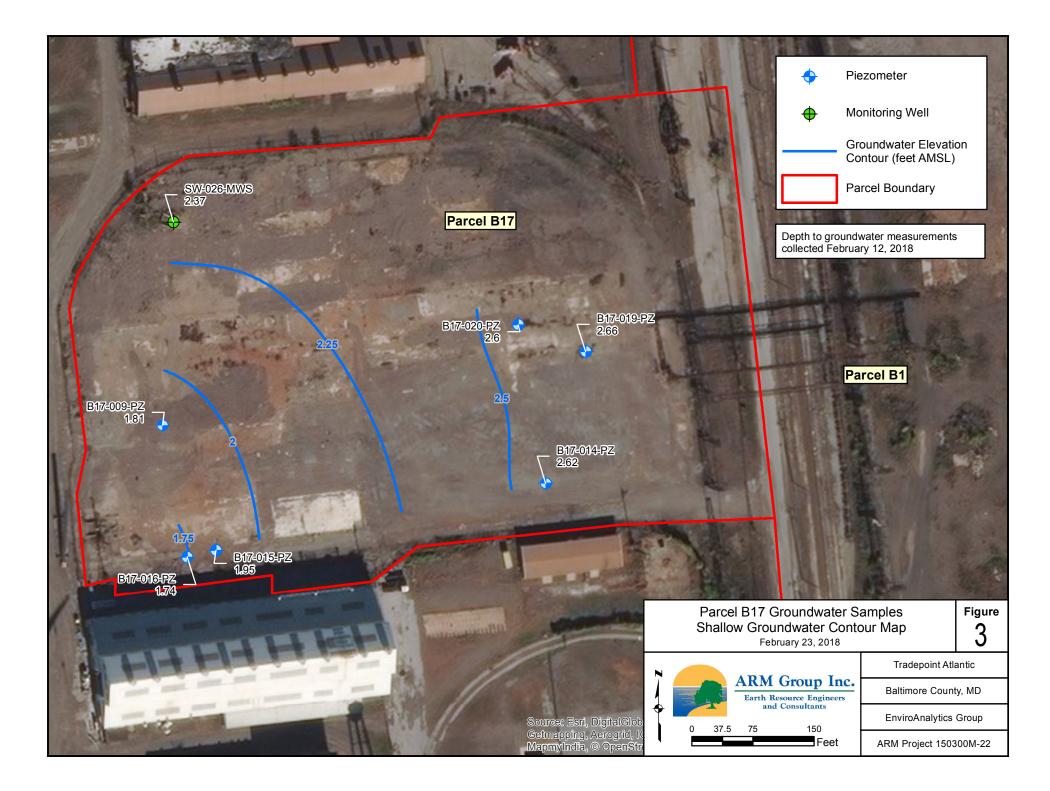
Although no additional action is proposed at this time, the proximity of all NAPL/Oil & Greaseimpacted borings to proposed utilities should be evaluated in any future development planning for Parcel B17. Appropriate protocols should be documented in a Response and Development Work Plan (as necessary) to prevent the mobilization of any product if future utilities are proposed in the vicinity of these impacts.

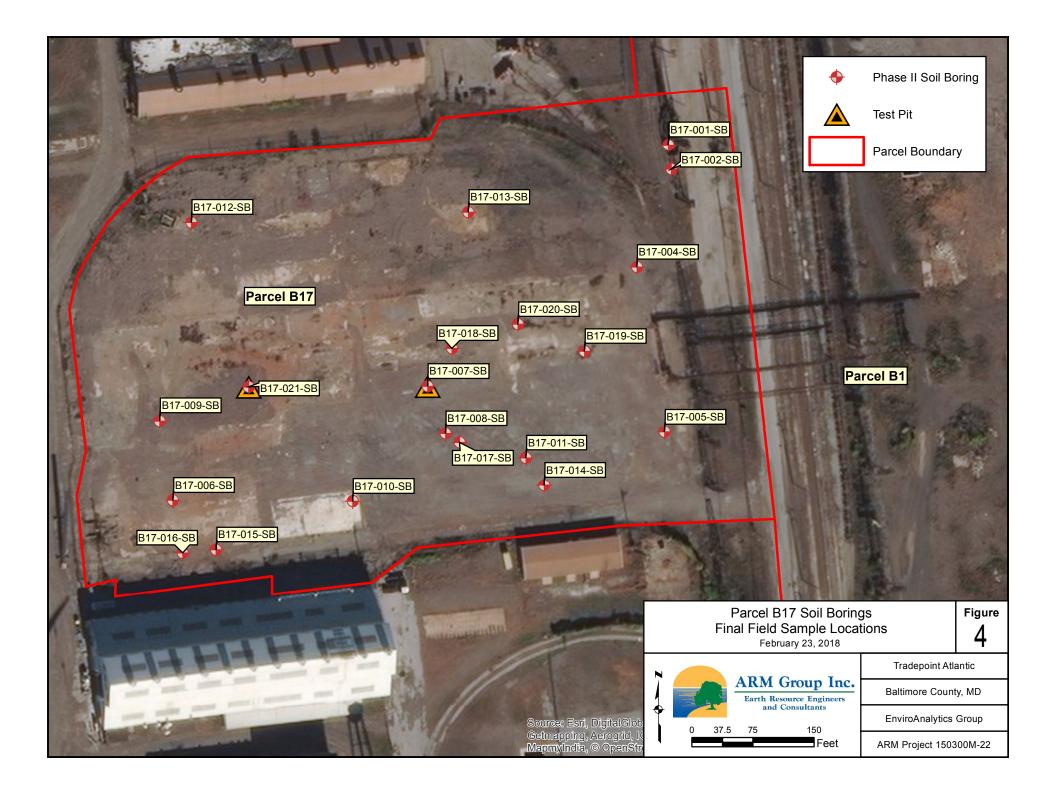
6.4. RECOMMENDATIONS

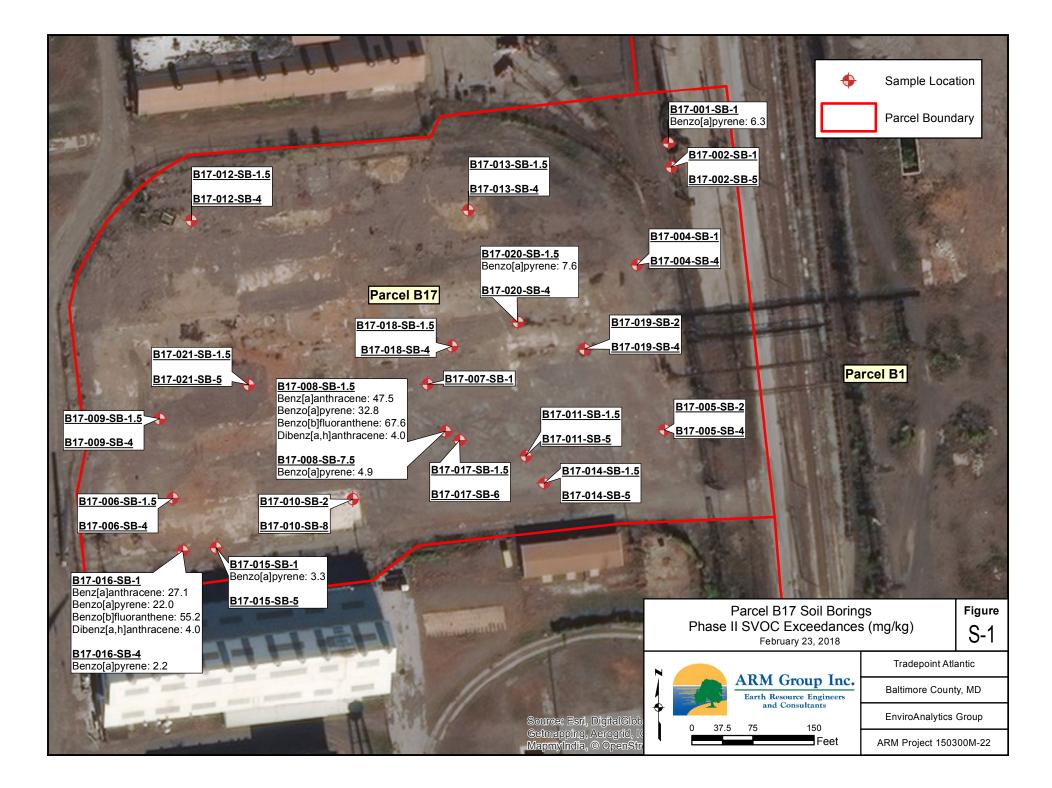
Sufficient remedial investigation data has been collected to present this evaluation of the nature and extent of possible constituents of concern in Parcel B17. The presence and absence of soil and groundwater impacts within Parcel B17 have been adequately described and further site-wide investigation is not warranted to characterize overall conditions. Recommendations for the Site are as follows:

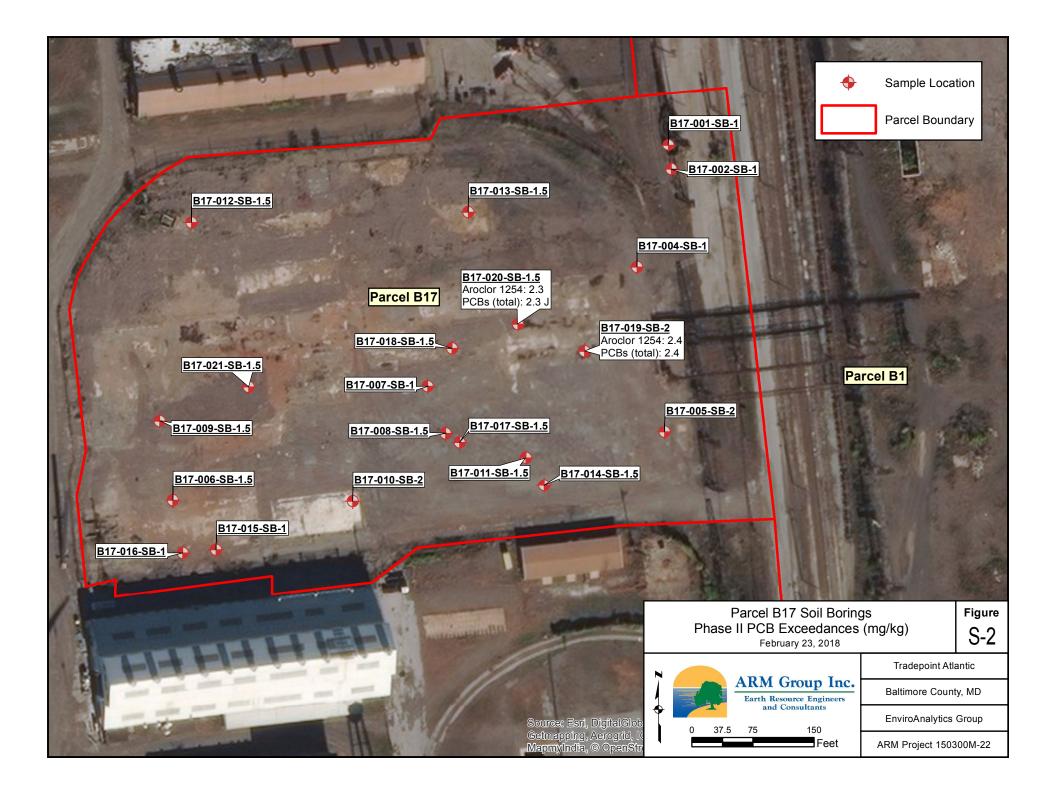
- The maximum detections of lead and arsenic identified in soil during this Phase II Investigation were co-located in two samples: B17-014-SB-5 (lead detection of 9,720 mg/kg and arsenic detection of 204 mg/kg) and B17-019-SB-4 (lead detection of 6,780 mg/kg and arsenic detection of 218 mg/kg). These soil results are elevated in comparison to most lead and arsenic results collected at the Tradepoint Atlantic property to date, and delineation activities have been completed at these two locations outside of the scope of this initial Phase II Investigation under a separate approved Work Plan. The delineation results are presented in the Supplemental Investigation Report for Lead and Arsenic Impacted Soil at B17-014-SB and B17-019-SB dated August 7, 2019. No further investigation is expected at this time; however, the need for additional action in the future will be contingent on future development planning, as outlined in the Supplemental Investigation Report, and will be determined by risk assessments to be presented in associated Response and Development Work Plans.
- The boring locations with physical observations of NAPL and/or elevated detections of Oil & Grease in the associated soil cores (B17-007-SB, B17-008-SB, B17-011-SB, B17-012-SB, B17-013-SB, and B17-021-SB) should be considered for proximity to proposed utilities in any future development plans. If future utilities are proposed in the vicinity of these borings, appropriate protocols for the mitigation of potential product (NAPL) mobility should be specified in a Response and Development Work Plan.

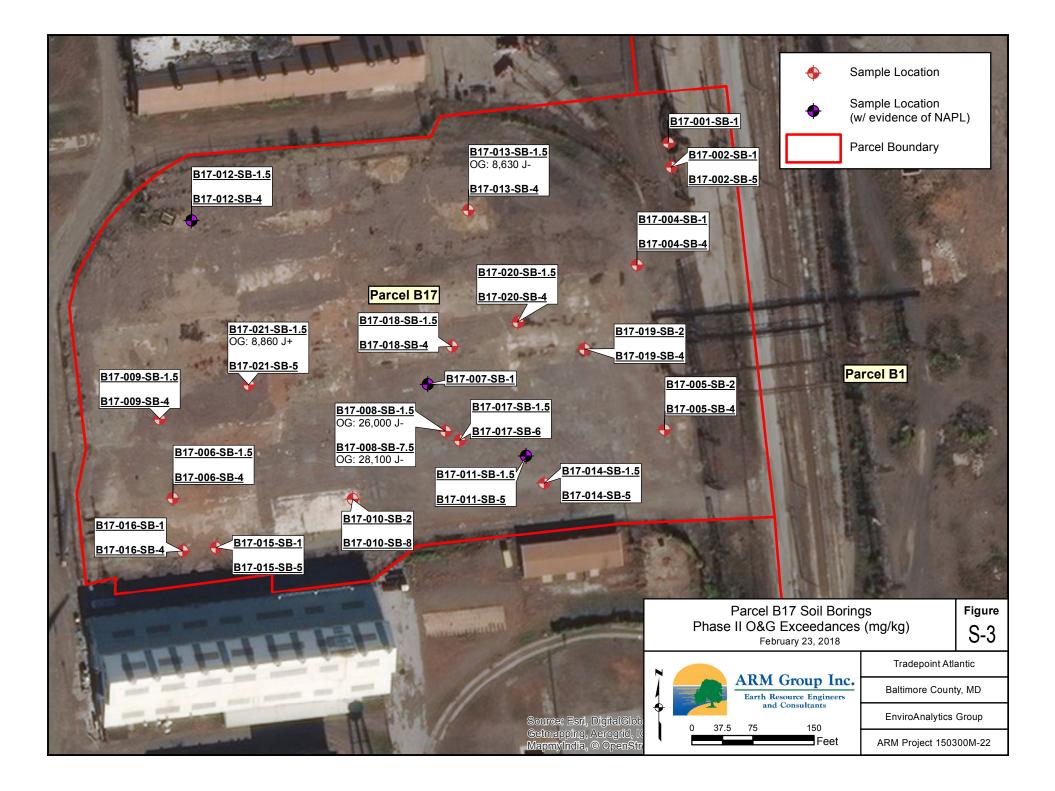

7.0 REFERENCES

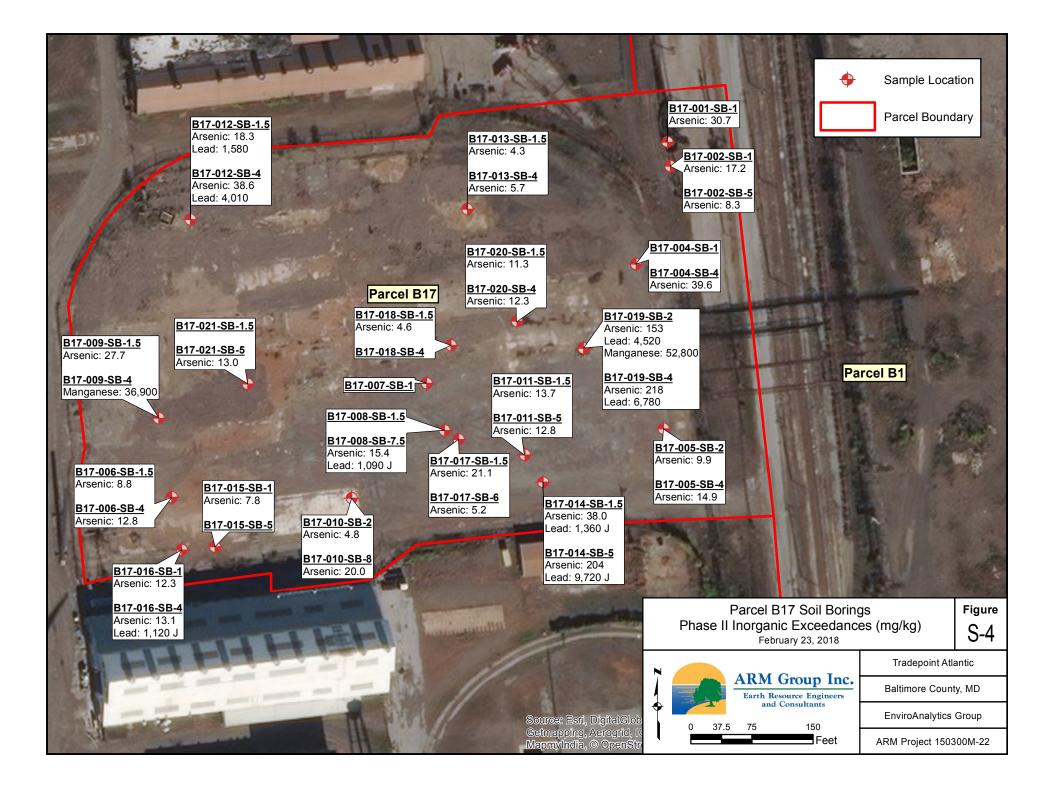

- ARM Group Inc. (2018). *Abandonment Completion Letter Area B: Parcel B17*. December 20, 2018.
- ARM Group Inc. (2018). Delineation/Characterization of Lead & Arsenic Impacted Soil at B17-014-SB and B17-019-SB – Area B: Parcel B17. February 16, 2018.
- ARM Group Inc. (2019). Lead and Arsenic Impacted Soil: Supplemental Investigation Report Area B: Parcel B17 (B17-014 & B17-019). August 7, 2019.
- ARM Group Inc. (2015). *Phase II Investigation Work Plan Area B Groundwater Investigation*. Revision 3. October 6, 2015.
- ARM Group Inc. (2017). *Phase II Investigation Work Plan Area B: Parcel B17*. Revision 1. July 10, 2017.
- ARM Group Inc. (2016). *Quality Assurance Project Plan: Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group Inc. (2017). *Stormwater Pollution Prevention Plan (SWPPP)*. Revision 5. June 1, 2017.
- Rust Environment and Infrastructure (1998). *Description of Current Conditions: Bethlehem Steel Corporation*. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.

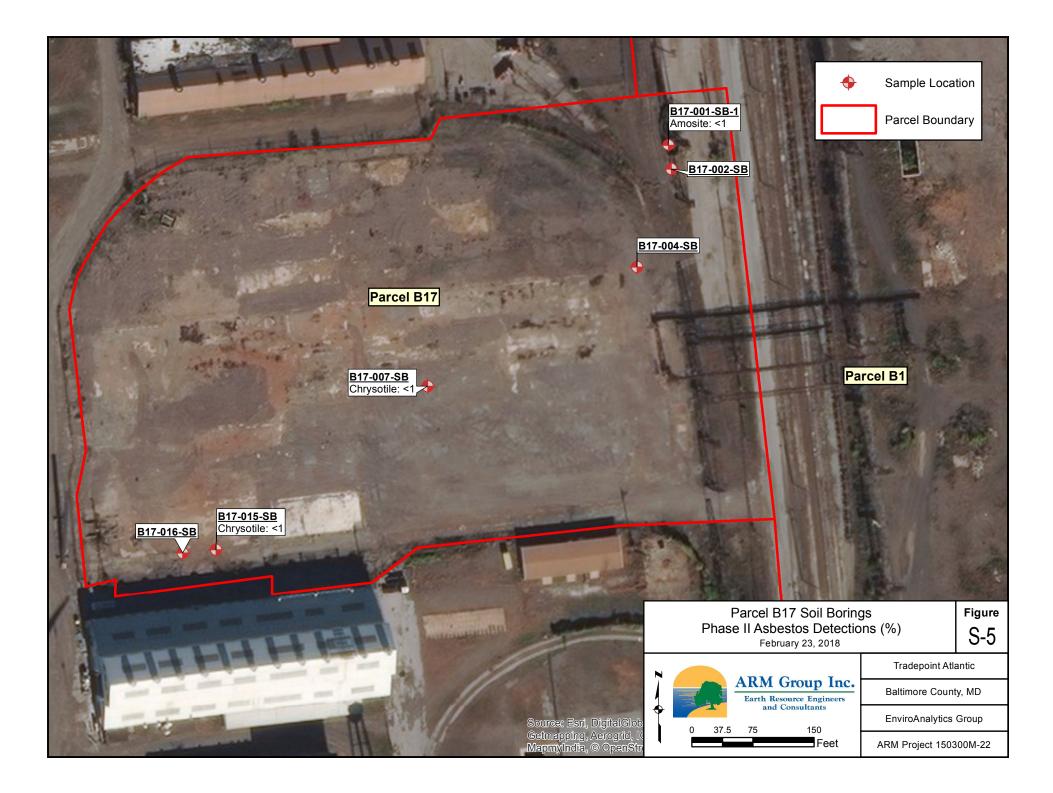


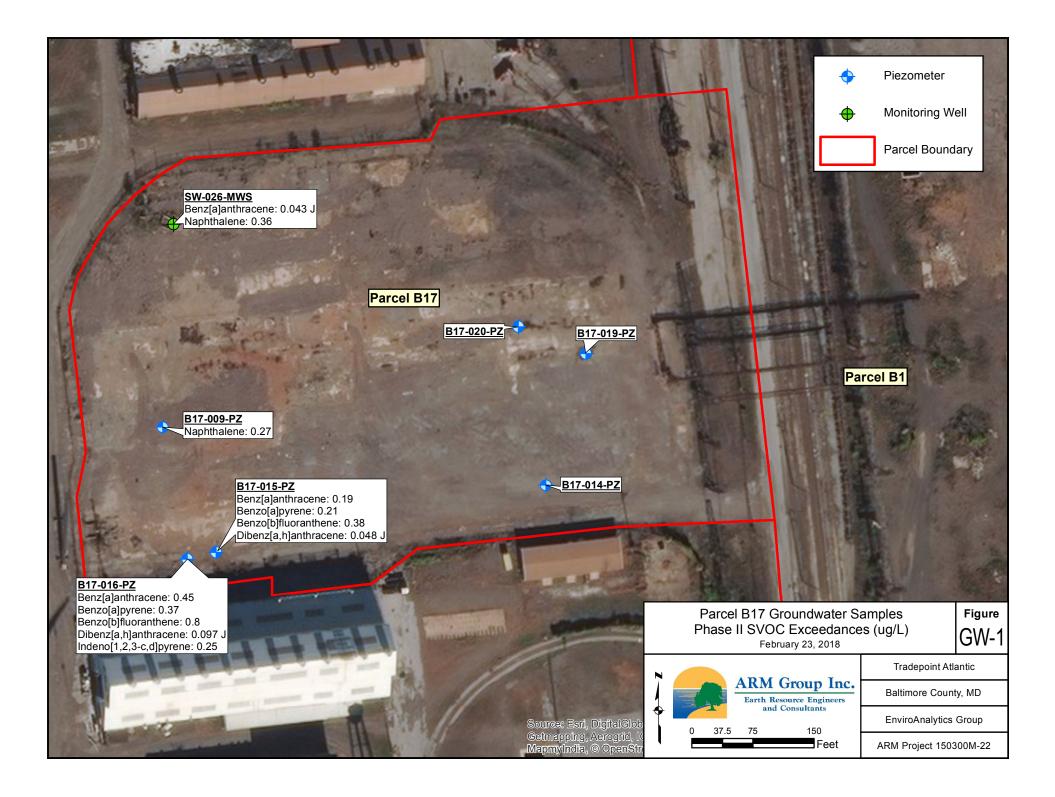

FIGURES

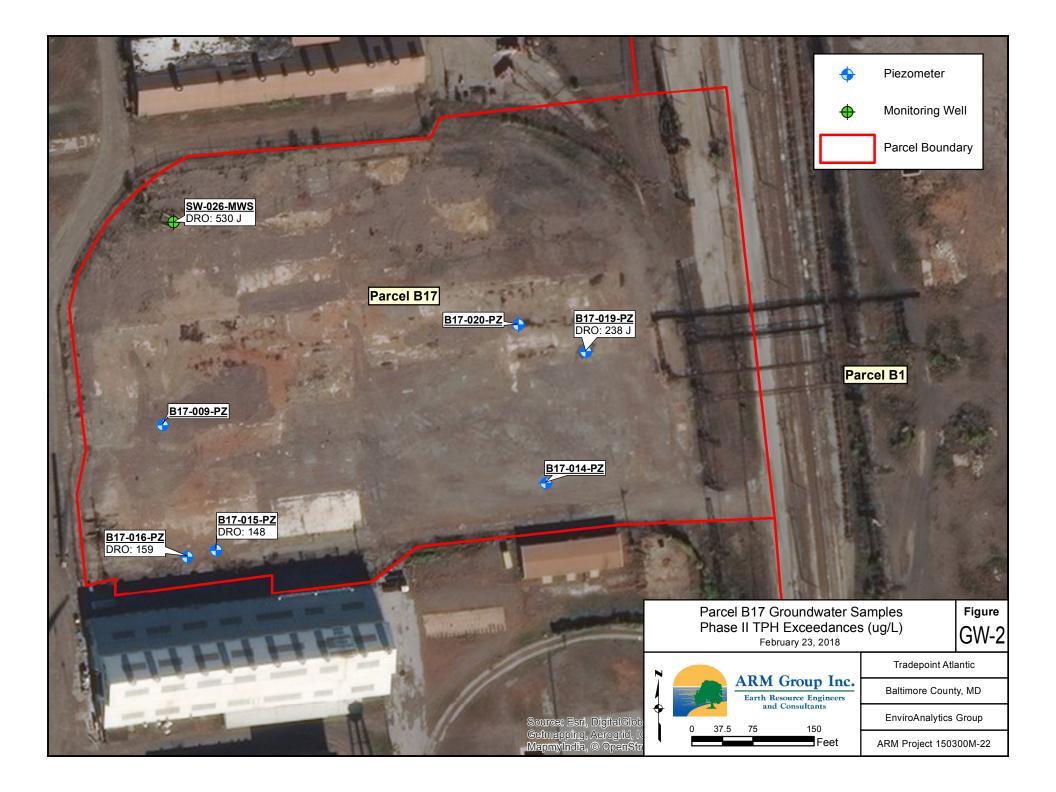


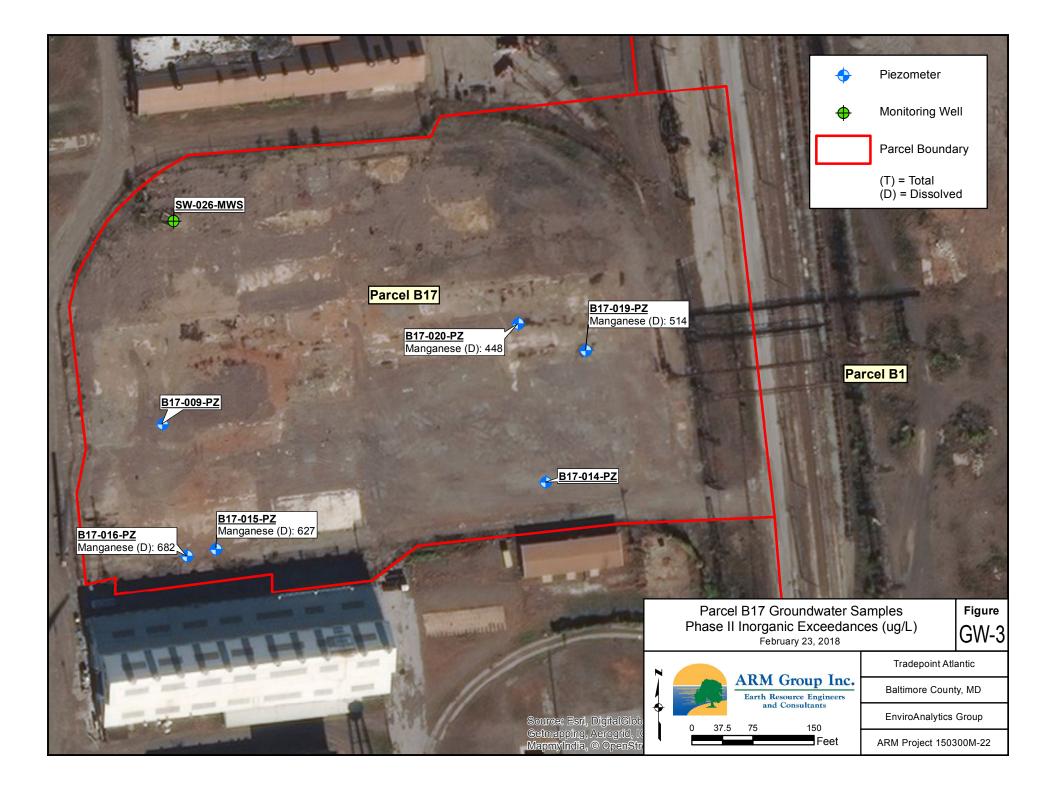












TABLES

TABLE 1GROUNDWATER ELEVATION DATA								
Location Name	<u>TOC</u> <u>Elevation</u> (feet AMSL)	<u>Ground</u> <u>Elevation</u> (feet AMSL)	<u>Measured</u> DTW (feet)	<u>Groundwater</u> <u>Elevation</u> (feet AMSL)				
B17-009-PZ	11.74	8.85	9.93	1.81				
B17-014-PZ	11.44	8.41	8.82	2.62				
B17-015-PZ	11.19	8.52	9.24	1.95				
B17-016-PZ	11.61	8.81	9.87	1.74				
B17-019-PZ	11.49	8.88	8.83	2.66				
B17-020-PZ	11.42	8.78	8.82	2.60				
SW-026-MWS	11.51	8.61	9.14	2.37				

DTW = Depth to water

TOC = Top of casing

AMSL = Above mean sea level

TABLE 2 HISTORICAL SITE DRAWING DETAILS								
<u>Set Name</u>	Typical Features Shown	<u>Drawing</u> <u>Number</u>	Original Date Drawn	Latest Revision Date				
	Roads, water bodies, building/structure	5025	Unknown	3/11/1982				
Plant Arrangement	footprints, electric lines, above-ground	5026	6/24/1958	3/11/1982				
	pipelines (e.g.: steam, nitrogen, etc.)	5031	Unknown	3/11/1982				
		5032	9/1/1958	3/11/1982				
		5125	Unknown	7/8/2008				
Plant Index	Roads, water bodies, demolished	5126	Unknown	9/27/2010				
Plant Index	buildings/structures, electric lines, above-ground pipelines	5131	Unknown	7/9/2008				
	and the Second Lefterness	5132	Unknown	8/15/2008				
		5525	8/11/1959	3/6/1964				
Diant Comon Lines	Same as above plus trenches, sumps,	5526	8/24/1959	3/19/1992				
Plant Sewer Lines	underground piping (includes pipe materials)	5531	2/12/1960	2/12/1960				
		5532	Unknown	6/1/1976				
Drip Legs	Coke Oven Gas Drip Legs Locations	5886B	Unknown	Sept. 1988				

TABLE 3 FIELD SHIFTED BORING LOCATIONS							
			Location [¥]	<u>Final L</u>	$ocation^{\text{F}}$	Relocation	
Location ID		<u>Northing</u>	<u>Easting</u>	<u>Northing</u>	<u>Easting</u>	<u>Distan</u> Direc	
B17-007-SB	Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps)	566,456	1,455,827	566,449	1,455,826	7	SW
B17-008-SB	Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps)	566,391	1,455,832	566,391	1,455,848	16	W
B17-010-SB	Chesapeake Heavy Machine Service	566,313	1,455,724	566,308	1,455,734	12	SE
B17-011-SB	Chesapeake Heavy Machine Service	566,375	1,455,975	566,361	1,455,947	31	SW
B17-015-SB	Utility Drain	566,262	1,455,572	566,248	1,455,566	15	SW
B17-019-SB	Machine Shop No. 2 Maintenance Floor	566,512	1,455,998	566,492	1,456,019	29	SE
B17-020-SB	Machine Shop No. 2 Maintenance Floor	566,504	1,455,929	566,525	1,455,937	22	NE

[¥]Reported northings and eastings are not survey accurate.

Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

	TABLE 4 CHARACTERIZATION RESULTS FOR SOLID IDW							
Sample ID	Parameter	<u>Result</u> (mg/L)	TCLP Limit (mg/L)	<u>TCLP</u> <u>Exceedance</u>	<u>Laboratory</u> <u>Flag</u>	Laboratory LLQ (mg/L)		
	1,1-Dichloroethene	0.007	0.7	no	U	0.007		
	1,2-Dichloroethane	0.007	0.5	no	U	0.007		
	1,4-Dichlorobenzene	0.007	7.5	no	U	0.007		
	2,4,5-Trichlorophenol	0.1	400	no	U	0.1		
	2,4,6-Trichlorophenol	0.1	2	no	U	0.1		
	2,4-Dinitrotoluene	0.1	0.13	no	U	0.1		
	2-Butanone (MEK)	0.014	200	no	U	0.014		
	2-Methylphenol	0.1	200	no	U	0.1		
	3&4-Methylphenol(m&p Cresol)	0.2	200	no	U	0.2		
	Arsenic	0.5	5	no	U	0.5		
	Barium	10	100	no	U	10		
	Benzene	0.007	0.5	no	U	0.007		
	Cadmium	0.1	1	no	U	0.1		
D17 W	Carbon tetrachloride	0.007	0.5	no	U	0.007		
B17 Waste	Chlorobenzene	0.007	100	no	U	0.007		
Diposal	Chloroform	0.007	6	no	U	0.007		
(12/4/2017)	Chromium	0.5	5	no	U	0.5		
	Hexachlorobenzene	0.1	0.13	no	U	0.1		
	Hexachlorobutadiene	0.1	0.5	no	U	0.1		
	Hexachloroethane	0.1	3	no	U	0.1		
	Lead	0.5	5	no	U	0.5		
	Mercury	0.02	0.2	no	U	0.02		
	Nitrobenzene	0.1	2	no	U	0.1		
	Pentachlorophenol	0.5	100	no	U	0.5		
	Pyridine	0.1	5	no	U	0.1		
	Selenium	0.1	1	no	U	0.1		
	Silver	0.5	5	no	U	0.5		
	Tetrachloroethene	0.007	0.7	no	U	0.007		
	Trichloroethene	0.007	0.5	no	U	0.007		
	Vinyl Chloride	0.007	0.2	no	U	0.007		

U: The analyte was not detected in the sample. The numeric value represents the sample LLQ.

TCLP: Toxicity Characteristic Leaching Procedure

LLQ: Lowest Level of Quantitaion - analyzed by Caliber Analytical Services

	TABLE 4 CHARACTERIZATION RESULTS FOR SOLID IDW							
Sample ID	Parameter	<u>Result</u> (mg/L)	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LOQ (mg/L)		
	1,1-Dichloroethene	0.05	0.7	no	U	0.05		
	1,2-Dichloroethane	0.05	0.5	no	U	0.05		
	1,4-Dichlorobenzene	0.1	7.5	no	U	0.1		
	2,4,5-Trichlorophenol	0.25	400	no	U	0.25		
	2,4,6-Trichlorophenol	0.1	2	no	U	0.1		
	2,4-Dinitrotoluene	0.1	0.13	no	U	0.1		
	2-Butanone (MEK)	0.1	200	no	U	0.1		
	2-Methylphenol	0.1	200	no	U	0.1		
	3&4-Methylphenol(m&p Cresol)	0.2	200	no	U	0.2		
	Arsenic	0.025	5	no	U	0.025		
	Barium	0.11	100	no		0.05		
	Benzene	0.05	0.5	no	U	0.05		
B17-007-TP	Cadmium	0.015	1	no	U	0.015		
Waste	Carbon tetrachloride	0.05	0.5	no	U	0.05		
(11/6/2017)	Chlorobenzene	0.05	100	no	U	0.05		
(11/0/2017)	Chloroform	0.0177	6	no	В	0.05		
	Chromium	0.025	5	no	U	0.025		
	Hexachlorobenzene	0.1	0.13	no	U	0.1		
	Hexachloroethane	0.1	3	no	U	0.1		
	Lead	0.12	5	no	U	0.12		
	Mercury	0.001	0.2	no	U	0.001		
	Nitrobenzene	0.1	2	no	U	0.1		
	Pentachlorophenol	0.25	100	no	U	0.25		
	Selenium	0.04	1	no	U	0.04		
	Silver	0.03	5	no	U	0.03		
	Tetrachloroethene	0.05	0.7	no	U	0.05		
	Trichloroethene	0.05	0.5	no	U	0.05		
	Vinyl chloride	0.05	0.2	no	U	0.05		

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

B: This analyte was detected in the associated method blank.

TCLP: Toxicity Characteristic Leaching Procedure

LOQ: Limit of Quantitation - analyzed by Pace Analytical

	TABLE 4 CHARACTERIZATION RESULTS FOR SOLID IDW							
Sample ID	Parameter	<u>Result</u> (mg/kg)	<u>TSCA Limit</u> (mg/kg)	<u>TSCA</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LOQ (mg/kg)		
	Aroclor 1016	0.21	-	no	U	0.21		
	Aroclor 1221	0.21	-	no	U	0.21		
	Aroclor 1232	0.21	-	no	U	0.21		
B17-007-TP	Aroclor 1242	0.21	-	no	U	0.21		
	Aroclor 1248	0.21	-	no	U	0.21		
Waste (11/6/2017)	Aroclor 1254	2.1	-	no		0.21		
(11/6/2017)	Aroclor 1260	0.21	-	no	U	0.21		
	Aroclor 1262	0.21	-	no	U	0.21		
	Aroclor 1268	0.21	-	no	U	0.21		
	Total PCBs	2.1	50	no		1.8		

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

TSCA: Toxic Substances Control Act

LOQ: Limit of Quantitation - analyzed by Pace Analytical

	TABLE 5 CHARACTERIZATION RESULTS FOR LIQUID IDW						
	D	Result	TCLP Limit	TCLP	Laboratory	Laboratory	
Sample ID	Parameter	(mg/L)	<u>(mg/L)</u>	Exceedance	<u>Flag</u>	LLQ (mg/L)	
	1,1,1-Trichloroethane	0.005		no	U	0.005	
	1,1,2,2-Tetrachloroethane	0.005		no	U	0.005	
	1,1,2-Trichloroethane	0.005		no	U	0.005	
	1,1,2-Trichlorotrifluoroethane	0.005		no	U	0.005	
	1,1-Dichloroethane	0.005		no	U	0.005	
	1,1-Dichloroethene	0.005	0.7	no	U	0.005	
	1,2,4-Trichlorobenzene	0.005		no	U	0.005	
	1,2-Dibromo-3-chloropropane	0.005		no	U	0.005	
	1,2-Dibromoethane	0.005		no	U	0.005	
	1,2-Dichlorobenzene	0.005		no	U	0.005	
	1,2-Dichloroethane	0.005	0.5	no	U	0.005	
	1,2-Dichloropropane	0.005		no	U	0.005	
	1,3-Dichlorobenzene	0.005		no	U	0.005	
	1,4-Dichlorobenzene	0.005	7.5	no	U	0.005	
	2-Butanone (MEK)	0.025	200	no	U	0.025	
	2-Hexanone (MBK)	0.025		no	U	0.025	
	4-Methyl-2-pentanone (MIBK)	0.025		no	U	0.025	
Waste Disposal	Acetone	0.025		no	U	0.025	
(12/4/2017)	Antimony	0.005		no	U	0.005	
	Aroclor 1016	0.0005		no	U	0.0005	
	Aroclor 1221	0.0005		no	U	0.0005	
	Aroclor 1232	0.0005		no	U	0.0005	
	Aroclor 1242	0.0005		no	U	0.0005	
	Aroclor 1248	0.0005		no	U	0.0005	
	Aroclor 1254	0.0005		no	U	0.0005	
	Aroclor 1260	0.0005		no	U	0.0005	
	Arsenic	0.005	5	no	U	0.005	
	Benzene	0.007	0.5	no		0.001	
	Beryllium	0.004		no	U	0.004	
	Bromodichloromethane	0.005		no	U	0.005	
	Bromoform	0.005		no	U	0.005	
	Bromomethane	0.005		no	U	0.005	
	Cadmium	0.005	1	no	U	0.005	
	Carbon disulfide	0.005		no	U	0.005	
	Carbon tetrachloride	0.005	0.5	no	U	0.005	
	Chlorobenzene	0.005	100	no	U	0.005	

	CHARACTERIZATIO	TABLE : N RESU		QUID IDW		
Sample ID	Parameter	<u>Result</u> (mg/L)	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LLQ (mg/L)
	Chloroethane	0.005		no	U	0.005
	Chloroform	0.005	6	no	U	0.005
	Chloromethane	0.005		no	U	0.005
	Chromium	0.005	5	no	U	0.005
	cis-1,2-Dichloroethene	0.005		no	U	0.005
	cis-1,3-Dichloropropene	0.005		no	U	0.005
	Copper	0.005		no	U	0.005
	Cyclohexane	0.005		no	U	0.005
	Dibromochloromethane	0.005		no	U	0.005
	Dichlorodifluoromethane	0.005		no	U	0.005
	Diisopropyl ether (DIPE)	0.025		no	U	0.025
	Ethyl t-butyl ether (ETBE)	0.025		no	U	0.025
	Ethylbenzene	0.001		no	U	0.001
	Isopropylbenzene	0.005		no	U	0.005
	Lead	0.0072	5	no		0.005
	m&p-Xylene	0.005		no	U	0.005
	Mercury	0.001	0.2	no	U	0.001
	Methyl acetate	0.005		no	U	0.005
	Methyl t-butyl ether (MTBE)	0.005		no	U	0.005
Waste Disposal	Methylcyclohexane	0.005		no	U	0.005
(12/4/2017)	Methylene chloride	0.01		no	U	0.01
· · · · ·	Naphthalene	0.01		no	U	0.01
	Nickel	0.024		no		0.005
	o-Xylene	0.005		no	U	0.005
	Selenium	0.013	1	no		0.005
	Silver	0.005	5	no	U	0.005
	Styrene	0.005		no	U	0.005
	tert-Amyl alcohol (TAA)	0.025		no	U	0.025
	tert-Amyl ethyl ether (TAEE)	0.025		no	U	0.025
	tert-Amyl methyl ether (TAME)	0.025		no	U	0.025
	tert-Butanol (TBA)	0.025		no	U	0.025
	Tetrachloroethene	0.005	0.7	no	U	0.005
	Thallium	0.002		no	U	0.002
	Toluene	0.001		no	U	0.001
	trans-1,2-Dichloroethene	0.005		no	U	0.005
	trans-1,3-Dichloropropene	0.005		no	U	0.005
	Trichloroethene	0.005	0.5	no	U	0.005
	Trichlorofluoromethane	0.005		no	U	0.005
	Vinyl chloride	0.001	0.2	no	U	0.001
	Zinc	0.32		no		0.005

U: The analyte was not detected in the sample. The numeric value represents the sample LLQ.

TCLP: Toxicity Characteristic Leaching Procedure

LLQ: Lowest Level Quantitation - analyzed by Caliber Analytical Services

	TABLE 5 CHARACTERIZATION RESULTS FOR LIQUID IDW							
Sample ID	Parameter	<u>Result</u> (mg/L)	TCLP Limit (mg/L)	<u>TCLP</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LOQ (mg/L)		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.0338	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.0006	1	no	J	0.003		
Weter D'ensel 1	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 1	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.001	6	no	U	0.001		
	Chromium	0.0016	5	no	J	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.0811	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.003	1	no	U	0.003		
	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 2	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.0029	6	no		0.001		
	Chromium	0.0012	5	no	J	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		

	TABLE 5 CHARACTERIZATION RESULTS FOR LIQUID IDW							
	_	Result	TCLP Limit	TCLP	Laboratory	Laboratory		
<u>Sample ID</u>	Parameter	<u>(mg/L)</u>	<u>(mg/L)</u>	Exceedance	Flag	LOQ (mg/L)		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.0051	100	no	J	0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.003	1	no	U	0.003		
W. (D'	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 3	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.0016	6	no		0.001		
	Chromium	0.00085	5	no	J	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.0094	5	no		0.005		
	Barium	0.101	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.003	1	no	U	0.003		
	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 4	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.0024	6	no	-	0.001		
	Chromium	0.0012	5	no	J	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.000	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		

	TABLE 5 CHARACTERIZATION RESULTS FOR LIQUID IDW							
Sample ID	Parameter	<u>Result</u> (mg/L)	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LOQ (mg/L)		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.398	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.00058	1	no	J	0.003		
W (D' 15	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 5	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.0039	6	no		0.001		
	Chromium	0.0012	5	no	J	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	2.14	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.001	1	no	J	0.003		
	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 6	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.00058	6	no	J	0.001		
	Chromium	0.005	5	no	U	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		

	TABLE 5 CHARACTERIZATION RESULTS FOR LIQUID IDW							
Sample ID	Parameter	Result (mg/L)	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	<u>Laboratory</u> <u>Flag</u>	Laboratory LOQ (mg/L)		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.0889	100	no		0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.00067	1	no	J	0.003		
W. D. 17	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 7	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.00075	6	no	J	0.001		
	Chromium	0.005	5	no	U	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.00065	0.5	no	J	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		
	1,1-Dichloroethene	0.001	0.7	no	U	0.001		
	1,2-Dichloroethane	0.001	0.5	no	U	0.001		
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001		
	2-Butanone (MEK)	0.01	200	no	U	0.01		
	Arsenic	0.005	5	no	U	0.005		
	Barium	0.01	100	no	J	0.01		
	Benzene	0.001	0.5	no	U	0.001		
	Cadmium	0.003	1	no	U	0.003		
	Carbon tetrachloride	0.001	0.5	no	U	0.001		
Water Disposal 8	Chlorobenzene	0.001	100	no	U	0.001		
(3/22/2016)	Chloroform	0.001	6	no	U	0.001		
	Chromium	0.005	5	no	U	0.005		
	Lead	0.005	5	no	U	0.005		
	Mercury	0.0002	0.2	no	U	0.0002		
	Selenium	0.008	1	no	U	0.008		
	Silver	0.006	5	no	U	0.006		
	Tetrachloroethene	0.001	0.7	no	U	0.001		
	Trichloroethene	0.001	0.5	no	U	0.001		
	Vinyl chloride	0.001	0.2	no	U	0.001		

U: The analyte was not detected in the sample. The numeric value represents the LOQ.

J: The positive result for this analyte is a quantitative estimate below the laboratory LOQ.

TCLP: Toxcity Characteristic Leaching Procedure

LOQ: Limit of Quantitation - analyzed by Pace Analytical

Table 6 Summary of Organics Detected in Soil Parcel B17 Tradepoint Atlantic Sparrows Point, Maryland

							Sparrows Poin	nt, Maryland							
Parameter	Units	PAL	B17-001-SB-1	B17-002-SB-1	B17-002-SB-5	B17-004-SB-1	B17-004-SB-4	B17-005-SB-2	B17-005-SB-4	B17-006-SB-1.5	B17-006-SB-4	B17-007-SB-1*	B17-008-SB-1.5	B17-008-SB-7.5	B17-009-SB-1.5
Volatile Organic Compounds															
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	0.011 U	N/A	0.012 U	0.015 U	0.015 U	N/A	0.016 U	N/A	0.012 U	0.013 U	N/A
2-Hexanone	mg/kg	1,300	N/A	N/A	0.011 U	N/A	0.012 U	0.015 U	0.0021 J	N/A	0.016 U	N/A	0.012 U	0.013 U	N/A
4-Methyl-2-pentanone (MIBK)	mg/kg	56,000	N/A	N/A	0.011 U	N/A	0.012 U	0.015 U	0.015 U	N/A	0.016 U	N/A	0.012 U	0.013 U	N/A
Acetone	mg/kg	670,000	N/A	N/A	0.023	N/A	0.012 U	0.043	0.015 U	N/A	0.016 U	N/A	0.18	0.13	N/A
Benzene	mg/kg	5.1	N/A	N/A	0.0055 U	N/A	0.0061 U	0.023	0.0047 J	N/A	0.0082 U	N/A	0.0059 U	0.0064 U	N/A
Carbon disulfide	mg/kg	3,500	N/A	N/A	0.0055 U	N/A	0.0061 UJ	0.0073 UJ	0.0076 U	N/A	0.0082 UJ	N/A	0.0059 U	0.0064 U	N/A
Cyclohexane	mg/kg	27,000	N/A	N/A	0.011 UJ	N/A	0.012 UJ	0.0037 J	0.015 U	N/A	0.016 UJ	N/A	0.012 U	0.013 U	N/A
Toluene	mg/kg	47,000	N/A	N/A	0.0055 U	N/A	0.0061 U	0.0031 J	0.0076 U	N/A	0.0082 U	N/A	0.0059 U	0.0064 U	N/A
Semi-Volatile Organic Compound	ls^		-												
1,1-Biphenyl	mg/kg	200	1.4 U	0.019 J	0.078 U	0.071 U	0.072 U	0.016 J	0.077 U	0.072 U	0.021 J	1.5 U	2	1.4 U	0.057 J
2,4-Dimethylphenol	mg/kg	16,000	1.4 U	0.072 U	0.078 U	0.071 R	0.072 U	0.07 R	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.079 U
2,4-Dinitrophenol	mg/kg	1,600	3.6 U	0.18 U	0.2 U	0.18 R	0.18 U	0.18 R	0.19 U	0.18 U	0.067 J	3.8 U	3.8 U	3.6 U	0.2 U
2-Chloronaphthalene	mg/kg	60,000	1.4 U	0.072 U	0.078 U	0.071 U	0.072 U	0.07 U	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.15
2-Methylnaphthalene	mg/kg	3,000	0.83	0.087	0.051	0.0035 J	0.021	0.16	0.0083	0.069 J	0.32	0.015 J	11.9	2.3	0.22
2-Methylphenol	mg/kg	41,000	1.4 U	0.072 U	0.078 U	0.071 R	0.072 U	0.07 R	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.079 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	2.9 U	0.14 U	0.16 U	0.14 R	0.14 U	0.14 R	0.15 U	0.14 U	0.16 U	3 U	3 U	2.9 U	0.16 U
Acenaphthene	mg/kg	45,000	0.083	0.0052 J	0.0035 J	0.0071 U	0.0028 J	0.014	0.0053 J	0.0087 J	0.012	0.013 J	11.4	1.3	0.026 J
Acenaphthylene	mg/kg	45,000	4.4	0.075	0.019	0.0011 J	0.0028 J	0.022	0.0023 J	0.041 J	0.024	0.0061 J	0.88	0.32 J	0.059 J
Acetophenone	mg/kg	120,000	1.4 U	0.023 J	0.028 J	0.071 U	0.028 J	0.027 J	0.077 U	0.072 U	0.037 J	1.5 U	1.5 U	1.4 U	0.046 J
Anthracene	mg/kg	230,000	1.5	0.046 J	0.014	0.0024 J	0.0057 J	0.082	0.00099 J	0.041 J	0.022	0.046 J	29.7	4	0.079
Benz[a]anthracene	mg/kg	21	6.7	0.31	0.06	0.0077	0.025	0.33	0.004 J	0.32	0.36	0.076	47.5	8.4	0.56
Benzaldehyde	mg/kg	120,000	1.4 U	0.072 U	0.02 J	0.071 R	0.018 J	0.07 R	0.077 R	0.017 J	0.042 J	1.5 U	1.5 R	1.4 R	0.072 J
Benzo[a]pyrene	mg/kg	2.1	6.3	0.32	0.062	0.0055 J	0.026	0.29	0.0034 J	0.31	0.39	0.034 J	32.8	4.9	0.39
Benzo[b]fluoranthene	mg/kg	21	14.2	0.73	0.13	0.016	0.052	0.61	0.0091	0.66	0.99	0.1	67.6	12.6	1.4
Benzo[g,h,i]perylene	mg/kg		3.5	0.2	0.043	0.0045 J	0.019	0.18	0.0045 J	0.18	0.21	0.03 J	6.4	0.83	0.35
Benzo[k]fluoranthene	mg/kg	210	8.9	0.51	0.092	0.011	0.036	0.46	0.0064 J	0.46	0.66	0.071 J	47.4	9.4	0.96
bis(2-Ethylhexyl)phthalate	mg/kg	160	1.4 U	0.072 U	0.078 U	0.071 U	0.072 U	0.07 U	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.079 U
Caprolactam	mg/kg	400,000	3.6 U	0.029 J	0.2 U	0.18 U	0.18 U	0.057 J	0.19 U	0.18 U	0.21 U	3.8 U	3.8 U	3.6 U	0.2
Carbazole	mg/kg		0.7 J	0.063 J	0.078 U	0.071 U	0.072 U	0.12	0.077 U	0.034 J	0.02 J	1.5 U	9.4	0.87 J	0.033 J
Chrysene	mg/kg	2,100	5.4	0.32	0.064	0.009	0.036	0.34	0.0077	0.33	0.38	0.075	39.6	7.2	0.73
Dibenz[a,h]anthracene	mg/kg	2.1	1.4	0.07 J	0.016	0.0071 U	0.0064 J	0.067	0.0016 J	0.077	0.093	0.075 U	4	0.52	0.14
Fluoranthene	mg/kg	30,000	11.1	0.46	0.091	0.02	0.038	0.55	0.012	0.43	0.47	0.31	108	20.7	1.2
Fluorene	mg/kg	30,000	0.33	0.0058 J	0.0059 J	0.0071 U	0.0052 J	0.02	0.0035 J	0.0089 J	0.011	0.024 J	12.1	1	0.024 J
Hexachloroethane	mg/kg	8	1.4 U	0.072 U	0.078 U	0.071 U	0.072 U	0.027 J	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.079 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	3.5	0.19	0.041	0.0038 J	0.016	0.14	0.0029 J	0.17	0.24	0.028 J	8.4	1.1	0.32
Naphthalene	mg/kg	17	1.6	0.076	0.041	0.0051 J	0.018	0.14	0.015	0.074	0.21	0.075 U	15.1	2.4	0.19
N-Nitrosodiphenylamine	mg/kg	470	1.4 U	0.072 U	0.078 U	0.071 U	0.072 U	0.07 U	0.077 U	0.072 U	0.083 U	1.5 U	1.5 U	1.4 U	0.079 U
Phenanthrene	mg/kg		3.8	0.16	0.07	0.016	0.05	0.59	0.022	0.23	0.35	0.25	121	20.7	0.97
Phenol	mg/kg	250,000	1.4 U	0.072 U	0.078 U	0.071 R	0.072 U	0.07 R	0.077 U	0.072 U	0.083 U	1.5 U	0.74 J	0.46 J	0.079 U
Pyrene	mg/kg	23,000	9	0.39	0.081	0.016	0.03	0.4	0.0079	0.37	0.41	0.21	80.4	15.4	1.5
PCBs					•				•					•	
Aroclor 1254	mg/kg	0.97	0.018 U	0.018 U	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	N/A	0.095	0.019 U	N/A	0.02 U
Aroclor 1260	mg/kg	0.99	0.018 U	0.018 U	N/A	0.018 UJ	N/A	0.018 UJ	N/A	0.018 UJ	N/A	0.019 U	0.019 UJ	N/A	0.02 UJ
Aroclor 1268	mg/kg		0.018 U	0.018 U	N/A	0.018 UJ	N/A	0.018 U	N/A	0.018 UJ	N/A	0.019 U	0.019 U	N/A	0.02 UJ
PCBs (total)	mg/kg	0.97	0.16 U	0.16 U	N/A	0.12 U	N/A	0.12 U	N/A	0.12 U	N/A	0.095 J	0.13 U	N/A	0.14 U
TPH/Oil and Grease			-		•				•	·			•		
Diesel Range Organics	mg/kg	6,200	445 J	32.9 J	23.5 J	20.9 J	27.6 J	75.6 J	70.3 J	34.7 J	34.1 J	128	3,540 J	2,610 J	85.9 J
Gasoline Range Organics	mg/kg	6,200	5.6 B	3 B	2.5 B	10.9 U	6.5 B	19.8 J	30	4.6 B	6.7 B	9.4 U	7.7 J	4.2 J	2.1 B
Oil and Grease	mg/kg	6,200	5,320 J+	146 J+	77.8 J+	170 J-	137 J-	150 J-	170 J-	192 J-	262 J-	347	26,000 J-	28,100 J-	245 J-
		-,200	2,22001	2.00		2.00	2010	2000	2.00						

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

 $\ensuremath{N/A}\xspace$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analytein the sample.

^ PAH compounds were analyzed via SIM

* indicates non-validated data

ARM Project No. 150300M-22

J: The positive result reported for this analyte is a quantitative estimate.

J+: The positive result reported for this analyte is a quantitative estimate but may be biased high. J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Table 6 Summary of Organics Detected in Soil Parcel B17 Tradepoint Atlantic Sparrows Point, Maryland

						5	parrows Point,	Maryland							
Parameter	Units	PAL	B17-009-SB-4	B17-010-SB-2	B17-010-SB-8	B17-011-SB-1.5	B17-011-SB-5	B17-012-SB-1.5	B17-012-SB-4	B17-013-SB-1.5	B17-013-SB-4	B17-014-SB-1.5	B17-014-SB-5	B17-015-SB-1	B17-015-SB-5
Volatile Organic Compounds															
2-Butanone (MEK)	mg/kg	190,000	0.011 U	N/A	0.012 J	N/A	N/A	N/A	N/A	0.012 U	0.011 U	0.012 U	0.014 U	N/A	N/A
2-Hexanone	mg/kg	1,300	0.011 U	N/A	0.016 U	N/A	N/A	N/A	N/A	0.012 U	0.011 U	0.012 U	0.014 U	N/A	N/A
4-Methyl-2-pentanone (MIBK)	mg/kg	56,000	0.011 U	N/A	0.016 U	N/A	N/A	N/A	N/A	0.012 U	0.011 U	0.012 U	0.014 U	N/A	N/A
Acetone	mg/kg	670,000	0.0099 B	N/A	0.11 J	N/A	N/A	N/A	N/A	0.012 U	0.011 U	0.046	0.052	N/A	N/A
Benzene	mg/kg	5.1	0.0056 U	N/A	0.0082 U	N/A	N/A	N/A	N/A	0.0061 U	0.0056 U	0.0061 U	0.0069 U	N/A	N/A
Carbon disulfide	mg/kg	3,500	0.0056 UJ	N/A	0.029 J	N/A	N/A	N/A	N/A	0.0061 UJ	0.0056 UJ	0.0061 U	0.0069 U	N/A	N/A
Cyclohexane	mg/kg	27,000	0.011 UJ	N/A	0.016 UJ	N/A	N/A	N/A	N/A	0.012 UJ	0.011 UJ	0.012 U	0.014 U	N/A	N/A
Toluene	mg/kg	47,000	0.0056 U	N/A	0.0082 U	N/A	N/A	N/A	N/A	0.0061 U	0.0056 U	0.0061 U	0.0069 U	N/A	N/A
Semi-Volatile Organic Compounds^			-												
1,1-Biphenyl	mg/kg	200	0.076 U	0.078 U	0.047 J	0.029 J	0.054 J	0.016 J	0.042 J	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
2,4-Dimethylphenol	mg/kg	16,000	0.076 U	0.078 U	0.082 U	0.076 UJ	0.02 J	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
2,4-Dinitrophenol	mg/kg	1,600	0.19 U	0.19 U	0.21 U	0.19 UJ	0.19 U	0.18 U	0.19 U	3.8 U	0.2 U	3.8 U	0.19 U	3.8 U	0.19 UJ
2-Chloronaphthalene	mg/kg	60,000	0.076 U	0.078 U	0.082 U	0.078	0.25	0.073 U	0.13	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
2-Methylnaphthalene	mg/kg	3,000	0.024	0.033	0.21	0.16	0.11	0.043 J	0.092	0.11	0.016	0.58	0.015	0.12	0.0035 J
2-Methylphenol	mg/kg	41,000	0.076 U	0.078 U	0.082 U	0.076 UJ	0.026 J	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.15 U	0.15 U	0.16 U	0.15 UJ	0.046 J	0.15 U	0.15 U	3 U	0.16 U	3 U	0.15 U	3 U	0.15 U
Acenaphthene	mg/kg	45,000	0.0035 J	0.0041 J	0.017	0.0098 J	0.0021 J	0.027 J	0.0037 J	0.029 J	0.0015 J	0.01 J	0.0077 U	0.027 J	0.0076 U
Acenaphthylene	mg/kg	45,000	0.0057 J	0.022	0.027	0.038 J	0.011	0.012 J	0.035	0.023 J	0.0046 J	0.039 J	0.0077 U	1	0.013
Acetophenone	mg/kg	120,000	0.076 U	0.078 U	0.057 J	0.05 J	0.069 J	0.02 J	0.053 J	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
Anthracene	mg/kg	230,000	0.0099	0.025	0.074	0.094	0.024	0.13	0.044	0.087	0.0055 J	0.15	0.0027 J	0.4	0.0035 J
Benz[a]anthracene	mg/kg	21	0.068	0.14	0.23	0.42	0.065	0.34	0.26	0.3	0.034	0.58	0.045	3	0.06
Benzaldehyde	mg/kg	120,000	0.021 J	0.078 U	0.12 J	0.093 J	0.085 J	0.022 J	0.13 J	1.5 U	0.078 U	1.5 R	0.075 R	1.5 U	0.076 U
Benzo[a]pyrene	mg/kg	2.1	0.052	0.17	0.21	0.56	0.054	0.31	0.24	0.27	0.033	0.65	0.055	3.3	0.078
	mg/kg	21	0.19	0.31	0.52	1.2	0.13	0.64	0.58	0.6	0.069	1.5	0.11	8.4	0.18
	mg/kg		0.048	0.13	0.14	0.43	0.042	0.18	0.15	0.11	0.019	0.55	0.041	1.7	0.063
	mg/kg	210	0.13	0.22	0.33	0.81	0.089	0.45	0.37	0.42	0.048	1.1	0.08	5.4	0.13
	mg/kg	160	0.076 U	0.078 U	0.082 U	0.076 U	0.076 U	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
	mg/kg	400,000	0.027 B	0.19 U	0.19 J	0.19 U	0.05 J	0.035 B	0.19 U	3.8 U	0.2 U	3.8 U	0.19 U	3.8 U	0.19 U
	mg/kg		0.076 U	0.078 U	0.023 J	0.084	0.021 J	0.017 J	0.037 J	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
	mg/kg	2,100	0.1	0.14	0.49	0.54	0.13	0.37	0.37	0.39	0.039	0.84	0.046	2.7	0.063
	mg/kg	2.1	0.021	0.038	0.073	0.13	0.02	0.068 J	0.064	0.049 J	0.0076 J	0.21	0.012	0.69	0.022
	mg/kg	30,000	0.13	0.21	0.37	0.46	0.079	0.66	0.45	0.54	0.054	0.82	0.037	3.7	0.056
	mg/kg	30,000	0.0037 J	0.0054 J	0.034	0.015 J	0.01	0.038 J	0.012	0.032 J	0.0019 J	0.022 J	0.0077 U	0.082	0.0076 U
	mg/kg	8	0.076 U	0.078 U	0.019 J	0.076 U	0.076 U	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
	mg/kg	21	0.042	0.12	0.12	0.38	0.03	0.17	0.15	0.11	0.018	0.48	0.036	2	0.057
	mg/kg	17	0.014	0.029	0.17	0.15	0.058	0.057 J	0.062	0.078	0.0081	1.9	0.044	0.15	0.0033 J
	mg/kg	470	0.076 U	0.078 U	0.021 J	0.076 U	0.076 U	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
	mg/kg		0.099	0.12	0.68	0.91	0.28	0.51	0.52	0.45	0.039	1.3	0.025	1.5	0.014
	mg/kg	250,000	0.076 U	0.078 U	0.082 U	0.076 UJ	0.076 U	0.073 U	0.075 U	1.5 U	0.078 U	1.5 U	0.075 U	1.5 U	0.076 U
	mg/kg	23,000	0.2	0.19	0.31	0.42	0.071	0.51	0.33	0.45	0.046	0.64	0.035	3.2	0.051
PCBs	- n		•				1		1		ſ		1		
	mg/kg	0.97	N/A	0.019 U	N/A	0.019 U	N/A	0.018 U	N/A	0.019 U	N/A	0.019 U	N/A	0.037 U	N/A
	mg/kg	0.99	N/A	0.019 U	N/A	0.019 UJ	N/A	0.018 UJ	N/A	0.019 UJ	N/A	0.019 UJ	N/A	0.48 J	N/A
	mg/kg	0.6-	N/A	0.019 U	N/A	0.019 U	N/A	0.22 J	N/A	0.31 J	N/A	0.019 U	N/A	0.037 U	N/A
	mg/kg	0.97	N/A	0.17 U	N/A	0.13 U	N/A	0.22	N/A	0.31	N/A	0.13 U	N/A	0.48	N/A
TPH/Oil and Grease									1 '						
	mg/kg	6,200	17 J	97.8 J	75.5 J	158 J	89.8 J	51.9 J	27.6 J	129 J	7.7 B	144 J	9.4 J	113 J	11.3 J
Gasoline Range Organics	mg/kg	6,200	3.5 B	20.2 U	4.4 B	6 J	24.4 U	5 B	4.2 B	4.1 B	4.2 B	2.7 J	14.3 U	4 B	18.3 U
	mg/kg	6,200	166 J-	236 J+	75.2 J+	740 J-	156 J-	233 J-	172 J-	8,630 J-	152 J-	207 J-	163 J-	864 J+	133 J+

Detections in bold

* indicates non-validated data

Values in red indicate an exceedance of the Project Action Limit (PAL)

 $\ensuremath{N/A}\xspace$ indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

J+: The positive result reported for this analyte is a quantitative estimate but may be biased high. J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

^ PAH compounds were analyzed via SIM

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analytein the sample.

J: The positive result reported for this analyte is a quantitative estimate.

						Sparr	ows Point, Maryl	and						
Parameter	Units	PAL	B17-016-SB-1	B17-016-SB-4	B17-017-SB-1.5	B17-017-SB-6	B17-018-SB-1.5*	B17-018-SB-4*	B17-019-SB-2*	B17-019-SB-4*	B17-020-SB-1.5*	B17-020-SB-4*	B17-021-SB-1.5	B17-021-SB-5
Volatile Organic Compounds			-				•			· · · · ·		•		
2-Butanone (MEK)	mg/kg	190,000	N/A	0.017 U	0.017 U	0.012 U	0.012 U	0.014 U	0.014 U	0.014 U	N/A	0.021 U	0.063	0.019 U
2-Hexanone	mg/kg	1,300	N/A	0.017 U	0.017 U	0.012 U	0.012 U	0.014 U	0.014 U	0.014 U	N/A	0.021 U	0.014	0.019 U
4-Methyl-2-pentanone (MIBK)	mg/kg	56,000	N/A	0.017 U	0.017 U	0.012 U	0.012 U	0.014 U	0.014 U	0.014 U	N/A	0.021 U	0.0054 J	0.019 U
Acetone	mg/kg	670,000	N/A	0.017 U	0.065	0.096	0.027	0.014 U	0.033	0.014 U	N/A	0.11	0.26 J	0.023
Benzene	mg/kg	5.1	N/A	0.0085 U	0.0086 U	0.002 J	0.006 U	0.0072 U	0.0069 U	0.0071 U	N/A	0.011	0.0049 U	0.0096 U
Carbon disulfide	mg/kg	3,500	N/A	0.0085 U	0.0086 U	0.025	0.0084	0.004 J	0.0089	0.0071 U	N/A	0.011 U	0.042 J	0.0096 U
Cyclohexane	mg/kg	27,000	N/A	0.017 UJ	0.017 U	0.012 U	0.012 U	0.014 U	0.014 U	0.014 U	N/A	0.021 U	0.0098 UJ	0.019 UJ
Toluene	mg/kg	47,000	N/A	0.0085 U	0.0028 J	0.0036 J	0.006 U	0.0072 U	0.0069 U	0.0071 U	N/A	0.011 U	0.0049 U	0.0096 U
Semi-Volatile Organic Compound	s^													
1,1-Biphenyl	mg/kg	200	1.5 U	0.77 U	1.5 U	1.5 U	0.059 J	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	4.9	0.035 J
2,4-Dimethylphenol	mg/kg	16,000	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 R	0.074 U
2,4-Dinitrophenol	mg/kg	1,600	3.8 U	1.9 U	3.8 U	3.7 U	0.18 U	0.2 U	0.2 U	0.2 U	3.8 U	3.9 U	0.18 R	0.18 U
2-Chloronaphthalene	mg/kg	60,000	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 U	0.074 U
2-Methylnaphthalene	mg/kg	3,000	0.39	0.27	2.2	0.41	0.27	0.02	0.018	0.014	0.22	0.13	14.5	0.44
2-Methylphenol	mg/kg	41,000	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 R	0.074 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	3 U	1.5 U	3.1 U	3 U	0.15 U	0.16 U	0.16 U	0.16 U	3 U	3.1 U	0.14 R	0.15 U
Acenaphthene	mg/kg	45,000	0.12	0.019 J	0.22	0.11	0.093	0.0054 J	0.0029 J	0.0018 J	0.54	0.072 J	5.8	0.3
Acenaphthylene	mg/kg	45,000	6.9	0.71	0.048 J	0.028 J	0.011	0.00056 J	0.008	0.0011 J	0.13 J	0.035 J	0.39	0.11
Acetophenone	mg/kg	120,000	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.029 J	0.021 J
Anthracene	mg/kg	230,000	5.4	0.88	0.19	0.065 J	0.027	0.0021 J	0.023	0.0088	2.4	0.27	4	1.1
Benz[a]anthracene	mg/kg	21	27.1	3.1	0.51	0.34	0.12	0.007 J	0.059	0.027	10	0.85	5.4	2.3
Benzaldehyde	mg/kg	120,000	1.5 U	0.77 U	1.5 R	1.5 R	0.073 U	0.078 U	0.029 J	0.028 J	1.5 U	1.5 U	0.019 J	0.037 J
Benzo[a]pyrene	mg/kg	2.1	22	2.2	0.31	0.23	0.012	0.0078 U	0.048	0.022	7.6	0.73	1.6	1.6
Benzo[b]fluoranthene	mg/kg	21	55.2	6.1	0.79	0.58	0.2	0.01	0.13	0.065	18.6	1.5	7.3	3.6
Benzo[g,h,i]perylene	mg/kg		10.2	1.6	0.2	0.12	0.026	0.0014 J	0.037	0.021	1.6	0.24	0.87	0.95
Benzo[k]fluoranthene	mg/kg	210	38.3	3.8	0.55	0.4	0.14	0.0072 J	0.091	0.045	12.3 i	1.1	4.8	2.5
bis(2-Ethylhexyl)phthalate	mg/kg	160	1.5 U	0.77 U	1.5 U	1.5 U	0.065 J	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 UJ	0.074 U
Caprolactam	mg/kg	400,000	3.8 U	1.9 U	3.8 U	3.7 U	0.18 U	0.2 U	0.2 U	0.2 U	3.8 U	3.9 U	0.18 U	0.042 J
Carbazole	mg/kg		0.72 J	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	5.5	1.5 U	0.07 U	0.028 J
Chrysene	mg/kg	2,100	22.5	2.7	0.84	0.41	0.2	0.01	0.11	0.071	8.8	0.81	5.5	2.2
Dibenz[a,h]anthracene	mg/kg	2.1	4	0.57	0.11	0.05 J	0.011	0.0078 U	0.018	0.012	0.82	0.1	0.44	0.39
Fluoranthene	mg/kg	30,000	62.4	7.5	1.5	1	1.1	0.046	0.18	0.056	17.8	2	32.9	4.9
Fluorene	mg/kg	30,000	0.11	0.041 J	0.15	0.07 J	0.012	0.00077 J	0.0071 J	0.0027 J	0.38 J	0.074 J	5.4	0.39
Hexachloroethane	mg/kg	8	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 U	0.074 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	12.1	1.7	0.15	0.12	0.03	0.0016 J	0.024	0.0098	1.8	0.25	1	0.93
Naphthalene	mg/kg	17	0.97	0.67	1.5	0.48	0.1	0.01	0.018	0.011	0.2	0.15	8.8	0.44
N-Nitrosodiphenylamine	mg/kg	470	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.07 U	0.074 U
Phenanthrene	mg/kg		42	5.5	4	1.6	2.9	0.13	0.15	0.079	9.5	1.5	62.6	4.8
Phenol	mg/kg	250,000	1.5 U	0.77 U	1.5 U	1.5 U	0.073 U	0.078 U	0.078 U	0.08 U	1.5 U	1.5 U	0.045 J	0.074 U
Pyrene	mg/kg	23,000	44.6	5	1.1	0.9	0.74	0.031	0.16	0.06	14.6	1.6	25	3.6
PCBs		ľ	-	Ī	ī	Ī	Ì	I	Ī	1 1		l	T	
Aroclor 1254	mg/kg	0.97	0.019 U	N/A	0.019 U	N/A	0.018 U	N/A	2.4	N/A	2.3	N/A	0.18 U	N/A
Aroclor 1260	mg/kg	0.99	0.019 U	N/A	0.019 UJ	N/A	0.018 U	N/A	0.19 U	N/A	0.38 U	N/A	0.18 U	N/A
Aroclor 1268	mg/kg	0.07	0.019 U	N/A	0.019 U	N/A	0.018 U	N/A	0.19 U	N/A	0.38 U	N/A	0.18 U	N/A
PCBs (total)	mg/kg	0.97	0.17 U	N/A	0.13 U	N/A	0.13 U	N/A	2.4	N/A	2.3 J	N/A	1.6 U	N/A
TPH/Oil and Grease		6 0 00	465.5	0.0.5.7			4.52		0.2		462	451	2.200 T	0.0.7.7
Diesel Range Organics	mg/kg	6,200	192 J	92.2 J	746 J	515 J	168	26.9	<u>98</u>	42.9	483	171	3,320 J	93.5 J
Gasoline Range Organics	mg/kg	6,200	14.4 U	4.9 B	31.8	7.7 J	5.5 J	17.2 U	14.6 U	18.8 U	4.9 J	3.4 J	2.6 B	13.8 U
Oil and Grease	mg/kg	6,200	3,790 J +	355 J+	1,650 J-	1,490 J-	559	195	76.4 J	83 J	2,050	1,660	8,860 J +	123 J+

Detections in bold

* indicates non-validated data

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analzyed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analytein the sample.

^ PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate. J+: The positive result reported for this analyte is a quantitative estimate but may be biased high.

J-: The positive result reported for this analyte is a quantitative esitmate but may be biased low.

Parameter	Units	PAL	B17-001-SB-1	B17-002-SB-1	B17-002-SB-5	B17-004-SB-1	B17-004-SB-4	B17-005-SB-2	B17-005-SB-4	B17-006-SB-1.5
Metal										
Aluminum	mg/kg	1,100,000	16,700	25,800	17,400	14,600	22,600	17,500	9,290	15,000
Antimony	mg/kg	470	2.6 UJ	2.4 UJ	2.8 UJ	2.5 UJ	5.7 J	1.4 J	5.3 J	2.4 UJ
Arsenic	mg/kg	3	30.7	17.2	8.3	2.1 U	39.6	9.9	14.9	8.8
Barium	mg/kg	220,000	226 J	432 J	228 J	79.1	681	204 J	303 J	151
Beryllium	mg/kg	2,300	1.6	2.2	0.93	0.85 U	1.2	1.4	0.49 J	1.1
Cadmium	mg/kg	980	9.3	1.7	0.68 J	0.66 J	0.62 J	1.3 U	1.4 U	1.2 U
Chromium	mg/kg	120,000	181 J	75.6 J	314 J	894	698	69.6 J	29.5 J	32.4
Chromium VI	mg/kg	6.3	0.58 B	0.44 B	0.65 B	3.5 J-	0.49 B	0.55 B	0.74 B	0.64 B
Cobalt	mg/kg	350	180	11.2	15.4	3 J	8.2	18.4	28.7	8.6
Copper	mg/kg	47,000	290	110	62.4	46 J	281 J	109 J	203 J	142 J
Iron	mg/kg	820,000	246,000	93,000	40,700	249,000	139,000	146,000	248,000	80,900
Lead	mg/kg	800	387 J	140 J	74.2 J	7.5	468	34.4 J	23.7 J	46.4
Manganese	mg/kg	26,000	6,050	7,580	14,700	20,800	25,800	4,860	6,740	3,900
Mercury	mg/kg	350	4.9	0.053 J	0.031 J	0.0065 J	0.0084 J	0.008 J	0.016 J	0.078 J
Nickel	mg/kg	22,000	94.1	22.4	96.9	23.6 J	12.6 J	32.6	19.9	11.6 J
Selenium	mg/kg	5,800	6.2	2.2 B	3.7 U	3.4 U	3.4 U	2 J	3.4 J	2.3 J
Silver	mg/kg	5,800	12.4	17.9	7.3	19.9	24.3	12.9 J	11 J	11.1
Vanadium	mg/kg	5,800	449	201	49.1	465	153	65.8 J	99.3 J	55.8
Zinc	mg/kg	350,000	1,610 J	331 J	145 J	165	221	117 J	147 J	90.2
Other										
Cyanide	mg/kg	150	1.4 J-	0.44 J-	1.7 J-	1.1 UJ	0.88 J-	0.21 J-	0.34 J-	1 J-

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B17-006-SB-4	B17-007-SB-1*	B17-008-SB-1.5	B17-008-SB-7.5	B17-009-SB-1.5	B17-009-SB-4	B17-010-SB-2	B17-010-SB-8
Metal										
Aluminum	mg/kg	1,100,000	15,600	25,500	7,340	8,080	14,500	38,500	53,700	4,770
Antimony	mg/kg	470	2.8 UJ	2.6 U	2.7 UJ	2.6 UJ	5.3 J	34.2 J	2.8 UJ	2.9 UJ
Arsenic	mg/kg	3	12.8	2.2 U	2.7	15.4	27.7	2.2 U	4.8	20
Barium	mg/kg	220,000	148	66.5	81.3 J	287 J	159	304	609 J	103 J
Beryllium	mg/kg	2,300	1.3	0.86 U	0.25 J	0.66 J	1.5	2.1	2.5	0.71 J
Cadmium	mg/kg	980	0.73 J	0.63 J	1.7	1.7	0.67 J	0.69 J	0.9 J	1.2 J
Chromium	mg/kg	120,000	16	1,070	159 J	41.5 J	1,430	11,200	388 J	13.9 J
Chromium VI	mg/kg	6.3	0.61 B	2.6	1.1 B	1 B	3.5 B	0.89 B	0.7 B	0.56 B
Cobalt	mg/kg	350	10.1	2 J	5.1	7.6	13.6	15.5	14.3	6.1
Copper	mg/kg	47,000	116 J	33.2	80.6 J	133 J	82.9 J	99.9 J	72.2	72
Iron	mg/kg	820,000	65,500	198,000	44,500	59,000	30,100	119,000	27,500	11,100
Lead	mg/kg	800	95.4	12.7	154 J	1,090 J	145	44.1	135 J	372 J
Manganese	mg/kg	26,000	6,140	25,400	3,640	3,920	11,400	36,900	4,630	123
Mercury	mg/kg	350	0.019 J	0.0044 J	0.065 J	0.07 J	0.13	0.005 J	0.06 J	0.06 J
Nickel	mg/kg	22,000	11.9 J	15.9	16.4	21.4	67.5 J	43.6 J	94.8	19.3
Selenium	mg/kg	5,800	3.7 U	3.4 U	3.5 U	3.5 U	3.6 U	3.5 U	4.7	3.9 U
Silver	mg/kg	5,800	8.6	20.4	5.9 J	6 J	15.7	84	25.6	2.7 J
Vanadium	mg/kg	5,800	32.5	522	75.5 J	32.1 J	80.8	417	42.9	19.1
Zinc	mg/kg	350,000	425	133	327 J	801 J	249	139	174 J	217 J
Other										
Cyanide	mg/kg	150	1 J-	0.13 J	1 UJ	1.1 UJ	3.2 J-	0.68 J-	7 J-	1.3 UJ

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B17-011-SB-1.5	B17-011-SB-5	B17-012-SB-1.5	B17-012-SB-4	B17-013-SB-1.5	B17-013-SB-4	B17-014-SB-1.5	B17-014-SB-5
Metal		•								
Aluminum	mg/kg	1,100,000	14,200	4,900	15,500	14,800	27,900	14,900	3,570	3,790
Antimony	mg/kg	470	2.6 UJ	2.7 UJ	2.6 UJ	2.6 UJ	2.6 UJ	1.6 J	5.5 J	30 J
Arsenic	mg/kg	3	13.7	12.8	18.3	38.6	4.3	5.7	38	204
Barium	mg/kg	220,000	215 J	60.3 J	217	399	613	62.2	175 J	382 J
Beryllium	mg/kg	2,300	0.93	0.45 J	1.1	1.4	2.2	0.59 J	0.36 J	0.56 J
Cadmium	mg/kg	980	1.1 J	1.4 U	5.2	11.8	1.5	4	1 J	4
Chromium	mg/kg	120,000	29.1 J	9.9 J	50.5	18	93.9	28.4	6.1 J	7.9 J
Chromium VI	mg/kg	6.3	0.57 B	0.63 B	0.55 B	0.56 B	0.6 B	0.95 B	0.74 B	0.73 B
Cobalt	mg/kg	350	4.7	5.2	11	11.9	19.4	5.4	10.1	35.1
Copper	mg/kg	47,000	83.4 J	50.6 J	199 J	251 J	84.5 J	18.6 J	169 J	708 J
Iron	mg/kg	820,000	40,500	17,600	105,000	153,000	27,200	25,500	83,500	375,000
Lead	mg/kg	800	559 J	55.6 J	1,580	4,010	472	22.3	1,360 J	9,720 J
Manganese	mg/kg	26,000	7,490	159	11,600	7,970	4,280	413	1,170	3,270
Mercury	mg/kg	350	0.015 J	0.04 J	0.036 J	0.039 J	0.062 J	0.046 J	0.3	0.0076 J
Nickel	mg/kg	22,000	10.5	12.8	32.1 J	14.7 J	28.7 J	16.5 J	11.7	19.4
Selenium	mg/kg	5,800	3.5 U	3.6 U	3.5 U	2.6 J	1.8 J	3.7 U	2.4 J	3.1 J
Silver	mg/kg	5,800	12.7 J	2.7 J	17.8	15.3	19.7	3.5	2.9 J	7.9 J
Vanadium	mg/kg	5,800	107 J	12.9 J	114	70.3	99.3	29.2	14 J	43.4 J
Zinc	mg/kg	350,000	743 J	64.2 J	2,040	7,040	210	461	580 J	6,300 J
Other										
Cyanide	mg/kg	150	0.27 J-	1.1 UJ	0.8 J-	1.3 J-	1.8 J-	0.33 J-	0.54 J-	1.1 UJ

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B17-015-SB-1	B17-015-SB-5	B17-016-SB-1	B17-016-SB-4	B17-017-SB-1.5	B17-017-SB-6	B17-018-SB-1.5*	B17-018-SB-4*
Metal		u								
Aluminum	mg/kg	1,100,000	17,000	37,900	19,500	12,300	13,900	15,800	42,000	45,000
Antimony	mg/kg	470	2.6 UJ	2.7 UJ	2.6 UJ	2.6 UJ	1.2 J	2.7 UJ	2.5 U	2.8 U
Arsenic	mg/kg	3	7.8	2.2 U	12.3	13.1	21.1	5.2	4.6	2.3 U
Barium	mg/kg	220,000	273 J	284 J	296 J	560 J	138 J	176 J	578	600
Beryllium	mg/kg	2,300	1.9	6.8	1.2	0.98	1.6	1.6	2.8	2.6
Cadmium	mg/kg	980	2.9	1.3 U	1.4	4.5	0.76 J	0.76 J	1.3 U	1.4 U
Chromium	mg/kg	120,000	68.9 J	10 J	80.9 J	259 J	15.1 J	146 J	11.3	2.8
Chromium VI	mg/kg	6.3	0.57 B	0.62 B	0.67 B	0.62 B	0.53 B	0.84 B	0.65 B	0.62 B
Cobalt	mg/kg	350	9.3	0.5 J	9.6	15	15	5.4	4 J	2.1 J
Copper	mg/kg	47,000	169	2.1 J	302	663	159 J	66.9 J	56.3	38.1
Iron	mg/kg	820,000	42,200	5,210	56,600	59,500	86,500	66,200	46,600	10,400
Lead	mg/kg	800	749 J	10.6 J	454 J	1,120 J	344 J	172 J	31.6	2.3 U
Manganese	mg/kg	26,000	2,240	2,260	1,630	1,450	2,670	4,820	4,280	3,350
Mercury	mg/kg	350	0.21	0.0045 J	0.26	0.31	0.0049 J	0.024 J	0.032 J	0.11 U
Nickel	mg/kg	22,000	32.8	1.6 J	37.6	89.1	14.3	9.4	7.6 J	4.5 J
Selenium	mg/kg	5,800	3.5 U	2.5 B	1.9 B	2.2 B	2.3 J	3.6 U	4.4	8.2
Silver	mg/kg	5,800	7.7	7.5	7.4	5.2	6.4 J	7.7 J	11	11.6
Vanadium	mg/kg	5,800	29.4	8.4	36.9	24.8	23.8 J	79.1 J	20.6	13.8
Zinc	mg/kg	350,000	864 J	13.6 J	396 J	1,020 J	540 J	486 J	33.8	69.1
Other										
Cyanide	mg/kg	150	2.3 J-	0.42 J-	1.7 J-	2.3 J-	0.96 J-	1.4 J-	0.55 J	0.14 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Parameter	Units	PAL	B17-019-SB-2*	B17-019-SB-4*	B17-020-SB-1.5*	B17-020-SB-4*	B17-021-SB-1.5	B17-021-SB-5
Metal								
Aluminum	mg/kg	1,100,000	12,400	5,790	32,400	20,800	15,200	5,040
Antimony	mg/kg	470	7.8	12.1	2.4 J	1.2 J	2.5 UJ	2.5 UJ
Arsenic	mg/kg	3	153	218	11.3	12.3	2 U	13
Barium	mg/kg	220,000	919	968	569	435	137 J	130 J
Beryllium	mg/kg	2,300	1	0.56 J	1.8	1.8	0.71 J	0.5 J
Cadmium	mg/kg	980	5.1	4.1	2.4	1.5	3.9	1.4
Chromium	mg/kg	120,000	13.9	6.2	669	80.7	3,310 J	36.3 J
Chromium VI	mg/kg	6.3	0.43 B	0.72 B	0.67 B	0.59 B	0.62 B	0.57 B
Cobalt	mg/kg	350	20.5	26.8	38.7	8.2	73.1	12.3
Copper	mg/kg	47,000	502	786	487	189	162	197
Iron	mg/kg	820,000	275,000	327,000	105,000	60,100	85,700	59,600
Lead	mg/kg	800	4,520	6,780	580	614	188 J	274 J
Manganese	mg/kg	26,000	52,800	4,360	3,910	9,380	12,200	2,920
Mercury	mg/kg	350	0.013 J	0.012 J	0.056 J	0.28	0.025 J	0.62
Nickel	mg/kg	22,000	21.7	21	337	12	491	25.3
Selenium	mg/kg	5,800	3.6 U	3.8 U	2.3 B	3.6 U	3.3 U	1.7 B
Silver	mg/kg	5,800	17.1	2.3 J	9.9	10.6	20.6	4.3
Vanadium	mg/kg	5,800	22	30.1	41.5	48.9	149	30
Zinc	mg/kg	350,000	2,200	2,170	839	762	358 J	359 J
Other								
Cyanide	mg/kg	150	1.1 U	0.24 J	0.43 J	1.9	0.43 J-	0.93 J-

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Sample ID	Asbestos Content	Other Fibrous Non-Asbestos Content
B17-001-SB-1	Amosite <1%	Cellulose <1%
B17-002-SB-1	ND	Cellulose <1%
B17-004-SB-1	ND	Cellulose <1%
B17-007-SB-1	Chrysotile <1%	Cellulose <1%
B17-015-SB-1	Chwaotilo <19/	Cellulose <1%
D1/-01J-5D-1	Chrysotile <1%	Glass Fibers <1%
B17-016-SB-1	ND	Cellulose <1%

Bolded sample detections of fibrous materials were less than 1% asbestos

ND indicates a Non-Detect

All asbestos results are non-validated

	TABLE 9 SUMMARY OF SOIL PAL EXCEEDANCES											
<u>Parameter</u>	<u>CAS#</u>	<u>Frequency of</u> <u>Detections (%)</u>	<u>Sample ID of</u> <u>Max Result</u>	<u>Max Result</u>	PAL Solid	<u>Units</u>						
Aroclor 1254	11097-69-1	15	B17-019-SB-2	2.4	0.97	mg/kg						
Arsenic	7440-38-2	84	B17-019-SB-4	218	3	mg/kg						
Benz[a]anthracene	56-55-3	100	B17-008-SB-1.5	47.5	21	mg/kg						
Benzo[a]pyrene	50-32-8	97	B17-008-SB-1.5	32.8	2.1	mg/kg						
Benzo[b]fluoranthene	205-99-2	100	B17-008-SB-1.5	67.6	21	mg/kg						
Dibenz[a,h]anthracene	53-70-3	92	B17-008-SB-1.5 & B17-016-SB-1	4	2.1	mg/kg						
Lead	7439-92-1	97	B17-014-SB-5	9,720	800	mg/kg						
Manganese	7439-96-5	100	B17-019-SB-2	52,800	26,000	mg/kg						
Oil & Grease	O&G	100	B17-008-SB-7.5	28,100	6,200	mg/kg						
PCBs (total)	1336-36-3	30	B17-019-SB-2	2.4	0.97	mg/kg						

SOI	L PAL EXCE	TABI EDANCES	LE 10 FOR SPECIFIC TARGI	ETS		
Target Feature	Boring ID	<u>Sample</u> Depth (ft)	Parameter	PAL	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>
	B17-001-SB	1	Arsenic	3	30.7	
Drip Legs	B17-001-5B	1	Benzo[a]pyrene	2.1	6.3	
Drip Legs	B17-002-SB	1	Arsenic	3	17.2	
	B17 002 5B	5	Arsenic	3	8.3	
	B17-004-SB	4	Arsenic	3	39.6	
Machine Shop No. 2	B17-005-SB	2	Arsenic	3	9.9	
Asbestos Piles	D17 005 5D	4	Arsenic	3	14.9	
7 15005105 1 1105	B17-006-SB	1.5	Arsenic	3	8.8	
	B17 000 5B	4	Arsenic	3	12.8	
	B17-008-SB	1.5	Benz[a]anthracene	21	47.5	
		1.5	Benzo[a]pyrene	2.1	32.8	
		1.5	Benzo[b]fluoranthene	21	67.6	
		1.5	Dibenz[a,h]anthracene	2.1	4	
		1.5	Oil & Grease	6,200	26,000	J-
Machine Shop No. 2		7.5	Arsenic	3	15.4	
Stained Ground		7.5	Benzo[a]pyrene	2.1	4.9	
(Possible Oily Pits/Sumps)		7.5	Lead	800	1,090	J
		7.5	Oil & Grease	6,200	28,100	J-
	B17-009-SB	1.5	Arsenic	3	27.7	
	B17 007 5B	4	Manganese	26,000	36,900	
	B17-021-SB	1.5	Oil & Grease	6,200	8,860	J+
	D17 021 5D	5	Arsenic	3	13	
	B17-010-SB	2	Arsenic	3	4.8	
Chesapeake Heavy	B17 010 5B	8	Arsenic	3	20	
Machine Service	B17-011-SB	1.5	Arsenic	3	13.7	
	D17 011-0D	5	Arsenic	3	12.8	
		1.5	Arsenic	3	18.3	
	B17-012-SB	1.5	Lead	800	1,580	
Old Blacksmith	D17-012-5D	4	Arsenic	3	38.6	
Shop/Heat		4	Lead	800	4,010	
Treating Plant		1.5	Arsenic	3	4.3	
	B17-013-SB	1.5	Oil & Grease	6,200	8,630	J-
		4	Arsenic	3	5.7	

SO	OIL PAL EXCE	TABI EDANCES	LE 10 FOR SPECIFIC TARG	ETS		
Target Feature	Boring ID	<u>Sample</u> Depth (ft)	Parameter	PAL	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>
		1.5	Arsenic	3	38	
	B17-014-SB	1.5	Lead	800	1,360	J
	DIT OIT DD	5	Arsenic	3	204	
		5	Lead	800	9,720	J
	B17-015-SB	1	Arsenic	3	7.8	
	D17 015 5D	1	Benzo[a]pyrene	2.1	3.3	
Utility Drain		1	Arsenic	3	12.3	
Othity Diam		1	Benz[a]anthracene	21	27.1	
		1	Benzo[a]pyrene	2.1	22	
	B17-016-SB	1	Benzo[b]fluoranthene	21	55.2	
	D17-010-5D	1	Dibenz[a,h]anthracene	2.1	4	
		4	Arsenic	3	13.1	
		4	Benzo[a]pyrene	2.1	2.2	
		4	Lead	800	1,120	J
	B17-017-SB	1.5	Arsenic	3	21.1	
	D17-017-5D	6	Arsenic	3	5.2	
	B17-018-SB	1.5	Arsenic	3	4.6	
		2	Aroclor 1254	0.97	2.4	
		2	Arsenic	3	153	
		2	Lead	800	4,520	
Machine Shop No. 2	B17-019-SB	2	Manganese	26,000	52,800	
Maintenance Floor		2	PCBs (total)	0.97	2.4	
wannenance FIOOI		4	Arsenic	3	218	
		4	Lead	800	6,780	
		1.5	Aroclor 1254	0.97	2.3	
		1.5	Arsenic	3	11.3	
	B17-020-SB	1.5	Benzo[a]pyrene	2.1	7.6	
		1.5	PCBs (total)	0.97	2.3	J
		4	Arsenic	3	12.3	

J: The positive result reported for this analyte is a quantitative estimate. J+: The positive result reported for this analyte is a quantitative estimate, but may biased high.

J-: The positive result reported for this analyte is a quantitative estimate, but may be biased low.

Г

Parameter	Units	PAL	B17-009-PZ	B17-014-PZ*	B17-015-PZ*	B17-016-PZ*	B17-019-PZ	B17-020-PZ	SW-026-MWS
Volatile Organic Compounds	u	<u>u</u>							
Acetone	μg/L	14,000	10 UJ	4.8 J	3.8 J	3.8 J	8 B	5.5 B	10 R
Semi-Volatile Organic Compounds^									
1,4-Dioxane	μg/L	0.46	0.1 U	0.1 U	0.1 U	0.03 J	0.032 J	0.1 U	0.1 U
2-Methylnaphthalene	μg/L	36	0.06 J	0.1 U	0.1 U	0.1 U	0.098 U	0.1 U	0.97
Acenaphthene	μg/L	530	0.056 J	0.1 U	0.1 U	0.1 U	0.098 U	0.1 U	0.12
Acenaphthylene	μg/L	530	0.077 J	0.1 U	0.04 J	0.037 J	0.098 U	0.1 U	0.02 J
Anthracene	μg/L	1,800	0.084 J	0.1 U	0.085 J	0.18	0.098 U	0.1 U	0.15
Benz[a]anthracene	μg/L	0.03	0.1 U	0.1 U	0.19	0.45	0.098 U	0.1 U	0.043 J
Benzo[a]pyrene	μg/L	0.2	0.1 U	0.1 U	0.21	0.37	0.098 U	0.1 U	0.1 U
Benzo[b]fluoranthene	μg/L	0.25	0.1 U	0.1 U	0.38	0.8	0.098 U	0.1 U	0.1 U
Benzo[g,h,i]perylene	μg/L		0.1 U	0.1 U	0.18	0.27	0.098 U	0.1 U	0.1 U
Benzo[k]fluoranthene	μg/L	2.5	0.1 U	0.1 U	0.36	0.76	0.098 U	0.1 U	0.1 U
bis(2-Ethylhexyl)phthalate	μg/L	6	1 U	1 U	1 U	1 U	0.98 U	1 U	0.21 J
Chrysene	μg/L	25	0.1 U	0.1 U	0.19	0.5	0.098 U	0.1 U	0.021 J
Dibenz[a,h]anthracene	μg/L	0.025	0.1 U	0.1 U	0.048 J	0.097 J	0.098 U	0.1 U	0.1 U
Fluoranthene	μg/L	800	0.075 J	0.1 U	0.31	0.88	0.07 J	0.1 U	0.051 J
Fluorene	μg/L	290	0.11	0.1 U	0.1 U	0.1 U	0.098 U	0.1 U	0.2
Indeno[1,2,3-c,d]pyrene	μg/L	0.25	0.1 U	0.1 U	0.15	0.25	0.098 U	0.1 U	0.1 U
Naphthalene	μg/L	0.17	0.27	0.1 U	0.1 U	0.11	0.098 U	0.1 U	0.36
Phenanthrene	μg/L		0.23	0.1 U	0.11	0.59	0.098 U	0.1 U	0.7
Pyrene	μg/L	120	0.1 U	0.1 U	0.29	0.66	0.065 J	0.1 U	0.09 J
TPH/Oil and Grease									
Diesel Range Organics	μg/L	47	77.1 B	84.4 B	148	159	238 J	75.5 B	530 J

Detections in bold

Values in red indicate an exceedace of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analyte in the sample.

Table 12Summary of Inorganics Detected in GroundwaterParcel B17Tradepoint AtlanticSparrows Point, Maryland

Parameter	Units	PAL	B17-009-PZ	B17-014-PZ*	B17-015-PZ*	B17-016-PZ*	B17-019-PZ	B17-020-PZ	SW-026-MWS		
Total Metals											
Aluminum	μg/L	20,000	N/A	N/A	N/A	N/A	N/A	N/A	726		
Barium	μg/L	2,000	N/A	N/A	N/A	N/A	N/A	N/A	54.9		
Chromium	μg/L	100	N/A	N/A	N/A	N/A	N/A	N/A	1.1 J		
Manganese	μg/L	430	N/A	N/A	N/A	N/A	N/A	N/A	11.2		
Zinc	μg/L	6,000	N/A	N/A	N/A	N/A	N/A	N/A	1.5 J		
Dissolved Metals											
Aluminum, Dissolved	μg/L	20,000	50 U	21.1 J	50 U	50 U	34.6 J	27.2 J	582		
Arsenic, Dissolved	μg/L	10	5 U	6.8	5 U	2.9 J	5 U	5 U	5 U		
Barium, Dissolved	μg/L	2,000	23.3	58.9	79.9	76.9	111	112	52.2		
Iron, Dissolved	μg/L	14,000	12.7 J	311	284	643	516	153	21.3 J		
Manganese, Dissolved	μg/L	430	309	389	627	682	514	448	1.4 B		
Vanadium, Dissolved	μg/L	86	0.78 J	0.64 J	5 U	5 U	5 U	5 U	5 U		
Zinc, Dissolved	μg/L	6,000	10 U	1.6 J	2.5 J	2.9 J	1.1 B	10 U	10 U		
Other			-								
Available Cyanide	μg/L	200	0.92 J	2.4	2 U	0.57 J	1.6 J	1.9 J	N/A		
Total Cyanide	μg/L	200	10 U	3.5 J	10 U	10 U	6.6 J+	4.9 J +	10 U		

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

J+: The positive result reported for this analyte is a quantitative estimate but may be biased high.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

Table 13
Cumulative Vapor Intrusion Criteria Comparison

				B17-009-PZ		B17-014-PZ		B17-015-PZ		B17-016-PZ	
Parameter	Tuno	Гуре Organ Systems	VI Screening	Conc.	Risk/	Conc.	Risk/	Conc.	Risk/	Conc.	Risk/
	гуре		Criteria	(ug/L)	Hazard	(ug/L)	Hazard	(ug/L)	Hazard	(ug/L)	Hazard
Cancer Risk											
1,4-Dioxane	SVOC		130,000	0.1 U	0	0.1 U	0	0.1 U	0	0.03	2.3E-12
Naphthalene	SVOC		200	0.27	1.4E-08	0.1 U	0	0.1 U	0	0.11	5.5E-09
	Cumul	ative Vapor Intrusi	on Cancer Risk		1E-08		0E+00		0E+00		6E-09
Non-Cancer Haza	Non-Cancer Hazard										
Cumulative Vapor Intrusion Non-Cancer Hazard					0		0		0		0

				B17-019-PZ		B17-020-PZ		SW-026-MWS	
Parameter	Tuno	Type Organ Systems	VI Screening	Conc.	Risk/	Conc.	Risk/	Conc.	Risk/
	Type		Criteria	(ug/L)	Hazard	(ug/L)	Hazard	(ug/L)	Hazard
Cancer Risk									
1,4-Dioxane	SVOC		130,000	0.032	2.5E-12	0.1 U	0	0.1 U	0
Naphthalene	SVOC		200	0.098 U	0	0.1 U	0	0.36	1.8E-08
	Cumul	ative Vapor Intrusion	on Cancer Risk		2E-12		0E+00		2E-08
Non-Cancer Hazar	Non-Cancer Hazard								
Cur	Cumulative Vapor Intrusion Non-Cancer Hazard				0		0		0

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria:

TCR>1E-05

THI>1

Conc. = Concentration

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

Parcel B17 - Table 14

Rejected Results for Soil

Parameter		Result	Units	PAL	Exceeds PAL?	Flag
Sample:	B17-002-SB-5					
1,4-Dioxane)	0.11	mg/kg	24	no	R
Sample:	B17-004-SB-1					
2,3,4,6-Tetr	achlorophenol	0.071	mg/kg	25,000	no	R
2,4,5-Trichlo	prophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol		0.071	mg/kg	210	no	R
2,4-Dichloro	phenol	0.071	mg/kg	2,500	no	R
2,4-Dimethy	/lphenol	0.071	mg/kg	16,000	no	R
2,4-Dinitrop	henol	0.18	mg/kg	1,600	no	R
2-Chlorophe	enol	0.071	mg/kg	5,800	no	R
2-Methylphe	enol	0.071	mg/kg	41,000	no	R
3&4-Methyl	phenol(m&p Cresol)	0.14	mg/kg	41,000	no	R
Benzaldehyd	de	0.071	mg/kg	120,000	no	R
Pentachloro	phenol	0.18	mg/kg	4	no	R
Phenol		0.071	mg/kg	250,000	no	R

B1/-004-SB-4

1,4-Dioxane	0.12	mg/kg	24	no	R	

Sample:

B17-005-SB-2

1,4-Dioxane	0.15	mg/kg	24	no	R
2,3,4,6-Tetrachlorophenol	0.07	mg/kg	25,000	no	R
2,4,5-Trichlorophenol	0.18	mg/kg	82,000	no	R
2,4,6-Trichlorophenol	0.07	mg/kg	210	no	R
2,4-Dichlorophenol	0.07	mg/kg	2,500	no	R
2,4-Dimethylphenol	0.07	mg/kg	16,000	no	R
2,4-Dinitrophenol	0.18	mg/kg	1,600	no	R
2-Chlorophenol	0.07	mg/kg	5,800	no	R
2-Methylphenol	0.07	mg/kg	41,000	no	R
3&4-Methylphenol(m&p Cresol)	0.14	mg/kg	41,000	no	R

Rejected Results for Soil

		hojeetea	10000000 101 000	•		
Parameter		Result	Units	PAL	Exceeds PAL?	Flag
Sample:	B17-005-SB-2			_		
Benzaldehyd	de	0.07	mg/kg	120,000	no	R
Pentachlorop	phenol	0.18	mg/kg	4	no	R
Phenol		0.07	mg/kg	250,000	no	R
Sample:	B17-005-SB-4			_		
1,4-Dioxane		0.15	mg/kg	24	no	R
Benzaldehyd	le	0.077	mg/kg	120,000	no	R
Sample:	B17-006-SB-4			_		
1,4-Dioxane		0.16	mg/kg	24	no	R
Sample:	B17-008-SB-1.5			_		
1,4-Dioxane		0.12	mg/kg	24	no	R
Benzaldehyd	de	1.5	mg/kg	120,000	no	R
Sample:	B17-008-SB-7.5			_		
1,4-Dioxane		0.13	mg/kg	24	no	R
Benzaldehyd	de	1.4	mg/kg	120,000	no	R
Sample:	B17-009-SB-4			_		
1,4-Dioxane		0.11	mg/kg	24	no	R
Sample:	B17-010-SB-8			_		
1,4-Dioxane		0.16	mg/kg	24	no	R
Sample:	B17-013-SB-1.5			_		
1,4-Dioxane		0.12	mg/kg	24	no	R
Sample:	B17-013-SB-4			_		
1,4-Dioxane		0.11	mg/kg	24	no	R
Sample:	B17-014-SB-1.5			_		
1,4-Dioxane		0.12	mg/kg	24	no	R
Benzaldehyd		1.5	mg/kg	120,000		R

Rejected Results for Soil

Parameter		Result	Units	PAL	Exceeds PAL?	Flag
ample: B.	17-014-SB-5			_		
1,4-Dioxane		0.14	mg/kg	24	no	R
Benzaldehyde		0.075	mg/kg	120,000	no	R
Sample: B.	17-016-SB-4					
1,4-Dioxane		0.17	mg/kg	24	no	R
Sample: B.	17-017-SB-1.5			_		
1,4-Dioxane		0.17	mg/kg	24	no	R
Benzaldehyde		1.5	mg/kg	120,000	no	R
- -	17-017-SB-6					
1,4-Dioxane		0.12	mg/kg	24	no	R
Benzaldehyde		1.5	mg/kg	120,000	no	R
Sample: B.	17-021-SB-1.5					
ample: B. 1,4-Dioxane	17-021-SB-1.5	0.098	mg/kg	24	no	R
- -		0.098 0.07	mg/kg mg/kg	24 25,000	no no	R R
1,4-Dioxane	orophenol			·		
1,4-Dioxane 2,3,4,6-Tetrachlo	orophenol nenol	0.07	mg/kg	25,000	no	R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph	orophenol nenol nenol	0.07 0.18	mg/kg mg/kg	25,000 82,000	no no	R R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph	orophenol nenol nenol nol	0.07 0.18 0.07	mg/kg mg/kg mg/kg	25,000 82,000 210	no no no	R R R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichloropher	orophenol nenol nenol nol nol	0.07 0.18 0.07 0.07	mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500	no no no no	R R R R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichloropher 2,4-Dimethylphe	orophenol nenol nenol nol nol	0.07 0.18 0.07 0.07 0.07	mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000	no no no no no	R R R R R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichloropher 2,4-Dimethylphe 2,4-Dinitrophenc	orophenol nenol nenol nol nol	0.07 0.18 0.07 0.07 0.07 0.18	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600	no no no no no no no	R R R R R
1,4-Dioxane 2,3,4,6-Tetrachlo 2,4,5-Trichloroph 2,4,6-Trichloroph 2,4-Dichlorophen 2,4-Dimethylphe 2,4-Dinitrophenol	orophenol nenol nenol nol nol	0.07 0.18 0.07 0.07 0.07 0.18 0.07	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	25,000 82,000 210 2,500 16,000 1,600 5,800	no no no no no no no no	R R R R R R R

1,4-Dioxane	0.19	mg/kg	24	no	R

n n n n n n n n

"

"

"

APPENDIX A

11

- " "

Parcel B17 Sampling Plan Summary Former Sparrows Point Steel Mill Sparrows Point, Maryland

Table 1	l - Soil	Samples
---------	----------	---------

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Drip Legs		Drip Legs Drawings 5885B	Coke oven gas condensate was removed from the gas pipelines at drip legs located throughout the distribution system. The condensate was typically discharged to drums, although it is possible some spilled out of the drums and on to the ground.	2	B17-001 and B17-002	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Machine Shop No. 2 Asbestos Piles ^	REC 14A, Finding 250	REC Location Map/ DCC Figure	During the Phase I ESA site visit conducted by Weaver Boos, the Machine Shop No. 2 was observed to be demolished. Demolition material piles were observed where the Machine Shop No. 2 historically stood. Asbestos-containing debris was observed in demolition piles during this time . During an ARM site visit, conducted on June 1, 2016, there were no demolition stock piles present within the Site.	4	B17-003 through B17-006	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')
Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps)	REC 14B, Finding 251	REC Location Map/ DCC Figure	During the Phase I ESA site visit, oily pits/sumps were observed in the Machine Shop No. 2 area. Due to safety reasons, Weaver Boos did not conduct further field investigation. Little information is known about this oily materials extent. During an ARM Site visit, conducted on June 1, 2016, the oily pits and sumps were not present at the Site.	4	B17-007 through B17-009; B17-021	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')
Chesapeake Heavy Machine Service		Drawings 5025 and 5026	Investigate potential impacts related to the Machine Shop and Industiral Eng. Off. (potential leaks or releases).	2	B17-010 and B17-011	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')

Parcel B17 Sampling Plan Summary Former Sparrows Point Steel Mill Sparrows Point, Maryland

Table 1	- Soil	Samples
---------	--------	---------

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	RATIONALE	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Old Blacksmith Shop/Heat Treating Plant		Drawings 5031 and 5032	Investigate potential impacts related to the Old Blacksmith Shop (potential leaks or releases).	2	B17-012 and B17-013	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')
(MDE Request) Utility Drain		Drawings 5525 and 5526	Investigate potential impacts related to underground utility drains (potential leaks or releases).	3	B17-014 through B17-016	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')
(MDE Request) Machine Shop No. 2 Maintance Floor		Drawing 5526	Investigate potential impacts related to the Machine Shop No. 2 Maintance Floor (potential leaks or releases).	4	B17-017 through B17-020	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC*, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1'), Asbestos (0-1')
			Total	21				

Soil Borings Sampling Density Requirements (from **Worksheet 17 - Sampling Design and Rationale**) *No Engineered Barrier (1-15 acres): 1 boring per acre with no less than 3.*

Engineered Barrier (1-15 acres): 0.5 boring per acre with no less than 2.

No Engineered Barrier (3.6 acres) = **4 borings required, 4 proposed** Engineered Barrier (6.2 acres) = **4 borings required, 17 proposed** Parking/Roads (1.5 acres) Buildings (4.7 acres) VOC - Volatile Organic Compounds (Target Compound List) SVOCs - Semivolatile Organic Compounds (Target Compound List) Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide) DRO/GRO - Diesel Range Organics/Gasoline Range Organics O&G - Oil and Grease *VOCs are only collected if the PID reading exceeds 10 ppm bgs - Below Ground Surface

^ All proposed samples located in the REC 14A-14B area will be analyzed for asbestos (0-1') due to previous asbestos piles in the No. 2 Machine demolition area.

Parcel B17 Sampling Plan Summary Former Sparrows Point Steel Mill Sparrows Point, Maryland

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	Condition of Existing Well	Number of Locations	Sample Locations	Boring Depth	Screen Interval	Analytical Parameters: Groundwater Samples†
(MDE Request) Machine Shop No. 2 Stained Ground (Possible Oily Pits/Sumps)	REC 14B, Finding 251	REC Location Map/ DCC Figure	N/A	1	B17-009-PZ	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Dissolved Metals, Total Cyanide, Available Cyanide, Oil & Grease, DRO/GRO
(MDE Request) Utility Drain		Drawings 5525 and 5526	N/A	3	B17-014-PZ through B17-016-PZ	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Dissolved Metals, Total Cyanide, Available Cyanide, Oil & Grease, DRO/GRO
(MDE Request) Machine Shop No. 2 Maintance Floor		Drawing 5526	N/A	2	B17-018-PZ** and B17-019-PZ	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Dissolved Metals, Total Cyanide, Available Cyanide, Oil & Grease, DRO/GRO
Area B Groundwater Well (will not be resampled)			See Area B Groundwater Investigation Report	1	SW-026-MWS	See Area B Groundwater Investigation Report	See Area B Groundwater Investigation Report	See Area B Groundwater Investigation Report
			Total:	7				

Table 2 - Groundwater Samples

Field measurements include pH, DO, ORP, conductivity, temperature. Dissolved Metals include dissolved hexavalent chromium.

Area B Groundwater wells were sampled for hexavalent chromium (total).

**Location B17-018-PZ was replaced by B17-020-PZ

n n n n n n n n n

"

"

"

APPENDIX B

"

- "

E	ARM Group Inc Earth Resource Engineers and Consultants Boring ID: B17-001-SB (page 1 of 1)			agineers ats B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		ng (US ft) g (US ft)	: 9/21/17 : Sunny, 80s : 566745.74 : 1456121.93
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B17-001-SB-1	fine to me	n-native SAND with so edium grained, medium no cohesion	ome SLAG GRAVEL, very m dense, dark brown, dry, no	0	SW	
-		-		(1-8.5') S gray and cohesion	LAG, SAND and GRA light gray, wet at 4.5'	VEL-sized, medium dense, bgs, no plasticity, no			
-	60	4.5							
		3.5							
5-		1.4						SW/GW	Wet at 4.5' bgs
_		-							
-		-							
-	54	0.6							
-		1.3		(8.5-10') s dense, da no cohesi	rk brown with traces	fine GRAVEL-sized, mediu of yellow, wet, no plasticity,		SW/GW	
10—		1.5		End of bo	ring				
	orehole D erminated		bgs. gs due to water.						

	Boring ID: B17-002-SB (page 1 of 1)			agineers ats BB	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 9/21/17 : Sunny, 80s : 566715.71 : 1456125.26
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	USCS	REMARKS
0-	56	- 1.3 8.7 21.7 -	B17-002-SB-1	CLAY len	AG, SAND and GRAV ses, medium dense, o y, no plasticity, no col	EL-sized, with some large dark grayish brown and nesion	SW/GW	
	50	2.4 5.2		(8-9.5') S dark brow cohesion	n, moist then wet at 8	ained, medium dense, very 3.5' bgs, no plasticity, no	GP	Wet at 8.5' bgs
10- Total B	orehole D	0.3	bas.	(9.5-10') I medium c cohesion End of bo	-	e to medium grained, n, wet, no plasticity, no	SW/GW	

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-004-SB (page 1 of 1)			agineers ats B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		ner ing (US ft) ng (US ft)	: 9/20/17 : Sunny, 80s : 566595.43 : 1456083.15
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-		-	B17-004-SB-1	coarse gr	ained, dark brown wit at from 7.3-8' bgs, the	SLAG GRAVEL, fine to h some yellow and gray, dry n wet at 8' bgs, no plasticity,	,		
		0.4							
_	80	0.5							
-		33.1	B17-004-SB-4						
5-		0.0						SW/GW	
-		-							
-		-							
	54	10.2							Wet at 8' bgs
-		8.2							
10—		8.5		End of bo	ring				
	orehole Do erminated		bgs. gs due to water.						

E	Boring ID: B17-005-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 9/18/17 : Cloudy, 70s : 566392.71 : 1456117.20
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		_		(0-0.8') C	ONCRETE			NA	Drilled using star bit through concrete
-		-	B17-005-SB-2	dense, da	Non-native SAND and ırk brown, brown, ligh vet at 6.5' bgs, no pla	d SLAG GRAVEL, medium t brown, and reddish yellow, sticity, no cohesion	,		Metallic gravel 2-4' bgs and 10'
	80	166.2							bgs Coal-like granules present throughout
-		15,000	B17-005-SB-4						
5		61.3							
5—		-						SW/GP	
-		-							Wet at 6.5' bgs
	70	-							
_		-							
		-							
10—				End of bo	ring		I		
	orehole D erminated		bgs. gs due to water.						

E CONTRACTOR	Boring ID: B17-006-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing Easting	g (US ft)	: 9/20/17 : Sunny, 80s : 566308.85 : 1455513.18
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-				(0-0.5') C	ONCRETE, very pale	brown		NA	
-		- 0.1	B17-006-SB-1.5	SAND-siz	Non-native SAND an zed, medium dense, c wet at 8' bgs, no plast	d SLAG GRAVEL and lark brown and gray with red icity, no cohesion	l,		
-	90	3.2							
		42.7	B17-006-SB-4						
5-		40.8					s	W/GW	
_		-							
_		-							
	56	2.2							Wet at 8' bgs
-		5.4		9' bgs, gr		dense to medium dense at reddish yellow at 9' bgs,			
		1.2			-			GP	
10-				End of bo	pring				
				2	······ʊ				
	orehole Do erminated		bgs. gs due to water.						

E	Boring	Eart	M Group th Resource Er and Consulta 317-007-S (page 1	agineers ats BB	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	ner ing (US ft) ng (US ft)	: 9/19/17 : Partly cloudy, 70s : 566,449.00 : 1,455,826.00
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	USCS	REMARKS
0 - 1	83	1.0	B17-007-SB-1	SAND-siz	on-native SAND and red, medium dense, c vet at 8' bgs, no plast	SLAG, GRAVEL and lark brown and gray with red icity, no cohesion	SW/GW	Plastic liner above impacted
2		6.0			LAG GRAVEL, fine, c no cohesion	lense, gray, wet, no	GP	Material and 3" of fibrous absorbent material below Black, light to medium viscous NAPL present 1.8-3' bgs; moderate odor No water encountered.
- Total Bc Boring to	prehole Du erminated	epth: 3' bgs	gs. s due to refusal.					

E	Boring	Eart	M Group th Resource En and Consultan B17-008-S (page 1	BB	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 9/18/17 : Cloudy, 80s : 566,391.00 : 1,455,848.00
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-				(0-0.5') C	ONCRETE		NA	Drilled using star bit through
-		-	B17-008-SB-1.5	(0.5-2') S		VEL, medium dense, dark ticity, no cohesion	SW/GW	concrete
-	50	-				ND, medium dense, yellow plasticity, no cohesion	GW/SW	
		11.6		(3-3.7') C	ONCRETE GRAVEL	medium dense, very pale	NA	
-		10.3		(3.7-7.5')	Non-native SAND an the reddish yellow and	d GRAVEL, medium dense, gray, moist, no plasticity, no		
5-		-					SW/GW	
-	60	- 50.2	B17-008-SB-7.5					Wet at 7.5' bgs
-	60	47.3		dense, ve		n SAND and SILT, medium ery dark gray to black with asticity, no cohesion		Ver at 7.5 bgs Very light petroleum-like odor; no visible product from 7.5-10' bgs
10-		88.6					GW-GM	
-		-						
	20	-		(12.5-15') fine GRA	SAND, fine to coarso	e, with some SILT and trace to loose, dark brown, wet, no	,	
		-			no cohesion			
45		0.7						
15—				End of bo	pring			
	orehole D erminated		bgs. gs due to water a	nd piezome	ter installation.			

E	Boring ID: B17-009-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 9/20/17 : Sunny, 80s : 566406.76 : 1455496.94		
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS		
- 0		- 8.4	B17-009-SB-1.5	plasticity, (0.5-4') N medium c	no cohesion on-native SAND with	ry pale brown, dry, no SLAG and BRICK GRAVEL ery pale brown, and yellowish sion	1			
-	80	110.7 86.5 2.8	B17-009-SB-4	(4-4.5') S	LAG, SAND and GR/ and gray, dry, no pla	VEL-sized, medium dense,	SW/GW GW/SW			
5—		- 23.5		(4.5-14') (reddish b	SLAG GRAVEL, fine, rown, and yellowish r	medium dense, dark brown, ed, then gray and black at to plasticity, no cohesion		4.5-10' bgs		
-	80	56.7 2.1						Wet at 7' bgs		
10		2.6 -					GP			
-	63	-						Fish-like odor 12-13.7' bgs Petroleum-like odor 13.7-14' bgs		
- 15-			1	End of bo	ring		I	1		
Total Bo	15 - Total Borehole Depth: 14' bgs. Boring terminated at 14' bgs due to water and piezometer installation.									

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-010-SB (page 1 of 1)			BB	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US ft) Easting (US ft)	: 9/21/17 : Sunny, 80s : 566,308.72 : 1,455,734.94
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-		-		(0-1') CO	0-1') CONCRETE SLAB, very pale brown			
-		-	B17-010-SB-2	(1-3.5') Sa pale brow	AND, fine to coarse g n, moist, no plasticity	rained, medium dense, very , no cohesion		-
-	40	-					SW	
-		7.5		(3.5-7.5') to dense, cohesion	SLAG, SAND and GF grayish brown and gr	RAVEL-sized, medium dense ray, dry, no plasticity, no	e	
5—		0.1						
-		-					SW/GW	
-	60	23.5	B17-010-SB-8					
-	50	3.8		(7.5-10') S brown wit cohesion	SLAG and BRICK GR h red, moist then wet	AVEL, fine, dense, dark at 8' bgs, no plasticity, no		Wet at 8' bgs
-		0.2					GP	
10-				End of bo	ring			
	prehole De		bgs. gs due to water a	ind piozomot	er installation			

E	Boring	Ear	M Group th Resource En and Consultan B17-011-S (page 1	agineers ats B	Project Description : Sparrows Point - Parcel B17 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T.		Date : 9/18/17 Weather : Partly cloudy, 70 Northing (US ft) : 566,361.00 Easting (US ft) : 1,455,947.00		
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION				REMARKS
0-				(0-0.7') C	ONCRETE			NA	Drilled using star bit through
-		-	B17-011-SB-1.5	with trace	GRAVEL, fine, with S yellow, dry grading t ity, no cohesion	AND, medium dense, brow o moist, then wet at 7' bgs,	'n		concrete Gravel size increases with depth and coal-like granules present throughout 0.7-8.7' bgs
_	54	-							
-		8.7							
5-		0.2	B17-011-SB-5					GP/SW	
-		-							
-	60	- 0.8							Wet at 7' bgs
-	00	3.8							
-		5.3		(8.7-9.8') SAND-siz no cohesi		RAVEL with some ense, gray, wet, no plasticity	,	GP	Very light amber colored NAPL with light sheen 8.7-9.8' bgs
10-				(9.8-11') (CLAYEY SAND with	some SLAG GRAVEL, wet, no plasticity, no			
-	40							SC	
-				(11-15') S yellowish	AND, fine to coarse (brown, wet, no plasti	grained, medium dense, city, no cohesion		SW	
15—									
				End of bo	nng				
	prehole De erminated	-	bgs. gs due to water a	nd piezome	ter installation.				

E	Boring	Eart	M Group th Resource En and Consultan 317-012-S (page 1	BB	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US Easting (US			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	USCS	REMARKS		
0-		_		(0-0.6') B brown, dr	RICK GRAVEL with 0 y, no plasticity, no co	CONCRETE, loose, very pale hesion	e NA	A		
_		0.4	B17-012-SB-1.5	trace CLA		th some SLAG GRAVEL and ense, dark brown, dry, no	sv	v		
2-	70	1.2		(2.1-4') S dense, br	LAG, SAND and GRA own and light gray, d	VEL-sized, medium dense t ry, no plasticity, no cohesion	o SW/0			
		9.6	B17-012-SB-4							
4—		0.2		medium c cohesion	lense, very dark brow	fine to medium grained, rn, wet, no plasticity, no ace SAND-sized SLAG,	SW-	Wet at 4' bgs		
		-		loose, gra	iy and brown, wet, no	plasticity, no cohesion				
6-	83	2.6					GV	V Very light sheen 7-8' bgs		
		0.4								
	8 End of boring Total Borehole Depth: 8' bgs. Boring terminated at 8' bgs due to refusal.									

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-013-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	ner ng (US ft) g (US ft)	: 9/20/17 : Sunny, 80s : 566663.00 : 1455876.05
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	NSCS	REMARKS
0-				(0-0.5') B dry, no pl	RICK GRAVEL, medi asticity, no cohesion	um dense to loose, yellow,	NA	
- 1 2 3	70	- 32.5 29.5	B17-013-SB-1.5	(0.5-3.7') GRAVEL	Non-native SAND wi	brown with some red, gray,	SW/GW	
		20.0				irm, reddish yellow, dry, low	CL	
4— - 5—		2.1		plasticity, (4-7') SLA loose, gra cohesion	AG GRAVEL, fine to o	coarse, with SLAG SAND, 9' bgs, no plasticity, no		No water encountered
6-	75	-					GW	
-		0.2						
7-								
				End of bo	ring			
8—								
	orehole De	epth: 8' h	as.				 	
			s due to refusal.					

E	Boring	Eart	M Group th Resource En and Consultant 317-014-S (page 1	gineers ats B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 9/18/17 : Drizzle, 80s : 566327.37 : 1455969.41
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		_		(0-0.8') C	ONCRETE			NA	Drilled through concrete using
-	76	- 379.7 4.0	B17-014-SB-1.5	medium g	Non-native SAND wit grained, medium dens no cohesion	th trace GRAVEL, very fine to se, dark brown, dry, no	0	SW	starbit Gray metallic grains present
5		27.8 - 46.0	B17-014-SB-5	and meta	LAG GRAVEL, loose llic gray with some ye no cohesion	to medium dense, brown ellowish red, moist, no		GW	
	70	4.4		medium g	rained, medium dens	ace GRAVEL, very fine to se, dark brown, wet, no		SW	Wet at 7' bgs
-		843.6		(8-8.3') G		se, very pale brown with light	t	GP	
- 10—		0.1		(8.3-12') S trace SIL	no plasticity, no coh SLAG and BRICK GR Γ, loose, dark brown, no cohesion	esion AVEL, fine to coarse, with red, and yellow, wet, no	/	GW	
-	23	-			AND with CLAY, means of the construction of th	dium dense, grayish brown to no cohesion		SW-SC	
	prehole De	-	bgs. gs due to water a	End of bo			1		

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-015-SB (page 1 of 1)			gineers ats B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		ner ng (US ft) g (US ft)	: 9/21/17 : Sunny, 80s : 566,248.11 : 1,455,566.30
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION				REMARKS
0 - - 5 - -	90	0.6 0.0 1.4 2.9 0.4 - 1.7 0.1	B17-015-SB-1	GRAVEL grading to bgs, no p	AG GRAVEL, fine, m	SLAG, SAND and e, dark brown with gray ght gray, dry then moist at 4		SW/GW	Wet at 8' bgs
- 10 - - -	80	0.0		(12-13') C light gray (13-13.8') gray, very	CLAYEY SAND, medi , wet, no plasticity, no SANDY CLAY, very / moist, low plasticity, CLAY, very firm, red	um dense, reddish yellow wi cohesion firm, reddish yellow with ligh		GP SC CL	
15—		-		End of bc					
	orehole De erminated		bgs. gs due to water a	nd piezome	ter installation.				

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-016-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 9/21/17 : Sunny, 80s : 566244.33 : 1455525.38	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS	
0	60	- 4.7 10.0	B17-016-SB-1 B17-016-SB-4			LAG GRAVEL, medium ay, dry, no plasticity, no		SW/GW		
- 5		2.3 - -		medium c		ne QUARTZ GRAVEL, d yellowish brown, moist, no		SC		
- - 10	50	2.3 16.2 0.1 -		(7.8-13') wet at 8' h	SLAG GRAVEL, fine, ogs, no plasticity, no o	medium dense, dark brown, cohesion		GP	Wet at 8' bgs	
- - 15—	60	-		(13-15') C hard, redo cohesive End of bo	dish yellow and light o	ling to CLAY, very firm to gray, moist, low plasticity,		CL	Trace petroleum -like odor 12-13' bgs	
	Total Borehole Depth: 15' bgs. Boring terminated at 15' bgs due to water and piezometer installation.									

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-017-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 9/18/17 : Partly cloudy, 80s : 566380.05 : 1455865.54
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0		-	B17-017-SB-1.5	GRAVEL, no cohesi	medium dense, yello	ery fine SAND with BRICK ow and red, dry, no plasticity	. ,	NA	
2-	58	790.1		(1.7-4.5') Non-native fine GRAVEL and SAND, medium dense, dark brown grading to very dark gray with light metallic grains, moist, no plasticity, no cohesion				GW/SW	Hard drilling; used concrete corer bit
4—		314.0 47.2		(4.5-7') N	on-native SLAG and	BRICK, GRAVEL and brown, light gray, and reddish			
6—	85	968.7	B17-017-SB-6	yellow, m	oist then wet at 6' bg	s, no plasticity, no cohesion		GW/SW	Wet at 6' bgs
-		14,361		End of bo	ring				
	orehole De erminated		gs. s due to refusal.						

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-018-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT		er ng (US ft) g (US ft)	: 9/19/17 : Cloudy, 70s : 566495.64 : 1455856.12
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION				REMARKS
0 - 2 4	60	- - 46.4 100.5 0.6	B17-018-SB-1.5	(0.5-5') S SAND, m and dark	edium dense to dens brown, dry then wet 4 ity, no cohesion	o coarse, with some SLAG e, light gray, grayish brown, I-4.5' bgs, moist 4.5-5' bgs,		GW	Drilling though concrete using star bit
	prehole Do erminated		gs. s due to refusal.						

ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-019-SB (page 1 of 1)				agineers ats B	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (Easting (U		: 9/19/17 : Cloudy, 70s : 566,492.00 : 1,456,019.00
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-		(0-1') CO cohesion	NCRETE, light brown	, dry, no plasticity, no	1	NA	
2-		-	B17-019-SB-2	(1-4') SAI brown, dr	ND, very fine to mediu y, no plasticity, no co	ım, medium dense, dark hesion			
_	60	54.0					SW	SW	
4-		557.3	B17-019-SB-4						
-		22.3		reddish y	AND with some CLA) ellow with trace very p 5' bgs, no plasticity, no	/, medium dense to dense, bale brown, very moist then b cohesion			
6-		-					S	SW	
-		3.1							Wet at 6.5' bgs
8-	70	134.2		dense, bl	SLAG, fine to coarse ack and very dark bro	GRAVEL-sized, medium wn, wet, no plasticity, no			
_		493.6		cohesion					
10—		3.1							
-		-					G	SW	
12-	8	-							
-		-							
14—		-		End of bo	ring				
-									
16—									

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-020-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US ft Easting (US ft)	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-				(0-0.5') C	ONCRETE		NA	
-		-	B17-020-SB-1.5	(0.5-6') N GRAVEL	on-native SAND with	some BRICK and SLAG vn with gray and red, dry, no		 Large wood flooring block soaked with oil encountered at surface
2-	50	1.6					SW/GV	/
4—		15.6 1.2	B17-020-SB-4					
+		_						
6-		-		medium o	RICK and SLAG, SAN lense, red, brown, an no cohesion	ID and GRAVEL-sized, d gray, wet at 7.6' bgs, no		-
8-	70	8.5		p.ac.io.iy,				Wet at 7.6' bgs
-		2.4 0.4					SW/GV	,
10		-						
12—	40	-						
-	-	-		(13-15') S brown, we	LAG GRAVEL, fine, et, no plasticity, no cc	medium dense, very dark hesion		-
14—		0.4					GP	
+				End of bo	ring			
16—								
	orehole Do erminated		bgs. gs due to water a	nd piezome	ter installation.			

E	ARM Group Inc. Earth Resource Engineers and Consultants Boring ID: B17-021-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: EnviroAnalytics Group : 150300M-22-3 : Sparrows Point - Parcel B17 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : Allied Drilling Co. : Mike Garvine : Geoprobe 7822DT	Date Weather Northing (US Easting (US t	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION			REMARKS
0	40	- - 79.8	B17-021-SB-1.5	GRAVEL	I-native SAND and S sized, with some sm own and light brownis	LAG, SAND and all CLAY lenses, medium sh gray, dry, no plasticity, no	SW/G	w
4	24	42.7	B17-021-SB-5	dark brow	AG, SAND and GRA m with reddish yellow ' bgs, no plasticity, no	VEL-sized, medium dense, , dry then moist at 9' bgs, o cohesion	SW/G	Moderate sweet odor throughout
	prehole Do erminatec		bgs. gs due to water a	End of bo				Wet at 9.5' bgs

APPENDIX C

TRIAD Listens, Designs & Delivers

April 1, 2016

Mr. James Calenda EnviroAnalytis Group, LLC 1650 Des Peres Road, Suite 303 St. Louis, MO 63131

Re: Sparrows Point Well Survey Sparrows Point, MD Triad Engineering Job No. 03-15-0343

Mr. Calenda:

Below are the specified surveyed wells, date of last field work completed on March 31, 2016. The coordinate values shown were derived from G.P.S. observations based on National Geodetic Surveys stations "GIS 1", PID AC7684 and "GIS 2", PID AC7685 which purport to be on NAD83(2011) Maryland Grid coordinate system with NAVD88 (AMSL) elevations.

DESCRIPTION	NORTHING	EASTING	TOP CASING ELEVATION	GROUND AT WELL ELEVATION
SW-026-MWS	566649.66	1455514.08	11.51	8.61

▶ ▶ TRIAD Listens, Designs & Delivers

January 8, 2018

Mr. James Calenda EnviroAnalytis Group, LLC 1650 Des Peres Road, Suite 303 St. Louis, MO 63131

Re: Sparrows Point Well Survey Sparrows Point, MD Triad Engineering Job No. 03-15-0343

Mr. Calenda:

Below are the specified surveyed wells, date of last field work completed on December 21, 2017. The coordinate values shown were derived from G.P.S. observations based on National Geodetic Surveys stations "GIS 1", PID AC7684 and "GIS 2", PID AC7685 which purport to be on NAD83(2011) Maryland Grid coordinate system with NAVD88 (AMSL) elevations.

DESCRIPTION	NORTHING	EASTING	TOP CASING ELEVATION	GROUND AT WELL/PIEZOMETER ELEVATION	
B17-009-PZ	566399.864	1455500.380	11.74	8.85	
B17-014-PZ	566328.351	1455971.324	11.44	8.41	
B17-015-PZ	566246.232	1455566.305	11.19	8.52	
B17-016-PZ	566237.817	1455530.962	11.61	8.81	
B17-019-PZ	566490.422	1456020.349	11.49	8.88	
B17-020-PZ	566522.901	1455937.273	11.42	8.78	

APPENDIX D

PID CALIBRATION LOG											
PROJECT NAME: Area B, Parcel B17 Phase II					SAMPLER NAME: L. Perrin						
PROJECT NUMBER: 150300M-22					DATE: September 2017 PAGE_			<u>1</u> of <u>1</u>			
	SAMPLER		FRESH		STANDARD						
DATE/TIME	INITIALS	PID SERIAL #	AIR CAL	STANDARD		METER	R READING	COMMENTS			
9/18/2017 9:08	LLP	592-913262	0.0	Isobutylene	100 ppm	99.9		-			
9/19/2017 8:30	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0		-			
9/20/2017 8:40	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0		-			
9/21/2017 8:30	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0		-			
11/6/2017 9:30	LLP	592-919897	0.0	Isobutylene	100 ppm	100.0		-			
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						
				Isobutylene	100 ppm						

APPENDIX E

Photo 1: View of test pit at B17-007-SB, facing north, prior to clearing and cleaning. NAPL can be observed on the water.

Photo 2: View of test pit at B17-007-SB prior to clearing and cleaning.

Photo 3: View of the ACE Environmental crew cleaning pit at B17-007-SB and the ENRC crew using the backhoe to remove the impacted material.

Photo 4: View of the cleaned concrete box facing east. Please note the circle along the concrete floor between the I-beams; this was the Geoprobe attempt to complete B17-007-SB.

Photo 5: View of the cleaned concrete box facing south.

Photo 6: View of the cleaned concrete box facing north.

Photo 7: View of covered material removed from test pit at B17-007-SB facing north. A gravel filter berm was temporarily set up around the stockpile to prevent run-on and runoff of stormwater.

Photo 8: View of shallow test pit at B17-021-SB facing northwest. Reinforced concrete and large diameter rebar encountered during test pit activities. Little to no petroleum impacts observed.

Photo 9: View of shallow test pit at B17-021-SB facing east. Reinforced concrete and large diameter rebar encountered during test pit activities. Little to no petroleum impacts observed.

APPENDIX F

	-	ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GRO		
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 2.25" : 7822DT Geoprobe	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representative	: Allied : 11.74' amsl : 9.84' TOC : 9.84' TOC : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	ΫΤΙΟΝ	Π		REMARKS
- 0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.8' Riser Amount: 3.2' Screen Type: PVC Screen Diameter: 1"		Bentonite s	eal	orthing (US ft): 566399.86 asting (US ft): 1455500.38
5		Filter (sand) Pack: Top: 3' bgs Bottom: 14' bgs Grain Size: WG #2			de	lo LNAPL or DNAPL etected at 48 hours
10- - - -		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: 3/8" chips End of Boring				
15-						
TOC: TO	epth: 14' op of PVC epth to w			bgs: Below ground surface amsl: Above mean sea level		

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-009-P2.bor

		ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GR COLLECTION PC		
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 09/18/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : 11.44' amsl : 8.73' TOC : 8.78' TOC ive : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION		REMARKS	
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.9' Riser Amount:4'		Bentonite		Northing (US ft): 566328.35 Easting (US ft): 1455971.32
- 5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"		Sand Pa	ck	No LNAPL or DNAPL detected at 48 hours
- - - -		Filter (sand) Pack: Top: 2' bgs Bottom: 14' bgs Grain Size: WG #2 Bentonite Seal: Top: 0 (surface) Bottom: 2' bgs Grain Size: 3/8" chips		1" PVC S	Screen	
- - 15 – Total De	əpth: 14'	End of Boring				
	op of PVC epth to w	-		bgs: Below ground surface amsl: Above mean sea leve	1	

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-014-P2.bor

	-	ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GR COLLECTION PC		
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 09/21/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : 11.19' amsl : 9.07' TOC : 9.20' TOC ive : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION	П		REMARKS
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.8' Riser Amount:4'		Bentonii		Northing (US ft): 566246.23 Easting (US ft): 1455566.31
- 5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			ack	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 3' bgs Bottom: 15' bgs Grain Size: WG #2			Screen	
- 10 - - -		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: 3/8" chips				
15—		End of Boring				
TOC: T	epth: 15' op of PVC Depth to w			bgs: Below ground surface amsl: Above mean sea lev		

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-015-P2.bor

	A	ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GR COLLECTION PO		
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 09/21/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : 11.61' amsl : 9.65' TOC : 9.81' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION			REMARKS
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.8' Riser Amount:4.2'		Bentonite		Northing (US ft): 566237.82 Easting (US ft): 1455530.96
- 5-		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"		——————————————————————————————————————	-l-	No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 3' bgs Bottom: 15' bgs Grain Size: WG #2				
- 10 - - -		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: 3/8" chips		1" PVC S		
15—		End of Boring				
TOC: TO	epth: 15' op of PVC Depth to w	-		bgs: Below ground surface amsl: Above mean sea level		

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-016-P2.bor

	P	ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GR COLLECTION PC		
	Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 09/19/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representati	: Allied : 11.49' amsl : 8.68' TOC : 8.98' TOC ive : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION	П		REMARKS
0		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.6' Riser Amount:4.4'				Northing (US ft): 566490.42 Easting (US ft): 1456020.35
- 5 -		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"			ack	No LNAPL or DNAPL detected at 48 hours
- - 10-		Filter (sand) Pack: Top: 3' bgs Bottom: 14.4' bgs Grain Size: WG #2			Screen	
-		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: 3/8" chips End of Boring		1" PVC		
15-	epth: 14.4					
TOC: To	op of PVC epth to w	casing		bgs: Below ground surface amsl: Above mean sea lev		

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-019-P2.bor

	-	ARM Group Inc. Earth Resource Engineers and Consultants		TEMPORARY GR		
	: Sparro S	EnviroAnalytics Group ws Point - Area B Parcel B17 parrows Point, MD oject No.: 150300M-22-3 Page 1 of 1	Date Installed Casing/Riser Type Borehole Diameter Drilling Method Driller	: 09/19/2017 : PVC : 2.25" : 7822DT Geoprobe : Mike Garvine	Drilling Company TOC Elevation 0-Hr DTW 48-Hr DTW ARM Representation	: Allied : 11.42' amsl : 8.97' TOC : 8.79' TOC ve : L. Perrin
Depth in Feet	Surf. Elev.	DESCRIF	PTION	П		REMARKS
0 - -		Riser Type: PVC Riser Diameter: 1" Riser Stickup: 2.7' Riser Amount:4.2'		——————————————————————————————————————		Northing (US ft): 566522.90 Easting (US ft): 1455937.27
- 5		Screen Type: PVC Screen Diameter: 1" Screen Amount: 10' Slot Size: 0.010"		Sand Pac		No LNAPL or DNAPL detected at 48 hours
-		Filter (sand) Pack: Top: 3' bgs Bottom: 15' bgs Grain Size: WG #2				
- 10 - - -		Bentonite Seal: Top: 0 (surface) Bottom: 3' bgs Grain Size: 3/8" chips		1" PVC So		
15—		End of Boring				
TOC: T	epth: 15' op of PVC epth to w	-		bgs: Below ground surface amsl: Above mean sea level		

02-23-2018 P:\EnviroAnalytics Group\150300M EAG_Sparrows Point Area B\Documents\Parcel B17\Piezometer Logs\2_Bor Logs\B17-020-P2.bor

CRRGPFKZ'I "

	Deiter	rempo	Flow Sa rary Pie	ZOme	ng ters				RN	1 Gro	Dun	Inc.
	Project N	ame.	1000				2			Luginee	Te and /	Inc. Consultants
	Piezomete	er Number:	Phase T BI7-00	19-0	9	P	roject	number 1	5020	_		Sonsultants
	Depth to p	r Diameter ((in): 1		C		Date: 1	0/11/19	30 80	0M-33	- 3	
	Depth to P	roduct (ft):	hone			0	ne W	ell Volume	(col)		_	
	Product Th	ater (ft): 10	1.09				EDC	ontroller Se	ttim		_	
	Depth to P	ickness (ft);	JONE		_	F1	ow Ra	ate (mI/mir	1			
	Deptir to Bo	ottom (ft): 1	5.92			Le	ngth o	of time Purg	ed (min)			
			Plan 18 M		DI				(min)			
	Time	Volum Purge	ed DT	. 1 10	mp pH	JRGING Sp Conc	REC Decific ductant	Dissolv				
	0900	(gallor	10.0°		C) $(s.u \pm 0.$	i (m ±	s/cm) 3%	ce Oxyge (mg/L) ± 0.3		v) (rbidity NTU) % or < 5	Comment
	09.05	0.2	10.09		3 7,30	5 0.0	148	10.71			001 < 3	
	0910	0.4	10.09		17.96	20.6	47	0.00	34	_		cloudy
	0915	0.6	10.00		35 7.90	0.6	24	0.00	the second se			many
	09.20	0.8	10.09		67.92	0.61	3	0.00	-117			clear
	0925	1.0	10.09	120.9	27.92	0.60	35-	0.00		the second se		
	0930	1.2	10.09	20.9	8 7.94	10 100	13	0.00	-153			
				1.000	8 7.95	0.60	12	0.00	-154	2		
	-								-165			
			+									
			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000								
	Sample	D	T:	MON	Dama	SAMP	LERI	CODR				
			Time Co	llected	Parame	ter/Orde			and the second		TALY TEL	
					TCL	VOCs	-	Contair	ner	Perservat	ival	
		1			TPH-	GRO		3-40 mL	VOA	HCl		Collected?
		2		1	TPH-	DRO		- 40 mL	VOA	HCI		-9
	9			- [TCL-S	VOCe		z-1 L An	ber	none	<u> </u>	- 9
	0.		0940		Oil & (irease	+	2-1 L Am	ber	none		10
	12	- 1		L	Total C	vanide	1-	2-1L Am	ber	HCI	1'v	0
	B17-009-	- F			TAL-Me	tale &	100	250 mL P	lastic	NaOH		3
					Mercu	ITV		eren ega	nicle		11-	3 sets
					(Dissol Field Fil	ved)	-1 - :	250 mL Pl	astic	HNO3	y	
					Hexaval Chromit	ent Im			+		Ľ	
					(Dissolv	ed)	-1 - 2	50 mL Pla	stic	Non		
-			(Eield Filta	red				None	Y- 3	2
				Matrix	Spike				_		1 -	>
	0		IC.	Dupl	icate		_					
	Sampled By: Lw	24	Comr	nents:								
-			·],									
	Casi	ng Volume: 1	"LD = 0.041	b SI	BORCH							
			" I.D. = 0.041	gal/ft - 2"	I.D. = 0.163	gal/ft - 4" T	$\mathbf{D} = 0$	652				
				t x	gal/	ft =	(gal	.033 gal/ft - 6	" I.D. = 1.	47 gal/ft		

	Low Flow mporary]	-	-				_	roup Inneers and Cons	
Project Name:	BI7 Pho	158-1	r.		Project Num	nber: 150	200 M	-22.3	
Piezometer Nu	mber: B17-	714 D	7		Date: 10/1		30019	60.0	
Piezometer Dia					One Well V	the second se			
	act (ft): Non	8	_	-	QED Contro	1.1.			
Depth to Wate	r (ft):9,11 -	<u>~</u>			Flow Rate (
Product Thick	ness (ft):				Length of ti				
Depth to Botto	om (ft):	12 - +0	0		201gtil 01 th	ine i mBee (
- · · · ·		d I		PURC	SING RECOR	RD	5-1-1-11	1	Manufactor Barriel
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
1954	0	9.11	29-21	7.55	0.842	4.88	-172	0.0	cloudy Qin
1001	0.2	9.11	22.84	2-	8-35		252	940	plightly turbic
1006	0.4	9.11			0.702	0,00	-255	508	rlearer
1011	0.4				0.694	0.00	-253	202	Jennest
1016	0.8	9.11	22.96		0.690	0.00	-253	159	
	10.0		00.14	1.10	0.010	0.00	000	1.51	
			*						
1840-21 M. U		Real Parts In		in a reading of	G SAMPLE	Contraction of the second second second	3 S		STAN STAN
Samp	le ID	Time C	ollected	Param	neter/Order	Conta	ainer	Perservative	Collected?
				TC	L-VOCs	3 - 40 m	L VOA	HCl	У
				TP	H-GRO	3 - 40 m	L VOA	HC1	\langle
		ř.			H-DRO 7	2-1L.		none	
	å				<u>-SVOCs א</u>	P 2-1L		none	
	*				& Grease	\\\ -1L.		HC1	
	A	1000	L	Tota	1 Cyanide	1 - 250 m	L Plastic	NaOH	
BI7-C	514-PZ	102	1	M (Di	-Metals & lercury ssolved) I Filtered	1 - 250 m		HNO3	ţ,
			Ch (Di	xavalent romium ssolved) l Filtered	1 - 250 m	L Plastic	None		
2			M	atrix Spi	ke				
				Duplicate	e				
Sampled	By: LML		Commen +W		usof of)
3	Casing Vol	<u>ume:</u> 1" I.D			= 0.163 gal/ft -	4" I.D. = 0.653 (gal)	8 gal/ft - 6" I .	.D. = 1.47 gal/ft	
		1							

Project Name: Project Name: Project Number: Project Nume Project Num Project Num Project		ow Flow nporary]	-	0					roup In neers and Consu			
Piezoneter Number: B(T) - O(5 - P2. Date: (J/s) / s Piezoneter Number: B(T) - O(5 - P2. One Well Volume (gal): Depth to Product (fil: file Action (file ac	Project Name:	BI7 Pha	SC II			Project Number: 150 300M-22						
Piezoneter Diameter (in): 1 One Well Volume (gal): Depth to Product (fi): 10-24 /c QED Controller Settings:						Date: 10/10/19						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						ي اي						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Produc	t (ft): hone				QED Contro	oller Setting	S:				
Product Thickness (f): p_{OPC} Length of time Purged (min) Depth to Bottom (fi): p_{OrC} PURCING RECORD Time Volume (gallons) DTW Temp PH (Sec) Dissolved (mgf) Turbidity (myf) Comments 14 10 O CO 14 O O Comments 14 O O Comments 14 O O O Comments 14 O O O Comments 14 O O O Comments IPI-GRO O O O O O O IPI-GRO O O O O O O O O O O O O	Depth to Water	(ft): Q. 34	,									
Depth to Bottom (ft): 1/6, 8.9 Time Volume (gallons) DTW (feet) Temp (feet) Bit (set) Specific (ms/m) ± 3% Dissolved (ms/m) ± 0.1 ORP ± 10% ± 0.3 Turbidity (NTU) ± 10% or <5 Comments 1/4 10 0 9, 326 32-9, 24-27 0-6, 6-37 0+0, 0 7 0-0 -	Product Thickne	ess (ft): hone										
Understand DTW (rev) (gallons) DTW (rev) (rev) (rev) (gallons) Temp (rev) (rev) ±0.1 Specific source (ms/m) ±0.3 Dissolved (ms/m) ±0.3 ORP (my) ±0.3 Turbidity (NUU) ±10% or <5 Comments 1/4 10 0 9.36 31.22 2.42 0.66/2 0.100 7 0.0 1/4 15 0.2 9.36 21.22 0.66/2 0.100 7 0.0 1/4 50 0.4 9.36 22.22 0.66/3 0.000 -7 8/9/7 1/4 50 0.4 9.36 25.35 7.22 0.66/9 0.000 -7 8/9/7 1/4 50 0.4 9.36 25.35 7.22 0.66/9 0.000 -7/02 18 % 1/4 50 0.36 9.34 25.14 7.19 6/67 0.000 -7/02 18 % 1/4 50 0.36 3.40 mL 10.001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001 -1001	Depth to Botton	n (ft):)/o. S	9									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.00 10 22 20	<u>, , 110, (</u>	A CLARK	and a series	PURG	SING RECOR	2D	States and and and		a in Sy dia		
HIS 0.2 9.36 27.47 3.32 0.687 0.0 -87 0.0 $ 49.0$ 0.4 9.36 36.907 2.56 0.697 0.50 -77 847 $ 49.0$ 0.6 9.36 36.357 2.90 0.674 0.50 -77 847 $ 49.0$ 0.8 9.36 35.47 7.20 0.674 0.50 -797 847 $ 49.0$ 0.8 9.36 35.47 7.92 0.674 0.50 -797 847 $ 49.0$ 0.8 9.36 35.47 7.92 0.674 -104 324 $ 49.0$ 0.8 9.36 35.497 0.674 0.6	Time	TimeVolume Purged (gallons)DTW (feet)Temp (°C)pH (s.u.) ± 0.1 Conductance (ms/cm) $\pm 3\%$ ORP (mV) (mV)Turbidity (NTU) ± 10										
HIS 0.2 9.36 27.47 3.2 0.487 0.0 -87 0.0 $ 49.0$ 0.4 9.36 $36-267$ 2.0 0.697 0.00 -97 847 $ 49.0$ 0.6 9.36 $36-367$ 2.0 0.674 0.00 -97 847 $ 49.0$ 0.8 9.36 35.47 7.26 0.674 0.00 -104 324 $ 49.0$ 0.8 9.36 35.47 7.92 0.00 -104 324 $ 49.0$ 0.8 9.36 35.47 7.92 0.00 -104 324 $ 49.0$ 0.8 9.36 35.47 7.92 0.00 -104 324 $ 49.0$ 0.8 0.674 0.674 0.004 <	1410	0	9.36	21.22	7.47	0.667	CD 1D	7	0.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
1425 0.6 9.36 35 7.22 0.674 0.0 -104 324 1430 0.8 9.36 35.14 7.19 0.673 0.00 -105 185 1430 0.8 9.36 35.14 7.19 0.673 0.00 -104 324 1430 0.8 9.36 35.14 7.19 0.673 0.00 -105 185 1430 0.8 9.36 35.14 7.19 0.673 0.00 -105 185 1430 0.8 9.36 35.14 7.19 0.673 0.00 -105 185 1430 0.8 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.669</td> <td>-</td> <td></td> <td></td> <td></td>						0.669	-					
1430 0.8 9.36 5.14 7.19 0.673 0.00 -/051 /% 1430 0.8 9.36 5.14 7.19 0.673 0.00 -/051 /% 1430 0.8 9.36 5.14 7.19 0.673 0.00 -/051 /% 1430 1 1 1 1 1 1 1 1 1430 1 1 1 1 1 1 1 1 1430 1 1 1 1 1 1 1 1 1430 1	1425				12							
MONITORING SAMPLE Image: Container in the image: Contain				15.14	7.19	0.672		-105	185			
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-DRO 2 - 1 L Amber none I TCL-SVOCs 2 - 1 L Amber none I Of PA I'435 I'435 I'-250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) Parad avent Changle I I I BA I'-250 mL Plastic HNO3 I I I I BA Image: Solved in the second in the secon					_							
Sample ID Time Collected Parameter/Order Container Perservative Collected? TCL-VOCs 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-GRO 3 - 40 mL VOA HCI Y TPH-DRO 2 - 1 L Amber none I TCL-SVOCs 2 - 1 L Amber none I Of PA I'435 I'435 I'-250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) Parad avent Changle I I I BA I'-250 mL Plastic HNO3 I I I I BA Image: Solved in the second in the secon												
BY 05-Pt 1435 BY 05-Pt 1435 TCL-VOCs 3-40 mL VOA HCl 9 TPH-GRO 3-40 mL VOA HCl 10 TPH-GRO 2-1L Amber none 10 TCL-SVOCs 2-1L Amber none 10 TCL-SVOCs 2-1L Amber HCl 10 Total Cyanide 1-250 mL Plastic NaOH 10 TAL-Metals & Neurof avent Complex Mercury (Dissolved) Field Filtered 1-250 mL Plastic HNO3 1 HNO3 1-250 mL Plastic None 1 Matrix Spike 1-250 mL Plastic None 1 Matrix	The second second			MON	ITORIN	G SAMPLE	RECORD		N			
BY 05-D2 BY 05-	Sample	e ID	Time C	ollected	Param	eter/Order	Conta	ainer	Perservative	Collected?		
BARNEL 1435 TPH-DRO 2 - 1 L Amber none					TC	L-VOCs	3 - 40 m	L VOA		Y		
BADIE Comments: Sampled By: <u>LMM</u>			1		TP							
Bit 1435 Oil & Grease 12 - 1 L Amber HCl Total Cyanide 1 - 250 mL Plastic NaOH TAL-Metals & Mercury 1 - 250 mL Plastic HNO3 Mercury (Dissolved) 1 - 250 mL Plastic HNO3 Field Filtered Hexavalent Chromium (Dissolved) Field Filtered None					TP	H-DRO	2 - 1 L .	Amber	none			
Field Filtered I I Hexavalent Chromium I - 250 mL Plastic None Image: Comments: Image: Comments: Image: Comments: Image: Comments:			1.1-	L	-				none			
Field Filtered I I Hexavalent Chromium I - 250 mL Plastic None Image: Comments: Image: Comments: Image: Comments: Image: Comments:		02	14=	35								
Field Filtered I I Hexavalent Chromium I - 250 mL Plastic None Image: Comments: Image: Comments: Image: Comments: Image: Comments:	5	`			Tota	Cyanide						
Chromium (Dissolved) Field Filtered 1 - 250 mL Plastic None Matrix Spike Image: Sampled By: Duplicate Sampled By: Twb swspect	817-01				M (Di	lercury ssolved)						
Duplicate Sampled By: Lm4 Twb Subject				1 - 250 m	L Plastic	None						
Sampled By: <u>LMG</u> twb suspect				Ma	atrix Spil	ke						
Sampled By: <u>LMG</u> two suspect						•						
	Sampled E	3y: LMG				pect)		
ft x(gal)		Casing Vol	<u>ume:</u> 1" I.D.		ft - 2" I.D.	= 0.163 gal/ft - 4		gal/ft - 6" I .	D. = 1.47 gal/ft			

Т	ow Flow	Sompli	ina			ARM Group Inc.			
	ow Flow nporary]	-	0					neers and Cons	
Project Name:	DIZ Phas	e TT			Project Num	iber: 150	20014	- 22	
Piezometer Nur	nber: $BI-1$	016-	P7		Date: 10/		SUNIT	90	
Piezometer Dia		-10			One Well Volume (gal):				
Depth to Produc		0			QED Contro				
Depth to Water	(ft).9,9<	-			Flow Rate (1	· ·			
Product Thickn	ess (ft):	e			Length of tin				
Depth to Bottor	n (ft): 120.1	2							
	1000	Charles and		PURG	ING RECOI	XD			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) $\pm 3\%$	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
1252	0	9.95	34 84	7.67	0.463	\mathcal{CD}	-32	0.0	turbid
1257	0.0	9.95	31.63	7.54	0.648	0.00	-162	0.0	
1302	0.4	9,95	29.32	7.44	0.657	0,00	- 144	0,0	very dear
1307	0.6	9.95	29.10	7.41	0,660	0.00	-155	768	1
1312	0.8	9.95	28.73		0.661	0.00	-155	45-7	
1317	1.0	9.95	27.91	7.38	0.664	0.00	-147	1000	
			a contraction and	of the set	G SAMPLE				
Sampl	e ID	Time C	collected	Param	neter/Order	Conta	ainer	Perservative	Collected?
					L-VOCs	3 - 40 m		HC1	Y
					PH-GRO 3 - 40 mL VOA HC1				
					H-DRO	2 - 1 L		none	
		100	~		-SVOCs & Grease	2-1L		none	
	2	/32	2		l Cyanide			HCl NaOH	
B17-016	Rr			TAL M (Di	-Metals & Iercury ssolved) I Filtered	1 - 250 m		HNO3	
				Ch (Di	xavalent romium ssolved) l Filtered	1 - 250 m	L Plastic	None	
			M	atrix Spi	ke				t
				Duplicate	•				
Sampled 1	By: 1.M6		Commen		splict				
	Casing Vol	ume: 1" I.D		/ft - 2" I.D.	. = 0.163 gal/ft - 4 gal/ft =		8 gal/ft - 6" I .	D. = 1.47 gal/ft	

	low Flow mporary I	-	0					roup In neers and Consu			
Project Name:	BIJ Phos	e-TT			Project Number: 150200 M-22-3						
Piezometer Nur	mber: RI7-	019-P	7		Date: 10/11/17						
Piezometer Dia	meter (in): 1				One Well Volume (gal):						
Depth to Produ	ct (ft): DODA				QED Contro	oller Setting	3:				
Depth to Water	(ft):Q.12				Flow Rate (1	mL/min) ဥ	20				
Product Thickn	ess (ft):000	e			Length of tin						
Depth to Botton	m (ft): 1 le.9	19									
	1	र देशका है।		PURC	ING RECOI	RD			An China - Ist		
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments		
1329	0	9.12	24.78	7.92	0.759	0.00	-172				
1334	0.2	9.12	24.60	7.97	0.359	0.00	-205				
1239	0.4	9.12	24.37	7.99	0.759	0.00	-212				
1344	0.0				0.761	0.00	-214				
			MON	ITORIN	G SAMPLE	RECORD					
Sampl	le ID	Time (1,000,000,000	ALL AND A PROPERTY OF	neter/Order	Cont	ainer	Perservative	Collected?		
Ballip		Thile C	oncerea						M		
					L-VOCs3 - 40 mL VOAHClPH-GRO3 - 40 mL VOAHCl						
					H-DRO	2 - 1 L		none			
					L-SVOCs	2-1L.		none			
		.0		Oil	& Grease	18-1L	Amber	HCl			
	2	1349	-	Tota	l Cyanide	1 - 250 m	L Plastic	NaOH			
BH-019-1	2	10		M (Di	-Metals & lercury ssolved) l Filtered	1 - 250 m	L Plastic	HNO3			
Hexavalent Chromium (Dissolved) Field Filtered											
			M	atrix Spi	Contra production of the second			· · · · · ·			
				Duplicate					$\overline{\mathbf{V}}$		
Sampled	By: LWL		Commer turk	its:	t Operal						
	Casing Vol	<u>ume:</u> 1" I.D	. = 0.041 gal	/ft - 2" I.D ft x	. = 0.163 gal/ft - 		3 gal/ft - 6" I	.D. = 1.47 gal/ft			

	Low Flow mporary	-	<u> </u>					roup Ir			
Project Name:	BIT Phos	P -TT			Project Number: 150300M-22-3						
Piezometer Nu	mber: DIA-	020-6	22		Date: 10/11/17						
Piezometer Dia	ameter (in):	U Dats P	+		One Well V						
Depth to Produ		0			QED Contro						
Depth to Water	r (ft):9.13				Flow Rate (1						
Product Thickr	ess(ft)				Length of tin						
Depth to Botto	m (ft): 1/ 2	0			Deligiti of th	ine i uigeu (
Restriction of		0		PURC	ING RECOR	RD	e na sin		A CONTRACTOR OF		
Time	(gallons) (feet) (°C) ± 0.1 (ms/cm) (mg/L) ± 10 $\pm 10\%$ or <										
1200	0	9.13	22.00	8.20	0.584	0.00	-160				
1205	0.2	9.13	22.06			0.00	-208				
1210	0.4	9.13			Osles	0.00	-214				
1215	0.6	9.13			0.5103	0.00	-216				
The All North	The second second		Table of the second	Contract of Contract of Contract	G SAMPLE			16.122			
Samp	le ID	Time C	collected		neter/Order	Conta		Perservative	Collected?		
					L-VOCs	3 - 40 m		HC1	Y,		
				_	H-GRO	3 - 40 m		HCl			
					H-DRO	2-1L		none			
6	X.				L-SVOCs	2-1L		none			
X					& Grease	1 - 250 m		HC1			
B17-080-P		12.25	0	TAL M (Di	-Metals & lercury ssolved) I Filtered	1 - 250 m		NaOH HNO3			
	None										
			Ma	atrix Spi	ke	N.					
			and the second se	Duplicate							
Sampled	By:	ume: 1° I D	2 P	ich	5115 DC		6 cal/ft - 6" I	$\mathbf{D} = 1.47 \text{ cal/ft}$	(
				ft x	-	(gal)	- 500 IL - 0 I.	1.77 gal/it			

SW-OtleTCL-VOCs3 - 40 mL VOAHCLTCL-SVOCs2-1 L AmbernoneTAL-Metals (Total)1 - 250 mL PlasticHNO3TAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium-250 mL PlasticNoneCyanide1 - 250 mL PlasticNonePCBs2 - 1 L AmbernoneMatrix Spike present?			Flow Sa	-	,	ARM Group Inc. Earth Resource Engineers and Consultants						
Well Number: $SN - O_2 (L - MMS^3)$ Date: $\frac{2}{3} \frac{2}{3} \frac{1}{4} \frac{1}{4}$ Well Diameter (in): 2 One Well Volume (gal): Total Depth (if): QED Controller Settings: Depth to Water (ft) Q, H Flow Rate (mL/min) $HO mL/min$ Height of Water Column (ft): Length of time Purged (min) 20 Time Purged (gallons) Temp (°C) pH (°C) Specific (onder and column (myL) Dissolved (mgL) ORP (mV) Turbidity (NTU) Comments 1053 1 103 5.1L 0.55 5.52 9 4/80 9Yett 1053 5.1L 0.55 5.52 9 4/80 9Yett 0.1014 2.44 13 12.0 0 12.0 0 0 12.0 0 0.1014 2.44 12.0 0 0 1.0	Project N	lame: Aceo	BGW	Invest	noiter	Project Number: 150300M-10-3						
Well Diameter (in): 2 One Well Volume (gal): Total Depth (ft): QED Controller Settings: Depth to Water (ft) Q] Height of Water Column (ft): Length of time Purged (min) 30 WELL PURGING RECORD Time Purged Temp PH (°C) (s.u.) Specific Conductance Dissolved (mg/L) (NTU) Comments Time Volume (gal): Turbidity (NTU) Comments WELL PURGING RECORD Time Volume (gal): Turbidity (NTU) Comments (%C) % (%C) % (%C) % (%C) Mode Second Turbidity (NTU) Comments (%C) % (%C) % (%C) % (%C) 16.5 % (%C) % (%C) % (%C) 10.5 % (%C) % (%C) % (%C) % (%C) % (%C) 10.5 % (%C) <th< td=""><td>Well Nur</td><td>nber: SW</td><td>-02 Le</td><td>- MWS</td><td>5 3</td><td>Date: 2/</td><td>30/14</td><td>141</td><td></td><td></td></th<>	Well Nur	nber: SW	-02 Le	- MWS	5 3	Date: 2/	30/14	141				
QED Controller Settings: Flow Rate (mL/min) 400 mL/min Length of time Purged (min) 30 Well PURGING RECORD Well PURGING RECORD Well PURGING RECORD Temp PH (Sub) 0.5 K 2 3.1L 0.5 M2 (mY) (NTU) Comments (my/L) (NTU) Comments (my/L) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Well Dia	meter (in):	2.):				
Length of time Purged (min) 30 WELL PURGING RECORD Time Volume Purged (gallons) Temp (°C) pH (s.u) Specific Conductance (mSCA) Dissolved Oxygen (my) ORP (mV) Turbidity (NTU) Comments 1033 0 103 5.1L 0.5781 5.52 9 4/80 9/1041 1035 0.5 15.82 1.1 0.409 2.44 13 12.0 0 1035 0.5 15.82 1.1 0.409 2.44 13 12.0 0 1043 1.5 15.43 3.55 0.612 2.44 13 12.0 0 1053 2.0 15.31 3.55 0.612 2.44 -15 21.8 0 1053 2.0 15.31 3.15 0.428 2.30 -19 10.8 0 103 3.0 5.31 3.42 0.628 2.30 -19 10.8 0 0 103 Table 1.22 0.628 2.30 -19 10.8 0 0 104						QED Contr	oller Setting	gs:	,			
Length of time Purged (min) 30 WELL PURGING RECORD Time Volume Purged (gallons) Temp (°C) pH (s.u) Specific Conductance (mSCA) Dissolved Oxygen (my) ORP (mV) Turbidity (NTU) Comments 1033 0 103 5.1L 0.5781 5.52 9 4/80 9/1041 1035 0.5 15.82 1.1 0.409 2.44 13 12.0 0 1035 0.5 15.82 1.1 0.409 2.44 13 12.0 0 1043 1.5 15.43 3.55 0.612 2.44 13 12.0 0 1053 2.0 15.31 3.55 0.612 2.44 -15 21.8 0 1053 2.0 15.31 3.15 0.428 2.30 -19 10.8 0 103 3.0 5.31 3.42 0.628 2.30 -19 10.8 0 0 103 Table 1.22 0.628 2.30 -19 10.8 0 0 104	Depth to	Water (ft)	17.0			Flow Rate	(mL/min)	HOOML	Imin			
WELL PURGING RECORD Time Volume Purged (gallons) Temp (°C) pH (s.u.) Specific Conductance (mS/c.d.) Dissolved Oxygen ORP (mV) Turbidity (NTU) Comments 1053 0 103 5.1L 0.551L 5.52 4 480 9Y84 1053 0.5 15.82 3.1L 0.561L 5.52 4 480 9Y84 1053 0.5 15.82 3.1L 0.561L 2.64 13 120 0 1043 1.5 15.40 3.43 0.601L 2.44 13 120 0 1043 1.5 15.43 3.55 0.612 2.44 1.5 21.8 1053 2.0 15.31 3.45 0.628 2.30 -19 10.8		the second se	the second se			Length of t			///// X			
Time Volume Purged (gallons) Temp (°C) pH (s.u.) Specific Conductance (mS/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) Comments 1093 0 MO3 5.1L 0.5781 5.752 9 4/80 9/Yeu 0 1093 0.5 15.82 7.1L 0.608 2.144 13 120 0 1043 1.0 15.403 7.50 0.614 2.44 13 120 0 1043 1.5 15.403 7.50 0.617 2.40 2 31.5 16.93 1058 2.0 15.30 7.55 0.619 2.41 -15 21.8 1053 2.0 15.31 7.421 0.428 2.30 -19 10.8 1003 3.0 15.31 7.421 0.428 2.30 -19 10.8 1003 7.421 0.428 2.30 -19 10.8			W DUS 18	17 I 2 19 19 19	WELL PUR				1.2.5.3.8.3.5.53	79.97		
1823 1403 5.14 0.581, 5.52 9 480 9/104 1038 0.5 15.82 3.1 0.408 2.44 13 120 0 1043 1.0 15.40 3.43 0.614 2.49 2.3 49.6 0 1043 1.5 15.43 3.55 0.614 2.49 2.3 49.6 0 1043 1.5 15.43 3.55 0.614 2.49 2.3 49.6 0 1058 2.0 15.30 3.55 0.619 2.41 -15 21.8 0 1058 2.5 15.31 3.46 0.628 2.30 -19 10.8 0 103 3.0 15.31 3.42 0.628 2.30 -19 10.8 0 0 103 3.0 15.31 3.42 0.628 2.30 -19 10.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Time</td> <td>Purged</td> <td>-</td> <td>· ·</td> <td>Conductance</td> <td>Oxygen</td> <td></td> <td></td> <td>Comments</td> <td>5</td>	Time	Purged	-	· ·	Conductance	Oxygen			Comments	5		
$\frac{1038}{1.0} = \frac{15.82}{1.0} = \frac{1.09}{1.008} = \frac{1.64}{2.49} = \frac{13}{2.3} = \frac{120}{49.16} = \frac{100}{1.048} = \frac{15.43}{1.5} = \frac{15.43}{1.5} = \frac{15.43}{1.5} = \frac{15.43}{1.5} = \frac{15.31}{1.5} = \frac{15.31}{1.5} = \frac{15.31}{1.5} = \frac{16.12}{1.8} = \frac{10.5}{1.5} = \frac{14.8}{1.5} = \frac{110.8}{1.5} = \frac$	1033	0	1403	5.14		5.52	9	480	grace			
1.0 5.60 7.43 0.614 2.49 2.3 49.6 $104%$ 1.5 15.43 7.50 0.617 2.76 2 31.5 1058 2.0 15.30 7.55 0.619 2.41 -15 21.8 1058 2.5 15.31 7.61 0.628 2.28 -25 $14.%$ 103 3.0 5.31 7.61 0.628 2.30 -19 10.8 103 3.0 5.31 7.61 0.628 2.30 -19 10.8 103 3.0 5.31 7.61 0.628 2.30 -19 10.8 103 3.0 5.31 7.61 0.628 2.30 -19 10.8 103 7.628 7.628 2.30 -19 10.8 0.688 103 7.628 7.628 7.628 7.628 7.628 0.628 7.608 0.628 7.608 0.628 0.628 0.628 0.628		0.5					13		50			
1.5 15.43 7.50 0.617 2.46 2 31.5 1053 2.0 15.35 3.55 0.619 2.41 -15 21.8 1058 2.5 15.31 3.61 0.628 2.28 -25 14.8 103 3.0 15.31 3.12 0.628 2.30 -19 10.8 103 3.0 15.31 3.12 0.628 2.30 -19 10.8 103 3.0 15.31 3.12 0.628 2.30 -19 10.8 MONITORING SAMPLE RECORD MONITORING SAMPLE RECORD MONITORING SAMPLE RECORD Sample ID Time Collected Parameter Container Perservative 1 TCL-VOCs 3-40 mL VOA HCL TAL-Metals (Total) 1-250 mL Plastic HNO3 TH-DRO 2-1 L Amber none TPH-DRO 2-1 L Amber none TPH-DRO 2-1 L Amber none Cyanide 1-250 mL Plastic<					and the second s	2,49			- V			
IC63 2.0 IS.35 $\overline{3}.55$ $\overline{3}.649$ $\overline{2.41}$ -15 $\overline{21.8}$ Ie58 2.5 IS.31 $\overline{3.641}$ $\overline{2.28}$ -25 $\overline{14.8}$ Ie58 2.6 IS.31 $\overline{3.42}$ $\overline{0.428}$ 2.30 -19 $\overline{10.8}$ Ie53 3.0 IS.31 $\overline{3.42}$ $\overline{0.428}$ 2.30 -19 $\overline{10.8}$ Ie53 3.0 IS.31 $\overline{3.42}$ $\overline{0.428}$ 2.30 -19 $\overline{10.8}$ Ie53 3.0 IS.31 $\overline{3.42}$ $\overline{0.428}$ 2.30 -19 $\overline{10.8}$ Ie53 $\overline{3.412}$ $\overline{0.428}$ 2.30 -19 $\overline{10.8}$ Ie53 $\overline{3.40}$ $\overline{1.250}$ $\overline{1.42}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{14.8}$ Ie53 $\overline{3.40}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{1.803}$ $\overline{1.250}$ $\overline{1.803}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{1.250}$ $\overline{1.103}$ $\overline{1.250}$ $\overline{1.103}$ $\overline{1.250}$ $\overline{1.103}$ $\overline{1.250}$ $\overline{1.10}$ 1.250	1.1					2.46		21.5				
1058 2.5 15.31 7.61 0.628 2.28 -25 14.8 103 3.0 15.31 7.62 0.628 2.30 -19 10.8 103 3.0 15.31 7.62 0.628 2.30 -19 10.8 103 3.0 15.31 7.62 0.628 2.30 -19 10.8 103 3.0 15.31 7.62 0.628 2.30 -19 10.8 103 7.62 0.628 2.30 -19 10.8	and the second s											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
Sample ID Time Collected Parameter Container Perservative MONITORING SAMPLE RECORD Sample ID Time Collected Parameter Container Perservative TCL-VOCs 3 - 40 mL VOA HCL TCL-SVOCs 2 - 1 L Amber none TAL-Metals (Total) 1 - 250 mL Plastic HNO3 TAL-Metals (Dissolved) 1 - 250 mL Plastic HNO3 TPH-DRO 2 - 1 L Amber none TPH-GRO 3 - 40 mL VOA HCL Hexavalent Chromitim \$1 - 250 mL Plastic None Cyanide 1 - 250 mL Plastic NAOH PCBs 2 - 1 L Amber none Matrix Spike present?									5			
Sample IDTime CollectedParameterContainerPerservativeYSwTCL-VOCs3 - 40 mL VOAHCLTCL-SVOCs2 - 1 L AmbernoneTAL-Metals (Total)1 - 250 mL PlasticHNO3TAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium31 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNonePCBs2 - 1 L AmbernoneMatrix Spike present?Image: Spike presentImage: Spike present	105	3.0	12.3	- Tel-	0.620	2.00		10.0		-		
Sample IDTime CollectedParameterContainerPerservativeYSwTCL-VOCs3 - 40 mL VOAHCLTCL-SVOCs2 - 1 L AmbernoneTAL-Metals (Total)1 - 250 mL PlasticHNO3TAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium31 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNonePCBs2 - 1 L AmbernoneMatrix Spike present?Image: Spike presentImage: Spike present									¥			
TCL-VOCs3 - 40 mL VOAHCLTCL-SVOCs2 - 1 L AmbernoneTAL-Metals (Total)1 - 250 mL PlasticHNO3TAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium-1 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNonePCBs2 - 1 L Ambernone	R				MONITORING	SAMPLE RE	ECORD					
MOCTAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium-1 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNAOHPCBs2 - 1 L AmbernoneMatrix Spike present?	Samj	ple ID	Time C	ollected	Paran	neter	Container		Perservative	Υ/		
MOCTAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium-1 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNAOHPCBs2 - 1 L AmbernoneMatrix Spike present?		NNS					3 - 40 n	nL VOA	HCL	1 V		
MOCTAL-Metals (Dissolved)1 - 250 mL PlasticHNO3TPH-DRO2 - 1 L AmbernoneTPH-GRO3 - 40 mL VOAHCLHexavalent Chromium-1 - 250 mL PlasticNoneCyanide1 - 250 mL PlasticNAOHPCBs2 - 1 L AmbernoneMatrix Spike present?	NO-W	فأ							0	4		
TPH-DRO 2 - 1 L Amber none TPH-GRO 3 - 40 mL VOA HCL Hexavalent Chromium 9-1 - 250 mL Plastic None Cyanide 1 - 250 mL Plastic NAOH PCBs 2 - 1 L Amber none Matrix Spike present? Image: Complement of the second s	2.		MAR							14		
TPH-GRO 3 - 40 mL VOA HCL Hexavalent Chromium 9.1 - 250 mL Plastic None Cyanide 1 - 250 mL Plastic NAOH PCBs 2 - 1 L Amber none				•						Y		
Hexavalent Chromium 9-1 - 250 mL Plastic None Cyanide 1 - 250 mL Plastic NAOH PCBs 2 - 1 L Amber none Matrix Spike present? Image: Complement of the second												
Cyanide 1 - 250 mL Plastic NAOH PCBs 2 - 1 L Amber none										Ľ		
PCBs 2 - 1 L Amber none Matrix Spike present?				the second s				K				
Matrix Spike present?	5 6 ×							-	H			
	n.	Lature Clarit		1 ¹⁰	×	ds	2-1L	Amber	none	Ļ		
Duplicate appaged				W	AND COMPENSION					-		
Duplicate assessed? Sampled By: My	1	Sampled B	16. B. S. N.	Commen	ts: Dissolved me	tals are Field F	iltered	201				

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name	Area B Parcel B17 Phase II	Date 10/10/17
Weather	Partly Cloudy, 70s	
Calibrated by	L. Glumac	Instrument Horiba
Serial Number	2BOMSAX4	

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard 4.49mS/cm	4.49	71 F	4.23 [¥]	83 F
Specific Conductance Standard #2	-		-	
pH (7)	-		-	
pH (4)	4.00		4.14	
pH(10)	-		_	
ORP Zobel Solution	-		_	
Dissolved Oxygen 100% water saturated air mg/L	$10.01^{rac{4}{2}}$		14.70 [¥]	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	-		-	
Barometric Pressure mm Hg	764.03		764.29	
Turbidity #1 (0 NTU)	0.00		0.00	
Turbidity #2	-		-	
Turbidity #3	-		-	

[¥]DO was outside of the calibration acceptance criteria. Specific Conductance is outside of the post-calibration acceptance criteria.Values displayed on field purge logs may be inaccurate.

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name	Area B Parcel B17 Phase II	Date 10/11/17
Weather	Cloudy, Rainy, 70s	_
Calibrated by	L. Glumac	Instrument_Horiba
Serial Number	2BOMSAX4	

Parameters End of Day End of Day Morning Morning Calibration Calibration Temperature Temperature Check Specific Conductance 72 F 72 F 4.48 4.43 Standard 4.49 mS/cm Specific Conductance _ _ Standard #2 pH (7) _ pH (4) 4.00 4.06 pH(10) _ _ ORP _ _ Zobel Solution Dissolved Oxygen 10.07[¥] $16.61^{\text{¥}}$ 100% water saturated air mg/L Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L Barometric Pressure 764.03 763.02 mm Hg Turbidity #1 ¥ ¥ (0 NTU) Turbidity #2 --Turbidity #3 _ _

[¥]DO is outside of the calibration acceptance criteria. Turbidity was inoperable and was not recorded on the purge logs. Values displayed on field purge logs may be inaccurate.

/17

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name Area B GW Investigation Weather Sunny, 40s _____

Date 3/30/16

Calibrated by LMG

Serial Number U-5000 Series, EAG owned

Instrument Horiba

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard #1	4.51 mS/cm	42 °F	$4.66 \text{ mS/cm}^{\text{¥}}$	55
Specific Conductance Standard #2		42 °F		55
pH (7)		42 °F		55
pH (4)	4.00	42 °F	4.08	55
pH(10)		42 °F		55
ORP Zobel Solution		42 °F		55
Dissolved Oxygen 100% water saturated air mg/L	11.24 [¥]	42 °F	$9.67^{\text{¥}}$	55
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L		42 °F		55
Barometric Pressure mm Hg	30.4 in Hg (estimated)	NA	30.3 in Hg (estimated)	NA
Turbidity #1 (0.1 NTU)	0.1	42 °F	0.0	55
Turbidity #2 (15 NTU)		42 °F		55
Turbidity #3 (100 NTU)		42 °F		55
Turbidity #4 (750 NTU)				

[¥]DO and specific conductance is outside of the post-calibration acceptance criteria. Values displayed on field purge logs may be inaccurate.

"

"

"

APPENDIX H

"

Drum ID	Designation	Activity/Phase	Contents	Open Date
403-S-1/29/16-B17	Non-haz.	Parcel B17/Phase II	Soil	1/29/2016
472-GW-2/18/16-B17	Non-haz.	Parcel B17/Phase II	Water	2/18/2016
772-PPE-1/7/17-B17	Non-haz.	Parcel B17/Phase II	PPE	1/7/2017
944-Soil-9/18/17-B17	Non-haz.	Parcel B17/Phase II	Soil	9/18/2017
945-Decon Water-9/18/17-B17	Non-haz.	Parcel B17/Phase II	Water	9/18/2017
946-Liners-9/18/17-B17	Non-haz.	Parcel B17/Phase II	Liners	9/18/2017
947-PPE-9/18/17-B17	Non-haz.	Parcel B17/Phase II	PPE	9/18/2017
948-PPE-9/21/17-B17	Non-haz.	Parcel B17/Phase II	PPE	9/21/2017
962-Purge Water-10/6/17-B17	Non-haz.	Parcel B17/Phase II	Water	10/6/2017
977-Decon Water-10/15/17-A5/B18/B17/A9/GRY/B13	Non-haz.	Parcels A5/B18/B17/A9/GRY/B13 / Phase II	Water	10/15/2017

APPENDIX I

NAPL Gauging Activities Parcel B17 Tradepoint Atlantic Sparrows Point, Maryland

							9/18/2017			9/19/2017			9/20/2017	
Sample ID	Installation Date	Abandonment Date	Depth	Screen Interval (Feet bgs)	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	NAPL	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	NAPL	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B17-008-PZ	11/6/2017	NA	15	5-15	2.88	NA	NA	NA	NA	NA	NA	NA	NA	NA
B17-011-PZ	9/18/2017	NA	14	4-14	2.50	-	8.14	-	NM	NM	NM	-	8.15	-
B17-012-PZ	9/20/2017	NA	8	3-8	2.65	NA	NA	NA	NA	NA	NA	-	8.99	-

							9/22/2017			11/6/2017			11/8/2017	
Sample ID	Installation Date	Abandonment Date	Well Total Depth (Feet bgs)	Screen Interval (Feet bgs)	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	NAPL	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	NAPL	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B17-008-PZ	11/6/2017	NA	15	5-15	2.88	NA	NA	NA	-	8.95	-	-	8.73	-
B17-011-PZ	9/18/2017	NA	14	4-14	2.50	NM	NM	NM	NM	NM	NM	NM	NM	NM
B17-012-PZ	9/20/2017	NA	8	3-8	2.65	-	8.99	-	NM	NM	NM	NM	NM	NM

							12/11/2017	7		1/23/2018	
Sample ID	Installation Date	Abandonment Date	Depth	Screen Interval (Feet bgs)	Riser Stick-Up (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)	Depth to NAPL (Feet TOC)	Depth to Water (Feet TOC)	NAPL Thickness (Feet)
B17-008-PZ	11/6/2017	NA	15	5-15	2.88	-	9.30	-	NM	NM	NM
B17-011-PZ	9/18/2017	NA	14	4-14	2.50	NM	NM	NM	-	9.20	-
B17-012-PZ	9/20/2017	NA	8	3-8	2.65	NM	NM	NM	-	9.68	-

NA = Not Applicable

NM = Not Measured

SHADED = NAPL Detection

bgs = below ground surface

TOC = Top of Casing

APPENDIX J

QA/QC Tracking Log

<u>Trip</u> Blank:

> TB1 TB1

> TB1 TB1 TB1

> TB1

<u>Trip</u>			
Blank:	Date:	Sample IDs	
TB1		1) B17-005-SB-2	-
TB1		2) B17-005-SB-4	-
		3) B17-011-SB-1.5	-
		4) B17-011-SB-5	-
TB1	9/18/2017	5) B17-014-SB-1.5	-
TB1		6) B17-014-SB-5	
TB1		7) B17-017-SB-1.5	Duplicate: B17-014-SB-1.5
TB1		8) B17-017-SB-6	Date: 9/18/2017
TB1		9) B17-008-SB-1.5	<u>MS/MSD:</u> B17-019-SB-4
TB1		10) B17-008-SB-7.5	Date: 9/19/2017
-		11) B17-007-SB-1	Field Blank:
TB1		12) B17-018-SB-1.5	Date: 9/19/2017
TB1		13) B17-018-SB-4	<u>Eq. Blank:</u>
	9/19/2017	14) B17-020-SB-1.5	Date: 9/19/2017
TB1		15) B17-020-SB-4	-
TB1		16) B17-019-SB-2	-
TB1		17) B17-019-SB-4	
		18) B17-004-SB-1	-
TB1	9/20/2017	19) B17-004-SB-4	-
TB1		20) B17-013-SB-1.5	
	1		1
TB1		1) B17-013-SB-4	-
		2) B17-012-SB-1.5	-
		3) B17-012-SB-4	
	9/20/2017	4) B17-009-SB-1.5	
TB1		5) B17-009-SB-4	
		6) B17-006-SB-1.5	
TB1		7) B17-006-SB-4	Duplicate: B17-006-SB-4
		8) B17-015-SB-1	Date: 9/20/2017
		9) B17-015-SB-5	<u>MS/MSD:</u> B17-015-SB-5
		10) B17-016-SB-1	Date: 9/21/2017
TB1		11) B17-016-SB-4	Field Blank:
		12) B17-010-SB-2	Date: 9/20/2017
TB1	9/21/2017	13) B17-010-SB-8	<u>Eq. Blank:</u>
TB1		14) B17-021-SB-1.5	Date: 9/20/2017
		15) B17-021-SB-5	
		16) B17-002-SB-1	
TB1		17) B17-002-SB-5	
		18) B17-001-SB-1	
		19)	
		20)	

Date:	Sample IDs	
	1) B17-014-PZ	
10/10/2017	2) B17-016-PZ	
	3) B17-015-PZ	
	4) B17-009-PZ	
10/11/2017	5) B17-020-PZ	
	6) B17-019-PZ	
	7)	Duplicate: B17-020-PZ
	8)	Date: 10/11/2017
	9)	MS/MSD: B17-009-PZ
	10)	Date: 10/11/2017
	11)	Field Blank:
	12)	Date: 10/11/2017
	13)	<u>Eq. Blank:</u>
	14)	Date:
	15)	
	16)	
	17)	
	18)	
	19)	
	20)	
	1)	
	2)	
	3)	
	4)	
	5)	
	6)	
	7)	Duplicate:
	8)	Date:
	9)	MS/MSD:
	10)	Date:
	11)	Field Blank:
	12)	Date:
	13)	<u>Eq. Blank:</u>
	14)	Date:
	15)	
	16)	
	17)	
	18)	
	19)	
	20)	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

"

"

"

CRRGP F KZ'M'

"

EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs. Total Results (Only data which underwent validation are included)

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Cyanide	CN	Soil	mg/kg	31	25	0	31	100.00%
Aluminum	Metal	Soil	mg/kg	31	31	0	31	100.00%
Antimony	Metal	Soil	mg/kg	31	9	0	31	100.00%
Arsenic	Metal	Soil	mg/kg	31	27	0	31	100.00%
Barium	Metal	Soil	mg/kg	31	31	0	31	100.00%
Beryllium	Metal	Soil	mg/kg	31	30	0	31	100.00%
Cadmium	Metal	Soil	mg/kg	31	26	0	31	100.00%
Chromium	Metal	Soil	mg/kg	31	31	0	31	100.00%
Chromium VI	Metal	Soil	mg/kg	31	1	0	31	100.00%
Cobalt	Metal	Soil	mg/kg	31	31	0	31	100.00%
Copper	Metal	Soil	mg/kg	31	31	0	31	100.00%
Iron	Metal	Soil	mg/kg	31	31	0	31	100.00%
Lead	Metal	Soil	mg/kg	31	31	0	31	100.00%
Manganese	Metal	Soil	mg/kg	31	31	0	31	100.00%
Mercury	Metal	Soil	mg/kg	31	31	0	31	100.00%
Nickel	Metal	Soil	mg/kg	31	31	0	31	100.00%
Selenium	Metal	Soil	mg/kg	31	10	0	31	100.00%
Silver	Metal	Soil	mg/kg	31	31	0	31	100.00%
Thallium	Metal	Soil	mg/kg	31	0	0	31	100.00%
Vanadium	Metal	Soil	mg/kg	31	31	0	31	100.00%
Zinc	Metal	Soil	mg/kg	31	31	0	31	100.00%
Aroclor 1016	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1221	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1232	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1242	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1248	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1254	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1260	PCB	Soil	mg/kg	16	1	0	16	100.00%
Aroclor 1262	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1268	PCB	Soil	mg/kg	16	2	0	16	100.00%
PCBs (total)	PCB	Soil	mg/kg	16	3	0	16	100.00%
1,1-Biphenyl	SVOC	Soil	mg/kg	31	12	0	31	100.00%
1.2.4.5-Tetrachlorobenzene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Soil	mg/kg	31	0	3	28	90.32%
2,4,5-Trichlorophenol	SVOC	Soil	mg/kg	31	0	3	28	90.32%
2,4,6-Trichlorophenol	SVOC	Soil	mg/kg	31	0	3	28	90.32%
2,4-Dichlorophenol	SVOC	Soil	mg/kg	31	0	3	28	90.32%
2,4-Dimethylphenol	SVOC	Soil	mg/kg		1	-	28	90.32%
2,4-Dinitrophenol	SVOC	Soil	mg/kg	31	1	3	28	90.32%
2.4-Dinitrotoluene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
2.6-Dinitrotoluene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
2-Chloronaphthalene	SVOC	Soil	mg/kg	31	4	0	31	100.00%
2-Chlorophenol	SVOC	Soil	mg/kg	31	4	3	28	90.32%
2-Methylnaphthalene	SVOC			31	31	0	31	
i		Soil	mg/kg	31	1	3	28	100.00% 90.32%
2-Methylphenol 2-Nitroaniline	SVOC SVOC	Soil	mg/kg	31	0	0	31	
		Soil	mg/kg					100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Soil	mg/kg	31	1	3	28	90.32%
3,3'-Dichlorobenzidine	SVOC	Soil	mg/kg	31	0	0	31	100.00%
4-Chloroaniline	SVOC	Soil	mg/kg	31	0	0	31	100.00%
4-Nitroaniline	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Acenaphthene	SVOC	Soil	mg/kg	31	28	0	31	100.00%
Acenaphthylene	SVOC	Soil	mg/kg	31	30	0	31	100.00%
Acetophenone	SVOC	Soil	mg/kg	31	13	0	31	100.00%
Anthracene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Benz[a]anthracene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Benzaldehyde	SVOC	Soil	mg/kg	31	13	9	22	70.97%
Benzo[a]pyrene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Benzo[b]fluoranthene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Benzo[g,h,i]perylene	SVOC	Soil	mg/kg	31	31	0	31	100.00%

EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs. Total Results

(Only data which underwent validation are included)

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Benzo[k]fluoranthene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
bis(2-chloroethoxy)methane	SVOC	Soil	mg/kg	31	0	0	31	100.00%
bis(2-Chloroethyl)ether	SVOC	Soil	mg/kg	31	0	0	31	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Soil	mg/kg	31	0	0	31	100.00%
bis(2-Ethylhexyl)phthalate	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Caprolactam	SVOC	Soil	mg/kg	31	6	0	31	100.00%
Carbazole	SVOC	Soil	mg/kg	31	15	0	31	100.00%
Chrysene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Dibenz[a,h]anthracene	SVOC	Soil	mg/kg	31	30	0	31	100.00%
Diethylphthalate	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Di-n-butylphthalate	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Di-n-ocytlphthalate	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Fluoranthene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Fluorene	SVOC	Soil	mg/kg	31	28	0	31	100.00%
Hexachlorobenzene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Hexachlorobutadiene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Hexachlorocyclopentadiene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Hexachloroethane	SVOC	Soil	mg/kg	31	2	0	31	100.00%
Indeno[1,2,3-c,d]pyrene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Isophorone	SVOC	Soil	mg/kg	31	0	0	31	100.00%
Naphthalene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Nitrobenzene	SVOC	Soil	mg/kg	31	0	0	31	100.00%
N-Nitroso-di-n-propylamine	SVOC	Soil	mg/kg	31	0	0	31	100.00%
N-Nitrosodiphenylamine	SVOC	Soil	mg/kg	31	1	0	31	100.00%
Pentachlorophenol	SVOC	Soil	mg/kg	31	0	3	28	90.32%
Phenanthrene	SVOC	Soil	mg/kg	31	31	0	31	100.00%
Phenol	SVOC	Soil	mg/kg	31	3 31	2	29	93.55%
Pyrene Diesel Range Organics	SVOC TPH	Soil Soil	mg/kg	31 31	30	0	31 31	100.00% 100.00%
Gasoline Range Organics	TPH	Soil	mg/kg mg/kg	31	8	0	31	100.00%
Oil and Grease	TPH	Soil	mg/kg	31	31	0	31	100.00%
1,1,1-Trichloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,1,2,2-Tetrachloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,1,2-Trichloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1.1-Dichloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,1-Dichloroethene	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2,3-Trichlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2,4-Trichlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dibromo-3-chloropropane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dibromoethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dichlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dichloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dichloroethene (Total)	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,2-Dichloropropane	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,3-Dichlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,4-Dichlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
2-Butanone (MEK)	VOC	Soil	mg/kg	18	2	0	18	100.00%
2-Hexanone	VOC	Soil	mg/kg	18	2	0	18	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Soil	mg/kg	18	1	0	18	100.00%
Acetone	VOC	Soil	mg/kg	18	11	0	18	100.00%
Benzene	VOC	Soil	mg/kg	18	3	0	18	100.00%
Bromodichloromethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
Bromoform	VOC	Soil	mg/kg	18	0	0	18	100.00%
Bromomethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
Carbon disulfide	VOC	Soil	mg/kg	18	3	0	18	100.00%
Carbon tetrachloride	VOC	Soil	mg/kg	18	0	0	18	100.00%
Chlorobenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Chloroethane	VOC	Soil	mg/kg	18	0	0	18	100.00%

EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs. Total Results (Only data which underwent validation are included)

				Number of		Number of	Number of	
Parameter	Parameter Group	Matrix	Unit	Validated Results	Detections	Rejected Results	Non-rejected Results	Completeness
Chloroform	VOC	Soil	mg/kg	18	0	0	18	100.00%
Chloromethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
cis-1,2-Dichloroethene	VOC	Soil	mg/kg	18	0	0	18	100.00%
cis-1,3-Dichloropropene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Cyclohexane	VOC	Soil	mg/kg	18	1	0	18	100.00%
Dibromochloromethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
Dichlorodifluoromethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
Ethylbenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Isopropylbenzene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Methyl Acetate	VOC	Soil	mg/kg	18	0	0	18	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Soil	mg/kg	18	0	0	18	100.00%
Methylene Chloride	VOC	Soil	mg/kg	18	0	0	18	100.00%
Styrene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Tetrachloroethene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Toluene	VOC	Soil	mg/kg	18	3	0	18	100.00%
trans-1,2-Dichloroethene	VOC	Soil	mg/kg	18	0	0	18	100.00%
trans-1,3-Dichloropropene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Trichloroethene	VOC	Soil	mg/kg	18	0	0	18	100.00%
Trichlorofluoromethane	VOC	Soil	mg/kg	18	0	0	18	100.00%
Vinyl chloride	VOC	Soil	mg/kg	18	0	0	18	100.00%
Xylenes	VOC	Soil	mg/kg	18	0	0	18	100.00%
1,4-Dioxane	VOC/SVOC	Soil	mg/kg	18	0	18	0	0.00%
Available Cyanide	CN	Water	ug/L	3	3	0	3	100.00%
Total Cyanide	CN	Water	ug/L	4	2	0	4	100.00%
Aluminum	Metal	Water	ug/L	5	4	0	5	100.00%
Antimony	Metal	Water	ug/L	5	0	0	5	100.00%
Arsenic	Metal	Water	ug/L	5	0	0	5	100.00%
Barium	Metal	Water	ug/L	5	5	0	5	100.00%
Beryllium	Metal	Water	ug/L	5	0	0	5	100.00%
Cadmium	Metal	Water	ug/L	5	0	0	5	100.00%
Chromium	Metal	Water	ug/L	5	1	0	5	100.00%
Chromium VI	Metal	Water	ug/L	4	0	0	4	100.00%
Cobalt	Metal	Water	ug/L	5	0	0	5	100.00%
Copper	Metal	Water	ug/L	5	0	0	5	100.00%
Iron	Metal	Water	ug/L	5	4	0	5	100.00%
Lead	Metal	Water	ug/L	5	0	0	5	100.00%
Manganese	Metal	Water	ug/L	5	4	0	5	100.00%
Mercury	Metal	Water	ug/L	5	0	0	5	100.00%
Nickel	Metal	Water	ug/L	5	0	0	5	100.00%
Selenium	Metal	Water	ug/L	5	0	0	5	100.00%
Silver	Metal	Water	ug/L	5	0	0	5	100.00%
Thallium	Metal	Water	ug/L	5	0	0	5	100.00%
Vanadium	Metal	Water	ug/L	5	1	0	5	100.00%
Zinc	Metal	Water	ug/L	5	1	0	5	100.00%
Dichlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Heptachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Hexachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Monochlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Nonachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Octachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
PCBs (total)	PCB	Water	ug/L	1	0	0	1	100.00%
Pentachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Tetrachlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
Trichlorobiphenyl	PCB	Water	ug/L	1	0	0	1	100.00%
1,1-Biphenyl	SVOC	Water	ug/L	4	0	0	4	100.00%
1,2,4,5-Tetrachlorobenzene	SVOC	Water	ug/L	4	0	0	4	100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2,4,5-Trichlorophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
_, .,								

EVALUATION OF DATA COMPLETENESS

Percentage of Non-Rejected Results vs. Total Results (Only data which underwent validation are included)

	-					-		
Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
2,4-Dichlorophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2,4-Dimethylphenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2,4-Dinitrophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2,4-Dinitrotoluene	SVOC	Water	ug/L	4	0	0	4	100.00%
2,6-Dinitrotoluene	SVOC	Water	ug/L	4	0	0	4	100.00%
2-Chloronaphthalene	SVOC	Water	ug/L	4	0	0	4	100.00%
2-Chlorophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2-Methylnaphthalene	SVOC	Water	ug/L	4	2	0	4	100.00%
2-Methylphenol	SVOC	Water	ug/L	4	0	0	4	100.00%
2-Nitroaniline	SVOC	Water	ug/L	4	0	0	4	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Water	ug/L	4	0	0	4	100.00%
3,3'-Dichlorobenzidine	SVOC	Water	ug/L	4	0	0	4	100.00%
4-Chloroaniline	SVOC	Water	ug/L	4	0	0	4	100.00%
4-Nitroaniline	SVOC	Water	ug/L	4	0	0	4	100.00%
Acenaphthene	SVOC	Water	ug/L	4	2	0	4	100.00%
Acenaphthylene	SVOC	Water	ug/L	4	2	0	4	100.00%
Acetophenone	SVOC	Water	ug/L	4	0	0	4	100.00%
Anthracene	SVOC	Water	ug/L	4	2	0	4	100.00%
Benz[a]anthracene	SVOC	Water	ug/L	4	1	0	4	100.00%
Benzaldehyde	SVOC	Water	ug/L	4	0	0	4	100.00%
Benzo[a]pyrene	SVOC	Water	ug/L	4	0	0	4	100.00%
Benzo[b]fluoranthene	SVOC	Water	ug/L	4	0	0	4	100.00%
Benzo[g,h,i]perylene	SVOC	Water	ug/L	4	0	0	4	100.00%
Benzo[k]fluoranthene	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
bis(2-chloroethoxy)methane	SVOC	Water	ug/L	4	0	0	4	100.00%
bis(2-Chloroethyl)ether	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
bis(2-Ethylhexyl)phthalate	SVOC	Water	ug/L ug/L	4	1	0	4	100.00%
Caprolactam	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
Carbazole	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
Chrysene	SVOC	Water	ug/L ug/L	4	1	0	4	100.00%
Dibenz[a,h]anthracene	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
Diethylphthalate	SVOC	Water	ug/L ug/L	4	0	0	4	100.00%
	SVOC			4	0	0	4	100.00%
Di-n-butylphthalate Di-n-ocytlphthalate	SVOC	Water Water	ug/L ug/L	4	0	0	4	100.00%
	SVOC		•	4	3	0	4	100.00%
Fluoranthene		Water Water	ug/L	4	2	0	4	100.00%
Fluorene Hexachlorobenzene	SVOC SVOC		ug/L					100.00%
Hexachlorobutadiene	SVOC	Water	ug/L	4	0	0	4	100.00%
Hexachlorocyclopentadiene	SVOC	Water	ug/L	4	0	0	4	100.00%
Hexachloroethane	SVOC	Water	ug/L	4	0	0	4	100.00%
Indeno[1,2,3-c,d]pyrene	SVOC	Water	ug/L	4	0	0	4	100.00%
	SVOC	Water	ug/L		-			100.00%
Isophorone		Water	ug/L	4	0	0	4	
Naphthalene Nitrobenzene	SVOC SVOC	Water	ug/L	4	2	0	4	100.00%
		Water	ug/L	4	0	0	4	100.00%
N-Nitroso-di-n-propylamine	SVOC	Water	ug/L	4		-		100.00%
N-Nitrosodiphenylamine	SVOC	Water	ug/L	4	0	0	4	100.00%
Pentachlorophenol	SVOC	Water	ug/L	4	0	0	4	100.00%
Phenanthrene	SVOC	Water	ug/L	4	2	0	4	100.00%
Phenol	SVOC	Water	ug/L	4	0	0	4	100.00%
Pyrene Dia la construction de la	SVOC	Water	ug/L	4	2	0	4	100.00%
Diesel Range Organics	TPH	Water	ug/L	4	2	0	4	100.00%
Gasoline Range Organics	TPH	Water	ug/L	4	0	0	4	100.00%
Oil and Grease	TPH	Water	ug/L	3	0	0	3	100.00%
1,1,1-Trichloroethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,1,2,2-Tetrachloroethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,1,2-Trichloroethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,1-Dichloroethane	VOC	Water	ug/L	4	0	0	4	100.00%

EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs. Total Results

(Only data which underwent validation are included)

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
1,1-Dichloroethene	VOC	Water	ug/L	4	0	0	4	100.00%
1,2,3-Trichlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
1,2,4-Trichlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dibromo-3-chloropropane	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dibromoethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dichlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dichloroethane	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dichloroethene (Total)	VOC	Water	ug/L	4	0	0	4	100.00%
1,2-Dichloropropane	VOC	Water	ug/L	4	0	0	4	100.00%
1,3-Dichlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
1,4-Dichlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
2-Butanone (MEK)	VOC	Water	ug/L	4	0	0	4	100.00%
2-Hexanone	VOC	Water	ug/L	4	0	0	4	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Water	ug/L	4	0	0	4	100.00%
Acetone	VOC	Water	ug/L	4	0	1	3	75.00%
Benzene	VOC	Water	ug/L	4	0	0	4	100.00%
Bromodichloromethane	VOC	Water	ug/L	4	0	0	4	100.00%
Bromoform	VOC	Water	ug/L	4	0	0	4	100.00%
Bromomethane	VOC	Water	ug/L	4	0	0	4	100.00%
Carbon disulfide	VOC	Water	ug/L	4	0	0	4	100.00%
Carbon tetrachloride	VOC	Water	ug/L	4	0	0	4	100.00%
Chlorobenzene	VOC	Water	ug/L	4	0	0	4	100.00%
Chloroethane	VOC	Water	ug/L	4	0	0	4	100.00%
Chloroform	VOC	Water	ug/L	4	0	0	4	100.00%
Chloromethane	VOC	Water	ug/L	4	0	0	4	100.00%
cis-1,2-Dichloroethene	VOC	Water	ug/L	4	0	0	4	100.00%
cis-1,3-Dichloropropene	VOC	Water	ug/L	4	0	0	4	100.00%
Cyclohexane	VOC	Water	ug/L	4	0	0	4	100.00%
Dibromochloromethane	VOC	Water	ug/L	4	0	0	4	100.00%
Dichlorodifluoromethane	VOC	Water	ug/L	4	0	0	4	100.00%
Ethylbenzene	VOC	Water	ug/L	4	0	0	4	100.00%
Isopropylbenzene	VOC	Water	ug/L	4	0	0	4	100.00%
Methyl Acetate	VOC	Water	ug/L	4	0	0	4	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Water	ug/L	4	0	0	4	100.00%
Methylene Chloride	VOC	Water	ug/L	4	0	0	4	100.00%
Styrene	VOC	Water	ug/L	4	0	0	4	100.00%
Tetrachloroethene	VOC	Water	ug/L	4	0	0	4	100.00%
Toluene	VOC	Water	ug/L	4	0	0	4	100.00%
trans-1,2-Dichloroethene	VOC	Water	ug/L	4	0	0	4	100.00%
trans-1,3-Dichloropropene	VOC	Water	ug/L	4	0	0	4	100.00%
Trichloroethene	VOC	Water	ug/L	4	0	0	4	100.00%
Trichlorofluoromethane	VOC	Water	ug/L	4	0	0	4	100.00%
Vinyl chloride	VOC	Water	ug/L	4	0	0	4	100.00%
Xylenes	VOC	Water	ug/L	4	0	0	4	100.00%
1,4-Dioxane	VOC/SVOC	Water	ug/L	4	1	0	4	100.00%

Data validation has been completed for a representative 50% of all samples