PHASE II INVESTIGATION REPORT

AREA A: PARCEL A18 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:

TRADEPOINT ATLANTIC

1600 Sparrows Point Boulevard Sparrows Point, Maryland 21219

Prepared By:

ARM GROUP LLC

9175 Guilford Road Suite 310 Columbia, Maryland 21046

ARM Project No. 20010118

Respectfully Submitted,

Leandra Glumac

Leandra M. Glumac Project Geologist T. Neil Peters, P.E. Senior Vice President

Mal Pets

TABLE OF CONTENTS

1.0 II	NTRODUCTION	1
1.1.	Site History	2
1.2.	Objectives	2
2.0 E	NVIRONMENTAL SETTING	3
2.1.	Land Use and Surface Features	3
2.2.	Regional Geology	3
2.3.	Site Geology/Hydrogeology	4
3.0 S	ITE INVESTIGATION	5
3.1.	Sample Target Identification	5
3.2.	Soil Investigation.	6
3.3.	Groundwater Investigation	8
3.4.	Management of Investigation-Derived Waste (IDW)	9
4.0 A	NALYTICAL RESULTS 1	0
4.1.	Soil Conditions	0
4.1	.1. Soil Conditions: Organic Compounds	0
4.1	.2. Soil Conditions: Inorganic Constituents	1
4.1	.3. Soil Conditions: Results Summary	1
4.2.	Groundwater Conditions	2
4.2	.1. Groundwater Conditions: Organic Compounds	2
4.2	.2. Groundwater Conditions: Inorganic Constituents	3
4.2	.3. Groundwater Conditions: Results Summary	3
5.0 D	PATA USABILITY ASSESSMENT 1	
5.1.	Data Verification	
5.2.	Data Validation	6
5.3.	Data Usability	7
6.0 F	INDINGS AND RECOMMENDATIONS2	
6.1.	Soil	0
6.2.	Groundwater	
6.3.	Recommendations	
7.0 R	EFFRENCES	3

TABLE OF CONTENTS (CONT.)

FIGURES

Figure 1	Area A & Area B Parcels	Following Text
Figure 2	1916 Shoreline Map	Following Text
Figure 3	Groundwater Samples & Potentiometric Surface Map	Following Text
Figure 4	Soil Sample Locations	Following Text
Figure 5	Soil SVOC PAL Exceedances	Following Text
Figure 6	Soil Oil & Grease PAL Exceedances	Following Text
Figure 7	Soil Inorganic PAL Exceedances	Following Text
Figure 8	Groundwater PAL Exceedances (all classes of constituents)	Following Text
	TABLES	
Table 1	Groundwater Elevation Data	Following Text
Table 2	Historical Site Drawing Details	Following Text
Table 3	Field Shifted Sample Locations	Following Text
Table 4	Characterization Results for Solid IDW	Following Text
Table 5	Characterization Results for Liquid IDW	Following Text
Table 6	Summary of Organics Detected in Soil	Following Text
Table 7	Summary of Inorganics Detected in Soil	Following Text
Table 8	Summary of Soil PAL Exceedances	Following Text
Table 9	Summary of Organics Detected in Groundwater	Following Text
Table 10	Summary of Inorganics Detected in Groundwater	Following Text
Table 11	Groundwater Cumulative Vapor Intrusion Criteria Comparison	Following Text
Table 12	Rejected Analytical Results	Following Text
	APPENDICES	
Appendix A	A Final Sampling Plan Summary	Following Text
Appendix I	Soil Boring & Piezometer Construction Logs	Following Text
Appendix (Groundwater Survey Data	Following Text
Appendix I	PID Calibration Log	Following Text
Appendix I	Groundwater Purge & Multiparameter Meter Calibration Logs	Following Text
Appendix I	Parcel-Specific IDW Drum Log	Following Text
Appendix (G QA/QC Tracking Log	Following Text
Appendix I	H Evaluation of Data Completeness	Following Text

TABLE OF CONTENTS (CONT.)

ELECTRONIC ATTACHMENTS

Soil Laboratory Certificates of Analysis	Electronic	Attachment
Soil Data Validation Reports	Electronic	Attachment
Groundwater Laboratory Certificates of Analysis	Electronic	Attachment
Groundwater Data Validation Report	Electronic	Attachment

1.0 INTRODUCTION

ARM Group LLC (ARM), on behalf of Tradepoint Atlantic, has completed a Phase II Investigation of a portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area A: Parcel A18 (the Site). Parcel A18 is comprised of 27.3 acres of the approximately 3,100-acre former steel making facility (**Figure 1**). While the Site is largely vacant, several businesses operate immediately adjacent to the property boundary, including Chesapeake Specialty Products Inc. (east of the Site), C. Steinweg Group (south of the Site), and Universal Trade Solutions, Inc. and Caprock Grain (north and west of the Site within the former Central Receiving Warehouse (CRW)). The western portion of the Site is bounded to the south by the former Maintenance of Way Yard (within Parcel A10), and to the north by a stormwater pond (within Parcel A16).

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan for Area A: Parcel A18. The Work Plan (Revision 0 dated June 28, 2019) and a subsequent Comment Response Letter (dated December 26, 2019) were approved by the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) via email on February 3, 2020. The Work Plan was implemented in compliance with requirements pursuant to the following:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

Parcel A18 is part of the acreage that was removed (Carveout Area) from inclusion in the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014. Based on this agreement, the USEPA determined that no further investigation or corrective measures will be required under the terms of the Consent Decree for the Carveout Area. However, the SA reflects that the property within the Carveout Area will remain subject to the USEPA's Resource Conservation and Recovery Act (RCRA) Corrective Action authorities.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the MDE's Voluntary Cleanup Program (MDE-VCP) was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial), and plans for the property include demolition and redevelopment over the next several years.

1.1. SITE HISTORY

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

The Site is largely vacant and includes small paved and unpaved roadways, densely vegetated areas, two stormwater management ponds, and several active rail lines. Two rail lines lead to the nearby Greys Railyard on Parcel A13. Although there is limited historical information related to past uses of the Site, there is no evidence that significant iron and steel industrial processes were completed within the boundary of Parcel A18.

The Phase I Environmental Site Assessment (ESA) prepared by Weaver Boos Consultants (dated May 19, 2014) states generically that fly dumping was known to occur outside of the main facility along roads and mainly in vacant and unmonitored areas. According to interviews conducted as part of the Phase I ESA, no hazardous materials or petroleum products were known to be dumped on the property. ARM located historically discarded drums in one area in the southern portion of the Site, which was targeted by this Phase II Investigation.

1.2. OBJECTIVES

The objective of this Phase II Investigation was to characterize the nature and extent of contamination at the Site. A summary table of the site investigation locations, including the sample identification numbers and the analyses performed, is provided as **Appendix A**. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations.

2.0 ENVIRONMENTAL SETTING

2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists of the former Sparrows Point steel mill. According to the Phase I ESA prepared by Weaver Boos dated May 19, 2014, the property is zoned Manufacturing Heavy-Industrial Major (MH-IM). Surrounding property zoning classifications (beyond Tradepoint Atlantic) include the following: Manufacturing Light (ML); Resource Conservation (RC); Density Residential (DR); Business Roadside (BR); Business Major (BM); Business Local (BL); and Residential Office (RO). Light industrial and commercial properties are located northeast of the property and northwest of the property across Bear Creek. Residential areas of Edgemere and Fort Howard are located northeast of the property across Jones Creek and to the southeast across Old Road Bay, respectively. Residential and commercial areas of Dundalk are located northwest of the property across Bear Creek.

Elevations on the Site are highly varied and range between approximately 10 and 50 feet above mean sea level (amsl) across the land area. The two on-site stormwater ponds are located several feet below the surrounding grade. The highest elevations (near 50 feel amsl) are located at the northern end of the Site near Maryland Route 158 (Bethlehem Boulevard), but most of the land area is positioned between 10 and 20 feet amsl. The areas immediately adjacent to the unpaved service road and rail lines slope steeply downward, and surface water from the Site appears to discharge to the two on-site stormwater ponds and the larger pond located on the adjacent Parcel A16. According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 8 dated April 30, 2020, surface water runoff from the majority of the Site is conveyed to the Tin Mill Canal (TMC), and is ultimately discharged through National Pollutant Discharge Elimination System (NPDES) permitted Outfall 014 beyond the Humphrey Creek Wastewater Treatment Plant (HCWWTP), which discharges to Bear Creek. The easternmost portion of the Site appears to be located outside of the industrial drainage areas covered by the SWPPP.

2.2. REGIONAL GEOLOGY

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation, and the Patuxent Formation). The Potomac Group

formations are comprised of unconsolidated sediments of varying thicknesses and types, which may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

2.3. SITE GEOLOGY/HYDROGEOLOGY

Groundcover at the Site is comprised of approximately 47% natural soils and 53% non-native fill materials (i.e., slag), based on the approximate shoreline of the Sparrows Point Peninsula in 1916, as shown on **Figure 2** (adapted from Figure 2-20 in the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure dated January 1998).

In general, the encountered subsurface geology included natural soils, which included fine-grained sediments (clays and silts) and coarse-grained sediments (sands and gravels), as well as non-native slag and other fill materials. Shallow groundwater was observed in soil cores at depths from 8.5 to 20 feet below ground surface (bgs) across the Site; however, groundwater was not encountered at every location. Soil boring observation logs are provided in **Appendix B**. Note that unless otherwise indicated, all Unified Soil Classification System (USCS) group symbols provided on the attached boring logs are from visual observations, and not from laboratory testing.

Groundwater was investigated at the Site via the installation of nine temporary groundwater sample collection points (commonly referred to as piezometers). Sample locations where piezometers were installed within Parcel A18 include: A18-002-PZ, A18-008-PZ, A18-009-PZ, A18-011-PZ, A18-013-PZ, A18-014-PZ, A18-015-PZ, A18-016-PZ, and A18-017-PZ. **Figure 3** shows an aerial view of the piezometers which were installed and sampled to characterize groundwater conditions in Parcel A18. A piezometer was originally specified to be installed at A18-005-SB; however, this location could not be installed due to equipment refusal and the presence of rail lines in the immediate vicinity which restricted further access. A18-008-PZ was installed as a replacement for the originally planned location.

The piezometers were surveyed by a Maryland-licensed surveyor, and the supporting documentation from the survey is included in **Appendix C**. A synoptic round of groundwater level measurements was completed on August 10, 2020. Surveyed top of casing (TOC) and ground surface elevations for all applicable locations can be found in **Table 1**, along with the depth to water (DTW) measurements from this date. Based on the recorded field measurements, a groundwater potentiometric surface map was constructed for the shallow hydrogeologic zone. The localized potentiometric map for shallow groundwater has been included on **Figure 3**. The elevation contours suggest that groundwater flows generally in the direction of the on-site stormwater ponds and the larger pond located on the adjacent Parcel A16.

3.0 SITE INVESTIGATION

A total of 45 soil samples (from 17 boring locations and four shallow sediment locations) and nine groundwater samples were collected for analysis between April 28 and July 9, 2020 as part of the Parcel A18 Phase II Investigation. This Phase II Investigation utilized methods and protocols that followed the procedures included in the Quality Assurance Project Plan (QAPP) dated April 5, 2016 which was approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, the selected laboratory and analytical methods, quality control and quality assurance procedures, investigation-derived waste (IDW) management methods, and reporting requirements are described in detail in the approved Parcel A18 Work Plan and the QAPP.

All site characterization activities were conducted under the property-wide Health and Safety Plan (HASP) provided as Appendix E of the approved Work Plan.

3.1. SAMPLE TARGET IDENTIFICATION

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, a boring was placed at or next to its location using Geographic Information Systems (GIS) software (ArcMap Version 10.6).

Sampling targets included, as applicable, 1) Recognized Environmental Conditions (RECs) shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified from the DCC Report prepared by Rust Environment and Infrastructure. There were no RECs, SWMUs, or AOCs identified at the Site based on the Phase I ESA or DCC Report; however, one off-site REC (REC 28A; Finding 281) was identified due to the presence of two Underground Storage Tanks (USTs) located to the west of the northern portion of the Site. The REC is described in further detail in the Parcel A18 Work Plan. The off-site REC was investigated via site-wide coverage borings placed near the parcel boundary to characterize potential migration of contamination.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate was removed from the gas pipelines. The condensate from the drip legs was typically discharged to drums, although it is possible some spilled out of the drums and onto the ground. The drip legs

drawings did not provide coverage of Parcel A18, but based on the positions of other drip legs and known paths of the coke gas lines, it is unlikely that any coke gas lines or drip legs were present within the parcel boundary. Similarly, the historical 5000 Set, 5100 Set, and 5500 Set did not provide complete coverage of Parcel A18 (although the western and southern portions of the Site were covered), suggesting that significant steel-production operations did not historically occur within the parcel boundary.

A summary of the specific drawings covering the Site is presented in **Table 2**. No specific sampling targets were identified from the historical drawings because they depicted no industrial activities or specific features that may have been a likely source of environmental contamination within the Site. During a pre-investigation site visit completed by ARM personnel on March 28, 2019, historically discarded drums were located in one area in the southern portion of the Site designated as a Fly Dumping Area. The Fly Dumping Area was targeted during this Phase II Investigation by A18-001-SB and A18-002-SB. Due to the close proximity of Parcel A10 to the south, which was known to contain elevated groundwater concentrations of chlorinated volatile organic compounds (CVOCs), several soil borings and temporary groundwater piezometers were included along the southern boundary of Parcel A18. This included two supplemental locations at A18-016-SB and A18-017-SB which were specifically requested by the MDE. The MDE also identified the two on-site stormwater ponds as targets for sediment sampling, with two sediment samples collected from each pond as A18-018-SD through A18-021-SD. A summary table of the investigation plan, along with the applicable boring identification numbers and the analyses performed, has been provided as Appendix A. During the completion of fieldwork, it was necessary to shift some samples (in particular the sediment samples) from the approved locations given in the Work Plan. **Table 3** provides the identification numbers of the field adjusted samples, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

The density of soil borings met the requirements set forth in QAPP Worksheet 17 – Sampling Design and Rationale. Parcel A18 contains a total of 27.3 acres without engineered barriers (including 5.3 acres of stormwater ponds which were inaccessible for conventional soil sampling and excluded from the density requirement). A total of 15 soil borings were required to meet the density specification for the 22.0 acres of land area with non-engineered barriers; soil samples were collected from 17 soil borings and four additional sediment sample locations in the stormwater ponds during the Phase II Investigation.

3.2. SOIL INVESTIGATION

Continuous core soil borings were advanced at 17 locations across Parcel A18 to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (**Figure 4**). Four sediment samples were also collected directly from the top 12 inches of sediment within the stormwater pond areas of Parcel A18. The sediment

samples (A18-018-SD through A18-021-SD) are also shown on **Figure 4**. Analytical soil and sediment samples were successfully collected from all proposed locations.

The 17 continuous core soil borings were advanced to a maximum depth of 26 feet bgs using the Geoprobe® MC-7 Macrocore soil sampler (surface to 10 feet bgs) and the Geoprobe® D-22 Dual-Tube Sampler (depths >10 feet bgs). At each of the 17 completed boring locations, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as **Appendix B**, and the PID calibration log has been included as **Appendix D**. Unless otherwise indicated, all USCS group symbols provided on the attached boring logs are from visual observations.

In each boring, one shallow sample was collected from the 0 to 1 foot depth interval. If unsuitable surface cover materials (such as asphalt pavement) were present, the first 1 foot of soil beneath this layer was collected as the shallow sample. An underlying sample was collected from the 4 to 5 foot depth interval from each continuous core soil boring, but could be adjusted based on field observations. If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4 to 5 foot interval was shifted to the alternate depth interval. One additional set of samples was also collected from the 9 to 10 foot depth interval if groundwater had not been encountered. The 10-foot bgs samples were held by the laboratory prior to analysis in accordance with the requirements given in the Parcel A18 Work Plan. These project-specific requirements for the analysis of 10-foot bgs samples are further described below. It should be noted that soil samples were not collected from a depth that was below the water table.

Soil and sediment sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 003, 008, 009, 012, and 013** provided in Appendix A of the QAPP. Down-hole sampling equipment was decontaminated after sampling had been concluded at each location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Each soil and sediment sample collected during this investigation was submitted to Pace Analytical Services, Inc. (PACE) for analysis. As stated above, the 10-foot bgs soil samples were held prior to analysis in accordance with the Parcel A18 Work Plan requirements. Excluding these deep samples, the remaining samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs) via USEPA Method 8270, Oil & Grease via USEPA Method 9071, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Method 8015, Target Analyte List (TAL) Metals via USEPA Methods 6010 and 7471, hexavalent chromium via USEPA Method 7196, and cyanide via USEPA Method 9012. Additionally, the shallow soil samples collected across the Site from the 0 to 1 foot bgs interval and the sediment samples were analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082. Soil samples from any depth interval with a sustained PID reading of greater than

10 ppm were also analyzed for TCL volatile organic compounds (VOCs) via USEPA Method 8260. The sediment samples were released to be analyzed for VOCs independent of PID readings. The soil and sediment samples were also submitted to Alpha Analytical, Inc. (Alpha) for analysis of polynuclear aromatic hydrocarbons (PAHs) via USEPA Method 8270 SIM. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

If the PID reading from the 9 to 10 foot bgs interval was less than 10 ppm (true for all 10-foot bgs samples collected in Parcel A18), all parameters were held by the laboratory pending the analysis of the overlying 0 to 1 and 4 to 5 foot bgs (or field adjusted interval) samples. If the preliminary laboratory results from the 4 to 5 foot bgs interval indicated exceedances of the Project Action Limits (PALs) for any constituents, the held sample from the 9 to 10 foot bgs interval was then released to be analyzed for those constituents that had PAL exceedances in the overlying sample.

3.3. GROUNDWATER INVESTIGATION

Nine shallow temporary groundwater piezometers (A18-002-PZ, A18-008-PZ, A18-009-PZ, A18-011-PZ, A18-013-PZ, A18-014-PZ, A18-015-PZ, A18-016-PZ, and A18-017-PZ) were included in the parcel-specific sampling plan to characterize groundwater and to support the definition of the groundwater potentiometric surface. A piezometer was originally specified to be installed at A18-005-SB; however, this location could not be installed due to equipment refusal and the presence of rail lines in the immediate vicinity which restricted further access. A18-008-PZ was installed as a replacement location. The locations where shallow groundwater samples were collected are provided on **Figure 3**.

Piezometer installation activities were conducted in accordance with the procedures and methods referenced in **Field SOP Number 028**. The piezometers were installed at each location using the Geoprobe[®] DT22 Dual Tube sampling system. During the installation of each piezometer, soil types were logged and screened with a hand-held PID. The piezometer construction logs have been included as part of **Appendix B**. Following the installation of each sample collection point, the 0-hour depth to water was documented and the collection point was checked for the presence of non-aqueous phase liquid (NAPL) using an oil-water interface probe in accordance with the methods referenced in **Field SOP Number 019** provided in Appendix A of the QAPP.

After the installation of each temporary groundwater sample collection point, down-hole equipment was decontaminated according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Groundwater samples were collected at each location in accordance with methods referenced in **Field SOP Number 006** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated sample tubing, and a water quality multiparameter meter with a flow-through cell. Groundwater samples

submitted for analysis of dissolved metals were filtered in the field with an in-line 0.45-micron filter. The sampling and purge logs have been included in **Appendix E**. Calibration of the multiparameter meter was performed before the start of each day of the sampling event. Documentation of the multiparameter meter calibration is included in **Appendix E**.

Groundwater samples collected in Parcel A18 were submitted to PACE to be analyzed for TCL-VOCs via USEPA Method 8260, TCL-SVOCs via USEPA Methods 8270 and 8270 SIM, Oil & Grease via USEPA Method 1664, TPH-DRO/GRO via USEPA Methods 5030 and 8015, TAL-Dissolved Metals via USEPA Methods 6010 and 7470, dissolved hexavalent chromium via USEPA Method 7196, and total cyanide via USEPA Method 9012. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

3.4. MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

In accordance with **Field SOP Number 005** provided in Appendix A of the QAPP, potentially impacted materials, or IDW, generated during this Phase II Investigation was containerized in 55-gallon (DOT-UN1A2) drums. The types of IDW that were generated during this Phase II Investigation included the following:

- soil cuttings generated from soil borings or the installation of groundwater sample points;
- purged groundwater;
- decontamination fluids; and
- used personal protective equipment

Following the completion of field activities, a composite sample was gathered with aliquots from each of the Parcel A18 Phase II IDW soil drums for waste characterization. Following this analysis, the waste soil was characterized as non-hazardous. A list of all results from the soil waste characterization procedure can be found in **Table 4**. IDW drums containing aqueous materials (including aqueous waste generated during the Parcel A18 Phase II Investigation) were characterized by preparing composite samples from randomly selected drums. The composite samples included aliquots from several individual drums that were chosen as a subset of the aqueous drums being staged on-site at the date of collection. Based on this analysis, the aqueous waste was characterized as non-hazardous. A list of all results from the aqueous waste characterization procedure can be found in **Table 5**.

The parcel-specific IDW drum log from this Phase II Investigation is included as **Appendix F**. All IDW procedures were carried out in accordance with methods referenced in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP.

4.0 ANALYTICAL RESULTS

4.1. SOIL CONDITIONS

This evaluation of soil conditions includes the sediment samples collected from A18-018-SD through A18-021-SD. Soil and sediment analytical results were screened against the soil PALs established in the property-wide QAPP (or other direct guidance from the agencies; i.e., TPH/Oil & Grease) to determine PAL exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the workday who is a full-time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected parameters in soil (and sediment) are summarized and compared to the PALs in **Table 6** (Organics) and **Table 7** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.1.1. Soil Conditions: Organic Compounds

As provided on **Table 6**, two VOCs (carbon disulfide and toluene) were identified above the laboratory's method detection limits (MDLs) in the soil samples collected from across the Site. Except for the four sediment samples collected from the stormwater pond areas, only samples which exhibited PID readings greater than 10 ppm were analyzed for VOCs. There were no VOCs detected above their respective PALs.

Table 6 provides a summary of SVOCs detected above the laboratory's MDLs in the soil samples collected from across the Site. The PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Composite Worker Soil Table. Therefore, any soil exceedances for PAHs would be based on the adjusted PALs rather than those presented in the QAPP. Benzo[a]pyrene was the only SVOC detected above the PAL, and exceeded its PAL (2.1 mg/kg) in two soil samples (A18-003-SB-5 and A18-016-SB-5) with a maximum detection of 2.9 mg/kg in A18-003-SB-5. The SVOC PAL exceedances are shown on **Figure 5**.

Shallow soil samples collected across the Site from the 0 to 1 foot bgs interval (including the four sediment samples) were analyzed for PCBs. **Table 6** provides a summary of PCBs detected above the laboratory's MDLs. There were no PCBs detected above their respective PALs.

Table 6 provides a summary of the TPH/Oil & Grease detections above the laboratory's MDLs in the soil samples collected from across the Site. There were no detections of TPH-GRO in any soil samples, and no PAL exceedances of TPH-DRO or TPH-GRO. There was only one PAL

exceedance of Oil & Grease, which was detected in sediment sample A18-020-SD-1 at a concentration of 7,650 mg/kg slightly above the PAL of 6,200 mg/kg. The Oil & Grease PAL exceedance location and result is provided on **Figure 6**. A18-020-SD is positioned along an active rail line, and the observed Oil & Grease exceedance may be the result of drainage from the rail. No physical evidence of NAPL was observed in any soil cores completed during this investigation.

4.1.2. Soil Conditions: Inorganic Constituents

Table 7 provides a summary of inorganic constituents detected above the laboratory's MDLs in the soil samples collected from across the Site. Four inorganic constituents (arsenic, manganese, thallium, and vanadium) were detected above their respective PALs. Arsenic was detected above the PAL of 3 mg/kg in 23 soil samples analyzed for this constituent with a maximum detection of 18.1 mg/kg in A18-001-SB-10. Manganese was detected above the PAL of 26,000 mg/kg in seven soil samples with a maximum detection of 73,600 mg/kg in A18-006-SB-9. Thallium was detected above the PAL of 12 mg/kg in five soil samples with a maximum detection of 28.7 mg/kg in A18-009-SB-1. Vanadium was detected above the PAL of 5,800 mg/kg in three soil samples with a maximum detection of 11,300 mg/kg in A18-009-SB-1. The inorganic PAL exceedance locations and results have been provided on **Figure 7**.

4.1.3. Soil Conditions: Results Summary

Table 6 and **Table 7** provide summaries of the detected organic compounds and inorganics in the soil samples submitted for laboratory analysis, while **Figure 5** through **Figure 7** present the soil sample results that exceeded the PALs. PAL exceedances in soil within Parcel A18 were limited to benzo[a]pyrene (two samples), Oil & Grease (one sample), arsenic (23 samples), manganese (seven samples), thallium (five samples), and vanadium (three samples). **Table 8** provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. VOCs, PCBs, and TPH-DRO/GRO were not detected above their respective PALs and are not considered to be significant soil contaminants in Parcel A18.

Lead, PCBs, and TPH/Oil & Grease are subject to special requirements as designated by the agencies: lead results above 10,000 mg/kg are subject to additional delineation (and possible excavation), PCB results above 50 mg/kg are subject to delineation and excavation, and TPH/Oil & Grease results above 6,200 mg/kg should be evaluated for the potential presence and mobility of NAPL in any future development planning:

- There were no locations where detections of lead exceeded 10,000 mg/kg, the designated threshold at which delineation would be required.
- There were no locations where detections of PCBs exceeded 50 mg/kg, the designated threshold at which delineation and excavation would be required.

• There were no PAL exceedances of TPH-DRO/GRO in any of the soil samples collected at the Site. One sediment sample (A18-020-SD-1) had a detected concentration of Oil & Grease at 7,650 mg/kg slightly above the PAL of 6,200 mg/kg. No other soil/sediment samples exceeded the Oil & Grease PAL. No physical evidence of NAPL was observed in any soil cores completed during this investigation. A18-020-SD is positioned along an active rail line, and the observed Oil & Grease exceedance may be the result of drainage from the rail. If redevelopment is proposed on this Site, additional characterization of sediments may be required to ensure proper management of excavated sediments.

4.2. GROUNDWATER CONDITIONS

The analytical results for the detected parameters in groundwater are summarized and compared to the PALs in **Table 9** (Organics) and **Table 10** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and the associated DVR have been included as electronic attachments. The DVR contains a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.2.1. Groundwater Conditions: Organic Compounds

Table 9 provides a summary of VOCs identified in groundwater samples above the laboratory's MDLs. Two VOCs (tetrachloroethene and trichloroethene) were identified above the PALs, with exceedances of both VOCs identified in three samples (A18-002-PZ, A18-015-PZ, and A18-017-PZ). The maximum concentrations of tetrachloroethene (57.5 μ g/L) and trichloroethene (394 μ g/L) were identified in A18-015-PZ and A18-002-PZ, respectively. The VOC PAL exceedances are shown on **Figure 8**. Each VOC exceedance is positioned in the southern portion of Parcel A18. Parcel A10 (to the south) is known to contain elevated groundwater concentrations of CVOCs. The elevated tetrachloroethene and trichloroethene concentrations identified in the Parcel A18 piezometers are believed to be associated with the same contaminant plumes, which may originate from sources off the Tradepoint Atlantic property. The CVOC impacts on Parcel A18 and Parcel A10 are being further addressed under separate cover.

Table 9 provides a summary of SVOCs identified in the groundwater samples above the laboratory's MDLs. Similar to the evaluation of soil data, the PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Resident Tapwater Table. Four SVOCs were identified above the PALs (benz[a]anthracene, benzo[b]fluoranthene, naphthalene, and pentachlorophenol). Benz[a]anthracene and benzo[b]fluoranthene had only one PAL exceedance each, both in A18-002-PZ, with concentrations of 0.081 μg/L and 0.29 μg/L, respectively. Pentachlorophenol had only one PAL exceedance at A18-016-PZ with a concentration of 5.3 μg/L. Naphthalene was the only SVOC with multiple PAL exceedances, and exceeded its PAL in two groundwater samples with concentrations of 0.14 μg/L at A18-002-PZ and 0.17 μg/L at A18-011-PZ. The SVOC PAL exceedances are shown on **Figure 8**.

Table 9 provides a summary of the TPH/Oil & Grease detections in groundwater at the Site. TPH-GRO and Oil & Grease exceeded the PAL in one groundwater sample each. TPH-GRO was detected at a concentration of 139 μg/L in A18-002-PZ, and Oil & Grease was detected at a concentration of 1,000 μg/L in A18-013-PZ. TPH-DRO exceeded its PAL in all nine groundwater samples, with a maximum detection of 285 μg/L in A18-008-PZ. The TPH/Oil & Grease PAL exceedances are shown on **Figure 8**. Each location was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sampling locations.

4.2.2. Groundwater Conditions: Inorganic Constituents

Table 10 provides a summary of inorganic constituents detected above the MDLs in the groundwater samples collected from across the Site. A total of five dissolved metals (hexavalent chromium, cobalt, manganese, thallium, and vanadium) were detected above their respective aqueous PALs. Cobalt, manganese, and vanadium each exhibited PAL exceedances at multiple sample locations. The maximum detections of each constituent in groundwater were 18.2 μg/L for hexavalent chromium (in A18-009-PZ), 190 μg/L for cobalt (in A18-017-PZ), 4,400 μg/L for manganese (in A18-017-PZ), 10 μg/L for thallium (in A18-009-PZ), and 829 μg/L for vanadium (in A18-009-PZ). The inorganic PAL exceedances are shown on **Figure 8**.

4.2.3. Groundwater Conditions: Results Summary

Table 9 and **Table 10** provide summaries of the detected organic compounds and inorganics in the groundwater samples submitted for laboratory analysis, and **Figure 8** presents the locations and aqueous results that exceeded the PALs. Aqueous PAL exceedances among the groundwater samples collected from Parcel A18 consisted of two VOCs (tetrachloroethene and trichloroethene), four SVOCs (benz[a]anthracene, benzo[b]fluoranthene, naphthalene, and pentachlorophenol), TPH-DRO, TPH-GRO, Oil & Grease, and five dissolved metals (hexavalent chromium, cobalt, manganese, thallium, and vanadium).

Groundwater data were screened to determine whether individual sample results may exceed the USEPA's Vapor Intrusion (VI) Screening Levels (Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the Vapor Intrusion Screening Level (VISL) Calculator (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls). The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site. Trichloroethene exceeded its individual VI TCR and THQ criteria (74 μ g/L and 22 μ g/L, respectively) at three sample locations (A18-002-PZ, A18-015-PZ, and A18-017-PZ), with a maximum concentration of 394 μ g/L at A18-002-PZ.

A cumulative VI risk assessment was performed for each individual sample location, with the results separated by cancer risk versus non-cancer hazard. All compounds with detections (and corresponding VISLs) were included in the computation of the cumulative cancer risk, and all

compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. The cumulative VI cancer risks exceeded 1E-5 at two locations (A18-002-PZ and A18-015-PZ) due primarily to the carcinogenic effect of trichloroethene. The identified concentrations of trichloroethene resulted in calculated Hazard Index (HI) values greater than 1 for multiple target organs at A18-002-PZ, A18-015-PZ, and A18-017-PZ. The results of the cumulative VI comparisons are provided in **Table 11**, with the exceedances highlighted.

The presence and absence of groundwater impacts within the Site boundaries have been adequately described. Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized). VI risks/hazards were evaluated and identified three locations which may be impacted by elevated CVOC concentrations. Each exceedance is positioned in the southern portion of Parcel A18. Parcel A10 (to the south) is known to contain elevated groundwater concentrations of CVOCs. The elevated tetrachloroethene and trichloroethene concentrations identified in the Parcel A18 piezometers are believed to be associated with the same contaminant plumes, which may originate from sources off the Tradepoint Atlantic property. The CVOC impacts on Parcel A18 and Parcel A10 are being further addressed under separate cover.

5.0 DATA USABILITY ASSESSMENT

The approved property-wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, metals, cyanide, or TPH/Oil & Grease) are present in Site media (soil/sediment and groundwater) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the USEPA RSLs) or based on other direct guidance from the agencies, to identify the presence of exceedances in each environmental medium.

Quality assurance and quality control (QA/QC) samples were collected during field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix G**. The following QA/QC samples were required by the QAPP to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples per day
 - o Soil/Sediment VOCs only
 - o Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
 - o Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, hexavalent chromium, and cyanide
 - o Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
 - Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, and hexavalent chromium
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, and hexavalent chromium
- Field Blank and Equipment Blank at a rate of one per twenty samples
 - Soil/Sediment VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide

The QA/QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.

5.1. DATA VERIFICATION

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field log books, field data sheets, and Chains of Custody to ensure that all planned samples were collected, and to ensure consistency with the field methods and decontamination procedures specified in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated at the beginning of each day and re-checked as needed. The logs have been provided in **Appendix D** (PID calibration log) and **Appendix E** (multiparameter meter calibration logs). Documentation of the multiparameter meter end of the day calibration check was not recorded for this parcel.

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 30% (minimum) of the environmental sample analyses performed by PACE and Alpha and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI). The DVRs provided by EDQI have been included as electronic attachments.

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved property-wide QAPP dated April 5, 2016 and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

The PACE-Greensburg (PA) laboratory facility implements quality assurance and reporting requirements through the TNI certification program with the State of Pennsylvania; which is accepted by Maryland. Since late-January 2017, these requirements include the flagging of contaminants with a "B" qualifier when an analyte is detected in an associated laboratory method blank, regardless of the level of the contaminant detected in the sample. A method blank is

analyzed at a rate of one blank for each 20 sample analytical batch. The USEPA has previously specified that results flagged with the "B" qualifier do not represent legitimate detections. They have also specified that results flagged with a "JB" qualifier are invalid, and any such results should be revised to display the "B" qualifier only.

Although elevated sample results may be "B" qualified by the laboratory as non-detects (due to low-level blank detections), EDQI corrects any erroneous "B" qualifiers during the data validation procedure to avoid under-reporting analytical detections. EDQI removes the "B" qualifiers for relevant samples according to the guidance given in the table below. Therefore, a result originally flagged with a "B" qualifier in the laboratory certificate may be reported as a legitimate detection without this qualifier. Likewise, a result originally flagged with a "JB" qualifier in the laboratory certificate may be reported as a "J" qualifier if the erroneous "B" qualifier can be eliminated, but would be reported as a "B" qualified non-detect result if the original "B" qualifier is legitimate.

Blank Result	Sample Result	Qualifying Action
Result less than RL	Result less than RL	Result is Qualified "B"
Result less than KL	Result greater than RL	Remove "B"
Degult greater than DI	Result less than Blank Result	Result is Qualified "B"
Result greater than RL	Result greater than Blank Result	Remove "B"

RL = Reporting Limit

As directed by EDQI, ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI), and applied the same validation corrections to any relevant "B" or "JB" qualified results. This review of the non-validated data ensures that any elevated detections of parameters, including those which may exceed the PALs, are not mistakenly reported as non-detect values simply because they did not undergo the formal validation procedure by EDQI. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.

5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential

limitations in the results have been indicated through final data flags. These flags indicate whether particular data points were quantitative estimates, biased high/low, associated with blank contamination, etc. Individual data flags are provided with the results in the detection summary tables. A qualifier code glossary is included with each DVR provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further data evaluation. The analytical soil/sediment and groundwater results that were rejected during data validation are provided in **Table 12**. A discussion of data completeness (the proportion of valid data) is included below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. Sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 003, 006, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that sample collection at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. No significant deviations from the QAPP were noted in the dataset.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general, the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.

Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement, but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix H**. This evaluation of completeness includes only the representative 30% (minimum) of sample results which were randomly selected for validation.

All groundwater compounds had an overall completeness ratio of 100%, with the exception of 3,3'-dichlorobenzidine which had an overall completeness of 66.7% due to one rejected sample in A18-014-PZ (out of a total of three validated groundwater results). The only soil/sediment

compound with an overall completeness ratio below 90% was 1,4-dioxane (0%). All six of the 1,4-dioxane soil/sediment results which underwent the validation procedure were rejected. The rejection of the results for 1,4-dioxane has not been uncommon for solid matrix data obtained from the Tradepoint Atlantic property. Groundwater data are available to evaluate the presence and significance of this compound in Parcel A18. Overall, the soil/sediment and groundwater data can be used as intended, and no significant data gaps were identified.

6.0 FINDINGS AND RECOMMENDATIONS

The objective of this Parcel A18 Phase II Investigation was to characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of 45 soil samples (from 17 boring locations and four shallow sediment locations) and nine groundwater samples were collected and analyzed. The sampling and analysis plan for the parcel was developed to target specific features that represented a potential release of hazardous substances and/or petroleum products to the environment, as well as providing general site coverage. Soil samples (including sediments) were analyzed for VOCs, SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Metals, hexavalent chromium, and cyanide. Shallow soil samples collected from 0 to 1 foot bgs (and sediments) were additionally analyzed for PCBs. Groundwater samples were analyzed for VOCs, SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Dissolved Metals, dissolved hexavalent chromium, and total cyanide.

6.1. SOIL

The concentrations of constituents in the soil (and sediment) have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PCB concentrations are below levels that would warrant delineation and evaluation of a removal remedy (50 mg/kg). Additionally, lead concentrations were below the mandatory delineation threshold (10,000 mg/kg). No further action is required with respect to PCBs or lead at the Site. There were no soil/sediment PAL exceedances identified for VOCs, PCBs, or TPH-DRO/GRO, indicating that these compounds are not significant contaminants in soil or sediment at the Site. No physical evidence of NAPL was observed in any soil cores completed during this investigation.

PAL exceedances in soil/sediment within Parcel A18 were limited to benzo[a]pyrene, Oil & Grease, arsenic, manganese, thallium, and vanadium. Benzo[a]pyrene was detected slightly above its PAL of 2.1 mg/kg in two samples with a maximum concentration of 2.9 mg/kg in A18-003-SB-5. Oil & Grease was detected slightly above the PAL of 6,200 mg/kg in one sediment sample (A18-020-SD-1) at a concentration of 7,650 mg/kg. A18-020-SD is positioned along an active rail line, and the observed Oil & Grease exceedance may be the result of drainage from the rail. Arsenic was the most common PAL exceedance in soil/sediment and was detected above its PAL of 3 mg/kg in 23 samples with a maximum concentration of 18.1 mg/kg in A18-001-SB-10. Manganese was detected above its PAL of 26,000 mg/kg in seven samples with a maximum concentration of 73,600 mg/kg in A18-006-SB-9. Thallium was detected above its PAL of 12 mg/kg in five samples with a maximum concentration of 28.7 mg/kg in A18-009-SB-1. Vanadium was detected above its PAL of 5,800 mg/kg in three samples with a maximum concentration of 11,300 mg/kg in A18-009-SB-1.

6.2. GROUNDWATER

The concentrations of constituents in the groundwater have also been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Exceedances of the PALs in groundwater within Parcel A18 consisted of two VOCs (tetrachloroethene and trichloroethene), four SVOCs (benz[a]anthracene, benzo[b]fluoranthene, naphthalene, and pentachlorophenol), TPH-DRO, TPH-GRO, Oil & Grease, and five dissolved metals (hexavalent chromium, cobalt, manganese, thallium, and vanadium). Tetrachloroethene and trichloroethene were both detected above their respective PALs in three piezometers (A18-002-PZ, A18-015-PZ, and A18-017-PZ) with maximum concentrations of 57.5 μg/L (A18-015-PZ) and 394 μg/L (A18-002-PZ), respectively. The VOC exceedances in groundwater are further discussed below. Benz[a]anthracene, benzo[b]fluoranthene, and pentachlorophenol had only one PAL exceedance each, at concentrations of 0.081 µg/L (A18-002-PZ), 0.29 µg/L (A18-002-PZ), and 5.3 µg/L (A18-016-PZ), respectively. Naphthalene was the only SVOC with multiple PAL exceedances (two), with a maximum concentration of 0.17 µg/L (A18-011-PZ). TPH-GRO and Oil & Grease exceeded the PAL in one groundwater sample each, at concentrations of 139 µg/L (A18-002-PZ) and 1,000 µg/L (A18-013-PZ), respectively. TPH-DRO exceeded its PAL in all nine groundwater samples collected at the Site, with a maximum concentration of 285 µg/L (A18-008-PZ). The maximum concentrations of hexavalent chromium, cobalt, manganese, thallium, and vanadium were 18.2 µg/L (A18-009-PZ), 190 µg/L (A18-017-PZ), 4,400 µg/L (A18-017-PZ), $10 \mu g/L$ (A18-009-PZ), and 829 $\mu g/L$ (A18-009-PZ), respectively.

Each temporary groundwater sample collection point was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected at any of the groundwater sampling locations. All temporary groundwater sample collection points remaining at the Site will be properly abandoned in accordance with COMAR 26.04.04.34 through 36. Each location will be gauged a final time on the abandonment date using the oil-water interface probe in accordance with MDE guidance.

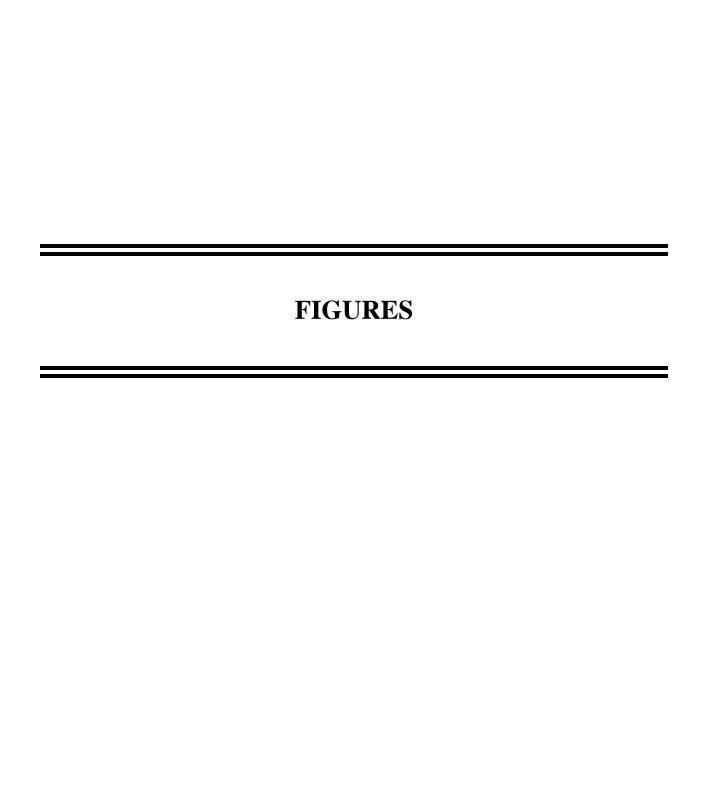
Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized); therefore, there is no potential for direct human exposure for a Composite Worker. In the event that future construction/excavation leads to a potential Construction Worker exposure to groundwater, health and safety plans should be implemented to limit exposure risk. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. Cumulative VI cancer risks exceeding 1E-5 were identified at A18-002-PZ and A18-015-PZ due primarily to the carcinogenic effect of trichloroethene. Cumulative VI non-cancer HI values exceeding 1 were identified for multiple target organs at A18-002-PZ, A18-015-PZ, and A18-017-PZ also due to trichloroethene. Further assessment or mitigation is recommended to address the potential VI risks/hazards at A18-002-PZ, A18-015-PZ, and A18-017-PZ if an enclosed structure

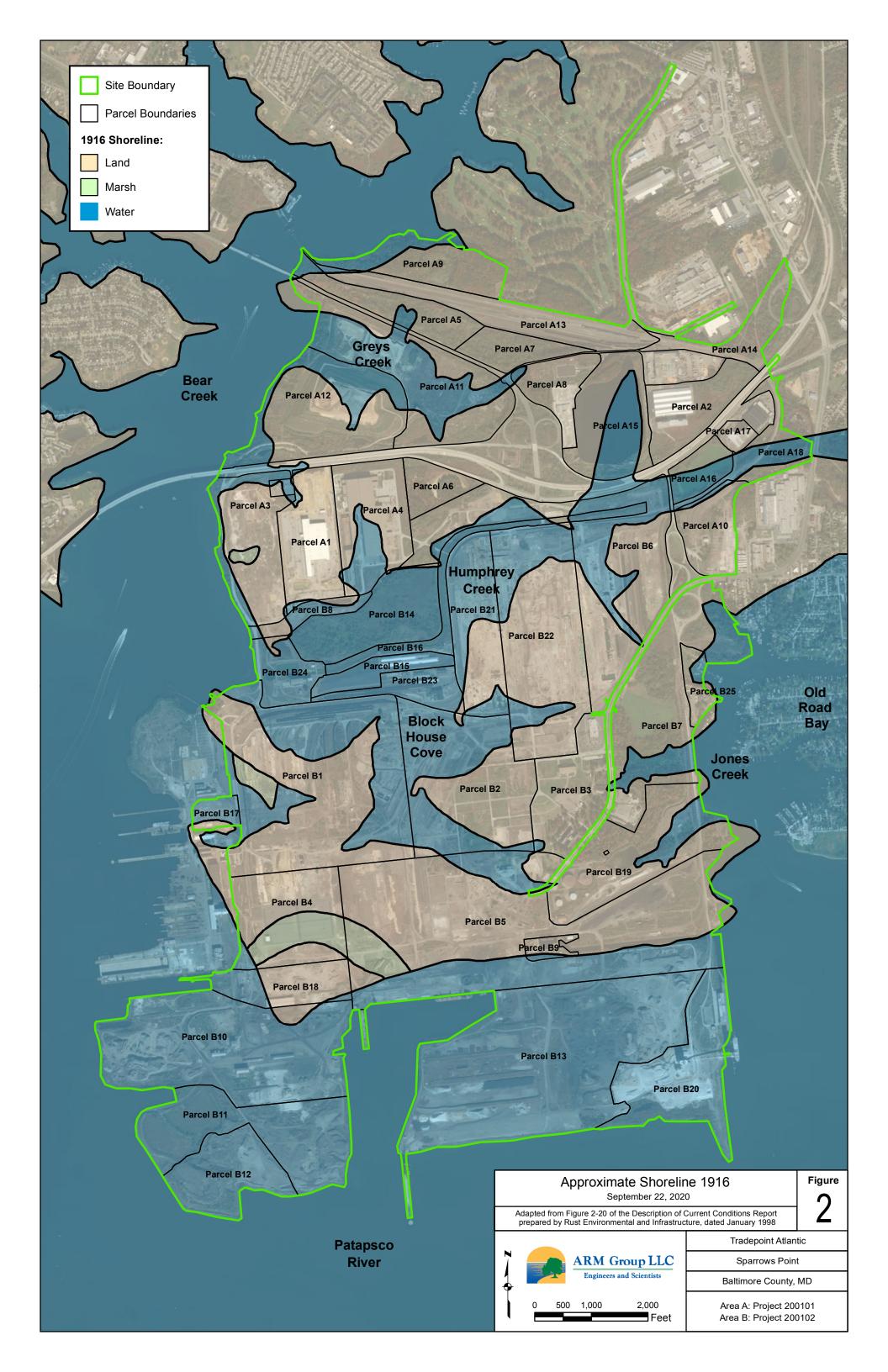
is proposed in the vicinity. The selection of appropriate response measures, based on the specific development plan for the parcel, should be addressed in a project-specific Response and Development Work Plan.

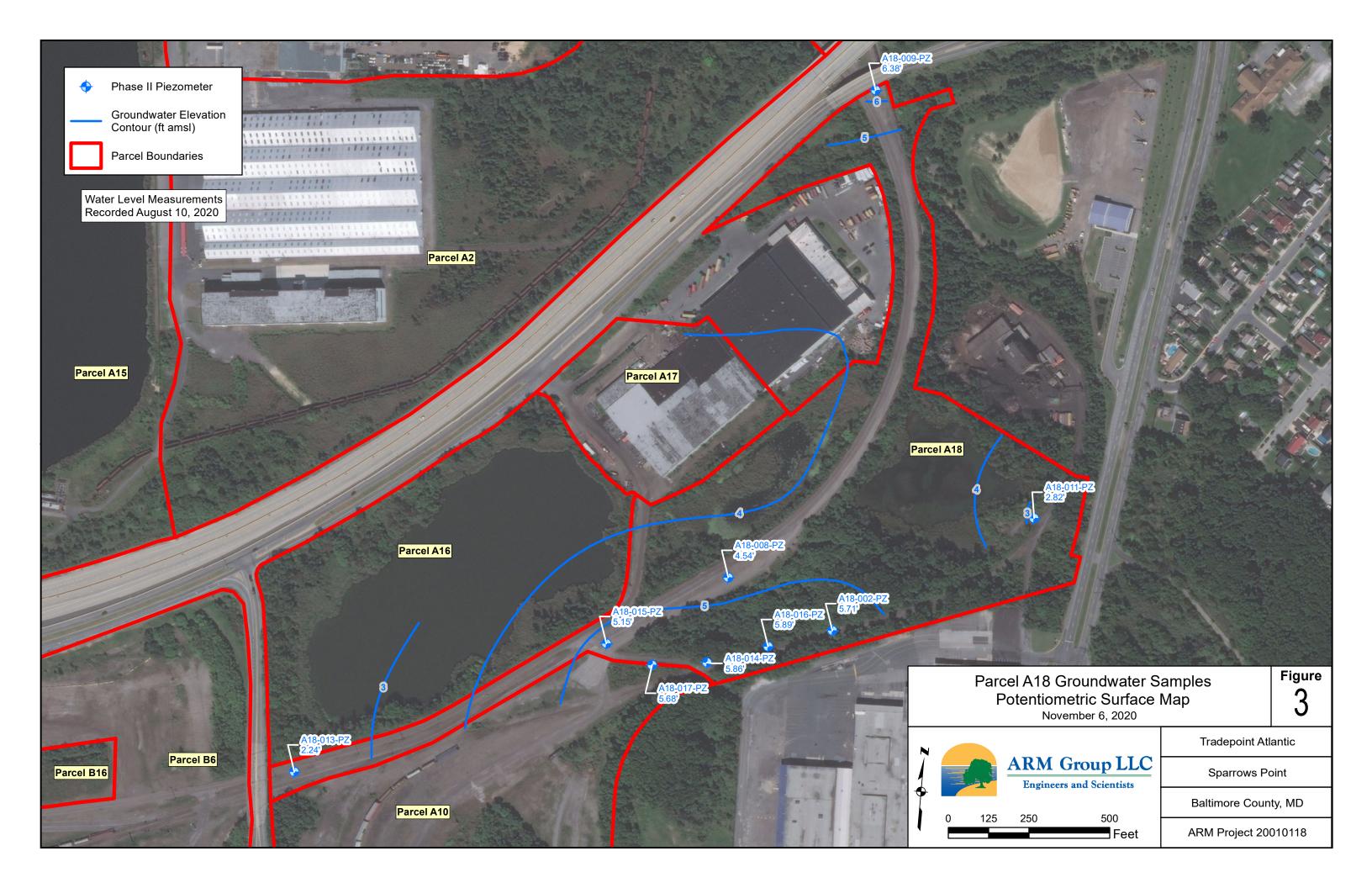
The PAL exceedances for VOCs (tetrachloroethene and trichloroethene) and the associated VI risks/hazards were identified at three piezometers positioned in the southern portion of Parcel A18. Parcel A10 (to the south) is known to contain elevated groundwater concentrations of CVOCs. The elevated tetrachloroethene and trichloroethene concentrations identified in the Parcel A18 piezometers are believed to be associated with the same contaminant plumes, which may originate from sources off the Tradepoint Atlantic property. The CVOC impacts on Parcel A18 and Parcel A10 are being further addressed under separate cover.

6.3. RECOMMENDATIONS

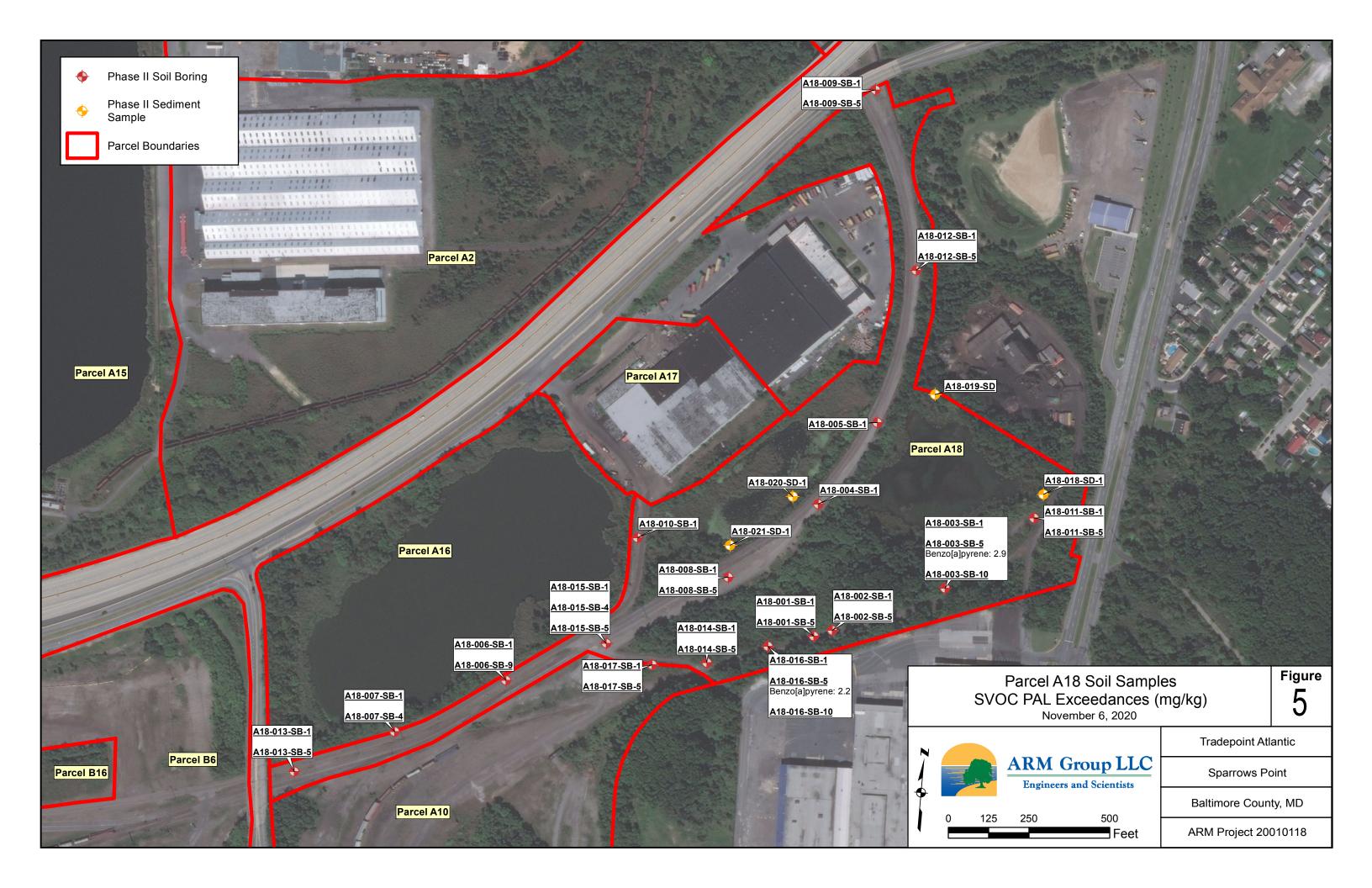
Sufficient remedial investigation data has been collected to evaluate the nature and extent of possible constituents of concern in Parcel A18. The presence and absence of soil and groundwater impacts within Parcel A18 have been adequately described and further site-wide investigation is not warranted to characterize overall conditions. Recommendations for the Site are as follows:

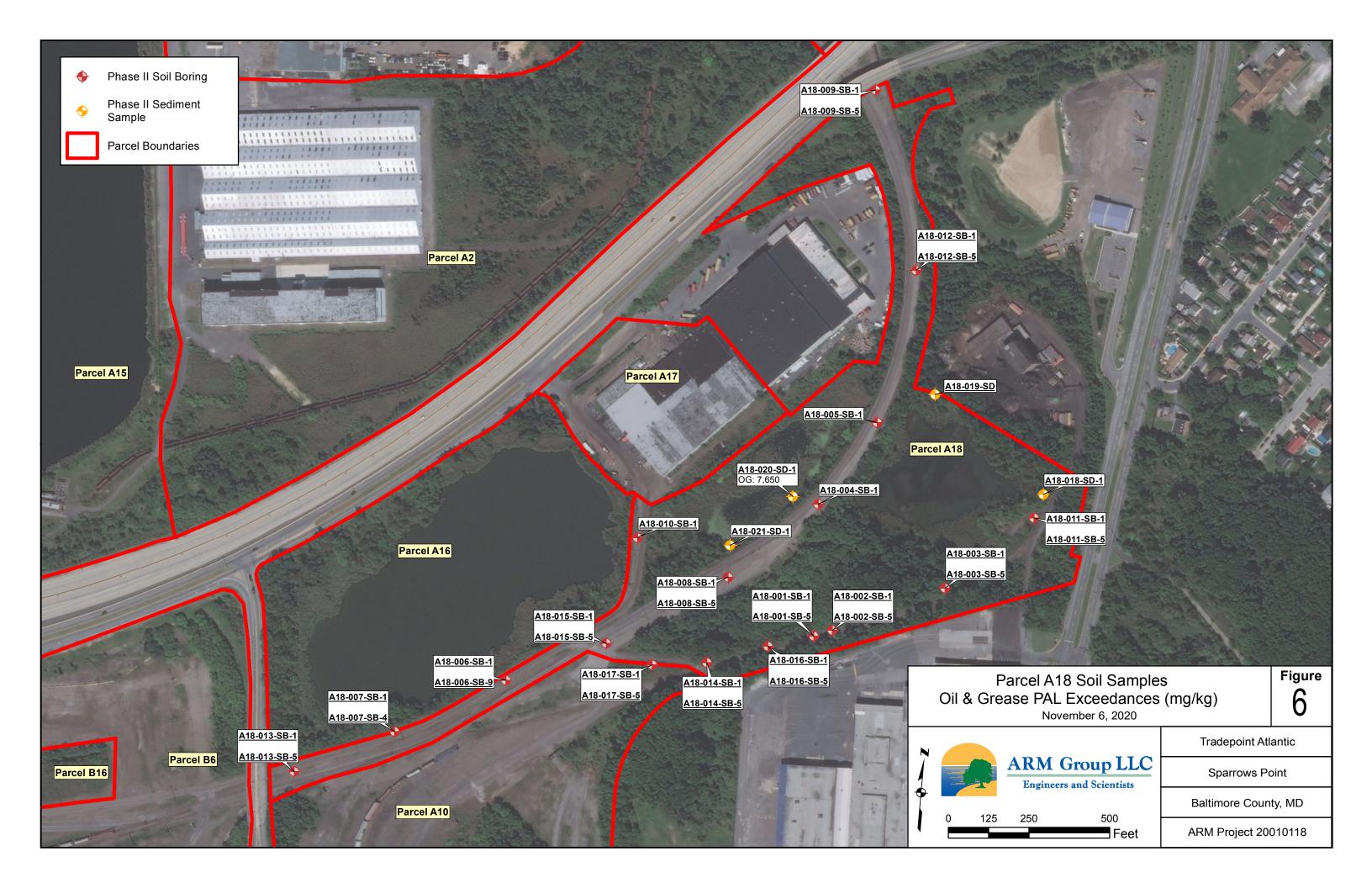

- The CVOC impacts (tetrachloroethene and trichloroethene) in groundwater on Parcel A18 are believed to be associated with the same contaminant plumes previously identified in Parcel A10. The identified contaminants may originate from sources off the Tradepoint Atlantic property. The CVOC impacts on Parcel A18 and Parcel A10 are being further addressed under separate cover.
- If an enclosed structure is proposed for construction in the vicinity of A18-002-PZ, A18-015-PZ, or A18-017-PZ, further assessment or mitigation is recommended to address the potential VI risks/hazards. The selection of appropriate response measures, based on the specific development plan for the parcel, should be addressed in a project-specific Response and Development Work Plan.
- Due to the absence of observed NAPL impacts in soil cores or piezometers, and the absence of elevated TPH/Oil & Grease analytical detections, there does not appear to be significant risk of petroleum impacts in soils on Parcel A18. One sediment sample (A18-020-SD-1) exceeded the Oil & Grease PAL with a detection of 7,650 mg/kg. A18-020-SD is positioned along an active rail line, and the observed Oil & Grease exceedance may be the result of drainage from the rail. If redevelopment is proposed on this Site, additional characterization of sediments may be required to ensure proper management of excavated sediments. If necessary, any response actions will be coordinated in the future with the MDE under a project-specific Response and Development Work Plan.

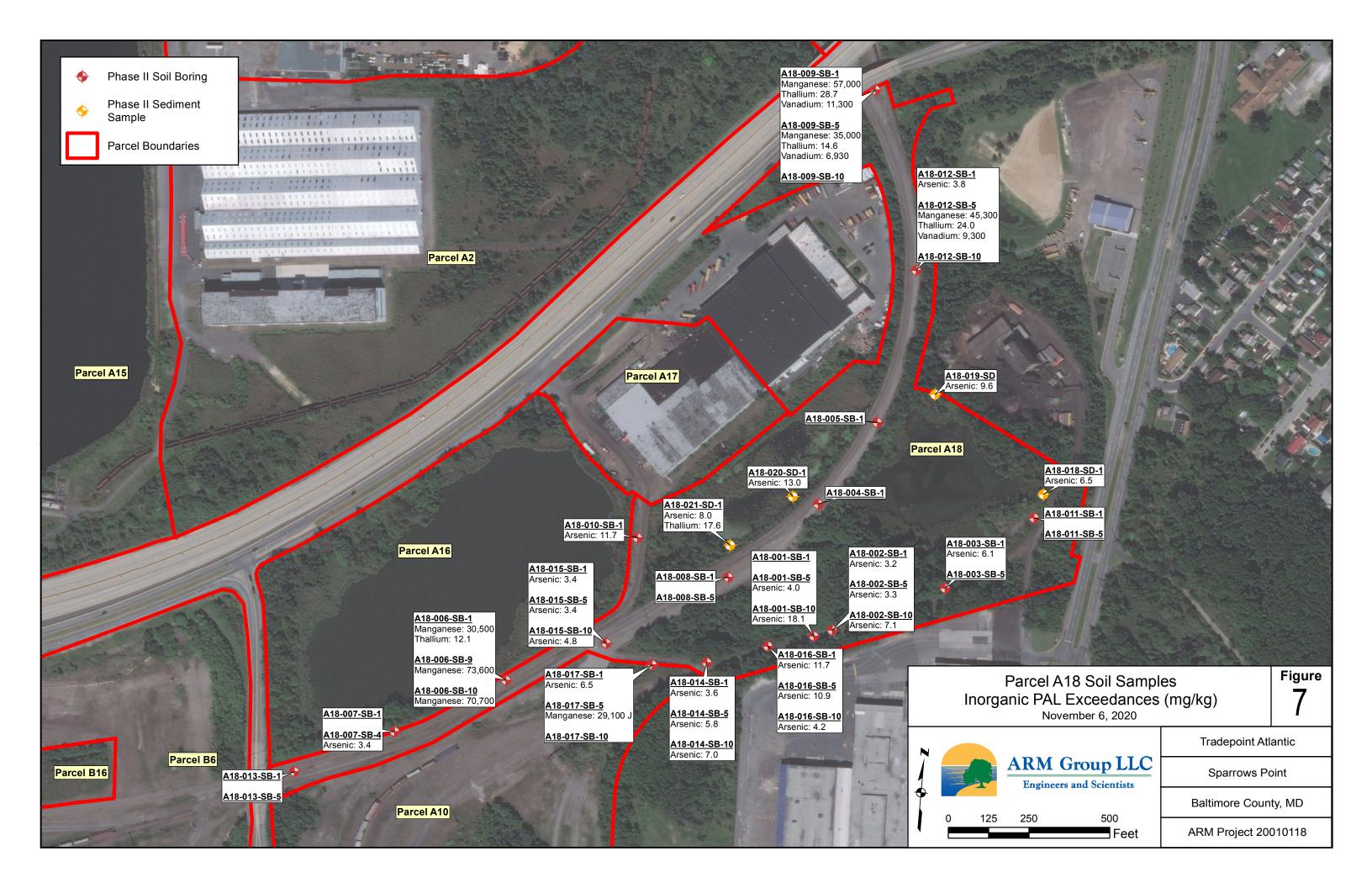

7.0 REFERENCES

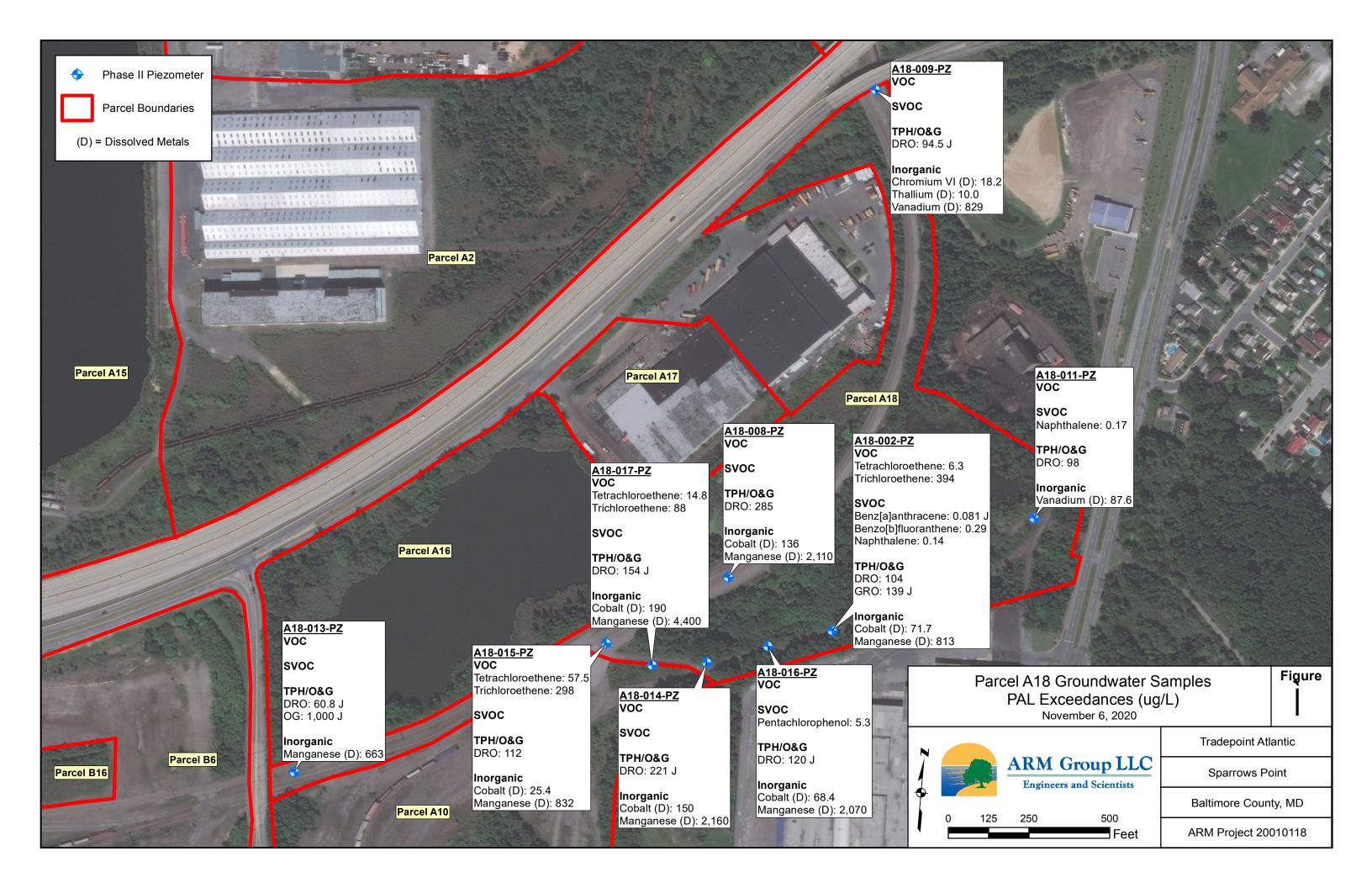

- ARM Group Inc. (2019). *Comment Response Letter: Phase II Investigation Work Plan Area A: Parcel A18.* Revision 0. December 26, 2019.
- ARM Group Inc. (2019). *Phase II Investigation Work Plan Area A: Parcel A18*. Revision 0. June 28, 2019.
- ARM Group Inc. (2016). *Quality Assurance Project Plan: Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group LLC (2020). Stormwater Pollution Prevention Plan (SWPPP). Revision 8. April 30, 2020.
- Rust Environment and Infrastructure (1998). *Description of Current Conditions: Bethlehem Steel Corporation*. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.











TABLES

Table 1 - Parcel A18 Groundwater Elevation Data

Location Name	TOC Elevation (feet AMSL)	Ground Elevation (feet AMSL)	Measured DTW (feet)	Groundwater Elevation (feet AMSL)
A18-002-PZ	17.97	14.88	12.26	5.71
A18-008-PZ	15.66	12.56	11.12	4.54
A18-009-PZ	24.10	21.46	17.72	6.38
A18-011-PZ	15.43	11.97	12.61	2.82
A18-013-PZ	13.65	10.87	11.41	2.24
A18-014-PZ	18.29	15.07	12.43	5.86
A18-015-PZ	17.57	14.26	12.42	5.15
A18-016-PZ	17.24	14.41	11.35	5.89
A18-017-PZ	17.43	14.37	11.75	5.68

DTW = Depth to water

TOC = Top of casing

AMSL = Above mean sea level

DTW measurements recorded August 10, 2020

Table 2 - Parcel A18 Historical Site Drawing Details

Set Name	Typical Features Shown	<u>Drawing</u> <u>Number</u>	Original Date Drawn	<u>Latest</u> <u>Revision Date</u>
Plant Arrangement	Roads, water bodies, building/structure footprints, electric lines, above-ground pipelines (e.g.: steam, nitrogen, etc.)	5052 5052A	6/30/1959 1/17/1966	3/11/1982 3/11/1982
Plant Index	Roads, water bodies, demolished buildings/structures, electric lines, above-ground pipelines	5152 5152A	Unknown Unknown	2/25/2008 2/27/2008
Plant Sewer Lines	Same as above plus trenches, sumps, underground piping (includes pipe materials)	5552 5552A	9/16/1959 2/22/1962	3/9/1976 12/15/1987

Table 3 - Parcel A18
Field Shifted Sample Locations

		Proposed	Location*	Final Lo	Reloc	ation_	
<u>Location ID</u>	Sample Target	Northing	<u>Easting</u>	Northing	<u>Easting</u>	Distance & Direct	
A18-004-SB	Parcel Coverage	572,909	1,465,519	572,907	1,465,511	9	W
A18-007-SB	Parcel Coverage	572,075	1,464,271	572,091	1,464,265	17	NW
A18-009-SB	Parcel Coverage	574,096	1,465,604	574,200	1,465,575	108	N
A18-014-SB	Parcel Coverage	572,379	1,465,208	572,388	1,465,209	9	N
A18-015-SB	Parcel Coverage	572,414	1,464,870	572,420	1,464,893	24	E
A18-016-SB	Parcel A10 CVOC Detections	572,449	1,465,398	572,455	1,465,393	7	NW
A18-017-SB	Parcel A10 CVOC Detections	572,386	1,465,041	572,366	1,465,040	20	S
A18-018-SD	Stormwater Pond Areas	572,932	1,465,625	572,998	1,466,203	581	Е
A18-019-SD	Stormwater Pond Areas	573,214	1,465,775	573,277	1,465,841	91	NE
A18-020-SD	Stormwater Pond Areas	573,067	1,465,516	572,924	1,465,430	168	SW
A18-021-SD	Stormwater Pond Areas	572,774	1,465,224	572,757	1,465,249	31	SE

^{*}Reported northings and eastings are not survey accurate. Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

Table 4 - Parcel A18 Characterization Results for Solid IDW

Sample ID	<u>Parameter</u>	Result (mg/L)	TCLP Limit (mg/L)	TCLP Exceedance	<u>Laboratory</u> <u>Flag</u>	LOQ (mg/L)
	1,1-Dichloroethene	0.05	0.7	no	U	0.05
	1,2-Dichloroethane	0.05	0.5	no	U	0.05
	1,4-Dichlorobenzene	0.5	7.5	no	U	0.5
	2,4,5-Trichlorophenol	5	400	no	U	5
	2,4,6-Trichlorophenol	0.1	2	no	U	0.1
	2,4-Dinitrotoluene	0.1	0.13	no	U	0.1
	2-Butanone (MEK)	0.1	200	no	U	0.1
	2-Methylphenol	2	200	no	U	2
	3&4-Methylphenol(m&p Cresol)	2	200	no	U	2
	Arsenic	0.025	5	no	U	0.025
	Barium	0.24	100	no		0.05
	Benzene	0.05	0.5	no	U	0.05
	Cadmium	0.015	1	no	U	0.015
A18 IDW	Carbon tetrachloride	0.05	0.5	no	U	0.05
5/19/2020	Chlorobenzene	0.05	100	no	U	0.05
	Chloroform	0.05	6	no	U	0.05
	Chromium	0.0023	5	no	J	0.025
	Hexachlorobenzene	0.1	0.13	no	U	0.1
	Hexachloroethane	0.2	3	no	U	0.2
	Lead	0.05	5	no	U	0.05
	Mercury	0.001	0.2	no	U	0.001
	Nitrobenzene	0.1	2	no	U	0.1
	Pentachlorophenol	5	100	no	U	5
	Selenium	0.04	1	no	U	0.04
	Silver	0.03	5	no	U	0.03
	Tetrachloroethene	0.05	0.7	no	U	0.05
	Trichloroethene	0.05	0.5	no	U	0.05
	Vinyl chloride	0.05	0.2	no	U	0.05

J: The positive result for this analyte is a quantitative estimate below the laboratory LOQ.

LOQ: Limit of Quantitation

U: The analyte was not detected in the sample. This numeric value represents the sample LOQ.

TCLP: Toxicity Characteristic Leaching Procedure

Table 5 - Parcel A18 Characterization Results for Liquid IDW

Sample ID	<u>Parameter</u>	Result (mg/L)	TCLP Limit (mg/L)	TCLP Exceedance	<u>Laboratory</u> <u>Flag</u>	LOQ (mg/L)
	1,1-Dichloroethene	0.001	0.7	no	U	0.001
	1,2-Dichloroethane	0.001	0.5	no	U	0.001
	1,4-Dichlorobenzene	0.001	7.5	no	U	0.001
	2,4,5-Trichlorophenol	0.0025	400	no	U	0.0025
	2,4,6-Trichlorophenol	0.00099	2	no	U	0.00099
	2,4-Dinitrotoluene	0.00099	0.13	no	U	0.00099
	2-Butanone (MEK)	0.01	200	no	U	0.01
	2-Methylphenol	0.00099	200	no	U	0.00099
	3&4-Methylphenol(m&p Cresol)	0.002	200	no	U	0.002
	Arsenic	0.005	5	no	U	0.005
	Barium	0.0623	100	no		0.01
	Benzene	0.0063	0.5	no		0.001
Water	Cadmium	0.0061	1	no		0.003
IDW	Carbon tetrachloride	0.001	0.5	no	U	0.001
5/19/20	Chlorobenzene	0.001	100	no	U	0.001
3/19/20	Chloroform	0.001	6	no	U	0.001
	Chromium	0.0023	5	no	J	0.005
	Hexachlorobenzene	0.00099	0.13	no	U	0.00099
	Hexachloroethane	0.00099	3	no	U	0.00099
	Lead	0.005	5	no	U	0.005
	Mercury	0.0002	0.2	no	U	0.0002
	Nitrobenzene	0.00099	2	no	U	0.00099
	Pentachlorophenol	0.0025	100	no	U	0.0025
	Selenium	0.008	1	no	U	0.008
	Silver	0.006	5	no	U	0.006
	Tetrachloroethene	0.001	0.7	no	U	0.001
	Trichloroethene	0.00092	0.5	no	J	0.001
	Vinyl chloride	0.001	0.2	no	U	0.001

Table 5 - Parcel A18 Characterization Results for Liquid IDW

Sample ID	<u>Parameter</u>	Result (mg/L)	TCLP Limit (mg/L)	TCLP Exceedance	<u>Laboratory</u> <u>Flag</u>	LOQ (mg/L)
	1,1-Dichloroethene	0.005	0.7	no	U	0.005
	1,2-Dichloroethane	0.005	0.5	no	U	0.005
	1,4-Dichlorobenzene	0.005	7.5	no	U	0.005
	2,4,5-Trichlorophenol	0.001	400	no	U	0.001
	2,4,6-Trichlorophenol	0.001	2	no	U	0.001
	2,4-Dinitrotoluene	0.001	0.13	no	U	0.001
	2-Butanone (MEK)	0.025	200	no	U	0.025
	2-Methylphenol	0.001	200	no	U	0.001
	4-Methylphenol(p Cresol)	0.001	200	no	U	0.001
	Arsenic	0.005	5	no	U	0.005
	Benzene	0.001	0.5	no	U	0.001
	Cadmium	0.038	1	no		0.005
Liquid	Carbon tetrachloride	0.005	0.5	no	U	0.005
IDW	Chlorobenzene	0.005	100	no	U	0.005
10/8/20	Chloroform	0.005	6	no	U	0.005
	Chromium	0.005	5	no	U	0.005
	Hexachlorobenzene	0.001	0.13	no	U	0.001
	Hexachloroethane	0.001	3	no	U	0.001
	Lead	0.005	5	no	U	0.005
	Mercury	0.001	0.2	no	U	0.001
	Nitrobenzene	0.001	2	no	U	0.001
	Pentachlorophenol	0.005	100	no	U	0.005
	Selenium	0.005	1	no	U	0.005
	Silver	0.005	5	no	U	0.005
	Tetrachloroethene	0.005	0.7	no	U	0.005
	Trichloroethene	0.005	0.5	no	U	0.005
	Vinyl chloride	0.001	0.2	no	U	0.001

J: The positive result reported for this analyte is a quantitative estimate below the laboratory LOQ.

LOQ: Limit of Quantitation

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

TCLP: Toxicity Characteristic Leaching Procedure

Table 6 - Parcel A18 Summary of Organics Detected in Soil

_			A18-001-SB-1*	A18-001-SB-5*	A18-002-SB-1*	A18-002-SB-5*	A18-003-SB-1*	A18-003-SB-5*	A18-003-SB-10*	A18-004-SB-1	A18-005-SB-1*	A18-006-SB-1
Parameter	Units	PAL	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	4/28/2020	4/29/2020	4/28/2020
Volatile Organic Compounds	<u> </u>											
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A						
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A						
Semi-Volatile Organic Compounds^	<u> </u>	<u> </u>										
1,1-Biphenyl	mg/kg	200	0.05 J	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.07 U	0.68 U
2,4-Dimethylphenol	mg/kg	16,000	0.023 J	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 UJ	0.07 U	0.68 R
2,4-Dinitrotoluene	mg/kg	7.4	0.1 U	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.07 U	0.68 U
2-Chloronaphthalene	mg/kg	60,000	0.1 U	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.07 U	0.68 U
2-Methylnaphthalene	mg/kg	3,000	0.26	0.03	0.15	0.03 J	0.042	0.3	N/A	0.09	0.026	0.07
2-Methylphenol	mg/kg	41,000	0.026 J	0.11 U	0.083 U	0.099 U	0.18 J	0.12 U	N/A	0.069 UJ	0.07 U	0.68 R
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.05 J	0.21 U	0.17 U	0.2 U	0.42 J	0.24 U	N/A	0.14 UJ	0.14 U	1.4 R
Acenaphthene	mg/kg	45,000	0.011 U	0.016 U	0.0087 J	0.031 U	0.016 U	0.031	N/A	0.013	0.003 J	0.0074
Acenaphthylene	mg/kg	45,000	0.057	0.0038 J	0.32	0.008 J	0.016 U	1.3	N/A	0.025	0.011	0.0026 J
Acetophenone	mg/kg	120,000	0.051 J	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.07 U	0.68 U
Anthracene	mg/kg	230,000	0.062	0.0096 J	0.39	0.016 J	0.003 J	0.88	N/A	0.06	0.018	0.02
Benz[a]anthracene	mg/kg	21	0.27	0.036	1.2	0.068	0.012 J	3.6	N/A	0.12	0.057	0.075
Benzaldehyde	mg/kg	120,000	0.068 J	0.11 U	0.083 U	0.099 U	0.21 J	0.12 U	N/A	0.069 U	0.07 U	0.68 U
Benzo[a]pyrene	mg/kg	2.1	0.2	0.017	1	0.012 J	0.0071 J	2.9	0.0091 U	0.1	0.057	0.082
Benzo[b]fluoranthene	mg/kg	21	0.34	0.027	1.8	0.017 J	0.01 J	4.9	N/A	0.22	0.087	0.13
Benzo[g,h,i]perylene	mg/kg		0.15	0.012 J	0.66	0.01 J	0.0066 J	2.1	N/A	0.1	0.036	0.073
Benzo[k]fluoranthene	mg/kg	210	0.1	0.0067 J	0.53	0.0035 J	0.0032 J	0.96	N/A	0.059	0.027	0.038
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.038 J	0.045 J	0.025 J	0.038 J	0.78 U	0.029 J	N/A	0.06 B	0.037 J	0.68 U
Caprolactam	mg/kg	400,000	0.059 J	0.27 U	0.21 U	0.25 U	0.33 J	0.3 U	N/A	0.17 U	0.18 U	1.7 U
Carbazole	mg/kg		0.072 J	0.033 J	0.031 J	0.099 U	0.19 J	0.12 U	N/A	0.027 J	0.07 U	0.68 U
Chrysene	mg/kg	2,100	0.21	0.037	0.98	0.024 J	0.011 J	2.2	N/A	0.14	0.068	0.095
Dibenz[a,h]anthracene	mg/kg	2.1	0.045	0.0048 J	0.2	0.0038 J	0.0021 J	0.65	N/A	0.028	0.0096	0.019
Diethylphthalate	mg/kg	660,000	0.1 U	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.018 J	0.68 U
Di-n-butylphthalate	mg/kg	82,000	0.13	0.15	0.093	0.15	0.78 U	0.13	N/A	0.12	0.15	0.68 U
Fluoranthene	mg/kg	30,000	0.2	0.026	0.6	0.017 J	0.0084 J	2.2	N/A	0.2	0.087	0.2
Fluorene	mg/kg	30,000	0.011 U	0.002 J	0.012 U	0.031 U	0.016 U	0.08	N/A	0.0098	0.0028 J	0.002 J
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.16	0.011 J	0.79	0.0068 J	0.006 J	2.3	N/A	0.11	0.04	0.082
Naphthalene	mg/kg	8.6	0.21	0.017	0.12	0.015 J	0.029	0.32	N/A	0.074	0.021	0.45
N-Nitrosodiphenylamine	mg/kg	470	0.1 U	0.11 U	0.083 U	0.099 U	0.78 U	0.12 U	N/A	0.069 U	0.07 U	0.68 U
Phenanthrene	mg/kg		0.25	0.061	0.22	0.07	0.027	0.82	N/A	0.15	0.068	0.23
Phenol	mg/kg	250,000	0.035 J	0.11 U	0.083 U	0.099 U	0.25 J	0.12 U	N/A	0.069 UJ	0.07 U	0.68 R
Pyrene	mg/kg	23,000	0.19	0.025	0.71	0.019 J	0.0088 J	2.4	N/A	0.19	0.081	0.14
PCBs												
Aroclor 1248	mg/kg	0.94	0.12 U	N/A	0.11 U	N/A	0.19 U	N/A	N/A	0.085 U	0.018 U	0.17 U
Aroclor 1254	mg/kg	0.97	0.12 U	N/A	0.11 U	N/A	0.19 U	N/A	N/A	0.085 U	0.018 U	0.17 U
Aroclor 1268	mg/kg		0.12 U	N/A	0.11 U	N/A	0.19 U	N/A	N/A	0.079 J	0.038	0.17 U
PCBs (total)	mg/kg	0.97	1.1 U	N/A	0.95 U	N/A	1.8 U	N/A	N/A	0.77 U	0.16 U	1.6 U
TPH/Oil & Grease	5 5											
Diesel Range Organics	mg/kg	6,200	328	34.2	63.9	26.9	528	21.5	N/A	34.2	26	243
Oil & Grease	mg/kg	6,200	61.8 J	159 J	128 U	68 J	108 J	176 J	N/A	210	128	1,200

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

^{*}indicates non-validated data

[^]PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analyte in the sample.

Table 6 - Parcel A18 Summary of Organics Detected in Soil

D	TT '	DAI	A18-006-SB-9	A18-007-SB-1	A18-007-SB-4	A18-008-SB-1	A18-008-SB-5	A18-009-SB-1*	A18-009-SB-5*	A18-010-SB-1*	A18-011-SB-1*
Parameter	Units	PAL	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020	4/29/2020	4/29/2020	5/1/2020	5/1/2020
Volatile Organic Compounds											
Carbon disulfide	mg/kg	3,500	0.0055 UJ	0.0063 U	0.0025 J	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	0.0055 UJ	0.0063 U	0.0062 U	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds^	<u> </u>	,									
1,1-Biphenyl	mg/kg	200	0.069 U	0.032 J	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.038 J	0.08 U
2,4-Dimethylphenol	mg/kg	16,000	0.069 R	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
2,4-Dinitrotoluene	mg/kg	7.4	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
2-Chloronaphthalene	mg/kg	60,000	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
2-Methylnaphthalene	mg/kg	3,000	0.0023 J	0.028	0.0092 U	0.0049 J	0.008 U	0.013	0.0082 U	0.064	0.004 J
2-Methylphenol	mg/kg	41,000	0.069 R	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 R	0.14 U	0.14 U	0.15 U	0.16 U	0.14 U	0.15 U	0.14 U	0.16 U
Acenaphthene	mg/kg	45,000	0.0079 U	0.013	0.0019 J	0.0085 U	0.008 U	0.0078	0.0082 U	0.0075 J	0.0081 U
Acenaphthylene	mg/kg	45,000	0.0079 U	0.0033 J	0.0092 U	0.0059 J	0.002 J	0.054	0.0082 U	0.0037 J	0.0024 J
Acetophenone	mg/kg	120,000	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
Anthracene	mg/kg	230,000	0.00083 J	0.011	0.0012 J	0.0058 J	0.002 J	0.074	0.00095 J	0.026	0.0016 J
Benz[a]anthracene	mg/kg	21	0.0042 J	0.066	0.014	0.013	0.0055 J	0.19	0.0045 J	0.091	0.01
Benzaldehyde	mg/kg	120,000	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
Benzo[a]pyrene	mg/kg	2.1	0.0039 J	0.1	0.046	0.017	0.0054 J	0.19	0.0047 J	0.091	0.0077 J
Benzo[b]fluoranthene	mg/kg	21	0.0068 J	0.14	0.052	0.031	0.007 J	0.3	0.0061 J	0.12	0.012
Benzo[g,h,i]perylene	mg/kg		0.0035 J	0.09	0.054	0.015	0.0038 J	0.072	0.0032 J	0.068	0.0064 J
Benzo[k]fluoranthene	mg/kg	210	0.0021 J	0.036	0.015	0.0072 J	0.0021 J	0.12	0.0021 J	0.04	0.0045 J
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.015 B	0.034 B	0.024 B	0.041 B	0.033 B	0.03 J	0.02 J	0.024 Ј	0.08 U
Caprolactam	mg/kg	400,000	0.17 U	0.17 U	0.18 U	0.19 U	0.2 U	0.027 J	0.19 U	0.18 U	0.2 U
Carbazole	mg/kg	·	0.069 U	0.023 J	0.071 U	0.038 J	0.079 U	0.07 U	0.077 U	0.045 J	0.08 U
Chrysene	mg/kg	2,100	0.0043 J	0.068	0.014	0.015	0.0041 J	0.17	0.0042 J	0.091	0.007 J
Dibenz[a,h]anthracene	mg/kg	2.1	0.0012 J	0.025	0.013	0.004 J	0.001 J	0.021	0.00087 J	0.018	0.0017 J
Diethylphthalate	mg/kg	660,000	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.018 J	0.077 U	0.071 U	0.08 U
Di-n-butylphthalate	mg/kg	82,000	0.07 B	0.14	0.12	0.14	0.16	0.14	0.1 B	0.056 B	0.05 B
Fluoranthene	mg/kg	30,000	0.0072 J	0.086	0.012	0.022	0.0093	0.32	0.0074 J	0.17	0.011
Fluorene	mg/kg	30,000	0.0079 U	0.0022 J	0.0092 U	0.0085 U	0.0011 J	0.0083	0.0082 U	0.0031 J	0.0081 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0042 J	0.1	0.057	0.017	0.0045 J	0.092	0.0037 J	0.076	0.0069 J
Naphthalene	mg/kg	8.6	0.0041 J	0.15	0.0037 J	0.014	0.0076 J	0.014	0.0028 J	0.33	0.011
N-Nitrosodiphenylamine	mg/kg	470	0.069 U	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
Phenanthrene	mg/kg		0.0057 J	0.069	0.0064 J	0.015	0.0078 J	0.15	0.0043 J	0.25	0.0072 J
Phenol	mg/kg	250,000	0.069 R	0.069 U	0.071 U	0.076 U	0.079 U	0.07 U	0.077 U	0.071 U	0.08 U
Pyrene	mg/kg	23,000	0.0051 J	0.083	0.011	0.02	0.0066 J	0.28	0.0056 J	0.12	0.008 J
PCBs											
Aroclor 1248	mg/kg	0.94	N/A	0.053 J	N/A	0.094 U	N/A	0.018 U	N/A	0.089 U	0.02 U
Aroclor 1254	mg/kg	0.97	N/A	0.088 U	N/A	0.094 U	N/A	0.018 U	N/A	0.089 U	0.02 U
Aroclor 1268	mg/kg		N/A	0.088 U	N/A	0.094 U	N/A	0.019	N/A	0.089 U	0.02 U
PCBs (total)	mg/kg	0.97	N/A	0.79 U	N/A	0.84 U	N/A	0.16 U	N/A	0.8 U	0.18 U
TPH/Oil & Grease											
Diesel Range Organics	mg/kg	6,200	14.3	37.7	17.7	14.7 J	8.9	13.4	12.3	55.2	10.9
Oil & Grease	mg/kg	6,200	52.3 J	140	183	145	95.7 J	109 U	119 U	119	90.9 J

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

^{*}indicates non-validated data

[^]PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analyte in the sample.

Table 6 - Parcel A18 Summary of Organics Detected in Soil

			A18-011-SB-5*	A18-012-SB-1*	A18-012-SB-5*	A18-013-SB-1	A18-013-SB-5	A18-014-SB-1	A18-014-SB-5	A18-015-SB-1	A18-015-SB-4
Parameter	Units	PAL	5/1/2020	4/29/2020	4/29/2020	4/28/2020	4/28/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020
Volatile Organic Compounds											
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compounds^		.,,,,,,,,	1,111	1,111	1 1/1 1	1771	11/11	1,711	1111	11/11	1,711
1,1-Biphenyl	mg/kg	200	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
2,4-Dimethylphenol	mg/kg	16,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 UJ	0.71 U	0.077 U	0.08 U	0.071 U
2,4-Dinitrotoluene	mg/kg	7.4	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
2-Chloronaphthalene	mg/kg	60,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
2-Methylnaphthalene	mg/kg	3,000	0.0093	0.019	0.0072 U	0.068	0.0048 J	0.017	0.0072 U	0.025	0.017
2-Methylphenol	mg/kg	41,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 UJ	0.71 U	0.077 U	0.08 U	0.071 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.17 U	1.5 U	0.14 U	1.4 U	0.17 UJ	1.4 U	0.15 U	0.16 U	0.14 U
Acenaphthene	mg/kg	45,000	0.0085 U	0.0069 J	0.0072 U	0.021	0.0087 U	0.0024 J	0.0072 U	0.0024 J	0.0045 J
Acenaphthylene	mg/kg	45,000	0.0033 J	0.013	0.0072 U	0.14	0.0012 J	0.088	0.0072 U	0.02	0.045
Acetophenone	mg/kg	120,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
Anthracene	mg/kg	230,000	0.0045 J	0.031	0.0032 J	0.12	0.0026 J	0.066	0.0072 U	0.024	0.074
Benz[a]anthracene	mg/kg	21	0.013	0.11	0.018	0.77	0.024	0.32	0.0072 U	0.088	0.42
Benzaldehyde	mg/kg	120,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
Benzo[a]pyrene	mg/kg	2.1	0.0085	0.11	0.015	0.78	0.031	0.33	0.00093 B	0.068	0.31
Benzo[b]fluoranthene	mg/kg	21	0.012	0.17	0.02	1	0.049	0.56	0.00079 B	0.11	0.45
Benzo[g,h,i]perylene	mg/kg		0.006 J	0.072	0.01	0.55	0.026	0.18	0.014	0.05	0.11
Benzo[k]fluoranthene	mg/kg	210	0.0038 J	0.059	0.006 J	0.32	0.014	0.19	0.0072 U	0.036	0.17
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.083 U	0.73 U	0.028 J	0.71 U	0.019 B	0.71 U	0.077 U	0.08 U	0.071 U
Caprolactam	mg/kg	400,000	0.21 U	1.8 U	0.18 U	1.8 U	0.21 U	1.8 U	0.19 U	0.029 B	0.18 U
Carbazole	mg/kg		0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.022 J
Chrysene	mg/kg	2,100	0.0081 J	0.11	0.016	0.68	0.024	0.21	0.00064 B	0.06	0.31
Dibenz[a,h]anthracene	mg/kg	2.1	0.0018 J	0.02	0.0031 J	0.16	0.0084 J	0.037	0.00097 J	0.0081	0.036
Diethylphthalate	mg/kg	660,000	0.083 U	0.73 U	0.015 J	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
Di-n-butylphthalate	mg/kg	82,000	0.057 B	0.73 U	0.13	0.71 U	0.099	0.71 U	0.022 B	0.049 B	0.043 B
Fluoranthene	mg/kg	30,000	0.012	0.19	0.029	0.96	0.025	0.15	0.0072 U	0.08	0.54
Fluorene	mg/kg	30,000	0.0085 U	0.0056 J	0.0072 U	0.013	0.0014 J	0.0079 U	0.0012 J	0.0026 J	0.017
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0069 J	0.078	0.012	0.67	0.032	0.19	0.0077	0.045	0.16
Naphthalene	mg/kg	8.6	0.022	0.018	0.0026 J	0.52	0.0057 J	0.021	0.0072 U	0.023	0.038
N-Nitrosodiphenylamine	mg/kg	470	0.083 U	0.73 U	0.07 U	0.71 U	0.083 U	0.71 U	0.077 U	0.08 U	0.071 U
Phenanthrene	mg/kg		0.012	0.098	0.016	0.55	0.011	0.043	0.0072 U	0.038	0.25
Phenol	mg/kg	250,000	0.083 U	0.73 U	0.07 U	0.71 U	0.083 UJ	0.71 U	0.077 U	0.08 U	0.071 U
Pyrene	mg/kg	23,000	0.0091	0.19	0.023	0.81	0.02	0.19	0.0072 U	0.076	0.41
PCBs											
Aroclor 1248	mg/kg	0.94	N/A	0.092 U	N/A	0.088 U	N/A	0.18 U	N/A	0.02 U	N/A
Aroclor 1254	mg/kg	0.97	N/A	0.086 J	N/A	0.088 U	N/A	0.18 U	N/A	0.02 U	N/A
Aroclor 1268	mg/kg		N/A	0.19	N/A	0.088 U	N/A	0.18 U	N/A	0.02 U	N/A
PCBs (total)	mg/kg	0.97	N/A	0.28 J	N/A	0.8 U	N/A	1.6 U	N/A	0.18 U	N/A
TPH/Oil & Grease											
Diesel Range Organics	mg/kg	6,200	12	53.4	15.1	50.9	10.8	56.7 J	4.8 B	8 J	17.6 J
Oil & Grease	mg/kg	6,200	88.9 J	367	54.1 J	257	139	844	82.7 J	108 J	158

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

^{*}indicates non-validated data

[^]PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analyte in the sample.

Table 6 - Parcel A18 Summary of Organics Detected in Soil

	***	D.1.1	A18-016-SB-1	A18-016-SB-5	A18-016-SB-10	A18-017-SB-1	A18-017-SB-5	A18-018-SD-1	A18-019-SD*	A18-020-SD-1	A18-021-SD-1
Parameter	Units	PAL	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/13/2020	5/7/2020	5/13/2020	5/13/2020
Volatile Organic Compounds											
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	0.043 U	0.026 U	0.048 U	0.066 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	0.043 U	0.026 U	0.048 U	0.014 J
Semi-Volatile Organic Compounds^		,							•		
1,1-Biphenyl	mg/kg	200	0.032 J	0.37 J	N/A	0.72 U	0.17	0.54 U	2.2 U	5.1 U	0.73 U
2,4-Dimethylphenol	mg/kg	16,000	0.073 U	0.17 J	N/A	0.72 U	0.073 UJ	0.54 U	2.2 U	5.1 U	0.73 U
2,4-Dinitrotoluene	mg/kg	7.4	0.073 U	0.31 J	N/A	0.72 U	0.073 U	0.54 U	2.2 U	5.1 U	0.73 U
2-Chloronaphthalene	mg/kg	60,000	0.073 U	1.2	N/A	0.72 U	0.073 U	0.54 U	2.2 U	5.1 U	0.73 U
2-Methylnaphthalene	mg/kg	3,000	0.33	1.2	N/A	0.095	0.055	0.042 J	0.023 U	0.087 U	0.23 U
2-Methylphenol	mg/kg	41,000	0.073 U	0.2 J	N/A	0.72 U	0.073 UJ	0.54 U	2.2 U	5.1 U	0.73 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 U	0.49 J	N/A	1.4 U	0.15 UJ	1.3	4.4 U	10.2 U	1.5 U
Acenaphthene	mg/kg	45,000	0.0097	0.042 J	N/A	0.053	0.0084	0.054 J	0.023 U	0.029 Ј	0.23 U
Acenaphthylene	mg/kg	45,000	0.12	0.24	N/A	0.087	0.014	0.072 J	0.022 J	0.026 J	0.23 U
Acetophenone	mg/kg	120,000	0.031 J	0.79 U	N/A	0.72 U	0.073 U	0.54 U	2.2 U	5.1 U	0.73 U
Anthracene	mg/kg	230,000	0.29	0.63	N/A	0.14	0.027	0.099 J	0.026	0.087 U	0.057 J
Benz[a]anthracene	mg/kg	21	0.72	3.2	N/A	0.64	0.15	0.41	0.19	0.34	0.13 B
Benzaldehyde	mg/kg	120,000	0.032 J	0.2 J	N/A	0.72 U	0.073 U	0.24 J	0.7 J	5.1 U	0.84 J
Benzo[a]pyrene	mg/kg	2.1	0.47	2.2	0.046	0.7	0.14	0.32	0.22	0.28	0.12 J
Benzo[b]fluoranthene	mg/kg	21	0.67	3.1	N/A	0.91	0.19	0.53	0.3	0.41	0.2 B
Benzo[g,h,i]perylene	mg/kg		0.18	1.4	N/A	0.38	0.078	0.18	0.15	0.18	0.091 B
Benzo[k]fluoranthene	mg/kg	210	0.23	1	N/A	0.35	0.064	0.14	0.086	0.12	0.052 J
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.073 U	0.79 U	N/A	0.72 U	0.073 U	0.27 B	2.2 U	5.1 U	0.42 B
Caprolactam	mg/kg	400,000	0.11 B	2 U	N/A	1.8 U	0.18 U	1.4 U	5.6 U	12.8 U	1.8 U
Carbazole	mg/kg		0.026 J	0.41 J	N/A	0.72 U	0.027 J	0.54 U	2.2 U	5.1 U	0.73 U
Chrysene	mg/kg	2,100	0.71	2.5	N/A	0.52	0.12	0.3	0.16	0.4	0.12 B
Dibenz[a,h]anthracene	mg/kg	2.1	0.06	0.51	N/A	0.1	0.017	0.042 J	0.034	0.044 J	0.23 U
Diethylphthalate	mg/kg	660,000	0.073 U	0.79 U	N/A	0.72 U	0.073 U	0.54 U	2.2 U	5.1 U	0.73 U
Di-n-butylphthalate	mg/kg	82,000	0.051 B	0.79 U	N/A	0.72 U	0.043 B	0.69 J	2.2 U	5.1 U	1.1 J
Fluoranthene	mg/kg	30,000	0.52	3.4	N/A	0.57	0.18	0.7	0.24	0.42	0.17 B
Fluorene	mg/kg	30,000	0.013	0.088	N/A	0.02	0.0036 J	0.07 J	0.023 U	0.087 U	0.23 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.22	1.6	N/A	0.46	0.084	0.21	0.16	0.18	0.094 J
Naphthalene	mg/kg	8.6	0.23	0.76	N/A	0.14	0.15	0.12 B	0.021 J	0.018 B	0.23 U
N-Nitrosodiphenylamine	mg/kg	470	0.073 U	0.27 J	N/A	0.72 U	0.073 U	0.54 U	2.2 U	5.1 U	0.73 U
Phenanthrene	mg/kg		0.54	3	N/A	0.32	0.12	0.19	0.028	0.083 B	0.087 B
Phenol	mg/kg	250,000	0.073 U	0.27 J	N/A	0.72 U	0.073 UJ	0.54 U	2.2 U	5.1 U	0.19 J
Pyrene	mg/kg	23,000	0.51	2.6	N/A	0.58	0.14	0.55	0.24	0.56	0.16 B
PCBs											
Aroclor 1248	mg/kg	0.94	0.09 U	N/A	N/A	0.09 U	N/A	0.68 U	0.28 U	0.65 U	0.91 U
Aroclor 1254	mg/kg	0.97	0.09 U	N/A	N/A	0.14	N/A	0.68 U	0.28 U	0.65 U	0.91 U
Aroclor 1268	mg/kg		0.09 U	N/A	N/A	0.09 U	N/A	0.68 U	0.28 U	0.65 U	0.91 U
PCBs (total)	mg/kg	0.97	0.81 U	N/A	N/A	0.81 U	N/A	6.1 U	2.5 U	5.8 U	8.2 U
TPH/Oil & Grease									•		
Diesel Range Organics	mg/kg	6,200	90.9 J	392 J	N/A	58.1 J	49.1 J	339 J	120	333	170
Oil & Grease	mg/kg	6,200	154	180	N/A	451	151	5,460	776	7,650	3,240

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

^{*}indicates non-validated data

[^]PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank or field blank.

R: The result for this analyte is unreliable. Additional data is needed to confirm or disprove the presence of this analyte in the sample.

Table 7 - Parcel A18
Summary of Inorganics Detected in Soil

Donomoton	Thite	DAI	A18-001-SB-1*	A18-001-SB-5*	A18-001-SB-10*	A18-002-SB-1*	A18-002-SB-5*	A18-002-SB-10*	A18-003-SB-1*
Parameter	Units	PAL	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020	5/1/2020
Metal									
Aluminum	mg/kg	1,100,000	49,700	84,600	N/A	29,100	81,500	N/A	18,600
Arsenic	mg/kg	3	2.1 U	4	18.1	3.2	3.3	7.1	6.1
Barium	mg/kg	220,000	460	739	N/A	172	584	N/A	165
Beryllium	mg/kg	2,300	1.9	3.2	N/A	1.5	3.5	N/A	1.1 J
Cadmium	mg/kg	980	0.55 J	0.66 J	N/A	0.45 J	0.68 J	N/A	0.34 J
Chromium	mg/kg	120,000	1,830	320	N/A	201	348	N/A	508
Chromium VI	mg/kg	6.3	0.78 J	0.86 J	N/A	0.64 J	1.5 U	N/A	0.66 J
Cobalt	mg/kg	350	90.3	2.2 J	N/A	4.5 J	4.5 J	N/A	7.5
Copper	mg/kg	47,000	183	22.4	N/A	24.7	23.8	N/A	37
Iron	mg/kg	820,000	82,100	3,080	N/A	7,200	4,710	N/A	18,200
Lead	mg/kg	800	3.6 U	3.9 U	N/A	13.3	3.4 U	N/A	20.1
Manganese	mg/kg	26,000	1,320	1,920	N/A	1,100	1,840	N/A	3,340
Mercury	mg/kg	350	0.15 U	0.15 U	N/A	0.23	0.14 U	N/A	0.025 J
Nickel	mg/kg	22,000	864	12.6 J	N/A	28.3	31.3	N/A	32.6
Selenium	mg/kg	5,800	5.7 U	6.4	N/A	4.7 U	6.9	N/A	4.4 U
Thallium	mg/kg	12	8.6 U	9.3 U	N/A	11.8 U	8.3 U	N/A	10.9 U
Vanadium	mg/kg	5,800	47.3	28.8	N/A	25.8	15.6	N/A	63.6
Zinc	mg/kg	350,000	9	7.6 B	N/A	31.4	4.4 B	N/A	48.4
Other									
Cyanide	mg/kg	150	27.8	20	N/A	5	15.2	N/A	4.1

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 7 - Parcel A18
Summary of Inorganics Detected in Soil

D	T.T., :4-	DAI	A18-003-SB-5*	A18-004-SB-1	A18-005-SB-1*	A18-006-SB-1	A18-006-SB-9	A18-006-SB-10*	A18-007-SB-1
Parameter	Units	PAL	5/1/2020	4/28/2020	4/29/2020	4/28/2020	4/28/2020	4/28/2020	4/28/2020
Metal									
Aluminum	mg/kg	1,100,000	77,400	19,700	29,500	8,430	8,410	N/A	6,670
Arsenic	mg/kg	3	2.6 U	2.3 U	2.4 U	2.4 U	2.4 U	N/A	2.4 U
Barium	mg/kg	220,000	630	193	278	120	130	N/A	106
Beryllium	mg/kg	2,300	3.6	2.6	4.6	1.3	1.1	N/A	0.76 J
Cadmium	mg/kg	980	0.73 J	0.46 J	0.62 J	0.77 J	2.2	N/A	1.2 J
Chromium	mg/kg	120,000	625	407	311	1,420	1,340	N/A	977
Chromium VI	mg/kg	6.3	1 J	1 UJ	0.54 J	3.6 J-	1.9 J-	N/A	0.78 B
Cobalt	mg/kg	350	5.2 J	1.8 J	2.5 J	13.7	9.1	N/A	7.7
Copper	mg/kg	47,000	28.4	23.8 J	17.7	177 J	56.9 J	N/A	42.3 J
Iron	mg/kg	820,000	6,410	88,100	62,000	184,000	191,000	N/A	168,000
Lead	mg/kg	800	4.6	26.8	17.3	52.9	39.1	N/A	60.2
Manganese	mg/kg	26,000	2,830	8,820	8,570	30,500	73,600	70,700	21,700
Mercury	mg/kg	350	0.096 J	0.031 J	0.0085 J	0.097 U	0.1 U	N/A	0.019 J
Nickel	mg/kg	22,000	33.3	12.8	12.1	24.4	17.3	N/A	17.8
Selenium	mg/kg	5,800	6.3 J	3.7 U	3.9 U	3.8 U	3.8 U	N/A	3.8 U
Thallium	mg/kg	12	10.2 U	9.3 U	9.7 U	12.1	4.6 B	N/A	9.6 U
Vanadium	mg/kg	5,800	25.8	299	205	3,690	2,890	N/A	1,690
Zinc	mg/kg	350,000	17.1	135 J	61.4	156 J	300 J	N/A	234 J
Other									
Cyanide	mg/kg	150	12.2	1.3 J-	0.69 J	1.6 J-	0.34 J-	N/A	1.3 J-

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 7 - Parcel A18
Summary of Inorganics Detected in Soil

ъ.	**	DAT	A18-007-SB-4	A18-008-SB-1	A18-008-SB-5	A18-009-SB-1*	A18-009-SB-5*	A18-009-SB-10*	A18-010-SB-1*
Parameter	Units	PAL	4/28/2020	4/28/2020	4/28/2020	4/29/2020	4/29/2020	4/29/2020	5/1/2020
Metal									
Aluminum	mg/kg	1,100,000	38,400	38,600	36,800	10,800	21,800	N/A	11,500
Arsenic	mg/kg	3	3.4	2.6 U	2.8 U	2.5 U	2.6 U	N/A	11.7
Barium	mg/kg	220,000	351	440	454	221	461	N/A	150
Beryllium	mg/kg	2,300	5.3	3.6	3.6	4.2	4.3	N/A	1.8
Cadmium	mg/kg	980	0.33 J	0.52 J	0.41 J	0.69 J	0.53 J	N/A	1.1 J
Chromium	mg/kg	120,000	28.9	364	429	2,000	1,100	N/A	1,090
Chromium VI	mg/kg	6.3	1.1 UJ	1.1 UJ	0.63 B	1.3	0.65 J	N/A	0.96 J
Cobalt	mg/kg	350	1.1 J	58.1	68.8	3.4 J	4.9 J	N/A	40.2
Copper	mg/kg	47,000	4.2 J	15.5 J	12.3 J	44.1	37.3	N/A	503
Iron	mg/kg	820,000	15,900	28,000	40,100	128,000	110,000	N/A	220,000
Lead	mg/kg	800	4.5	41.2	10.8	40.1	15.9	N/A	127
Manganese	mg/kg	26,000	2,250	6,410	6,090	57,000	35,000	47.4	23,300
Mercury	mg/kg	350	0.1 U	0.032 J	0.12 U	0.1 U	0.039 J	N/A	0.1 U
Nickel	mg/kg	22,000	1.7 J	427	536	12.3	24.4	N/A	32.7
Selenium	mg/kg	5,800	2.8 J	4.1 U	4.4 U	4 U	4.2 U	N/A	4
Thallium	mg/kg	12	9.6 U	10.3 U	11.1 U	28.7	14.6	9.3 U	9.9
Vanadium	mg/kg	5,800	86.1	130	119	11,300	6,930	32.7	2,940
Zinc	mg/kg	350,000	10.7 J	67.3 J	32.1 J	68.2	23	N/A	247
Other									
Cyanide	mg/kg	150	1.1 J-	3.4 J-	1.2 J-	0.42 J	0.71 J	N/A	1.9

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 7 - Parcel A18
Summary of Inorganics Detected in Soil

D (TT '4	DAI	A18-011-SB-1*	A18-011-SB-5*	A18-012-SB-1*	A18-012-SB-5*	A18-012-SB-10*	A18-013-SB-1	A18-013-SB-5
Parameter	Units	PAL	5/1/2020	5/1/2020	4/29/2020	4/29/2020	4/29/2020	4/28/2020	4/28/2020
Metal									
Aluminum	mg/kg	1,100,000	40,500	44,900	34,500	18,200	N/A	6,810	26,000
Arsenic	mg/kg	3	2.9	2.9	3.8	2.4 U	N/A	2.4 U	2.9 U
Barium	mg/kg	220,000	609	1,920	416	364	N/A	119	937
Beryllium	mg/kg	2,300	3.3	3.4	5.5	3.9	N/A	0.9 J	2.9
Cadmium	mg/kg	980	0.52 J	0.42 J	0.64 J	0.48 J	N/A	0.8 J	0.49 J
Chromium	mg/kg	120,000	48.4	41.5	143	1,740	N/A	861	976
Chromium VI	mg/kg	6.3	0.62 J	0.75 J	1.1 U	0.88 J	N/A	0.71 B	1.2 B
Cobalt	mg/kg	350	2.3 J	5.1 J	3 J	2.2 J	N/A	7.5	4.9 J
Copper	mg/kg	47,000	7.1	12.6	24.8	31.4	N/A	77.7 J	25.4 J
Iron	mg/kg	820,000	8,890	14,600	48,500	95,700	N/A	164,000	81,500
Lead	mg/kg	800	12.3	9.4	35	9.2	N/A	94.8	159
Manganese	mg/kg	26,000	6,720	6,320	5,450	45,300	99.1	20,200	24,100
Mercury	mg/kg	350	0.11 U	0.12 U	0.15	0.1 U	N/A	0.042 J	0.13 U
Nickel	mg/kg	22,000	5.7 J	16.1	10.5	8.5 J	N/A	21.7	10.3 J
Selenium	mg/kg	5,800	4.3 U	4.6 U	4 U	3.9 U	N/A	3.8 U	4.6 U
Thallium	mg/kg	12	10.8 U	11.6 U	10.1 U	24	9.5 U	3.5 B	10.2 B
Vanadium	mg/kg	5,800	218	260	112	9,300	34.3	1,760	5,090
Zinc	mg/kg	350,000	27.9	18.2	125	25.6	N/A	214 J	28.6 J
Other									
Cyanide	mg/kg	150	1.9	2.4	0.83 J	0.33 J	N/A	2.4 J-	1.1 J-

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 7 - Parcel A18 Summary of Inorganics Detected in Soil

_			A18-014-SB-1	A18-014-SB-5	A18-014-SB-10	A18-015-SB-1	A18-015-SB-4	A18-015-SB-10	A18-016-SB-1	A18-016-SB-5
Parameter	Units	PAL	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/4/2020
Metal			_							
Aluminum	mg/kg	1,100,000	49,000	16,900	N/A	49,500	27,900	N/A	27,500	6,310
Arsenic	mg/kg	3	3.6	5.8	7	3.4	3.4	4.8	11.7	10.9
Barium	mg/kg	220,000	383 J	33.1 J	N/A	400 J	463 J	N/A	274 J	96 J
Beryllium	mg/kg	2,300	6.7	0.74 J	N/A	8.2	3.4	N/A	1.3	0.38 J
Cadmium	mg/kg	980	0.34 J	1.4 U	N/A	0.39 J	1.2 J	N/A	6.5	1.5 U
Chromium	mg/kg	120,000	5.7	22.8	N/A	13.5	809	N/A	185	78.9
Chromium VI	mg/kg	6.3	0.6 B	1.2 UJ	N/A	0.76 B	0.81 B	N/A	0.59 B	1.2 UJ
Cobalt	mg/kg	350	0.63 J	6.2	N/A	0.8 J	18.1	N/A	23.8	4.3 J
Copper	mg/kg	47,000	5.6	12	N/A	6.3	42	N/A	397	29.8
Iron	mg/kg	820,000	7,940	18,800	N/A	11,100	100,000	N/A	68,400	19,900
Lead	mg/kg	800	4.7	12	N/A	2.7	64.5	N/A	427	9.8
Manganese	mg/kg	26,000	1,400 J	120 J	N/A	3,560 J	20,500 J	N/A	1,720 J	154 J
Mercury	mg/kg	350	0.034 J	0.12 U	N/A	0.12 U	0.12	N/A	0.03 J	0.01 J
Nickel	mg/kg	22,000	1.1 J	14	N/A	1.6 J	97.5	N/A	124	13.8
Selenium	mg/kg	5,800	4	3.6 U	N/A	3.7 U	3.5 U	N/A	3.5 U	3.9 U
Thallium	mg/kg	12	8.5 U	9 U	N/A	9.2 U	8.7 U	N/A	8.7 U	9.7 U
Vanadium	mg/kg	5,800	15	29	N/A	29.6	2,110	N/A	40.7	5.5
Zinc	mg/kg	350,000	11.3 J	32.4 J	N/A	8.4 J	142 J	N/A	3,080 J	19.2 J
Other										
Cyanide	mg/kg	150	1.3	0.22 J	N/A	0.77 J	0.76 J	N/A	4.6	3.4

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 7 - Parcel A18
Summary of Inorganics Detected in Soil

	П	П								
Parameter	Units	PAL	A18-016-SB-10	A18-017-SB-1	A18-017-SB-5	A18-017-SB-10	A18-018-SD-1	A18-019-SD*	A18-020-SD-1	A18-021-SD-1
Turumeter	Cints	THE	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/13/2020	5/7/2020	5/13/2020	5/13/2020
Metal										
Aluminum	mg/kg	1,100,000	N/A	20,600	6,530	N/A	3,800	10,200	31,900	6,550
Arsenic	mg/kg	3	4.2	6.5	2.2 U	N/A	6.5	9.6	13	8
Barium	mg/kg	220,000	N/A	190 J	82.5 J	N/A	57.5 J	52.4	185	73.8 J
Beryllium	mg/kg	2,300	N/A	2.9	1.6	N/A	6.4 U	0.84 J	1.3 J	8.7 U
Cadmium	mg/kg	980	N/A	1.3	0.69 J	N/A	9.6 U	4 U	9.1 U	13 U
Chromium	mg/kg	120,000	N/A	199	1,150	N/A	173	57	81.2	111
Chromium VI	mg/kg	6.3	N/A	0.83 B	0.99 B	N/A	16.8 U	2.3 J	15.8 U	23.5 U
Cobalt	mg/kg	350	N/A	9.3	2.8 J	N/A	31.8 U	23.7	26.5 J	6.5 J
Copper	mg/kg	47,000	N/A	57.7	34.2	N/A	64.1	42.2	73.9	73.4
Iron	mg/kg	820,000	N/A	83,400	176,000	N/A	68,400	52,900	64,900	36,300
Lead	mg/kg	800	N/A	96.5	29.2	N/A	59.5	36.9	174	65.7
Manganese	mg/kg	26,000	N/A	6,020 J	29,100 J	35.7	500	380	220	573
Mercury	mg/kg	350	N/A	0.58	0.0065 J	N/A	0.11 J	0.019 J	0.37 J	1.7
Nickel	mg/kg	22,000	N/A	20.8	11.5	N/A	21.6 J	40.4	53.2 J	26.1 J
Selenium	mg/kg	5,800	N/A	3.4 U	3.5 U	N/A	25.5 U	10.6 U	24.4 U	32.8 J
Thallium	mg/kg	12	N/A	8.5 U	6.8 J	N/A	4.4 J	10.6 U	12.2 U	17.6
Vanadium	mg/kg	5,800	N/A	519	3,470	N/A	406	191	299	1,280
Zinc	mg/kg	350,000	N/A	532 J	149 J	N/A	198	306	702	188
Other										
Cyanide	mg/kg	150	N/A	1.7	0.72 J	N/A	2.1 J	0.72 J	2 J	2.3 J

Values in red indicate an exceedance of the Project Action Limit (PAL)

- U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.
- UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.
- J: The positive result reported for this analyte is a quantitative estimate.
- J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.
- B: This analyte was not detected substantially above the level of the associated method blank or field blank.

^{*}indicates non-validated data

Table 8 - Parcel A18 Summary of Soil PAL Exceedances

<u>Parameter</u>	CAS#	Frequency of Detections (%)*	Frequency of Exceedances (%)*	Sample ID of Max Result	Max Result (mg/kg)	PAL Solid (mg/kg)
Arsenic	7440-38-2	63%	58%	A18-001-SB-10	18.1	3
Benzo[a]pyrene	50-32-8	95%	5%	A18-003-SB-5	2.9	2.1
Manganese	7439-96-5	100%	18%	A18-006-SB-9	73,600	26,000
Oil & Grease	O&G	91%	3%	A18-020-SD-1	7,650	6,200
Thallium	7440-28-0	22%	14%	A18-009-SB-1	28.7	12
Vanadium	7440-62-2	100%	8%	A18-009-SB-1	11,300	5,800

^{*}Frequency of detections and exceedances calculated as a percentage based on the total number of samples analyzed for the parameter (excluding any rejected data results).

Table 9 - Parcel A18
Summary of Organics Detected in Groundwater

Parameter	Units	PAL	A18-002-PZ*	A18-008-PZ*	A18-009-PZ*	A18-011-PZ*	A18-013-PZ*	A18-014-PZ	A18-015-PZ*	A18-016-PZ	A18-017-PZ
Farameter	Units	PAL	7/9/2020	7/7/2020	7/7/2020	7/9/2020	7/9/2020	7/8/2020	7/7/2020	7/8/2020	7/8/2020
Volatile Organic Compounds											
1,1-Dichloroethane	μg/L	2.7	1 U	0.4 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	μg/L	7	2.7	1 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U
1,2-Dichlorobenzene	μg/L	600	1 U	1 U	1 U	1 U	1 U	1 U	9.4	1 U	1 U
1,2-Dichloroethene (Total)	μg/L	70	36	2 U	2 U	2 U	2 U	2 U	4.3	2 U	1.5 J
1,4-Dichlorobenzene	μg/L	75	1 U	1 U	1 U	1 U	1 U	1 U	0.96 J	1 U	1 U
cis-1,2-Dichloroethene	μg/L	70	33.3	1 U	1 U	1 U	1 U	1 U	4.2	1 U	1.5
Methyl tert-butyl ether (MTBE)	μg/L	14	4.1	0.3 J	1 U	1 U	1 U	1 U	1.2	1 U	1 U
Tetrachloroethene	μg/L	5	6.3	1 U	1 U	1 U	1 U	1 U	57.5	1.3	14.8
trans-1,2-Dichloroethene	μg/L	100	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	μg/L	5	394	1 U	1 U	1 U	1 U	1 U	298	1	88
Vinyl chloride	μg/L	2	0.48 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Semi-Volatile Organic Compounds	\										
1,4-Dioxane	μg/L	0.46	0.1 U	0.17	0.099 U	0.098 U	0.1 U	0.14	0.12	0.25	0.15
2,4-Dinitrophenol	μg/L	39	2.5 U	0.86 J	2.5 U	2.5 U	2.5 U	2.4 U	2.5 U	2.5 U	2.5 U
Anthracene	μg/L	1,800	0.1 U	0.1 U	0.074 J	0.098 U	0.048 J	0.098 U	0.099 U	0.1 U	0.098 U
Benz[a]anthracene	μg/L	0.03	0.081 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Benzo[a]pyrene	μg/L	0.2	0.12	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Benzo[b]fluoranthene	μg/L	0.25	0.29	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Benzo[g,h,i]perylene	μg/L		0.087 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Benzo[k]fluoranthene	μg/L	2.5	0.27	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
bis(2-Ethylhexyl)phthalate	μg/L	6	1 U	0.44 J	0.99 U	0.42 J	1 U	0.4 B	4.4	0.47 B	0.98 U
Caprolactam	μg/L	9,900	2.5 U	2.5 U	2.5 U	2.5 U	0.35 J	2.4 U	0.39 J	2.5 U	2.5 U
Chrysene	μg/L	25	0.088 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Di-n-butylphthalate	μg/L	900	1 U	0.44 J	0.43 J	0.33 J	1 U	0.33 B	0.99 U	0.35 B	0.98 U
Di-n-ocytlphthalate	μg/L	200	1 U	1 U	0.99 U	0.98 U	1 U	0.98 U	0.27 J	1 U	0.98 U
Fluoranthene	μg/L	800	0.07 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Indeno[1,2,3-c,d]pyrene	μg/L	0.25	0.078 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Naphthalene	μg/L	0.12	0.14	0.1 U	0.099 U	0.17	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Pentachlorophenol	μg/L	1	2.5 U	2.4 U	2.5 U	5.3	2.5 U				
Phenanthrene	μg/L		0.047 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
Pyrene	μg/L	120	0.078 J	0.1 U	0.099 U	0.098 U	0.1 U	0.098 U	0.099 U	0.1 U	0.098 U
TPH/Oil & Grease											
Diesel Range Organics	μg/L	47	104	285	94.5 J	98	60.8 J	221 J	112	120 J	154 J
Gasoline Range Organics	μg/L	47	139 J	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U
Oil & Grease	μg/L	47	4,750 U	4,750 U	4,750 U	4,750 U	1,000 J	4,750 U	4,750 U	4,750 U	4,750 U

Values in red indicate an exceedance of the Project Action Limit (PAL)

*indicates non-validated data

^PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associate method blank or field blank.

Table 10 - Parcel A18 Summary of Inorganics Detected in Groundwater

	1		A18-002-PZ*	A18-008-PZ*	A18-009-PZ*	A18-011-PZ*	A18-013-PZ*	A18-014-PZ	A18-015-PZ*	A18-016-PZ	A18-017-PZ
Parameter	Units	PAL	7/9/2020	7/7/2020	7/7/2020	7/9/2020	7/9/2020	7/8/2020	7/7/2020	7/8/2020	7/8/2020
Dissolved Metals											
Aluminum, Dissolved	μg/L	20,000	388	330	50 U	765	50 U	502	22.6 J	27.9 J	32.3 J
Barium, Dissolved	μg/L	2,000	36.4	23	34.8	80.3	37.4	24.3	38.1	29.8	46.3
Beryllium, Dissolved	μg/L	4	1.7	0.72 J	1 U	1 U	1 U	1.6	1 U	1 U	0.29 J
Cadmium, Dissolved	μg/L	5	0.89 J	0.93 J	3 U	3 U	3 U	1.4 J	0.55 J	0.49 J	0.71 J
Chromium VI, Dissolved	μg/L	0.035	10 U	10 U	18.2	10 U	10 U	500 U	10 U	10 U	10 U
Chromium, Dissolved	μg/L	100	0.78 J	1.9 J	20.6	4.5 J	4.6 J	0.62 B	0.88 J	5 U	0.93 B
Cobalt, Dissolved	μg/L	6	71.7	136	5 U	5 U	5 U	150	25.4	68.4	190
Iron, Dissolved	μg/L	14,000	328	6,930	70 U	70 U	4,510	10,900	2,440	9,510	9,540
Manganese, Dissolved	μg/L	430	813	2,110	38.1	5 U	663	2,160	832	2,070	4,400
Mercury, Dissolved	μg/L	2	0.2 U	0.2 U	0.2 U	0.03 J	0.03 J	0.2 U	0.2 U	0.2 U	0.2 U
Nickel, Dissolved	μg/L	390	95.3	122	10 U	10 U	3.1 J	169	38.5	44.9	126
Thallium, Dissolved	μg/L	2	10 U	10 U	10	10 U	10 U	10 U	10 U	10 U	10 U
Vanadium, Dissolved	μg/L	86	5 U	1.1 J	829	87.6	20.4	0.58 J	74.2	5 U	1.3 J
Zinc, Dissolved	μg/L	6,000	147	165	10 U	10 U	10 U	296	30.9	54.4	84.2

Values in red indicate an exceedance of the Project Action Limit (PAL)

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

- J: The positive result reported for this analyte is a quantitative estimate.
- B: This analyte was not detected substantially above the level of the associated method blank or field bank.

^{*}indicates non-validated data

Table 11 - Parcel A18
Cumulative Vapor Intrusion Criteria Comparison

					002-PZ 2020		08-PZ 2020	A18-0 7/7/2	09-PZ 2020)11-PZ 2020		13-PZ 2020		14-PZ 2020	A18-0 7/7/2			016-PZ 2020		017-PZ 2020
Parameter	Туре	Organ System	VI Screening Criteria (ug/L)	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard	Conc. (ug/L)	Risk/ Hazard
Cancer Risk																					
1,1-Dichloroethane	VOC		330	1 U	0	0.4 J	1.2E-08	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0
1,4-Dichlorobenzene	VOC		110	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	0.96 J	8.7E-08	1 U	0	1 U	0
1,4-Dioxane	SVOC		130,000	0.1 U	0	0.17	1.3E-11	0.099 U	0	0.098 U	0	0.1 U	0	0.14	1.1E-11	0.12	9.2E-12	0.25	1.9E-11	0.15	1.2E-11
Methyl tert-butyl ether	VOC		20,000	4.1	2.1E-09	0.3 J	1.5E-10	1 U	0	1 U	0	1 U	0	1 U	0	1.2	6.0E-10	1 U	0	1 U	0
Naphthalene	SVOC		200	0.14	7.0E-09	0.1 U	0	0.099 U	0	0.17	8.5E-09	0.1 U	0	0.098 U	0	0.099 U	0	0.1 U	0	0.098 U	0
Vinyl chloride	VOC		25	0.48 J	1.9E-07	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0
Tetrachloroethene	VOC		650	6.3	9.7E-08	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	57.5	8.8E-07	1.3	2.0E-08	14.8	2.3E-07
Trichloroethene	VOC		74	394	5.3E-05	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	298	4.0E-05	1	1.4E-07	88	1.2E-05
	C	umulative Vapor Intrusi	on Cancer Risk		5E-05		1E-08		0		9E-09		0		1E-11		4E-05		2E-07		1E-05
Non-Cancer Hazard																					
Tetrachloroethene	VOC	Nervous; Ocular	240	6.3	0.03	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	57.5	0.2	1.3	0.005	14.8	0.06
	Cumulati	ve Vapor Intrusion Non-	Cancer Hazard		0		0		0		0		0		0		0		0		0
Trichloroethene	VOC	Cardiovascular; Developmental; Immune	22	394	18	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0	298	14	1	0.05	88	4
	Cumulati	ve Vapor Intrusion Non-	Cancer Hazard		18		0		0		0		0		0		14		0		4

Highlighted values indicate exceedances of the cumulative vapor intrusion crtieria: TCR>1E-05 or THI>1 Conc. = Concentration

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

Table 12 - Parcel A18 Rejected Analytical Results

Sample ID	<u>Parameter</u>	Result (mg/kg)	Flag	PAL (mg/kg)	Exceeds PAL?
	2,3,4,6-Tetrachlorophenol	0.68	R	25,000	no
	2,4,5-Trichlorophenol	1.7	R	82,000	no
	2,4,6-Trichlorophenol	0.68	R	210	no
	2,4-Dichlorophenol	0.68	R	2,500	no
	2,4-Dimethylphenol	0.68	R	16,000	no
A18-006-SB-1	2,4-Dinitrophenol	1.7	R	1,600	no
	2-Chlorophenol	0.68	R	5,800	no
	2-Methylphenol	0.68	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	1.4	R	41,000	no
	Pentachlorophenol	1.7	R	4	no
	Phenol	0.68	R	250,000	no
	1,4-Dioxane	0.11	R	24	no
	2,3,4,6-Tetrachlorophenol	0.069	R	25,000	no
	2,4,5-Trichlorophenol	0.17	R	82,000	no
	2,4,6-Trichlorophenol	0.069	R	210	no
	2,4-Dichlorophenol	0.069	R	2,500	no
A18-006-SB-9	2,4-Dimethylphenol	0.069	R	16,000	no
A16-000-SD-9	2,4-Dinitrophenol	0.17	R	1,600	no
	2-Chlorophenol	0.069	R	5,800	no
	2-Methylphenol	0.069	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	0.14	R	41,000	no
	Pentachlorophenol	0.17	R	4	no
	Phenol	0.069	R	250,000	no
A18-007-SB-1	1,4-Dioxane	0.13	R	24	no
A18-007-SB-4	1,4-Dioxane	0.12	R	24	no
A18-018-SD-1	1,4-Dioxane	0.86	R	24	no
A18-020-SD-1	1,4-Dioxane	0.97	R	24	no
A18-021-SD-1	1,4-Dioxane	1.3	R	24	no

Sample ID	<u>Parameter</u>	Result (ug/L)	<u>Flag</u>	PAL (ug/L)	Exceeds PAL?
A18-014-PZ	3,3'-Dichlorobenzidine	0.98	R	0.12	YES

"

APPENDIX A

11

Parcel A18 Sampling Plan Summary Former Sparrows Point Steel Mill Sparrows Point, Maryland

Table 1 - Soil/Sediment Sampling Summary

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	Rationale	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil and Sediment Samples
Fly Dumping Area		Site Visit	Investigate potential impacts related to drums of unknown contents which appear to have been disposed of at the Site (potential leaks or releases).	2	A18-001 and A18-002	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Parcel A18 Coverage			Investigate potential impacts related to unknown historical activities, and characterize soil in areas not previously sampled.	13	A18-003 through A18-015	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Parcel A10 CVOC Detections		MDE Requested	Investigate potential impacts related to the previous detections of CVOCs in groundwater in adjacent parcel A10.	2	A18-016 and A18-017	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Stormwater Pond Areas		MDE Requested	Investigate potential impacts related to any historical activities which may have occurred in the retention basins (potential leaks or releases).	4	A18-018 through A18-021	Total depth of 12 inches.	Top 12" of sediment at each location	VOC, SVOC, Metals, DRO/GRO, O&G, PCBs
			Total:	21				

Soil Borings Sampling Density Requirements (from Worksheet 17 - Sampling Design and Rationale)

No Engineered Barrier (16-40 acres): 1 boring per 1.5 acres with no less than 15 borings. Engineered Barrier (N/A)

No Engineered Barrier (22.0 acres) = 15 Borings Required, 17 Completed (+4 Sediment)

Stormwater Ponds (5.3 acres)

Building Footprints (0 acres)

VOCs - Volatile Organic Compounds (Target Compound List) ^VOCs are only collected if the PID reading exceeds 10 ppm

SVOCs - Semivolatile Organic Compounds (Target Compound List)

Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)

O&G - Oil & Grease

DRO/GRO - Diesel Range Organics/Gasoline Range Organics

PCBs - Polychlorinated Biphenyls

bgs - Below Ground Surface

Parcel A18 Sampling Plan Summary Former Sparrows Point Steel Mill Sparrows Point, Maryland

Table 2 - Groundwater Sampling Summary

Source Area/ Description	REC & Finding/ SWMU/ AOC	Figure or Drawing of Reference	Condition of Existing Well	Number of Locations	Sample Locations	Boring Depth	Screen Interval	Analytical Parameters: Groundwater Samples
Fly Dumping Area		Site Visit	N/A	1	A18-002	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total), O&G, DRO/GRO
Parcel A18 Coverage			N/A	6	A18-008, A18-009, A18-011, A18-013, A18-014, and A18-015	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total), O&G, DRO/GRO
Parcel A10 CVOC Detections		MDE Requested	N/A	2	A18-016 and A18-017	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total), O&G, DRO/GRO
			Total:	9				

Field measurements include pH, DO, ORP, conductivity, temperature. Metals analysis will include dissolved hexavalent chromium

VOCs - Volatile Organic Compounds (Target Compound List)

SVOCs - Semivolatile Organic Compounds (Target Compound List)

Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)

O&G - Oil & Grease

DRO/GRO - Diesel Range Organics/Gasoline Range Organics

, ,, ,, ,,

n n

APPENDIX B

11

" "

"
"
"

" "

11

Boring ID: A18-001-SB

11-10-2020 \\mdfs01\\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boning logs\2_bor Logs\A18-001-SB.bor

Total Borehole Depth: 20' bgs due to water

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Date : 05/01/2020

Weather : Cloudy, 60's

Northing (US ft) : 572498.68

Easting (US ft) : 1465531.89

(page 1 of 1)								
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION		nscs	REMARKS
0-				[(n n 21) S	SILT with SAND, soft, dark brown, dry, no plasticity,		ML	
, -		-	A18-001-SB-1	no cohes		/		trace organics present
1- - 2-		-		(0.3-2.5') no plasti	Cinder ballast, loose to medium dense, black, dry, city, no cohesion		NA	trace organics present
-	40	-		(2.5-3') (CLAYEY SAND, medium dense, light brown, dry, no		sc	
3-		0.1		plasticity	, no cohesion	/		
4-		0.1		(3-5') SA l laver at 4	ND, medium to coarse, with small SLAG GRAVEL bgs, loose to medium dense, yellow and trace		sw	
_ +		0.0	A18-001-SB-5	dark brov	wn, dry, no plasticity, no cohesion			
5-		0.2		(5-16.5')	CLAY, soft then very firm to hard at 5.7' bgs, pale			
6-	94			dry at 5.7	th some reddish yellow mottling, very moist then 7' bgs, low plasticity, cohesive			
<u> </u>		0.4						
7-		0.2						
8-								
, 1		0.2						
9-		0.2	A18-001-SB-10					
10								
11-		-					CL	
''`]		0.0						
12-								
13-	80	0.0						
13-7		0.1						
14-								
15		0.2						
		0.1						
16-								
17		0.1		(16.5-20) SAND, fine to medium, yellowish red, wet, no			Wet at 16.5' bgs
" -	96	0.1		plasticity 	, no cohesion			
18-		0.4					sw	
19-		0.1						
4		0.3						
20			l	End of B	oring			

Boring ID: A18-002-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

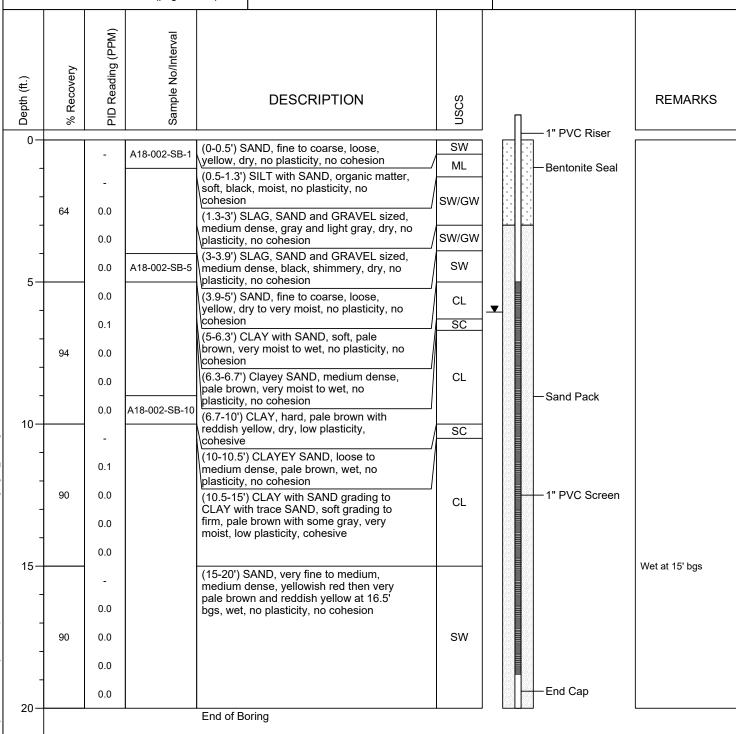
ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18
Site Location : Sparrows Point, MD

ARM Representative : L. Perrin
Checked by : M. Hritz, E.I.T.

Drilling Company : GSI
Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT


Soil Boring Installation Date : 05/01/2020
Piezometer Installation Date : 05/01/2020
Casing/Riser/Screen Type : PVC
Borehole Diameter : 2.25"
Riser/Screen Diameter : 1"

Northing (US ft) : 572520.54

Easting (US ft) : 1465587.49

Static DTW : 12.26' TOC

No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 20' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface

Riser Stickup: 3.1' ags

Riser: 0 - 5' bgs

Screen: 5 - 20' bgs [Slot Size: 0.010"] Sand Pack: 3 - 20' bgs [Grain Size: WG #2]

Bentonite Seal: 0 - 3' bgs [Grain Size: bentonite chips]

Boring ID: A18-003-SB

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Date : 05/01/2020 Weather : Cloudy, 60's

Northing (US ft) : 572681.61

Easting (US ft) : 1465923.90

			(page i	01 1)			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS
0-				(0-0 5') S	ilty SAND, with trace organics and GRAVEL, loose	s SM	
1-		-	A18-003-SB-1	dark brov	vn, moist, no plasticity, no cohesion	sw	
-		0.3			Non-native SAND with some SLAG GRAVEL, dense, black, dry, no plasticity, no cohesion	300	
2-	86	0.9		(1.7-2.6')	SAND, fine to coarse, medium dense to loose,	sw	
3-				(2.6-3.8')	ry, no plasticity, no cohesion Non-native SAND with some SLAG GRAVEL,	──∕ sw	
4-		0.8		_	dense, black, dry, no plasticity, no cohesion SAND, fine to coarse, medium dense to loose,	_	_
-		0.3	A18-003-SB-5		ry, no plasticity, no cohesion	sw	
5-		0.2					
6-				(5.7-10')	CLAY, hard, pale brown with some reddish yellow, plasticity, cohesive]
7-		0.2		dry, low p	stasticity, corresive		
_	100	0.2				CL	
8-		0.2				02	
9-		0.0	A 40 000 0D 40				
10		0.3	A18-003-SB-10	(40.40.0)			_
44		0.3		(10-10.3 \yellow, di) CLAY, soft, pale brown with some reddish ry, low plasticity, cohesive	- 21	
11 –		0.2			5') Sandy CLAY, soft, pale brown, very moist, low cohesive	CL	
12	100	0.2		(10.5-12.	5') CLAY, soft, with trace SAND, pale brown with		
13-	100	0.2		$\overline{}$	Idish yellow, dry, low plasticity, cohesive 5') Sandy CLAY, soft, pale brown, very moist, low		
14		0.2		plasticity,	, cohesive		
-		0.2			5') CLAY, soft, pale brown with some reddish ry, low plasticity, cohesive		
15		_				CL	
16		-					
17 –		-					
-	54	0.1		(17.5-18') Sandy CLAY, soft, pale brown, very moist, low	CL	-
18		0.2		plasticity,	cohesive		-
19 <i>-</i>		0.2		yellow ar	SAND, very fine to medium, medium dense, reddish nd pale brown then yellowish red at 19.2' bgs, wet, bity, no cohesion	n SW	Wet at 20' bgs
20				End of Bo	oring		1

Total Borehole Depth: 20' bgs due to water

Boring ID: A18-004-SB

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

: Geoprobe 7822DT Drilling Equipment

Date : 04/28/2020

Weather : Cloudy, 50s

Northing (US ft) : 572907.27

Easting (US ft) : 1465510.60

			(page 1	of 1)	Similify Equipmont . Gooplose / SEEB /					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS			
0-				(0.6-2.2')	Non-native SAND with SLAG, SAND and					
_		10.0	A18-004-SB-1	GRAVEL red, and	resized, medium dense, dark brown with brown, gray, dry, no plasticity, no cohesion					
1-										
-	83	0.0				SW/GW				
2-							No water encountered			
		0.0								
3-			I	End of Bo	oring	<u> </u>				
4-										
-										
5-										
	al Borehole Depth: 3' bas due to multiple refusals									

Total Borehole Depth: 3' bgs due to multiple refusals.

11-10-2020 \\mdfs01\\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boning logs\2_bor Logs\A18-004-SB.bor

Boring ID: A18-005-SB

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller

: D. Marchese : Geoprobe 7822DT Drilling Equipment

Date : 04/29/2020

Weather : Sunny, 70s

Northing (US ft) : 573174.87

Easting (US ft) : 1465670.24

			(page 1	of 1)	Similing Equipmont : Gooplose (GZES)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS			
0-				(0-1.3') N	Non-native SAND with BRICK and SLAG GRAVEL	.,				
-		1.2	A18-005-SB-1	fine to co	arse, medium dense, red and light brownish gray, asticity, no cohesion	SW/GV	V			
1-										
-	100	0.1		(1.3-2.5') plasticity,	Cinder ballast, medium dense, black, dry, no no cohesion					
2-						NA	No water encountered			
		0.1								
		0.1		(2.5-3') S light brow	LAG GRAVEL, fine to coarse, loose, light gray and nish gray, dry, no plasticity, no cohesion	d GW				
3-				End of Bo	oring	l				
-										
4-										
-										
5—										
	otal Borehole Depth: 3' bas due to multiple refusals									

Total Borehole Depth: 3' bgs due to multiple refusals.

11-10-2020 \\mdfs01\\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boring logs\2_bor Logs\A18-005-SB.bor

Boring ID: A18-006-SB

11-10-2020 \mdfs01\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boring logs\2_bor Logs\A18-006-SB PZ.bor

Boring terminated at 20' bgs due to water

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Date : 04/28/2020

Weather : Cloudy, 50s

Northing (US ft) : 572278.78

Easting (US ft) : 1464594.20

			(page 1	01 1)			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	NSCS	REMARKS
0-				(0 0 2!) A	CDLIAI T	, NA	
- - -	92	1.2 9.0 1.2	A18-006-SB-1	dense, da	Non-native SAND with SLAG GRAVEL, medium ark brown with red, gray and trace yellow, dry, ic, non-cohesive, gravel size increased at 9-10'		
5— - -	74	0.9				SW/GW	
1		23.4	A18-006-SB-9				
10-		2.8 - 14.1	A18-006-SB-10				
-	70	0.3		pale brow	CLAY with trace SAND, soft, grayish brown to vn with reddish yellow at 14.5' bgs, very moist, low cohesive	CL	
15—		0.0		(14.5-16') plasticity,	SANDY CLAY, soft, light gray, very moist, low cohesive	CL	
-	54	-		(16-18.2') reddish y non-cohe) SAND with some CLAY, very fine to medium, ellow and pale brown, wet, non-plastic, sive	sw	Wet at 17.3' bgs
1		0.0		(18,2-18	8') CLAYEY SAND, medium dense, light brownish	SC	
+				gray and	reddish yellow, wet, no plasticity, no cohesion	sw	
20 —		0.0		pale brow	SAND, very fine to medium, medium dense, very vn then yellowish red at 19.7' bgs, wet, no no cohesion oring		

Boring ID: A18-007-SB

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Date : 04/28/2020

Weather : Cloudy, 50s

Northing (US ft) : 572090.65

Easting (US ft) : 1464264.50

			(page 1	of 1)						
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS			
0-				(0 2 2!) N	Non-native SAND with SLAG GRAVEL, fine to	-	1			
-		0.0	A18-007-SB-1	coarse w	ith trace cobbles, loose to medium dense, brown , dry, no plasticity, no cohesion					
1-						CMICM				
-		22.1				SW/GW				
2-										
-	88	158.9		(2.2-5') S light gray	LAG, SAND and GRAVEL-sized, medium dense, and white, dry, non-plastic, non-cohesive					
3-										
-		17.5	A18-007-SB-4			SW/GW				
4-										
-		0.0								
5				(5-7') No	n-native SAND with SLAG GRAVEL, fine to coarse	<i>i</i>	No water encountered			
-		16.9		medium o	dense, brown and light gray, dry, non-plastic, esive, slag gravel size increase with depth, trace					
6-	100					sw/gw				
-		0.8								
7				End of Bo	pring					
-				LIIU VI D	oning .					
8-										
	Total Rerebale Depth: 7' has due to multiple refusale									

Total Borehole Depth: 7' bgs due to multiple refusals.

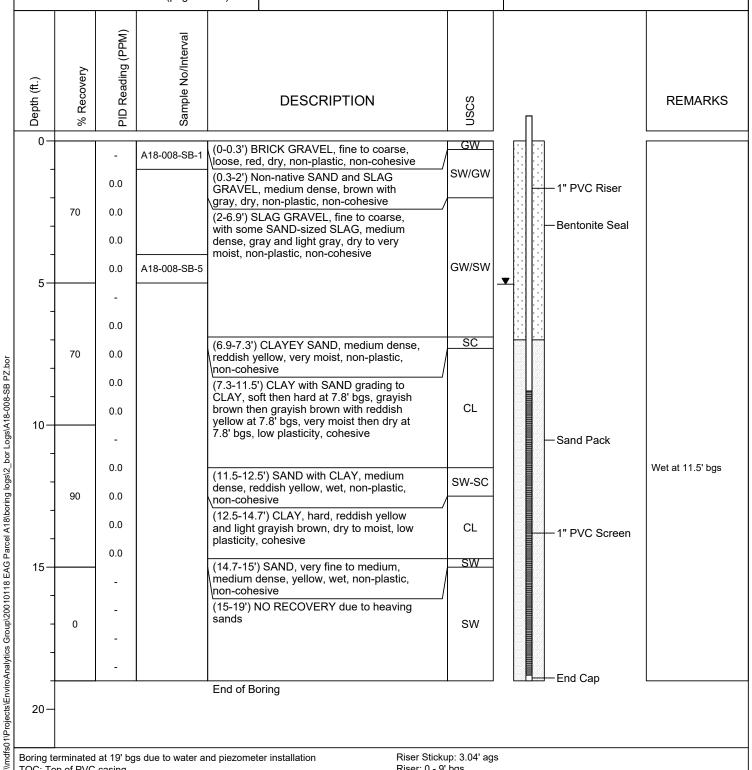
11-10-2020 \\mdfs01\\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boring logs\2_bor Logs\A18-007-SB.bor

Boring ID: A18-008-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118


Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese **Drilling Equipment** : Geoprobe 7822DT Soil Boring Installation Date : 04/28/2020 Piezometer Installation Date : 04/28/2020 Casing/Riser/Screen Type : PVC Borehole Diameter : 2.25" Riser/Screen Diameter : 1"

Northing (US ft) : 572657.31 Easting (US ft) : 1465252.39 Static DTW : 11.12' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 19' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface Riser Stickup: 3.04' ags

Riser: 0 - 9' bgs

Screen: 9 - 19' bgs [Slot Size: 0.010"] Sand Pack: 7 - 19' bgs [Grain Size: WG #2]

Bentonite Seal: 0 - 7' bgs [Grain Size: bentonite chips]

Boring ID: A18-009-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin
Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT

Soil Boring Installation Date : 04/29/2020
Piezometer Installation Date : 04/29/2020
Casing/Riser/Screen Type : PVC
Borehole Diameter : 2.25"
Riser/Screen Diameter : 1"

Northing (US ft) : 574199.53
Easting (US ft) : 1465575.06
Static DTW : 17.72' TOC
No LNAPL or DNAPL detected at 0 or 48 hours

			(page 1	of 1)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	USCS	П		REMARKS
0-	20	2.7	A18-009-SB-1	GRAVÉL	lon-native SAND with SLAG ., medium dense, dark brown, d red, dry, no plasticity, no	SW/GW		—1" PVC Riser	
- - 5-	80	5.3 6.3 1.9	A18-009-SB-5	gray and	SLAG GRAVEL, fine to coarse, light gray with trace brown, dry o very moist, no plasticity, no	GW		—Bentonite Seal	
5-	100	0.0 0.0 0.0		reddish y moist gra cohesive		CL			
- - 10-	100	1.2 1.1	A18-009-SB-10	reddish y cohesion (8.2-15')	CLAY, hard, reddish yellow with	SC			
- - -	100	0.0 0.0 0.0 0.0		pale brov	vn, dry, low plasticity, cohesive	CL		—Sand Pack	
15— - -	40	- -		(15-18') N	No recovery	NR		—1" PVC Screen	
-		-		(18-20') S medium on no cohes	SAND, very fine to medium, dense, yellow, wet, no plasticity, sion	SW			Wet at 18' bgs
20-		- -		(20-22.3' SANDS) NO RECOVERY, heaving	sw			
-	0	-		light yello no cohes) CLAYEY SAND, medium dense, owish brown, wet, no plasticity, sion CLAY with SAND, soft to firm,	SC CL SW-SC			
25—			1	light yello low plasti (24-25') s medium,	owish brown, very moist to wet, icity, cohesive SAND with CLAY, loose to light yellowish brown, wet, no, no cohesion			—End Cap	

Boring terminated at 25' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface

Riser Stickup: 2.68' ags

Riser: 0 - 5' bgs

Screen: 5 - 25' bgs [Slot Size: 0.010"] Sand Pack: 3 - 25' bgs [Grain Size: WG #2]

Bentonite Seal: 0 - 3' bgs [Grain Size: bentonite chips]

Boring ID: A18-010-SB

11-10-2020 \\mdfs01\\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boning logs\2_bor Logs\A18-010-SB.bor

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

: Geoprobe 7822DT Drilling Equipment

Date : 05/01/2020

Weather : Cloudy, 60s

Northing (US ft) : 572754.82

Easting (US ft) : 1464961.36

			(page 1	of 1)	Drilling Equipment . Geoprobe 7622D1				
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS		
0				(0-2') SL	AG GRAVEL with SAND-sized SLAG/BRICK, loose	е			
				to mediur non-plast	m dense, dark brown with red and gray, dry, iic, non-cohesive				
		0.0	A18-010-SB-1						
1-	75					GW/SW			
-		0.0					No water encountered		
2-									
				End of Bo	oring				
-									
3-									
1									
4-									
5-	=								
rotal Bo	Total Borehole Depth: 2' bgs due to multiple refusals.								

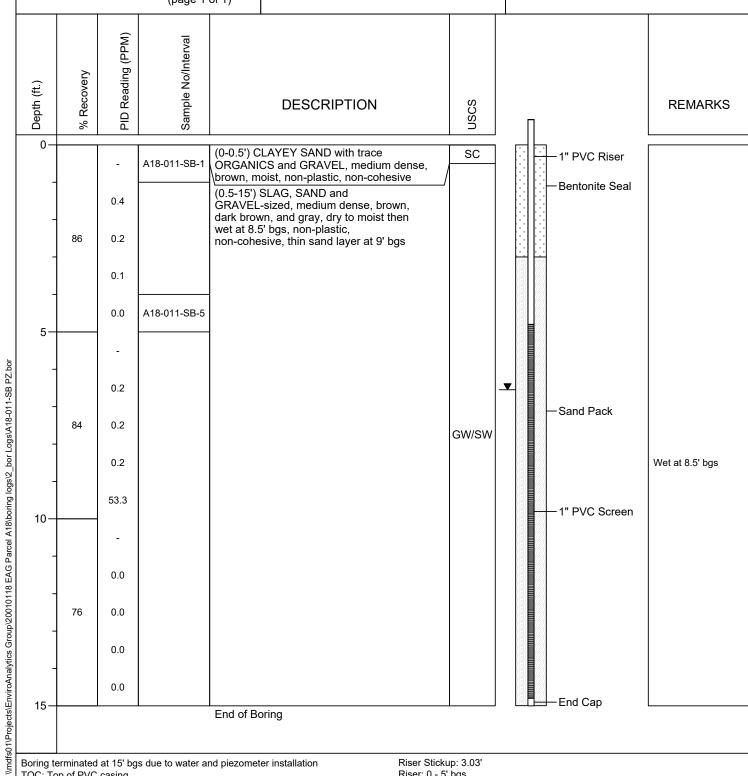
Boring ID: A18-011-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

: 20010118 ARM Project No.

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD


ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Soil Boring Installation Date : 05/01/2020 Piezometer Installation Date : 05/01/2020 Casing/Riser/Screen Type : PVC **Borehole Diameter** : 2.25" Riser/Screen Diameter : 1" Northing (US ft) : 572922.11

Easting (US ft) : 1466180.32 Static DTW : 12.61' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 15' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface Riser Stickup: 3.03' Riser: 0 - 5' bgs

Screen: 5 - 15' bgs [Slot Size: 0.010"] Sand Pack: 3 - 15' bgs [Grain Size: WG #2]

Bentonite Seal: 0 - 3' bgs [Grain Size: bentonite chips]

Boring ID: A18-012-SB

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Date : 04/29/2020

Weather : Sunny, 70's

Northing (US ft) : 573654.93

Easting (US ft) : 1465749.58

			(page i	01 1)			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	NSCS	REMARKS
0-				(0.2.21) N	Ion-native SAND with some BRICK and SLAG		
1 — 1 —		0.8	A18-012-SB-1	GRAVEL	., loose to medium dense, red then grayish brown at then dark brown at 1.9' bgs, dry, no plasticity, no	SW	
2-	78	0.2		(2.2-3.5')	Cinder ballast, medium dense, black, dry, no , no cohesion	NA NA	
3-		0.6				INA	
4-		0.4	A18-012-SB-5	(3.5-5.3') very dark cohesion	SLAG, SAND and GRAVEL sized, medium dense, a gray and gray, dry to very moist, no plasticity, no	SW/GW	
5-		0.3		(5.3-6.2')	CLAY with trace SAND, soft, grayish brown and	-	
6- -		0.0		black, ve (6.2-16')	ry moist, low plasticity, cohesive CLAY, hard to very firm, pale brown and reddish	CL	
7-	100	3.7		yellow, d	ry, low plasticity, cohesive		
8-	100	0.7					
9-		1.9					
10-		1.8	A18-012-SB-10				
'0		0.0					
11-		0.0				CL	
12-	100	0.0					
13-		0.0					
14 — -		0.0					
15-							
16-		-		(16-20') \$	SAND, very fine to medium, medium dense, reddish		
17-		-		yellow the cohesion	en yellow at 17.6' bgs, wet, no plasticity, no		Wet at 17.2' bgs
18-	56	0.0				sw	
19-		0.0					
20-		0.3		End of B	oring		
				LIIG OI DI	omig		

Total Borehole Depth: 20' bgs due to water

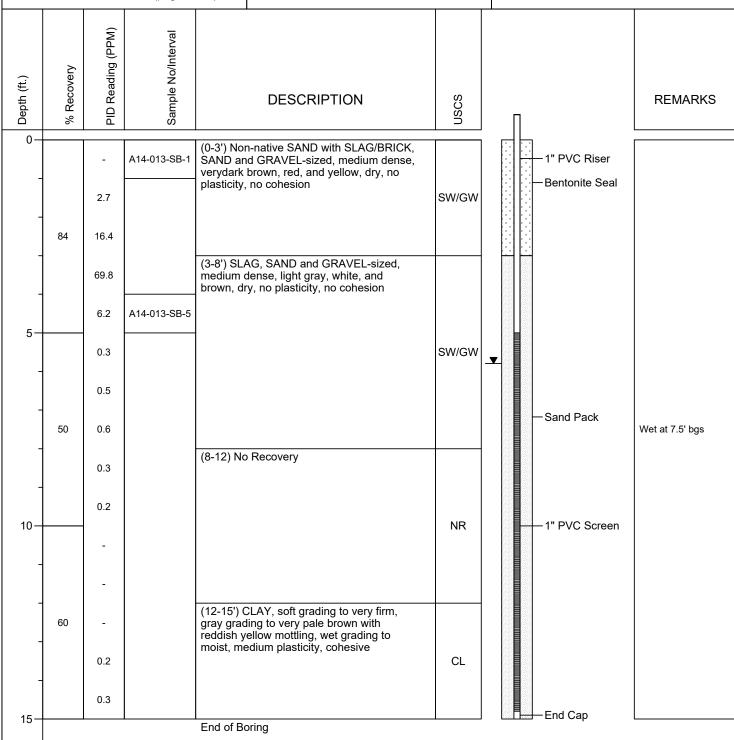
Boring ID: A18-013-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD


ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Soil Boring Installation Date : 04/28/2020 Piezometer Installation Date : 04/28/2020 Casing/Riser/Screen Type : PVC **Borehole Diameter** : 2.25' Riser/Screen Diameter : 1"

Northing (US ft) : 571939.78 Easting (US ft) : 1463965.85 Static DTW : 11.41' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 15' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface

\|mdfs01\Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boring logs\\2_bor Logs\A18-013-SB PZ.bor

Riser Stickup: 2.81' ags

Riser: 0 - 5' bgs

Screen: 5 - 15' bgs [Slot Size: 0.010"] Sand Pack: 3 - 15' bgs [Grain Size: WG #2]

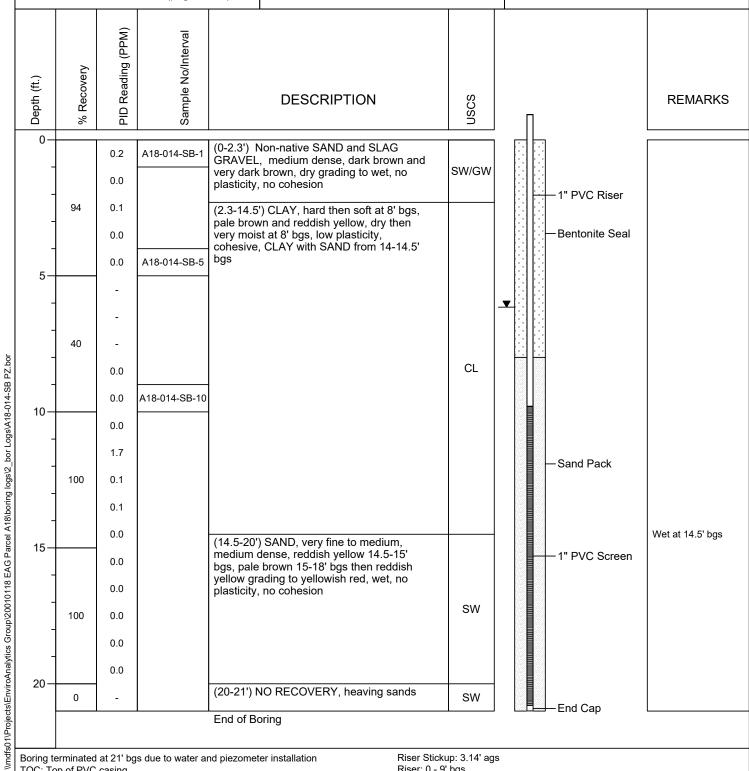
Bentonite Seal: 0 - 3' bgs [Grain Size: bentonite chips]

Boring ID: A18-014-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118


Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Soil Boring Installation Date : 05/04/2020 Piezometer Installation Date : 05/04/2020 Casing/Riser/Screen Type : PVC **Borehole Diameter** : 2.25' Riser/Screen Diameter : 1"

Northing (US ft) : 572387.84 Easting (US ft) : 1465209.12 Static DTW : 12.43' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 21' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface Riser Stickup: 3.14' ags

Riser: 0 - 9' bgs

Screen: 9 - 21' bgs [Slot Size: 0.010"] Sand Pack: 7 - 21' bgs [Grain Size: WG #2]

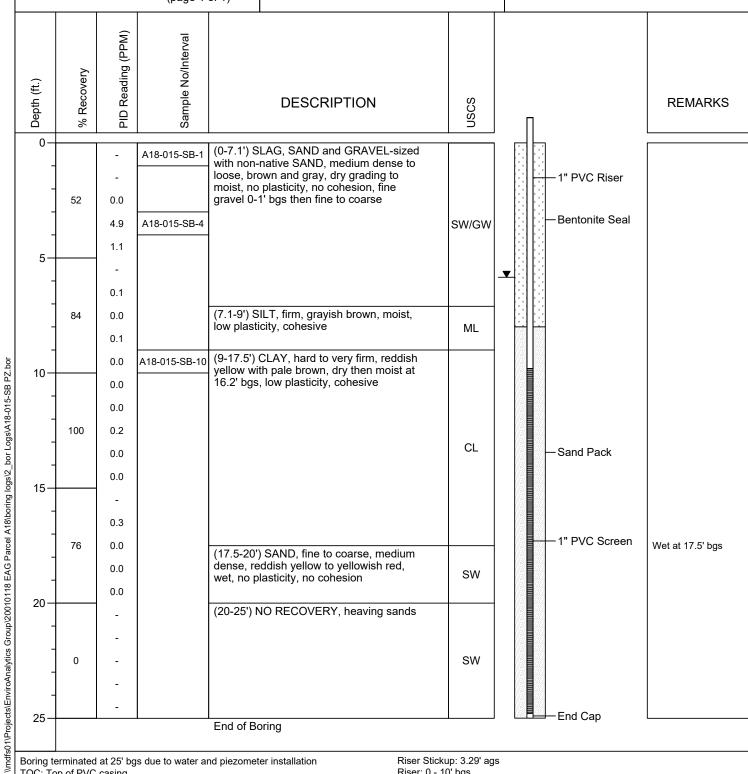
Bentonite Seal: 0 - 7' bgs [Grain Size: bentonite chips]

Boring ID: A18-015-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118


Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD

ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese **Drilling Equipment** : Geoprobe 7822DT Soil Boring Installation Date : 05/04/2020 Piezometer Installation Date : 05/04/2020 Casing/Riser/Screen Type : PVC **Borehole Diameter** : 2.25" Riser/Screen Diameter : 1"

Northing (US ft) : 572420.10 Easting (US ft) : 1464893.48 Static DTW : 12.42' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 25' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface Riser Stickup: 3.29' ags Riser: 0 - 10' bgs

Screen: 10 - 25' bgs [Slot Size: 0.010"] Sand Pack: 8 - 25' bgs [Grain Size: WG #2] Bentonite Seal: 0 - 8' bgs [Grain Size: bentonite chips]

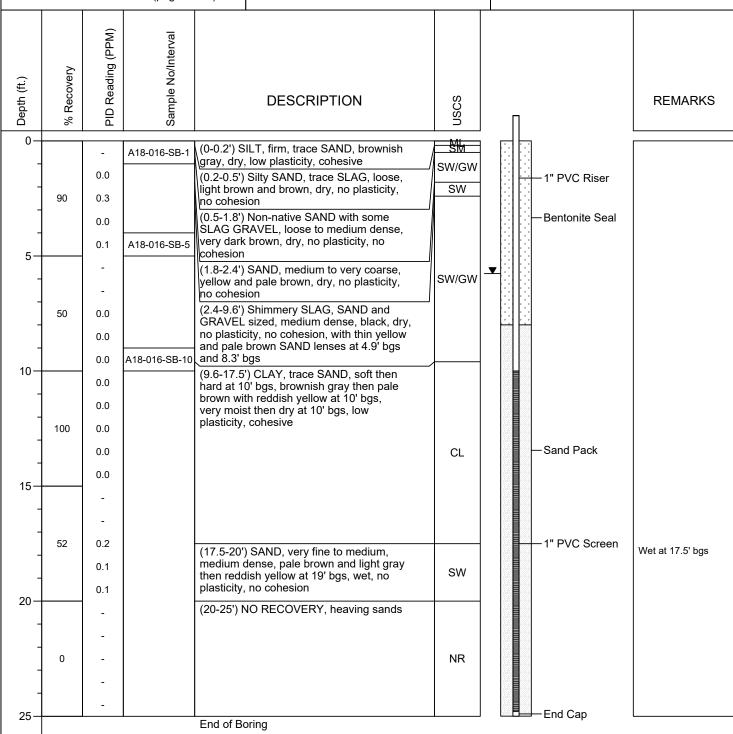
Boring ID: A18-016-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18
Site Location : Sparrows Point, MD


ARM Representative : L. Perrin
Checked by : M. Hritz, E.I.T.

Drilling Company : GSI
Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT

Soil Boring Installation Date : 05/04/2020
Piezometer Installation Date : 05/04/2020
Casing/Riser/Screen Type : PVC
Borehole Diameter : 2.25"
Riser/Screen Diameter : 1"

Northing (US ft) : 572454.52
Easting (US ft) : 1465393.18
Static DTW : 11.35' TOC
No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 25' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface

\|mdfs01\|Projects\EnviroAnalytics Group\20010118 EAG Parcel A18\boring logs\2_bor Logs\A18-016-SB PZ.bor

Riser Stickup: 2.79' ags Riser: 0 - 10' bgs

Screen: 10 - 25' bgs [Slot Size: 0.010"] Sand Pack: 8 - 25' bgs [Grain Size: WG #2]

Bentonite Seal: 0 - 8' bgs [Grain Size: bentonite chips]

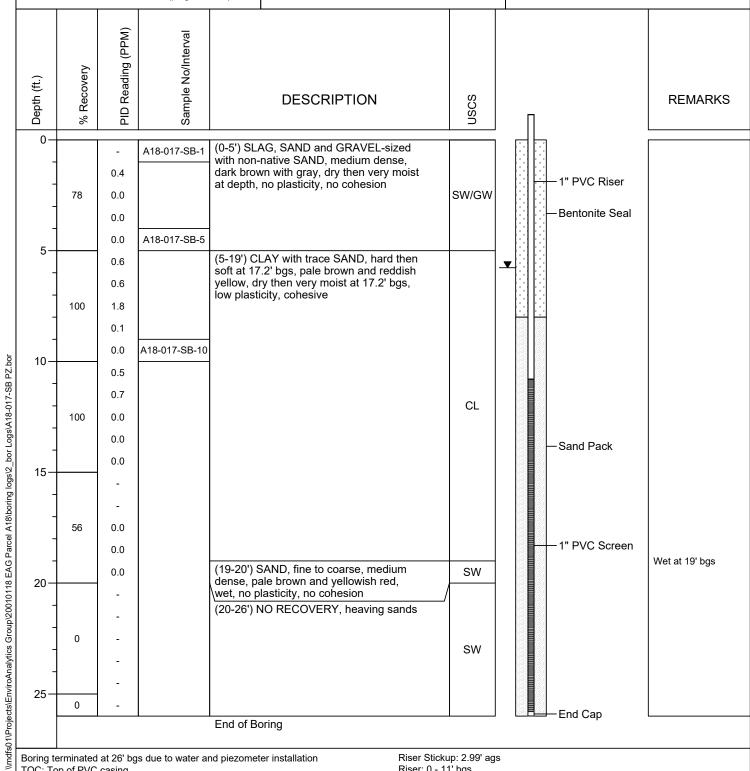
Boring ID: A18-017-SB/PZ

(page 1 of 1)

Client : Tradepoint Atlantic

ARM Project No. : 20010118

Project Description : Sparrows Point - Parcel A18 Site Location : Sparrows Point, MD


ARM Representative : L. Perrin Checked by : M. Hritz, E.I.T.

Drilling Company : GSI

Driller : D. Marchese

Drilling Equipment : Geoprobe 7822DT Soil Boring Installation Date : 05/04/2020 Piezometer Installation Date : 05/04/2020 Casing/Riser/Screen Type : PVC **Borehole Diameter** : 2.25' Riser/Screen Diameter : 1"

Northing (US ft) : 572366.00 Easting (US ft) : 1465040.42 Static DTW : 11.75' TOC No LNAPL or DNAPL detected at 0 or 48 hours

Boring terminated at 26' bgs due to water and piezometer installation

TOC: Top of PVC casing DTW: Depth to water bgs: Below ground surface Riser Stickup: 2.99' ags Riser: 0 - 11' bgs

Screen: 11 - 26' bgs [Slot Size: 0.010"]

Sand Pack: 9 - 26' bgs [Grain Size: WG #2] Bentonite Seal: 0 - 9' bgs [Grain Size: bentonite chips]

APPENDIX C

August 25, 2020

Mr. Taylor Smith, P.E. ARM Group, Inc. 9175 Guilford Road, Suite 310 Columbia, MD 21046

Re: Sparrows Point Well Survey

Sparrows Point, MD

Triad Engineering Job No. 03-15-0343

Mr. Smith:

Below are the specified surveyed wells and piezometers, date of last field work completed on August 18th, 2020. The coordinate values shown were derived from G.P.S. observations based on National Geodetic Surveys stations "GIS 1", PID AC7684 and "GIS 2", PID AC7685 which purport to be on NAD83(2011) Maryland Grid coordinate system with NAVD88 (AMSL) elevations.

DESCRIPTION	NORTHING	EASTING	TOP ELEVATION (CASING UNLESS NOTED)	GROUND (NAIL SET) AT WELL/ PIEZOMETER	NOTES
A18-002-PZ	572569.453	1465708.832	17.97	14.88	GROUND/CONCRETE /PAVEMENT*
A18-008-PZ	572661.852	1465250.001	15.66	12.56	GROUND/CONCRETE /PAVEMENT*
A18-009-PZ	574193.036	1465577.968	24.10	21.46	GROUND/CONCRETE /PAVEMENT*
A18-011-PZ	572933.288	1466166.360	15.43	11.97	GROUND/CONCRETE /PAVEMENT*
A18-013-PZ	571940.569	1463964.857	13.65	10.87	GROUND/CONCRETE /PAVEMENT*
A18-014-PZ	572384.121	1465210.618	18.29	15.07	GROUND/CONCRETE /PAVEMENT*
A18-015-PZ	572414.990	1464893.383	17.57	14.26	GROUND/CONCRETE /PAVEMENT*
A18-016-PZ	572448.780	1465393.426	17.24	14.41	GROUND/CONCRETE /PAVEMENT*
A18-017-PZ	572359.727	1465042.076	17.43	14.37	GROUND/CONCRETE /PAVEMENT*

^{*} GROUND ELEVATION WAS SHOT AT NAIL SET OR MARKED POINT ON CONCRETE OR PAVEMENT.

APPENDIX D

Parcel A18 - PID Calibration Log

PROJECT NAME	: Area A, Parc	cel A18 Phase II		SAMPLER NAME: L. Perrin					
PROJECT NUMB	ER: 20010118	8		DATE: April 2	2020 - May 2020	PAGE 1 of 1			
DATE/TIME	SAMPLER INITIALS	PID SERIAL#	FRESH AIR CAL	STANDARD	STANDARD CONCENTRATION	METER READING	COMMENTS		
4/28/2020 8:45	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0	-		
4/29/2020 10:10	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0	-		
5/1/2020 8:45	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0	-		
5/4/2020 8:45	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0	-		

APPENDIX E

I	Low Flow Perman	_	_		ARM Group Inc. Earth Resource Engineers and Consultants					
	Tem		115							
Project Name:	The state of the s	hase			Project Number: 20010118					
Well Number:	The second second	002	-PZ		Date:		86 9	(20	-	
Well Diameter (One Well V					
Depth to Produc		JA			QED Contro	-	3:			
Depth to Water		12.95	>		Flow Rate (1			1/0		
Product Thickne		MA			Length of tin			40		
Depth to Botton	n (ft):	187	0	DIDCI	NG RECORI			32U,200176571525	a de sta de la composite	
	EALE/STIETAN				Specific	Dissolved				
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) $\pm 10\%$ or < 5	Comments	
1141	0.2	12.95	30,24	6.84	- 5	2.26	138	overrance		
		dive		~	akaip			9		
1146	0.7	12.97	29.74	5.59	2.503	1.16	163	overrunge		
1151	1,2		29.22		6.504	5.73	_	overroug	-	
115%	1.7		27.83	5.22	0.541	0,69	170	over wife		
1201	2.1	12.97	27.99	5.31	0.539	0.66		querrage		
1206	2,5		28.27		0.542	0,65	164	215.1		
1211	2.8		28,53	5.31	0.541	0.63	165	121.8		
1216	3.)	12.97	The Committee of the Co		0.540	0.80	161	88.6		
1221	3.4	12.97	28,84	5.47	0540	0,93	158	61,0		
			МО	NITORING	SAMPLE R	ECORD				
Sampl	e ID	Time C	Collected		ter/Order	Conta	iner	Perservative	Collected?	
Sumpt	.0 115				-VOCs	3 - 40 m		HCl	X	
					I-GRO	3 - 40 m		HC1	Y	
				TPH	I-DRO	2-1L.	Amber	none	7	
		1			SVOCs	2- 1 L Amber		none	Ý.	
					Grease 2-1 L Amber HCl			/		
1	07/				Metals & 1 - 250 mL Plastic HNO3			HNO3	N	
	7 7		^		ry (total) nt Chromium				1	
\0	Y	l v	U		otal)	1 - 250 m	L Plastic	none	7	
2/0		11/	,		Cyanide	1 - 250 m	L Plastic	NaOH	V	
0/10		\\			Metals &					
1 4/,	Mercury			(Dissolved) Filtered	1 - 250 m	L Plastic	HNO3	Y		
(Dis					nt Chromium solved) Filtered	1 - 250 m	L Plastic	none	Y	
F					СВ	2 - 1 L	Amber	None	N	
			N	Matrix Spik	e				\sim	
				Duplicate					\sim	
Sampled	Ву:	LP	Commer	its:						
	Casing V	olume: 1" I	$D_{\bullet} = 0.041 g$	gal/ft - 2" I.D. ft x	= 0.163 gal/ft - 4 3 gal/ft =	" I.D. = 0.653 (gal)	gal/ft - 6" I.I). = 1.47 gal/ft		

ARM Group Inc. **Low Flow Sampling** Earth Resource Engineers and Consultants Permanent Wells temp Project Number: AIB Phase II 20010118 Project Name: Date: 117/20 Well Number: 54800-81A One Well Volume (gal): Well Diameter (in): Depth to Product (ft): NA **OED Controller Settings:** Flow Rate (mL/min) Depth to Water (ft): 11.66 Length of time Purged (min) 40 Product Thickness (ft): ALM Condition of Pad/Cover: Depth to Bottom (ft): .40 **PURGING RECORD** Dissolved Specific ORP Turbidity pН Volume Conductance Oxygen DTW Temp (NTU) (s.u.) (mV) Comments Purged Time (ms/cm) (mg/L)(°C) (feet) $\pm 10\% \text{ or } < 5$ ± 0.1 ± 10 (gallons) ± 0.3 $\pm 3\%$ 39 0.586 2.01 overmee 0.1 11,72/25,72 1321 5.38 1,29 48 1326 11,72 24,98 0.589 Overrand 0,6 0.84 54 89.4 1331 11.72 23.81 5.34 0 601 1.1 5.32 0.73 58 70,7 1336 11.73 23.64 0.602 1.6 64 0.598 0.61 57.8 1341 11.73 23,96 5.28 2.1 72 5,17 44.7 1346 11.73 19.56 0,667 0.68 2.6 5.08 0.680 35,1 80 11.73 19.23 0,65 351 90 23.5 20,49 5.01 0.669 0,53 1356 11.73 3.6 19.4 4.98 98 11.73 21.30 0.652 0.42 1401 4, MONITORING SAMPLE RECORD Collected? Perservative Time Collected Parameter/Order Container Sample ID HCl 3 - 40 mL VOA TCL-VOCs 3 - 40 mL VOA TPH-GRO HC1 2 - 1 L Amber TPH-DRO none TCL-SVOCs 2-1 L Amber none 2-1 L Amber Oil & Grease **HCl** TAL-Metals & 1 - 250 mL Plastic HNO3 Mercury (total) Hexavalent Chromium 1 - 250 mL Plastic none (total) Total Cyanide 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic HNO3 Field Filtered Hexavalent Chromium 1 - 250 mL Plastic (Dissolved) none Field Filtered PCB 2 - 1 L Amber None Matrix Spike N Duplicate Comments: Sampled By: L(P Casing Volume: 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft gal/ft = (gal) ft x

ARM Group Inc. **Low Flow Sampling** Earth Resource Engineers and Consultants Permanent Wells Als phase 20010112 K Project Number: Project Name: 7/20 Date: Well Number: A18-009-PZ One Well Volume (gal): Well Diameter (in): NA **OED Controller Settings:** Depth to Product (ft): Flow Rate (mL/min) Depth to Water (ft): 18.33 Length of time Purged (min) 25 Product Thickness (ft): NA Condition of Pad/Cover: 26.98 Depth to Bottom (ft): PURGING RECORD Specific Dissolved ORP Turbidity рΗ Volume Oxygen Conductance DTW Temp (NTU) Comments (mV) (s.u.) Purged Time (mg/L)(ms/cm) (feet) (°C) $\pm 10\%$ or < 5 ± 10 ± 0.1 (gallons) ± 3% ± 0.3 7.63 0.586 3.72 -10 210.1 19.45 24,16 1154 0,1 60,9 19.45 24.14 90 0.572 2.19 1159 0 6 6.65 51.5 2-64 19.45 24,20 109 6.60 0.570 1204 1.1 49.7 19.45 23.92 120 0.573 2.54 1209 6.56 1,6 52.0 656 0.563 2-38 127 1214 19,45 24,46 2.1 53.9 123 19.45 23.97 6.55 0,572 2.39 1219 MONITORING SAMPLE RECORD Collected? Container Perservative Time Collected Parameter/Order Sample ID **HCl** 3 - 40 mL VOA TCL-VOCs 3 - 40 mL VOA HC1 TPH-GRO 2 - 1 L Amber TPH-DRO none 2-1 L Amber TCL-SVOCs none 2-1 L Amber HC1 Oil & Grease TAL-Metals & 18-009-P2 1 - 250 mL Plastic HNO3 # N Mercury (total) Hexavalent Chromium 1 - 250 mL Plastic none (total) 1 - 250 mL Plastic Total Cyanide NaOH TAL-Metals & 1 - 250 mL Plastic Mercury (Dissolved) HNO3 Field Filtered Hexavalent Chromium 1 - 250 mL Plastic none (Dissolved) Field Filtered PCB 2 - 1 L Amber None N Matrix Spike Duplicate Comments: LLE Sampled By: _ Casing Volume: 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft gal/ft = (gal) ft x

I	Low Flow Permane	ent We	_		ARM Group Inc. Earth Resource Engineers and Consultants						
Project Name:	A13P		TI		Project Number: 20010118						
Well Number:	A18-				Date:			20			
Well Diameter (One Well Vo	olume (gal):	N I				
Depth to Produc		7			QED Contro	ller Setting	s:				
Depth to Water		3.02			Flow Rate (1						
Product Thickne	COLUMN TWO IS NOT THE OWNER.	A			Length of tit		min) \supset	25			
Depth to Botton		2		Condition of							
Departo Botton					NG RECORI						
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments		
1421	0.1		27.92	11,29	0.689	5.80	-101	24,6			
1426	0.5	13.02	26.77	11.14	0.706	3.92	-120	15.4			
1431	0.9	13.02	24.02	11.15	0,709	3.83	-115	7.96			
12436	1.3		26.35	11.14	0,703	3,49	-113	4.98			
1441	1.7		26.46	11.16	0.698	3.70	-(13	4.02			
1446	2.1	13.02	26.64	11.117	0.691	3.60	-114	2.11			
NEW THE PARTY OF T			МО	NITORING	SAMPLE F	RECORD			POWER STATE		
Sampl	le ID	Time C	Collected	Parame	Parameter/Order		ainer	Perservative	Collected?		
		1		TCL-VOCs		3 - 40 mL VOA		HCl	У		
1				TPH-GRO		3 - 40 mL VOA		HC1	У		
				TPH-DRO		2 - 1 L Amber		none	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
					·SVOCs	2-1 L Amber		none	<u> </u>		
1				Oil & Grease		2-1 L	Amber	HC1			
l .			1		Metals &	1 - 250 m	L Plastic	HNO3	\sim		
	102	14	5	Hexavaler	ry (total) nt Chromium			none	7		
\	1 1	,			otal) Cyanide	1 - 250 m	L Plastic	NaOH	4		
1 ~ (Q)					Metals &	250 11		114011	/		
IN,	R18.011-PZ			Mercury	(Dissolved) Filtered	1 - 250 m	nL Plastic	HNO3	У		
Нех		(Dis	nt Chromium solved) Filtered		nL Plastic	none	Y				
				F	РСВ	2 - 1 L	Amber	None	N		
			1	Matrix Spik		2 110		1.0.40	N.		
			1	Duplicate	20 				1/4		
Comments:											
Sampled	By:										
	Casing \	/olume: 1"]	$\mathbf{I.D.} = 0.041$	gal/ft - 2" I.D. ft x	= 0.163 gal/ft - 4 gal/ft =	" I.D. = 0.653 (gal)	gal/ft - 6" I. l	$\mathbf{D}_{\bullet} = 1.47 \text{ gal/ft}$			

]		ARM Group Inc. Earth Resource Engineers and Consultants							
Project Name:	AIB P	hase:	11=		Project Nun	nber:	200	910118	
Well Number:		013-			Date:		7191		
Well Diameter					One Well V	olume (gal)			
Depth to Produc	ct (ft):	NA			QED Contro	oller Setting	s: -		
Depth to Water		-33			Flow Rate (mL/min)			
Product Thickn		NK			Length of ti	me Purged (min)	25	
Depth to Bottor		7.51			Condition o				
		HHRU NI	in person	PURGI	NG RECOR	D	Y mizs		
	Volume			nU	Specific	Dissolved	ORP	Turbidity	
Time	Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	(mV) ± 10	(NTU) ± 10% or < 5	Comments
935	0,2	12,80	25.90	6-70	0,436	4.51	-86	172.3	
940	0.7	12.83	26.33	6.78	0.410	4.25	-96	89,5	
945	1.2	12-83	26.84		0.394	4,21	-98	33,7	
950	1.6	12.83	27.13		0.386	4,68	-98	10,7	
955	2-0	12.93	27.31	6.87	0.342	412	-97	9.3	
1000	2.4	1283	27.49	6.89	0.379	4110	-97	8.7	
			MO	NITORING	SAMPLE R	ECORD			
Sample	e ID	Time C	ollected	Parame	ter/Order	Conta	niner	Perservative	Collected?
				TCL	-VOCs	3 - 40 m		HC1	\/
					-GRO	3 - 40 m		HCl	\ <u>\</u>
					-DRO	2 - 1 L		none	$\overline{}$
				TCL-SVOCs		2-1 L Amber		none	Ċ.
		l		Oil &	Grease 2-1 L Amber HCl			5/	
	-11			TAL-N				41.1	
	RU		/		ry (total) 1 - 250 mL Plastic HNO3				勢り
03		100		(to	t Chromium otal)	1 - 250 m		none	N
10		10			Cyanide	1 - 250 m	L Plastic	NaOH	<u> </u>
10/13					Metals &	4 6 50			V.
\ \ \	Oil & TAL-M Mercu Hexavalen (to Total TAL-M Mercury Field :				(Dissolved) Filtered	1 - 250 m	L Plastic	HNO3	Y
		t Chromium	1 250	r Dl. d		1.4			
(Diss					· ·	1 - 250 m	L Plastic	none	y I
					Filtered				f
					CB	2 - 1 L	Amber	None	N
				latrix Spike	2				N_1
				Duplicate					\mathcal{N}
Sampled I	Ву:	P	Commen	ts:					
	Casing V	olume: 1" I.	D. = 0.041 ga		0.163 gal/ft - 4''' gal/ft =		gal/ft - 6" I.D	. – 1.47 gal/ft	

]	Low Flow Permand	ent We	_		ARM Group Inc. Earth Resource Engineers and Consultants				
Project Name:	AIB		2 2		Project Number: 20010118				
Well Number:		014			Date:			(20	
Well Diameter	THE RESERVE AND ADDRESS OF THE PARTY OF THE	011			One Well V	olume (gal):			
Depth to Produc		JA.			QED Contro				
Depth to Water		30			Flow Rate (1				
Product Thickn					Length of ti	-	min)	40	
Depth to Botton		1.15			Condition of			1	
Depth to Botton	Wasing to a second	1.10		PURGI	NG RECORI		77. F300 21		
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
846	Dil	13.31	21.86	4,55	0.601	4.8%	136	overvar 30	·
851	0.6	13.31	71.92	4,59	0.586	1.89	99	derruses	
856	1.1		21.96	4.37	0.577	1,04	100	215-1	
901	1.6		22 09	4.45	0.575	9.90	92	89.7	
906	2.1	13.32	22.26	4.35	0.570	0.80	97	7810	
911	2.6	13,32	22.04	4,91	0.532	0.71	83	80.5	
916	3.1		21,98	4,93	0,585	0.73	79	46,1	
921	3.6		21.96	4.94	0.588	0.70	74	39.5	
976	24 (21.96	4.95	0.5%	0.66	70	26,7	
		200.00	МО	NITORING	SAMPLE R	ECORD			
Sampl	e ID	Time C	Collected	Parame	ter/Order	Conta	ainer	Perservative	Collected?
				TCL	-VOCs	3 - 40 m	L VOA	HCl	У
1				TPH	I-GRO	3 - 40 m	L VOA	HCl	
i .		1		TPH	I-DRO	2 - 1 L	Amber	none	V .
					SVOCs	2- 1 L Amber		none	
					Grease	2-1 L	Amber	HC1	
	07/			TAL-Metals & Mercury (total)		1 - 250 mL Plastic		HNO3	N
, U	1,40	\ \ \	ol4	Hexavaler (to	nt Chromium otal)	1 - 250 m		none	N
0,		"\	, .		Cyanide	1 - 250 m	L Plastic	NaOH	
Mercury			Mercury	Metals & (Dissolved) Filtered	1 - 250 m	L Plastic	HNO3	Y	
Hexavalen (Diss					nt Chromium solved) Filtered	1 - 250 m	L Plastic	none	Y
P					СВ	2 - 1 L	Amber	None	N
	Aatrix Spik	e				У.			
				Duplicate					1
Sampled	By:	P_	Commen	nts:					
	Casing V	olume: 1" I	.D. = 0.041 g	gal/ft - 2" I.D. = ft x	= 0.163 gal/ft - 4" gal/ft =	' I.D. = 0.653 g	gal/ft - 6" 1. I). = 1.47 gal/ft	

Sampling		ARM Group Inc.				
nt Wells		Earth Resource Engineers and Consultants				
		Project Number: 20010118				
		Date:		7/7/	20	
		One Well Vo	olume (gal):			
+		QED Contro	ller Settings	s:		
17						
NA					30	
,90				_		
	PURGI					
DTW Temp (feet) (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
13/8/27.30	5.50	0,509	1.04	74		e
	5.35	0,503				
13,19 27.81	5.33	0.507	6,57			
		0.505				
13.20 28.60	5.46	0.447	0.48	10)	99.6	
MO	NITORING	SAMPLE R	ECORD	N/and		
Time Collected	Parame	eter/Order	Conta	ainer	Perservative	Collected?
	TCL	-VOCs	3 - 40 m	L VOA	HC1	У
				<i>y</i>		
					<u> </u>	
(r5h		TCL-SVOCs		2-1 L Amber		
1500		Matale &			\rightarrow	
		I I - 250 mL Plastic I HNO3			HNO3	N
13/	Hexavaler (t	nt Chromium otal)			none	N
			1 - 250 m	L Plastic	NaOH	У —
Mercur			1 - 250 m	L Plastic	HNO3	Y
	(Dis	solved)		L Plastic	none	Y
					None	N
						N
Duplicate						\mathcal{N}
Commer	nts:					
olume: 1" I.D. = 0.041 g	gal/ft - 2" I.D.	= 0.163 gal/ft - 4	" I.D. = 0.653	gal/ft - 6" I.I). = 1.47 gal/ft	
	Phase II Phase II OIS-PZ NA 90 DTW Temp (°C) 21,19 27,30 13,19 27,40 13,19 28,30 13,20 28,50 13,20 28,54 13,20 28,60 MO Time Collected	## Wells Phose II Ols P2 Purging Purgin	## Wells Phose Project Num Ols - P2 Date: One Well Velocity QED Control Flow Rate (notation of the project Num (feet) PURGING RECORI DTW	Phose Project Number: Pr	Project Number: Q=0 (Project Number:

I	Low Flow Permane	_	_		ARM Group Inc. Earth Resource Engineers and Consultants				
	Ter	S							
Project Name: Well Number:		rase:			Project Num Date:	iber:		10118	
Manager 1		016-	PL		One Well V	oluma (gal)		120	
Well Diameter (QED Contro				
Depth to Produc		A			Flow Rate (1		S: -		
Depth to Water		12.12	,		Length of ti			160	
Product Thickne	. ,	AL			Condition of			40	
Depth to Botton	n (π):	26.13	William Brown	DUDGE	NG RECORI			SALIS SELECTION OF THE PARTY OF	
				FURGI	Specific	Dissolved			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) $\pm 10\%$ or < 5	Comments
1406	0.2	12.27	29.85	6.35	0.345	4.91	37	overrange	
1411	0,7	12,30	30102	6.35	0.345	1.98		overrange	
1416	1,2	12.31	30.40	6.30	0.353	1,33	79	overrange	ı
1421	1.)	1231	29.90	6.64	0,306	1.07	-10	144,2	
1420	22	12.31	30.58	6.65	0.307	1.03	18	98.4	
1431	20	12.31	31.25	6.74	0.295	0.91	-15	74.7	
1436	3.2	12.31	31.63	6.78	0-292	1.02	15	6811	
1441	3.7	12.31	31.84	6.64	0.278	0.86	-34	60.3	
1446	4,2	12,31	31.93	6.74	0.277	0.84	-28	55,2	
			- 172						
5,000			МО	NITORING	SAMPLE R	ECORD	2000	Marine Marine	
Sample	e ID	Time C	Collected		ter/Order	Conta	iner	Perservative	Collected?
Sample	CID	Time	onected		-VOCs	3 - 40 m		HC1	V
1					I-GRO	3 - 40 m		HCl	11
ŀ						-DRO 2 - 1 L Amber none			1
1					SVOCs 2-1 L Amber none				Ž,
		l		Oil &	Grease 2-1 L Amber HCl			4	
					Metals & ry (total)	1 - 250 m	L Plastic	HNO3	N
	RZ	(20)	0	Hexavaler	nt Chromium otal)	1 - 250 m	L Plastic	none	Ν
12	(V)	\'			Cyanide	1 - 250 m	L Plastic	NaOH	У
KIB	Tota TAL Mercur Field					1 - 250 m	L Plastic	HNO3	y
				(Diss	nt Chromium solved) Filtered	1 - 250 m	L Plastic	none	Y
	P	СВ	2 - 1 L	Amber	None	N.			
	Aatrix Spik	e				N			
	Duplicate								N
	,	0	Commen	nts:			_		
Sampled 1	Ву:	W		Dur	sed for 3t) Mu	n p	ror	

ARM Group Inc. **Low Flow Sampling** Earth Resource Engineers and Consultants Permanent Wells temo Project Number: 20010118 ALB Phase III Project Name: 7/8/20 Well Number: A18-017-PZ Date: One Well Volume (gal): Well Diameter (in): QED Controller Settings: Depth to Product (ft): NA Flow Rate (mL/min) Depth to Water (ft): 12.64 Length of time Purged (min) 40+ Product Thickness (ft): NA 28.00 Condition of Pad/Cover: Depth to Bottom (ft): PURGING RECORD Specific Dissolved ORP Turbidity рН Volume DTW Conductance Oxygen Temp (mV) (NTU) Comments (s.u.) Purged Time (ms/cm) (mg/L)(feet) (°C) ± 10 $\pm 10\% \text{ or } < 5$ ± 0.1 (gallons) ± 0.3 $\pm 3\%$ 5,25 0.446 123 overrange 2.74 12.67 27.33 1036 0,1 139.3 0.444 0.89 106 041 5.7 12,67 26.94 4,52 \$100 49.8 4.35 0.441 0,72 1046 1.3 12.67 26.82 84 0.444 32.3 4.23 0.60 1051 2-0 12.67 26.77 0.50 87 28.7 12.67 25,98 5.04 2.7 0,475 1056 12.67 26.57 4.84 0.471 0.46 89 2211 1101 3.4 122 12.67 25,99 4,99 0.535 4.1 0,48 overrange 1106 0.39 4,8 496 0,527 130 12,6724.84 overvouse 129 0.522 0.39 5.5 12.67 27.14 4.95 overnas 1116 longer to clear tubidit MONITORING SAMPLE RECORD Container Perservative Collected? Sample ID Time Collected Parameter/Order TCL-VOCs 3 - 40 mL VOA HC1 3 - 40 mL VOA HC1 TPH-GRO TPH-DRO 2 - 1 L Amber none TCL-SVOCs 2-1 L Amber none 2-1 L Amber Oil & Grease HC1 TAL-Metals & K18,011,6 1 - 250 mL Plastic HNO3 Mercury (total) Hexavalent Chromium 1 - 250 mL Plastic none (total) 1 - 250 mL Plastic Total Cyanide NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic HNO3 Field Filtered Hexavalent Chromium 1 - 250 mL Plastic (Dissolved) none Field Filtered **PCB** 2 - 1 L Amber None Matrix Spike Duplicate Comments: Sampled By: Casing Volume: 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft ft x gal/ft =

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name	Area B Parcel	A18 Phase II	Date_	07-07-20	
Weather	90s, Sunny				
Calibrated by_	L. Perrin	Instrument (Ser	ial Number)_	Horiba U-52 (2BOMSAX	K 4)
-				Lamotte 2020t (1223-131	19)

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard 4.49 uS/cm	4.49	77 F	-	90 F¥
Specific Conductance Standard #2	-		-	
pH (7)	-		-	
pH (4)	4.01		-	
pH(10)	-		-	
ORP Zobel Solution (240 mV)	-		-	
Dissolved Oxygen 100% water saturated air mg/L	8.98¥		-	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	-		-	
Barometric Pressure mm Hg	779.78		-	
Turbidity #1 (0 NTU)	0.0		-	
Turbidity #2 (1 NTU)	1.0		-	
Turbidity #3 (10 NTU)	10		-	

[¥] Dissolved Oxygen were outside of the calibration acceptance criteria. Temperature is an estimate. Values displayed on field purge logs may be inaccurate.

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name	Area B Parcel	A18 Phase II Date_	07-08-20
Weather	90s, Sunny		
Calibrated by_	L. Perrin	Instrument (Serial Number)	Horiba U-52 (2BOMSAX4)
-			Lamotte 2020t (1223-1319)

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard 4.49 uS/cm	4.48	76 F	-	90 F¥
Specific Conductance Standard #2	-		-	
pH (7)	-		-	
pH (4)	4.00		-	
pH(10)	-		_	
ORP Zobel Solution (240 mV)	-		-	
Dissolved Oxygen 100% water saturated air mg/L	9.51 [¥]		-	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	-		-	
Barometric Pressure mm Hg	762.51		-	
Turbidity #1 (0 NTU)	0.0		-	
Turbidity #2 (1 NTU)	1.0		-	
Turbidity #3 (10 NTU)	10		-	

[¥] Dissolved Oxygen were outside of the calibration acceptance criteria. Temperature is an estimate. Values displayed on field purge logs may be inaccurate.

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name	Area B Parcel A	A18 Phase II Date_	07-09-20
Weather	90s, Sunny		
Calibrated by_	L. Perrin	Instrument (Serial Number)	Horiba U-52 (2BOMSAX4)
-			Lamotte 2020t (1223-1319)

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard 4.49 uS/cm	4.49	78 F	-	90 F¥
Specific Conductance Standard #2	-		-	
pH (7)	-		-	
pH (4)	4.00		-	
pH(10)	-		-	
ORP Zobel Solution (240 mV)	-		-	
Dissolved Oxygen 100% water saturated air mg/L	9.41¥		-	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	-		-	
Barometric Pressure mm Hg	761.75		-	
Turbidity #1 (0 NTU)	0.0		-	
Turbidity #2 (1 NTU)	1.0		-	
Turbidity #3 (10 NTU)	10		-	

[¥] Dissolved Oxygen were outside of the calibration acceptance criteria. Temperature is an estimate. Values displayed on field purge logs may be inaccurate.

APPENDIX F

Parcel A18 - IDW Drum Log

Drum Identification Number	Designation	Activity/Phase	Contents	Open Date
1391-Decon water-4/14/20-B24/A14/A18/A17/B20/B22/B19	Non-Haz	Parcel A18 Phase II Investigation	Water	4/14/2020
1395-PPE-4/22/20-A14/A18	Non-Haz	Parcel A14 Phase II Investigation	PPE	4/22/2020
1396-Soil-4/28/20-A18	Non-Haz	Parcel A18 Phase II Investigation	Soil	4/28/2020
1397-Nitric Acid-4/20/20-A14/B24/A18/A17/B20	Non-Haz	Parcel A18 Phase II Investigation	Nitric Acid	4/20/2020
1398-Liners-4/28/20-A18	Non-Haz	Parcel A18 Phase II Investigation	Liners	4/28/2020
1416-Purge Water-7/7/20-A18/B20	Non-Haz	Parcel A18 Phase II Investigation	Water	7/7/2020

CRRGPFKZ'I ''

QA/QC Tracking Log

<u>Trip</u> <u>Blank:</u>	Date:	Sample IDs:		<u>Trip</u> Blank:	Date:	Sample IDs:	
TB1		1) A18-013-SB-1				1) A18-014-SB-5	
		2) A18-013-SB-5		TB1	5/4/2020	2) A18-014-SB-10	
		3) A18-007-SB-1		TB1&2	5/7/2020	3) A18-019-SD	
		4) A18-007-SB-4				4) A18-021-SD-1	
		5) A18-006-SB-1		TB1&2	5/13/2020	5) A18-020-SD-1	
TTD 2	4/28/2020	6) A18-006-SB-5				6) A18-018-SD-1	
TB2		7) A18-006-SB-10	Duplicate: A18-007-SB-4			7)	Duplicate: A18-020-SD-1
		8) A18-008-SB-1	Date: 4/28/2020			8)	Date: 5/13/2020
		9) A18-008-SB-5	MS/MSD: A18-012-SB-5			9)	MS/MSD: A18-014-SB-5
		10) A18-008-SB-10	Date: 4/29/2020			10)	Date: 5/4/2020
		11) A18-004-SB-1	Field Blank:			11)	Field Blank:
		12) A18-009-SB-1	Date: 4/28/2020			12)	Date: 5/4/2020
		13) A18-009-SB-5	Eq. Blank:			13)	Eq. Blank:
		14) A18-009-SB-10	Date: 4/28/2020			14)	Date: 5/4/2020
TB1	4/29/2020	15) A18-012-SB-1				15)	
		16) A18-012-SB-5				16)	
		17) A18-012-SB-10				17)	
		18) A18-005-SB-1				18)	
TB1	5/1/2020	19) A18-010-SB-1				19)	
	-,-,	20) A18-011-SB-1				20)	
İ	Ī		1	1		r	,
		1) A18-011-SB-5				1) A18-009-SB-1	-
		2) A18-003-SB-1				2) A18-009-SB-5	QA/QC for PAH Soil Data
		3) A18-003-SB-5			4/29/2020	3) A18-009-SB-10	-
		4) A18-003-SB-10				4) A18-012-SB-1	-
TB1	5/1/2020	5) A18-002-SB-1				5) A18-012-SB-5	_
		6) A18-002-SB-5				6) A18-012-SB-10	
		7) A18-002-SB-10	Duplicate: A18-001-SB-1			7) A18-010-SB-1	Duplicate: A18-012-SB-1
		8) A18-001-SB-1	Date: 5/1/2020			8) A18-011-SB-1	Date: 4/29/2020
		9) A18-001-SB-5	MS/MSD: A10-002-SB-5			9) A18-011-SB-5	MS/MSD: A18-015-SB-1
		10) A18-001-SB-10	Date: 5/1/2020		5 /1 /2020	10) A18-003-SB-1	Date: 4/29/2020
		11) A18-015-SB-1	Field Blank:		5/1/2020	11) A18-003-SB-5	Field Blank:
		12) A18-015-SB-4	Date: 5/1/2020			12) A18-003-SB-10	Date: 5/1/2020
		13) A18-015-SB-10	Eq. Blank:			13) A18-002-SB-1	<u>Eq. Blank:</u>
		14) A18-017-SB-1	Date: 5/1/2020			14) A18-002-SB-5	Date: 5/1/2020
TB1	5/4/2020	15) A18-017-SB-5				15) A18-002-SB-10	-
		16) A18-017-SB-10				16) A18-015-SB-1	_
		17) A18-016-SB-1			E (4/0000	17) A18-015-SB-4	-
		18) A18-016-SB-5			5/4/2020	18) A18-015-SB-10	-
		19) A18-016-SB-10				19) A18-017-SB-1	-
		20) A18-014-SB-1				20) A18-017-SB-5	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

QA/QC Tracking Log

<u>Trip</u> <u>Blank:</u>	Data	Comple IDo		<u>Trip</u> <u>Blank:</u>	Data	Commis IDea	
<u>Blatik.</u>	<u>Date:</u>	Sample IDs:		Dialik.	<u>Date:</u>	Sample IDs:	
		1) A18-017-SB-10	-			1)	
		2) A18-016-SB-1	QA/QC for PAH Soil Data			2)	
	5/4/2020	3) A18-016-SB-5	-			3)	
	3/4/2020	4) A18-016-SB-10	-			4)	
		5) A18-014-SB-1	-			5)	
		6) A18-014-SB-5	D			6)	Dunlington
	5/7/2020	7) A18-014-SB-10 8) A18-019-SD	Duplicate: A8-016-SB-1 Date: 5/4/2020			7) 8)	Duplicate: Date:
	3/1/2020	9) A18-021-SD-1	MS/MSD: A18-016-SB-5			9)	MS/MSD:
	5/13/2020		1			10)	
	3/13/2020	10) A18-020-SD-1	Date: 5/4/2020			•	Date: Field Blank:
		11) A18-018-SD-1	Field Blank:			11)	
		12)	Date: 5/4/2020			12)	Date:
		13)	Eq. Blank:			13)	Eq. Blank:
		14)	Date: 5/4/2020			14)	Date:
		15)				15)	
		16)	-			16)	
		17)	-			17)	
		18)	-			18)	
		19)	-			19) 20)	
		20)				20)	
		1) A18-009-PZ				1)	
TB1	7/7/2020		QA/QC for all groundwater			1)	_
151	77772020		samples			2)	
			-			3)	
TB1	7/8/2020	4) A18-014-PZ	-			4)	
151	77672020	5) A18-017-PZ 6) A18-016-PZ	-			5) 6)	
			Duplicate: A18-017-PZ			7)	Duplicate:
TB1	7/9/2020	7) A18-013-PZ 8) A18-002-PZ	Duplicate: A18-017-PZ Date: 7/8/2020			8)	Date:
151	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		MS/MSD: A18-014-PZ			9)	MS/MSD:
		ĺ	1			,	
		10) 11)	Date: 7/8/2020			10)	Date: Field Blank:
-		12)	Field Blank: Date: 7/8/2020			12)	Date:
		1	Date: //8/2020 Eq. Blank:			13)	Eq. Blank:
		13) 14)	Eq. Blank: Date:			14)	
		15)	Date.			15)	Date:
			-			16)	┥
		16) 17)	-			17)	┥
		18)	-			18)	┥
		19)	-			19)	
			-				┥
	L	20)				20)	

" "		
"	APPENDIX H	

				Number of		Number of	Number of	
Parameter	Parameter	Matrix	Unit	Validated	Detections	Rejected	Non-rejected	Completeness
1 at afficter	Group	Maura	Omt	Results	Detections	Results	Results	Completeness
Cyanide	CN	Soil	mg/kg	20	20	0	20	100.00%
Aluminum	Metal	Soil	mg/kg	20	20	0	20	100.00%
Antimony	Metal	Soil	mg/kg	20	0	0	20	100.00%
Arsenic	Metal	Soil	mg/kg	23	14	0	23	100.00%
Barium	Metal	Soil	mg/kg	20	20	0	20	100.00%
Beryllium	Metal	Soil	mg/kg	20	18	0	20	100.00%
Cadmium	Metal	Soil		20	15	0	20	100.00%
Chromium	Metal	Soil	mg/kg mg/kg	20	20	0	20	100.00%
Chromium VI	Metal	Soil	mg/kg	20	2 19	0	20 20	100.00%
Cobalt	Metal	Soil Soil	mg/kg	20	20	0	20	100.00% 100.00%
Copper	Metal		mg/kg					
Iron	Metal	Soil	mg/kg	20	20	0	20	100.00%
Lead	Metal	Soil	mg/kg	20	20	Ţ.	20	100.00%
Manganese	Metal	Soil	mg/kg	21	21	0	21	100.00%
Mercury Nickel	Metal	Soil	mg/kg	20	13	0	20	100.00%
	Metal	Soil	mg/kg	20	20	0	20	100.00%
Selenium	Metal	Soil	mg/kg	20	3	0	20	100.00%
Silver	Metal	Soil	mg/kg	20	0	0	20	100.00%
Thallium	Metal	Soil	mg/kg	20	4	0	20	100.00%
Vanadium	Metal	Soil	mg/kg	20	20	0	20	100.00%
Zinc	Metal	Soil	mg/kg	20	20	0	20	100.00%
Aroclor 1016	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1221	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1232	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1242	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1248	PCB	Soil	mg/kg	12	1	0	12	100.00%
Aroclor 1254	PCB	Soil	mg/kg	12	1	0	12	100.00%
Aroclor 1260	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1262	PCB	Soil	mg/kg	12	0	0	12	100.00%
Aroclor 1268	PCB	Soil	mg/kg	12	1	0	12	100.00%
PCBs (total)	PCB	Soil	mg/kg	12	0	0	12	100.00%
1,1-Biphenyl	SVOC	Soil	mg/kg	20	4	0	20	100.00%
1,2,4,5-Tetrachlorobenzene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2,4,5-Trichlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2,4,6-Trichlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2,4-Dichlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2,4-Dimethylphenol	SVOC	Soil	mg/kg	20	1	2	18	90.00%
2,4-Dinitrophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2,4-Dinitrotoluene	SVOC	Soil	mg/kg	20	1	0	20	100.00%
2,6-Dinitrotoluene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
2-Chloronaphthalene	SVOC	Soil	mg/kg	20	1	0	20	100.00%
2-Chlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
2-Methylnaphthalene	SVOC	Soil	mg/kg	20	15	0	20	100.00%
2-Methylphenol	SVOC	Soil	mg/kg	20	1	2	18	90.00%
2-Nitroaniline	SVOC	Soil	mg/kg	20	0	0	20	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Soil	mg/kg	20	2	2	18	90.00%
3,3'-Dichlorobenzidine	SVOC	Soil	mg/kg	20	0	0	20	100.00%
4-Chloroaniline	SVOC	Soil	mg/kg	20	0	0	20	100.00%
4-Nitroaniline	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Acenaphthene	SVOC	Soil	mg/kg	20	14	0	20	100.00%
Acenaphthylene	SVOC	Soil	mg/kg	20	16	0	20	100.00%
Acetophenone	SVOC	Soil	mg/kg	20	1	0	20	100.00%
Anthracene	SVOC	Soil	mg/kg	20	18	0	20	100.00%
Benz[a]anthracene	SVOC	Soil	mg/kg	20	18	0	20	100.00%

				Number of		Number of	Number of	
Parameter	Parameter	Matrix	Unit	Validated	Detections	Rejected	Non-rejected	Completeness
1 at afficter	Group	Maura	Cilit	Results	Detections	Results	Results	Completeness
Benzaldehyde	SVOC	Soil	mg/kg	20	4	0	20	100.00%
Benzo[a]pyrene	SVOC	Soil	mg/kg	21	20	0	21	100.00%
Benzo[b]fluoranthene	SVOC	Soil	mg/kg	20	18	0	20	100.00%
Benzo[g,h,i]perylene	SVOC	Soil	mg/kg	20	19	0	20	100.00%
Benzo[k]fluoranthene	SVOC	Soil	mg/kg	20	19	0	20	100.00%
bis(2-chloroethoxy)methane	SVOC	Soil	mg/kg	20	0	0	20	100.00%
bis(2-Chloroethyl)ether	SVOC	Soil	mg/kg	20	0	0	20	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Soil	mg/kg	20	0	0	20	100.00%
bis(2-Ethylhexyl)phthalate	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Caprolactam	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Carbazole	SVOC	Soil	mg/kg	20	7	0	20	100.00%
				20	18	0	20	
Chrysene	SVOC	Soil	mg/kg			0		100.00%
Dibenz[a,h]anthracene	SVOC	Soil	mg/kg	20	19	Ţ.	20	100.00%
Diethylphthalate	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Di-n-butylphthalate	SVOC	Soil	mg/kg	20	8	0	20	100.00%
Di-n-ocytlphthalate	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Fluoranthene	SVOC	Soil	mg/kg	20	18	0	20	100.00%
Fluorene	SVOC	Soil	mg/kg	20	14	0	20	100.00%
Hexachlorobenzene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Hexachlorobutadiene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Hexachlorocyclopentadiene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Hexachloroethane	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Indeno[1,2,3-c,d]pyrene	SVOC	Soil	mg/kg	20	20	0	20	100.00%
Isophorone	SVOC	Soil	mg/kg	20	0	0	20	100.00%
Naphthalene	SVOC	Soil	mg/kg	20	16	0	20	100.00%
Nitrobenzene	SVOC	Soil	mg/kg	20	0	0	20	100.00%
N-Nitroso-di-n-propylamine	SVOC	Soil	mg/kg	20	0	0	20	100.00%
N-Nitrosodiphenylamine	SVOC	Soil	mg/kg	20	1	0	20	100.00%
Pentachlorophenol	SVOC	Soil	mg/kg	20	0	2	18	90.00%
Phenanthrene	SVOC	Soil	mg/kg	20	17	0	20	100.00%
Phenol	SVOC	Soil	mg/kg	20	2	2	18	90.00%
Pyrene	SVOC	Soil	mg/kg	20	18	0	20	100.00%
Diesel Range Organics	TPH	Soil	mg/kg	20	19	0	20	100.00%
Gasoline Range Organics	TPH	Soil	mg/kg	20	0	0	20	100.00%
Oil and Grease	TPH	Soil	mg/kg	20	20	0	20	100.00%
1,1,1-Trichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1,2,2-Tetrachloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1,2-Trichloro-1,2,2-	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1,2-Trichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1-Dichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1-Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2,3-Trichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2,4-Trichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dibromo-3-chloropropane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dibromoethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloroethene (Total)	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloropropane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,3-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,4-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
2-Butanone (MEK)	VOC	Soil	mg/kg	6	0	0	6	100.00%
2-Hexanone	VOC	Soil	mg/kg	6	0	0	6	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Soil	mg/kg	6	0	0	6	100.00%
Acetone	VOC	Soil	mg/kg	6	0	0	6	100.00%
Acetone	VUC	SOII	mg/kg	Ü	U	U	Ü	100.00%

				Number of		Number of	Number of	
Parameter	Parameter	Matrix	Unit	Validated	Detections	Rejected	Non-rejected	Completeness
1 at afficiet	Group	Matrix	Cint	Results	Detections	Results	Results	Completeness
Benzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Bromodichloromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Bromoform	VOC	Soil	mg/kg	6	0	0	6	100.00%
Bromomethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Carbon disulfide	VOC	Soil	mg/kg	6	1	0	6	100.00%
Carbon tetrachloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chloroform	VOC	Soil		6	0	0	6	100.00%
Chloromethane	VOC	Soil	mg/kg mg/kg	6	0	0	6	100.00%
cis-1,2-Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
cis-1,3-Dichloropropene	VOC VOC	Soil	mg/kg	6	0	0	6	100.00%
Cyclohexane		Soil	mg/kg	6	0	Ţ.	6	100.00%
Dibromochloromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Dichlorodifluoromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Ethylbenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Isopropylbenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methyl Acetate	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methylene Chloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Styrene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Tetrachloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Toluene	VOC	Soil	mg/kg	6	1	0	6	100.00%
trans-1,2-Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
trans-1,3-Dichloropropene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Trichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Trichlorofluoromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Vinyl chloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Xylenes	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,4-Dioxane	VOC/SVOC	Soil	mg/kg	6	0	6	0	0.00%
Cyanide	CN	Water	ug/L	3	0	0	3	100.00%
Aluminum	Metal	Water	ug/L	3	3	0	3	100.00%
Antimony	Metal	Water	ug/L	3	0	0	3	100.00%
Arsenic	Metal	Water	ug/L	3	0	0	3	100.00%
Barium	Metal	Water	ug/L	3	3	0	3	100.00%
Beryllium	Metal	Water	ug/L	3	2	0	3	100.00%
Cadmium	Metal	Water	ug/L	3	3	0	3	100.00%
Chromium	Metal	Water	ug/L	3	0	0	3	100.00%
Chromium VI	Metal	Water	ug/L	3	0	0	3	100.00%
Cobalt	Metal	Water	ug/L	3	3	0	3	100.00%
Copper	Metal	Water	ug/L	3	0	0	3	100.00%
Iron	Metal	Water	ug/L	3	3	0	3	100.00%
Lead	Metal	Water	ug/L	3	0	0	3	100.00%
Manganese	Metal	Water	ug/L	3	3	0	3	100.00%
Mercury	Metal	Water	ug/L	3	0	0	3	100.00%
Nickel	Metal	Water	ug/L	3	3	0	3	100.00%
Selenium	Metal	Water	ug/L	3	0	0	3	100.00%
Silver	Metal	Water	ug/L	3	0	0	3	100.00%
Thallium	Metal	Water	ug/L	3	0	0	3	100.00%
Vanadium	Metal	Water	ug/L ug/L	3	2	0	3	100.00%
Zinc	Metal	Water	ug/L ug/L	3	3	0	3	100.00%
1,1-Biphenyl	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
1,2,4,5-Tetrachlorobenzene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
2,4,5-Trichlorophenol	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
2,4,3-THEIROTOPHEROI	SVUC	vv ater	ug/L	3	U	U	3	100.00%

				Number of		Number of	Number of	
Parameter	Parameter	Matrix	Unit	Validated	Detections	Rejected	Non-rejected	Completeness
	Group			Results		Results	Results	•
2,4,6-Trichlorophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2,4-Dichlorophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2,4-Dimethylphenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2,4-Dinitrophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2,4-Dinitrotoluene	SVOC	Water	ug/L	3	0	0	3	100.00%
2,6-Dinitrotoluene	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Chloronaphthalene	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Chlorophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Methylnaphthalene	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Methylphenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Nitroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Water	ug/L	3	0	0	3	100.00%
3,3'-Dichlorobenzidine	SVOC	Water	ug/L	3	0	1	2	66.67%
4-Chloroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
4-Nitroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
Acenaphthene	SVOC	Water	ug/L	3	0	0	3	100.00%
Acenaphthylene	SVOC	Water	ug/L	3	0	0	3	100.00%
Acetophenone	SVOC	Water	ug/L	3	0	0	3	100.00%
Anthracene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benz[a]anthracene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzaldehyde	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzo[a]pyrene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzo[b]fluoranthene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzo[g,h,i]perylene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzo[k]fluoranthene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
bis(2-chloroethoxy)methane	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
bis(2-Chloroethyl)ether	SVOC	Water	ug/L	3	0	0	3	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
bis(2-Ethylhexyl)phthalate	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Caprolactam	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Carbazole	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Chrysene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Dibenz[a,h]anthracene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Diethylphthalate	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Di-n-butylphthalate	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Di-n-ocytlphthalate	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Fluoranthene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Fluorene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Hexachlorobenzene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Hexachlorobutadiene	SVOC	Water	ug/L ug/L	3	0	0	3	100.00%
Hexachlorocyclopentadiene	SVOC	1		3	0	0	3	100.00%
Hexachloroethane	SVOC	Water Water	ug/L	3	0	0	3	100.00%
	SVOC		ug/L	3		0		
Indeno[1,2,3-c,d]pyrene		Water	ug/L	3	0	_	3	100.00%
Isophorone	SVOC	Water	ug/L		0	0	3	100.00%
Naphthalene	SVOC	Water	ug/L	3	0	0	3	100.00%
Nitrobenzene	SVOC	Water	ug/L	3	0	0	3	100.00%
N-Nitroso-di-n-propylamine	SVOC	Water	ug/L	3	0	0	3	100.00%
N-Nitrosodiphenylamine	SVOC	Water	ug/L	3	0	0	3	100.00%
Pentachlorophenol	SVOC	Water	ug/L	3	1	0	3	100.00%
Phenanthrene	SVOC	Water	ug/L	3	0	0	3	100.00%
Phenol	SVOC	Water	ug/L	3	0	0	3	100.00%
Pyrene	SVOC	Water	ug/L	3	0	0	3	100.00%
Diesel Range Organics	TPH	Water	ug/L	3	3	0	3	100.00%
Gasoline Range Organics	TPH	Water	ug/L	3	0	0	3	100.00%
Oil and Grease	TPH	Water	ug/L	3	0	0	3	100.00%

Natrix Croup Valente Validate Vali					Number of		Number of	Number of	
New	Parameter	Parameter	Matrix	Unit		Detections			Completeness
1.1.1-Trickhloroethane		Group					•		C 0 P
11.12-Trichloro-12.2-	1,1,1-Trichloroethane	VOC	Water	ug/L		0		3	100.00%
1.1.2-Trichloroethane	1,1,2,2-Tetrachloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1.1-Dichloroethane	1,1,2-Trichloro-1,2,2-	VOC	Water	ug/L	3	0	0	3	100.00%
1.1-Dichloroethane	1,1,2-Trichloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1.1-Dichloroethene	1,1-Dichloroethane		Water			0	0		
1,2,3-Trichlorobenzene	1,1-Dichloroethene		Water		3	1	0	3	
1.2.4-Dibromo-3-chloropropane		VOC	Water			0	0	3	
1.2-Dibromo-3-chloropropane							0		
12-Dirhornoethane	, ,								
1.2-Dichlorobenzene	· 1 1								
1,2-Dichloroethane	,								
1,2-Dichloroethene (Total)	,						Ţ.		
1,2-Dichloropropane	,						·	_	
1,3-Dichlorobenzene									
1.4-Dichlorobenzene									
2-Butanone (MEK) VOC Water ug/L 3 0 0 3 100.00% 2-Hexanone VOC Water ug/L 3 0 0 3 100.00% 4-Methyl-2-pentanone (MIBK) VOC Water ug/L 3 0 0 3 100.00% Acetone VOC Water ug/L 3 0 0 3 100.00% Benzene VOC Water ug/L 3 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 3 100.00% Bromoform VOC Water ug/L 3 0 0 3 100.00% Bromomethane VOC Water ug/L 3 0 0 3 100.00% Bromodichane VOC Water ug/L 3 0 0 3 100.00% Carbon disulfde VOC Water ug/L 3 0 0 3 100.00% Chlorobenzene	,								
2-Hexanone VOC Water ug/L 3 0 0 3 100.00% 4-Methyl-2-pentanone (MIBK) VOC Water ug/L 3 0 0 0 3 100.00% A-methyl-2-pentanone (MIBK) VOC Water ug/L 3 0 0 0 3 100.00% Benzene VOC Water ug/L 3 0 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 0 3 100.00% Bromodichloromethane VOC Water ug/L 3 0 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 0 3 100.00% Chlorobethane VOC Water ug/L 3 0 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 0 3 100.00% Chlorobethane VOC Water ug/L 3 0 0 0 3 100.00% Chlorobethane VOC Water ug/L 3 0 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 0 3 100.00% Cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 0 3 100.00% Cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 0 3 100.00% Dibrhorodifluoromethane VOC Water ug/L 3 0 0 0 3 100.00% Dibrhorodifluoromethane VOC Water ug/L 3 0 0 0 3 100.00% Dibrhorodifluoromethane VOC Water ug/L 3 0 0 0 3 100.00% Benzere VOC Water ug/L 3 0 0 0 3 100.00% Methyl erbuyl ether (MTBE) VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 0 3 100.00% Trichlorothene VOC Water ug/L 3 0 0 0 3 100.00% Trichlorothene VOC Water ug/L 3 0 0 0 3 100.00% Trichlorothene VOC Water ug	,						Ţ.	-	
4-Methyl-2-pentanone (MIBK) VOC Water ug/L 3 0 0 3 100.00% Acetone VOC Water ug/L 3 0 0 3 100.00% Benzene VOC Water ug/L 3 0 0 3 100.00% Bromofichloromethane VOC Water ug/L 3 0 0 3 100.00% Bromoform VOC Water ug/L 3 0 0 3 100.00% Bromomethane VOC Water ug/L 3 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water							·		
Acetone									
Benzene	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `								
Bromodichloromethane VOC Water ug/L 3 0 0 3 100.00% Bromoform VOC Water ug/L 3 0 0 3 100.00% Bromomethane VOC Water ug/L 3 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Carbon tetrachloride VOC Water ug/L 3 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 3 100.00% Chloroferme VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloroformethane VOC Water ug/L 3 0 0 3 100.00% Cis-1,3-Dichlor									
Bromoform VOC Water ug/L 3 0 0 3 100.00% Bromomethane VOC Water ug/L 3 0 0 3 100.00% Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Carbon tetrachloride VOC Water ug/L 3 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 3 100.00% Chlorotethane VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% Cis-1,2-Dichloroptopene VOC Water ug/L 3 0 0 3 100.00% Cis-1,3									
Bromomethane							·		
Carbon disulfide VOC Water ug/L 3 0 0 3 100.00% Carbon tetrachloride VOC Water ug/L 3 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% cis-1,2-Dichloroptropene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Eth									
Carbon tetrachloride VOC Water ug/L 3 0 0 3 100.00% Chlorobenzene VOC Water ug/L 3 0 0 3 100.00% Chloroethane VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloroformethane VOC Water ug/L 3 0 0 3 100.00% Chloropropene VOC Water ug/L 3 1 0 3 100.00% Cis-1,2-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00%									
Chlorobenzene VOC Water ug/L 3 0 0 3 100.00% Chloroethane VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% Cis-1,2-Dichloroethene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00%									
Chloroethane VOC Water ug/L 3 0 0 3 100.00% Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% cis-1,2-Dichloroethene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl							Ţ.	-	
Chloroform VOC Water ug/L 3 0 0 3 100.00% Chloromethane VOC Water ug/L 3 0 0 3 100.00% cis-1,2-Dichloropthene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl certacte VOC Water ug/L 3 0 0 3 100.00%							·		
Chloromethane VOC Water ug/L 3 0 0 3 100.00% cis-1,2-Dichloroethene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC									
cis-1,2-Dichloroethene VOC Water ug/L 3 1 0 3 100.00% cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% documents Cyclohexane VOC Water ug/L 3 0 0 3 100.00% documents Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% documents Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% documents Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% documents Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% documents Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% documents Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% documents Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0									
cis-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl eth- butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Styrene						0	Ţ.		
Cyclohexane VOC Water ug/L 3 0 0 3 100.00% Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl Lett-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Styrene <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Dibromochloromethane VOC Water ug/L 3 0 0 3 100.00% Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl Lert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% trans-1,3-Dichloropropene	cis-1,3-Dichloropropene		Water	ug/L			0		
Dichlorodifluoromethane VOC Water ug/L 3 0 0 3 100.00% Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene	Cyclohexane		Water	ug/L					
Ethylbenzene VOC Water ug/L 3 0 0 3 100.00% Isopropylbenzene VOC Water ug/L 3 0 0 3 100.00% Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC </td <td>Dibromochloromethane</td> <td>VOC</td> <td>Water</td> <td>ug/L</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>100.00%</td>	Dibromochloromethane	VOC	Water	ug/L		0	0		100.00%
Isopropylbenzene		VOC	Water	ug/L		0	0	3	100.00%
Methyl Acetate VOC Water ug/L 3 0 0 3 100.00% Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% <t< td=""><td>Ethylbenzene</td><td>VOC</td><td>Water</td><td>ug/L</td><td>3</td><td>0</td><td>0</td><td>3</td><td>100.00%</td></t<>	Ethylbenzene	VOC	Water	ug/L	3	0	0	3	100.00%
Methyl tert-butyl ether (MTBE) VOC Water ug/L 3 0 0 3 100.00% Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 2 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00% <td>Isopropylbenzene</td> <td>VOC</td> <td>Water</td> <td>ug/L</td> <td>3</td> <td>0</td> <td>0</td> <td>3</td> <td>100.00%</td>	Isopropylbenzene	VOC	Water	ug/L	3	0	0	3	100.00%
Methylene Chloride VOC Water ug/L 3 0 0 3 100.00% Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	Methyl Acetate	VOC	Water	ug/L	3	0	0	3	100.00%
Styrene VOC Water ug/L 3 0 0 3 100.00% Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	Methyl tert-butyl ether (MTBE)	VOC	Water	ug/L	3	0	0	3	100.00%
Tetrachloroethene VOC Water ug/L 3 2 0 3 100.00% Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	Methylene Chloride	VOC	Water	ug/L	3	0	0	3	100.00%
Toluene VOC Water ug/L 3 0 0 3 100.00% trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	Styrene	VOC	Water	ug/L	3	0	0	3	100.00%
trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	Tetrachloroethene	VOC	Water	ug/L	3	2	0	3	100.00%
trans-1,2-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%							0		
trans-1,3-Dichloropropene VOC Water ug/L 3 0 0 3 100.00% Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	trans-1,2-Dichloroethene								
Trichloroethene VOC Water ug/L 3 2 0 3 100.00% Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%									
Trichlorofluoromethane VOC Water ug/L 3 0 0 3 100.00% Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%	, 1 1								
Vinyl chloride VOC Water ug/L 3 0 0 3 100.00% Xylenes VOC Water ug/L 3 0 0 3 100.00%									
Xylenes VOC Water ug/L 3 0 0 3 100.00%		1							
	•								
	1,4-Dioxane	VOC/SVOC	Water	ug/L	3	3	0	3	100.00%

Data validation has been completed for a representative 30% of all samples