# PHASE II INVESTIGATION REPORT

## AREA A: PARCEL A10 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:



**ENVIROANALYTICS GROUP** 1515 Des Peres Road, Suite 300 Saint Louis, Missouri 63131

Prepared By:



**ARM GROUP INC.** 

9175 Guilford Road Suite 310 Columbia, Maryland 21046

ARM Project No. 150298M-5

Respectfully Submitted,

F n/<7

Taylor R. Smith, P.E. Project Engineer

Nul Pets

T. Neil Peters, P.E. Senior Vice President

Revision 1 – July 8, 2019

## **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                                      |
|-------------------------------------------------------|
| 1.1. Site History                                     |
| 1.2. Objectives                                       |
| 2.0 ENVIRONMENTAL SETTING                             |
| 2.1. Land Use and Surface Features                    |
| 2.2. Regional Geology                                 |
| 2.3. Site Geology/Hydrogeology                        |
| 3.0 SITE INVESTIGATION                                |
| 3.1. Sample Target Identification                     |
| 3.2. Geophysics Investigation (Possible UST)          |
| 3.3. Soil Investigation                               |
| 3.4. Groundwater Investigation                        |
| 3.5. Management of Investigation-Derived Waste (IDW)  |
| 4.0 ANALYTICAL RESULTS                                |
| 4.1. Soil Conditions                                  |
| 4.1.1. Soil Conditions: Organic Compounds             |
| 4.1.2. Soil Conditions: Inorganic Constituents        |
| 4.1.3. Soil Conditions: Results Summary               |
| 4.2. Groundwater Conditions                           |
| 4.2.1. Groundwater Conditions: Organic Compounds      |
| 4.2.2. Groundwater Conditions: Inorganic Constituents |
| 4.2.3. Groundwater Conditions: Results Summary        |
| 4.3. Non-Aqueous Phase Liquid (NAPL)                  |
| 5.0 DATA USABILITY ASSESSMENT                         |
| 5.1. Data Verification                                |
| 5.2. Data Validation                                  |
| 5.3. Data Usability                                   |
| 6.0 FINDINGS AND RECOMMENDATIONS                      |
| 6.1. Soil                                             |
| 6.2. Groundwater                                      |
| 6.3. Non-Aqueous Phase Liquid                         |
| 6.4. Recommendations                                  |
| 7.0 REFERENCES                                        |



# TABLE OF CONTENTS (CONT.)

#### **FIGURES**

| Figure 1    | Area A and Area B Parcel Map                        | Following Text |
|-------------|-----------------------------------------------------|----------------|
| Figure 2    | 1916 Shoreline Map                                  | Following Text |
| Figure 3    | Groundwater Sample Locations and Potentiometric Map | Following Text |
| Figure 4    | Soil Boring Final Locations                         | Following Text |
| Figure S-1  | Summary of Exceedances – SVOCs in Soil              | Following Text |
| Figure S-2  | Summary of Exceedances – PCBs in Soil               | Following Text |
| Figure S-3  | Summary of Exceedances – Inorganics in Soil         | Following Text |
| Figure GW-1 | Summary of Exceedances – VOCs in Groundwater        | Following Text |
| Figure GW-2 | Summary of Exceedances – SVOCs in Groundwater       | Following Text |
| Figure GW-3 | Summary of Exceedances – TPH in Groundwater         | Following Text |
| Figure GW-4 | Summary of Exceedances – Inorganics in Groundwater  | Following Text |
| Figure GW-5 | Groundwater Vapor Intrusion Exceedances             | Following Text |

#### TABLES

| Table 1  | Groundwater Elevation Data                        | Following Text |
|----------|---------------------------------------------------|----------------|
| Table 2  | Historical Site Drawing Details                   | Following Text |
| Table 3  | Field Shifted Boring Locations                    | Following Text |
| Table 4  | Characterization Results for Solid IDW            | Following Text |
| Table 5  | Characterization Results for Liquid IDW           | Following Text |
| Table 6  | Summary of Organics Detected in Soil              | Following Text |
| Table 7  | Summary of Inorganics Detected in Soil            | Following Text |
| Table 8  | Summary of Soil PAL Exceedances                   | Following Text |
| Table 9  | Soil PAL Exceedances for Specific Targets         | Following Text |
| Table 10 | Summary of Organics Detected in Groundwater       | Following Text |
| Table 11 | Summary of Inorganics Detected in Groundwater     | Following Text |
| Table 12 | Groundwater Vapor Intrusion Criteria Comparison   | Following Text |
| Table 13 | Groundwater Cumulative Vapor Intrusion Comparison | Following Text |
| Table 14 | Rejected Analytical Soil Results                  | Following Text |



## TABLE OF CONTENTS (CONT.)

#### APPENDICES

| Appendix A | Final Sample Summary Table                                | Following Text |
|------------|-----------------------------------------------------------|----------------|
| Appendix B | Soil Boring Logs                                          | Following Text |
| Appendix C | Groundwater Survey Data                                   | Following Text |
| Appendix D | Geophysics Investigation Field Notes                      | Following Text |
| Appendix E | PID Calibration Log                                       | Following Text |
| Appendix F | Temporary Groundwater Sample Collection Point             |                |
|            | Construction Logs                                         | Following Text |
| Appendix G | Groundwater Purge & Multiparameter Meter Calibration Logs | Following Text |
| Appendix H | Parcel Specific IDW Drum Log                              | Following Text |
| Appendix I | Summary of QA/QC Samples                                  | Following Text |
| Appendix J | Evaluation of Data Completeness                           | Following Text |

#### **ELECTRONIC ATTACHMENTS**

| Soil Laboratory Certificates of Analysis        | Electronic Attachment |
|-------------------------------------------------|-----------------------|
| Soil Data Validation Reports                    | Electronic Attachment |
| Groundwater Laboratory Certificates of Analysis | Electronic Attachment |
| Groundwater Data Validation Reports             | Electronic Attachment |



## **1.0 INTRODUCTION**

ARM Group Inc. (ARM), on behalf of EnviroAnalytics Group (EAG), has completed a Phase II Investigation of a portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area A: Parcel A10 (the Site). Parcel A10 is comprised of 31.7 acres of the approximately 3,100-acre former steel making facility (**Figure 1**). The Site is bounded to the south by a wooded area (within Parcel B7) and residential area beyond Sparrows Point Road, to the north by a stormwater impoundment beyond Warehouse Road, to the west by the former Hot Strip Mill facilities (within Parcel B6), and to the east by commercial/industrial facilities and vegetated areas located beyond the boundary of the Tradepoint Atlantic property.

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan – Area A: Parcel A10. This Work Plan (dated April 21, 2016) was approved by the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) on April 28, 2016 in compliance with requirements pursuant to the following:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

Parcel A10 is part of the acreage that was removed (Carveout Area) from inclusion in the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014. Based on this agreement, the USEPA determined that no further investigation or corrective measures will be required under the terms of the Consent Decree for the Carveout Area. However, the SA reflects that the property within the Carveout Area will remain subject to the USEPA's Resource Conservation and Recovery Act (RCRA) Corrective Action authorities.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the Maryland Department of the Environment Voluntary Cleanup Program (MDE-VCP) was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial), and plans for the property include demolition and redevelopment over the next several years.



#### **1.1. SITE HISTORY**

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

The eastern areas of Parcel A10 were formerly occupied by the Nelson Box Company facility including several lumber storage buildings and sheds. Other smaller buildings and facilities associated with the steel mill (Maintenance of Way Yard, ATEC Storeroom and Shop, Office, and Repair Shop) were also present at the Site. The Nelson Box Company building structure was located directly south of the lumber storage areas, and is presumed to be the former consumer of these materials. The Nelson Box Company provided wood packaging to the steel mill beginning in 1921. Operations included the production of wood pallets, cable/wire reels, and industrial packaging products. Through the years, the company expanded its operations to produce crates, corrugated products, angleboard, and slipsheets, and more recently (post 1990) metal and plastic products. All of the large buildings associated with lumber storage and the Nelson Box Company have been demolished. Several smaller buildings associated with the Maintenance of Way Yard (ATEC Storeroom and Shop, Office, and Repair Shop) still remain at the Site. Numerous rail tracks occupy the central and northern portions of the Site.

#### **1.2.** OBJECTIVES

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. A summary table of the site investigation locations, including the boring identification numbers and the analyses performed, is provided as **Appendix A**. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations.



## 2.0 ENVIRONMENTAL SETTING

#### 2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists primarily of the former Sparrows Point steel mill, but other industrial occupants such as the Nelson Box Company were also historically located at the Site. According to the Phase I Environmental Site Assessment (ESA) prepared by Weaver Boos dated May 19, 2014, the property is zoned Manufacturing Heavy-Industrial Major (MH-IM). Surrounding property zoning classifications (beyond Tradepoint Atlantic) include the following: Manufacturing Light (ML); Resource Conservation (RC); Density Residential (DR); Business Roadside (BR); Business Major (BM); Business Local (BL); and Residential Office (RO). Light industrial and commercial properties are located northeast of the property and northwest of the property across Bear Creek. Residential areas of Edgemere and Fort Howard are located northeast of the property. Residential and commercial areas of Dundalk are located northwest of the property across Bear Creek.

According to topographic maps provided by EAG, the Site is at an elevation of approximately 12 to 20 feet above mean sea level (amsl) in most areas. Elevations at the Site range from 4 to 36 feet amsl across the entire parcel area. In the northwestern corner of the parcel, the ground slopes sharply downward from 36 to 12 feet amsl. Across most of the Site, elevations are fairly uniform and overland flow appears to discharge across the northern boundary of the Site toward the stormwater impoundment located beyond Warehouse Road. According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 5 dated June 1, 2017, runoff waters from Parcel A10 are ultimately directed to the Humphrey Creek Wastewater Treatment Plant (HCWWTP). Surface waters which are collected and treated at the HCWWTP flow through the National Pollutant Discharge Elimination System (NPDES) permitted Outfall 014, which discharges to Bear Creek across the western boundary of the Tradepoint Atlantic property.

#### **2.2. REGIONAL GEOLOGY**

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation and the Patuxent Formation). The Potomac Group



formations are comprised of unconsolidated sediments of varying thicknesses and types, which may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

#### **2.3. SITE GEOLOGY/HYDROGEOLOGY**

Groundcover at the Site is comprised of approximately 95% natural soils and 5% fill materials based on the approximate shoreline of the Sparrows Point Peninsula in 1916, as shown on **Figure 2** (adapted from Figure 2-20 in the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure dated January 1998).

In general, the encountered subsurface geology included natural soils, which included finegrained sediments (clays and silts) and coarse grained sediments (sands). Slag fill materials were encountered at depths of up to 9.5 feet below the ground surface (bgs). Shallow groundwater was observed in soil cores from 5 to 20 feet bgs across the Site. Soil boring logs are provided in **Appendix B**. Please note that unless otherwise indicated, all Unified Soil Classification System (USCS) group symbols provided on the attached boring logs are from visual observations, and not from laboratory testing.

Temporary groundwater sample collection points were installed at 11 locations across the Site to investigate shallow groundwater conditions. One existing historical well (SG06-PDM001) was also sampled during this investigation. The locations of the groundwater sampling points are indicated on **Figure 3**. The temporary groundwater sample collection points and the existing permanent well were surveyed by a Maryland-licensed surveyor. Supporting documentation from the surveys is included in **Appendix C**. A synoptic round of groundwater level measurements was collected on January 9, 2017 from each of the groundwater points included in the parcel-specific sampling plan, with the exception of A10-021-PZ. Sample location A10-021-PZ was observed to be bent at the surface, and a water level measurement could not be obtained due to the damage. Surveyed top of casing (TOC) and ground surface elevations for all applicable locations can be found in **Table 1**, along with the depth to water (DTW) measurements from this date.

A groundwater potentiometric surface map was constructed for the shallow hydrogeologic zone based on the field measurements. The localized potentiometric map for shallow groundwater has been included on **Figure 3**. The groundwater elevation contours indicate that groundwater flows from the southern portion of the Site (groundwater elevation of approximately 17 feet amsl) to the northern portion of the Site (groundwater elevation of approximately 4 feet amsl) toward the stormwater impoundment located beyond Warehouse Road. This flow direction appears to be uniform across the Site, but the groundwater elevations decrease at a much steeper gradient in the southern portion of the Site as compared to the northern portion of the Site (near the presumed discharge location of the stormwater impoundment).



## 3.0 SITE INVESTIGATION

A total of 78 soil samples (from 34 boring locations) and 12 groundwater samples were collected for analysis between July 6, 2016 and July 21, 2016 as part of the Parcel A10 Phase II Investigation. This Phase II Investigation utilized methods and protocols that followed the procedures included in the Quality Assurance Project Plan (QAPP) dated April 5, 2016 which was approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, the selected laboratory and analytical methods, quality control and quality assurance procedures, investigation-derived waste (IDW) management methods, and reporting requirements are described in detail in the approved Parcel A10 Work Plan dated April 21, 2016, and the QAPP.

All site characterization activities were conducted under the site-specific Health and Safety Plan (HASP) provided as Appendix E of the approved Work Plan.

#### **3.1. SAMPLE TARGET IDENTIFICATION**

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, a boring was placed at or next to its location using Geographic Information Systems (GIS) software (ArcMap Version 10.2.2).

Sampling targets included, as applicable, 1) Recognized Environmental Conditions (RECs) shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified from the DCC Report prepared by Rust Environment and Infrastructure. The following RECs were identified in the Parcel A10 Work Plan: Hazardous Materials Storage (REC 10A, Finding 240), Large Historical Aboveground Storage Tank (AST) (REC 10B, Finding 241), and Maintenance of Way Yard Underground Storage Tank (UST) (REC 12A, Finding 246). Additional information regarding these identified RECs was provided in the Phase II Investigation Work Plan dated April 21, 2016. There were no additional SWMUs or AOCs identified at the Site based on the DCC Report.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate was removed from the gas pipelines. The condensate from the drip legs was



typically discharged to drums, although it is possible some spilled out of the drums and on to the ground. There were no drip legs identified inside the boundary of Parcel A10. A summary of the specific drawings covering the Site is presented in **Table 2**. Sampling target locations were identified if the historical drawings depicted industrial activities or a specific feature at a location that may have been a source of environmental contamination that potentially impacted the Site.

Based on the review of plant drawings and Phase I ESA documents (or based on direct agency guidance), additional non-REC sampling targets were identified at the Site that included the following: Boiler House, Incinerator, Machine Shop, Maintenance of Way Repair Shop, Oil House, Pump House/Foamite Building, Repair Shop Interior, Lumber Storage Warehouse, and Nelson Box Company Building. A summary of the areas that were investigated, along with the applicable boring identification numbers and the analyses performed, has been provided as **Appendix A**. Additional sample locations were distributed to fill in large spatial gaps between proposed borings to provide complete coverage of the Site. During the completion of fieldwork, it was necessary to shift some borings from the approved locations given in the Work Plan, primarily due to access restrictions and/or refusal. **Table 3** provides the identification numbers of the field adjusted borings, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

The density of soil borings met the requirements set forth in QAPP Worksheet 17 – Sampling Design and Rationale. Parcel A10 contained a total of 17.0 acres without engineered barriers and 14.6 acres with engineered barriers. Of the 14.6 acres with engineered barriers, 3.0 acres contained former building slabs and 11.7 acres consists of parking/roads. In accordance with the relevant sampling density requirements, a minimum of 15 soil borings were required to cover the area without engineered barriers, and a minimum of 8 soil borings were required to cover areas with barriers. A total of 23 borings were required to meet the density specification; 34 soil borings were completed during the Phase II Investigation to collect analytical soil samples (including one boring, A10-009A-SB, which was added during the course of fieldwork).

#### **3.2.** Geophysics Investigation (Possible UST)

As specified in the Parcel A10 Phase II Investigation Work Plan, ARM Geophysics mobilized to the Site to confirm the presence/absence of the Maintenance of Way Yard UST identified as REC 12A, Finding 246. During a previous field visit conducted during the development of the Work Plan, ARM observed a concrete pad roughly 35 feet southeast of the repair shop, which had dimensions of approximately 15 by 30 feet. No apparent manholes or UST fill pipes were noted in the vicinity of the pad, but two signs indicating gasoline and/or smoking warnings were installed on the chain-link fence directly behind the pad. Based on prior experience, ARM suspected that the Maintenance of Way Yard UST (or another UST) could be located below this concrete pad. The objectives of the geophysics investigation were to refine the investigation plan in the vicinity of the concrete pad and to determine whether tank removal might be required.



The geophysics investigation was conducted in the area to the south of the repair shop on June 22, 2016. This investigation utilized EM61 metal detectors, utility and pipe locators, and ground penetrating radar (GPR) to screen the pad and surrounding open ground. Although a few metallic anomalies were noted and marked on the ground, there was no evidence of a UST below the concrete pad or in the surrounding open areas. The field notes obtained during the geophysics investigation are provided in **Appendix D**. Since the UST was not located, there were no changes to the proposed investigation plan.

#### **3.3. SOIL INVESTIGATION**

Continuous core soil borings were advanced at 33 locations across the Site to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (Figure 4). One additional soil boring (A10-034-SB) was installed to facilitate the collection of a groundwater sample only, and no soil samples were collected at this location as specified in the Parcel A10 Work Plan. The 34 continuous core soil borings were advanced to depths between 6.5 and 27 feet bgs using the Geoprobe<sup>®</sup> MC-7 Macrocore soil sampler (surface to 10 feet bgs) and the Geoprobe® D-22 Dual-Tube Sampler (depths >10 feet bgs). One additional soil boring (A10-009A-SB) was advanced to a depth of 1-foot bgs using a hand auger and digging bar. This boring was located within the interior of an existing building, so it could not be accessed with the Geoprobe<sup>®</sup>. The boring was therefore shifted outside of the building along the exterior wall (designated as A10-009-SB), but a 1-foot bgs sample was obtained from the original boring location (designated as A10-009A-SB). At each of the 35 completed locations, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as Appendix B, and the PID calibration log has been included as Appendix E. Unless otherwise indicated, all USCS group symbols provided on the attached boring logs are from visual observations.

One shallow sample was collected from the 0 to 1 foot depth interval, and a deeper sample was collected from the 4 to 5 foot depth interval from each continuous core soil boring. One additional set of samples was also collected from the 9 to 10 foot depth interval if groundwater had not been encountered; however, these samples were held by the laboratory pending the analysis of the 0 to 1 and 4 to 5 foot depth interval samples, and were only analyzed for parameters that were detected in the 5 foot depth samples at concentrations above the Project Action Limits (PALs). If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4 to 5 foot interval was shifted to the alternate depth interval. It should be noted that soil samples were not collected from a depth that was below the water table.

Soil sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 008, 009, 012, and 013** provided in Appendix A of the QAPP. Down-hole soil sampling equipment was decontaminated



after soil sampling had been concluded at a location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Soil samples were submitted to Pace Analytical Services, Inc. (PACE), and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) via USEPA Method 8260B, TCL semi-volatile organic compounds (SVOCs) via USEPA Methods 8270D and 8270D SIM, Target Analyte List (TAL) Metals via USEPA Methods 6010C and 7471C, hexavalent chromium via USEPA Method 7196A, cyanide via USEPA Method 9012, and total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Methods 8015B and 8015D. The Work Plan requirements for analysis of TPH-DRO/GRO and/or Oil & Grease have evolved throughout the investigation process and changed several times since late-2015 under agency guidance. During the implementation of the Parcel A10 Work Plan, TPH-DRO/GRO analysis was required at every location, but Oil & Grease analysis was not required or completed. Additionally, the shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were also analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

#### 3.4. GROUNDWATER INVESTIGATION

One historical shallow groundwater monitoring well (SG06-PDM001) and 11 shallow temporary groundwater sample collection points were included in the parcel-specific sampling plan to characterize groundwater and to support the definition of the groundwater potentiometric surface. The locations where shallow groundwater samples were collected are provided on **Figure 3**. The soil boring locations where temporary groundwater sample collection points were installed included A10-002-SB, A10-010-SB, A10-015-SB, A10-018-SB, A10-020-SB, A10-021-SB, A10-024-SB, A10-025-SB, A10-027-SB, A10-029-SB, and A10-034-SB. As specified in the Work Plan, a shallow temporary groundwater sample collection point was installed at A10-034-SB, but soil samples were not collected from this boring. This location was intended to supplement only the groundwater sampling plan. Each sample point was installed in accordance with the procedures and methods referenced in **Field SOP Number 028**. The temporary groundwater sample collection point construction logs have been included as **Appendix F**.

At each location the Geoprobe<sup>®</sup> DT22 Dual Tube sampling system was advanced to a depth approximately 7 feet below where groundwater was identified in the associated soil cores, the 1.25-inch inner rod string was removed, and the temporary, 1-inch PVC groundwater sample collection point was installed through the outer casing. Following the installation of each sample collection point, the 0-hour depth to water was documented and the collection point was checked for the presence of non-aqueous phase liquid (NAPL) using an oil-water interface probe in accordance with the methods referenced in **Field SOP Number 019** provided in Appendix A of the QAPP.



After the installation of each temporary groundwater sample collection point, down-hole equipment was decontaminated according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Groundwater samples were collected in accordance with methods referenced in **Field SOP Number 006** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated polyethylene tubing, and a water quality multiparameter meter with a flow-through cell. Groundwater samples submitted for analysis of dissolved metals were filtered in the field with an in-line 0.45 micron filter. The sampling and purge logs have been included in **Appendix G**. Calibration of the multiparameter meter was performed before the start of each day of the sampling event, and a calibration post-check was completed at the end of the day. Appropriate documentation of the multiparameter meter calibration has also been included in **Appendix G**.

Groundwater samples were submitted to PACE, and analyzed for TCL-VOCs via USEPA Method 8260B, TCL-SVOCs via USEPA Methods 8270D and 8270D SIM, TPH-DRO/GRO via USEPA Methods 8015B and 8015D, TAL-Dissolved Metals via USEPA Methods 6010C and 7470A, hexavalent chromium (total) via USEPA Method 7196A, and cyanide (total) via USEPA Method 9012A. The Work Plan requirements for analysis of TPH-DRO/GRO and/or Oil & Grease have evolved throughout the investigation process and changed several times since late-2015 under agency guidance. During the implementation of the Parcel A10 Work Plan, only TPH-DRO/GRO analysis was required for the groundwater sample, therefore, groundwater samples were not analyzed for Oil & Grease. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

#### **3.5.** MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

In accordance with **Field SOP Number 005** provided in Appendix A of the QAPP, potentially impacted materials, or IDW, generated during this Phase II Investigation was containerized in 55-gallon (DOT-UN1A2) drums. The types of IDW that were generated during this Phase II Investigation included the following:

- soil cuttings generated from soil borings or the installation of temporary groundwater points;
- purged groundwater;
- decontamination fluids; and
- used personal protective equipment



Following the completion of field activities, a composite sample was gathered with aliquots from each of the Parcel A10 Phase II IDW soil drums for waste characterization. Following this analysis, the waste soil was characterized as non-hazardous. A list of all results from the soil waste characterization procedure can be found in **Table 4**. IDW drums containing aqueous materials (including aqueous waste generated during the Parcel A10 Phase II Investigation) were characterized by preparing a composite sample from randomly selected drums. The composite sample included aliquots from several individual drums that were chosen as a subset of the aqueous drums being staged on-site at the date of collection. Following this analysis, the aqueous waste was characterized as non-hazardous. A list of all results from the aqueous waste characterized as non-hazardous. A list of all results from the aqueous waste characterized as non-hazardous.

The parcel specific IDW drum log from the Phase II investigation is included as **Appendix H**. All IDW procedures were carried out in accordance with methods referenced in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP.



## 4.0 ANALYTICAL RESULTS

#### **4.1. SOIL CONDITIONS**

Soil analytical results were screened against the PALs established in the property-wide QAPP (or other direct guidance from the agencies; i.e. TPH-DRO/GRO) to determine PAL exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the work day who is a full time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected parameters are summarized and compared to the PALs in **Table 6** (Organics) and **Table 7** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

#### 4.1.1. Soil Conditions: Organic Compounds

As provided on **Table 6**, several VOCs were identified above the laboratory's method detection limits (MDLs) in the soil samples collected from across the Site. There were no VOCs detected above their respective PALs.

**Table 6** provides a summary of SVOCs detected above the laboratory's MDLs in the soil samples collected from across the Site. The PALs for relevant polynuclear aromatic hydrocarbons (PAHs) have been adjusted upward based on revised toxicity data published in the USEPA RSL Composite Worker Soil Table. Therefore, exceedances for PAHs are based on the adjusted PALs rather than those presented in the QAPP. Three SVOCs, all of which are PAHs, were detected above their respective PALs. These SVOCs were benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene. Each of these three SVOCs exceeded their respective PALs in sample A10-008-SB-4. Benzo[b]fluoranthene and dibenz[a,h]anthracene each exceeded their respective PALs in only a single sample. Benzo[a]pyrene exceeded its PAL in one additional sample (A10-003-SB-1). A summary of the SVOC PAL exceedance locations and results has been provided on **Figure S-1**.

Shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were analyzed for PCBs. **Table 6** provides a summary of the PCBs detected above the laboratory's MDLs. There was only one PAL exceedance for PCBs, with a detection of total PCBs of 1.121 mg/kg in sample A10-027-SB-1. This PAL exceedance of total PCBs had contributions from Aroclor 1248 (with a detection of 0.334 mg/kg), Aroclor 1254 (with a detection of 0.508 mg/kg), and



Aroclor 1260 (with a detection of 0.279 mg/kg). All of the detections of the aroclors were below their individual PALs. This PAL exceedance location has been indicated on **Figure S-2**.

**Table 6** provides a summary of the TPH-DRO/GRO detections above the laboratory's MDLs in the soil samples collected in the parcel. The maximum DRO detection (6,000 mg/kg) was identified in sample A10-018-SB-5, which targeted REC 10B (Large Historical AST). The maximum GRO detection (182 mg/kg) was identified in sample A10-022-SB-2, which targeted REC 12B (Maintenance of Way Yard UST and fuel dispensers). None of the detections of DRO or GRO exceeded the PAL of 6,200 mg/kg. There was one location where physical evidence of NAPL was identified in the soil core. This boring (A10-006-SB) is discussed further below.

#### 4.1.2. Soil Conditions: Inorganic Constituents

**Table 7** provides a summary of inorganic constituents detected above the laboratory's MDLs in the soil samples collected from across the Site. Five inorganic compounds (arsenic, lead, manganese, thallium, and vanadium) were detected above their respective PALs. Arsenic was by far the most common inorganic exceedance, and was detected above the PAL in 65 (approximately 83%) of the soil samples analyzed for this compound. The maximum detection of arsenic in soil was 71.2 mg/kg in sample A10-006-SB-1. In comparison, lead, manganese, thallium, and vanadium accounted for PAL exceedances in 13 total samples from 9 boring locations. A summary of the inorganic PAL exceedance locations and results has been provided on **Figure S-3**.

#### 4.1.3. Soil Conditions: Results Summary

**Table 6** and **Table 7** provide a summary of the detected organic compounds and inorganics in the soil samples submitted for laboratory analysis, and **Figure S-1** through **Figure S-3** present a summary of the soil sample results that exceeded the PALs. **Table 8** provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. **Table 9** indicates which soil impacts (PAL exceedances) are associated with the specific targets listed in the Parcel A10 Work Plan. PAL exceedances in soil within Parcel A10 consisted of five inorganics (arsenic, lead, manganese, thallium, and vanadium), three SVOCs (benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene), and total PCBs. VOCs, DRO, and GRO were not detected above their respective PALs and are not considered to be significant soil contaminants in Parcel A10.

Lead, PCBs, and TPH-DRO/GRO are subject to special requirements as designated by the agencies: lead results above 10,000 mg/kg are subject to additional delineation (and possible excavation), PCB results above 50 mg/kg are subject to delineation and excavation, and TPH-DRO/GRO results above 6,200 mg/kg should be evaluated for the potential presence and mobility of NAPL in any future development planning. Concentrations for these parameters did not exceed the specified thresholds in any soil samples collected at the Site. A10-006-SB



exhibited physical evidence of NAPL in the soil core, and a screening piezometer was subsequently installed to evaluate the presence of potentially mobile NAPL in groundwater. The findings at this location are discussed in Section 4.3.

#### 4.2. GROUNDWATER CONDITIONS

The analytical results for the detected parameters in groundwater are summarized and compared to the PALs in **Table 10** (Organics) and **Table 11** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

#### 4.2.1. Groundwater Conditions: Organic Compounds

As provided on **Table 10**, several VOCs were identified above the laboratory's MDLs in groundwater samples collected from across the Site. A total of seven VOCs (cis-1,2-dichloroethene and 1,2-dichlorethene (total), carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, and vinyl chloride) were detected above their respective PALs. Most notably, tetrachloroethene and its degradation products (trichloroethene, 1,2-dichlorethene, and vinyl chloride) were observed to be present in the eastern and southern areas of the Site. Each VOC parameter exceeded its respective PAL at groundwater sample location A10-025-PZ which is located toward the eastern boundary of the Site and provided parcel coverage. Based on the magnitude of the PAL exceedances, location A10-025-PZ appears to be the most heavily impacted by VOCs including chlorinated ethenes. A summary of the VOC PAL exceedance locations and results has been provided as **Figure GW-1**.

**Table 10** provides a summary of SVOCs identified in groundwater samples above the laboratory's MDLs. Similar to the evaluation of soil data, the PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Resident Tapwater Table. Four SVOCs (1,1-biphenyl, 1,4-dioxane, benz[a]anthracene, and naphthalene) were detected above their respective aqueous PALs. Naphthalene was the only SVOC compound to exceed its PAL at multiple locations, with two total exceedances (A10-018-PZ and A10-025-PZ). A summary of the SVOC PAL exceedance locations and results has been provided as **Figure GW-2**.

**Table 10** provides a summary of the DRO and GRO detections in groundwater at the Site. DRO was detected above its PAL in nine sample locations distributed throughout the Site, with a maximum detection of 1,130  $\mu$ g/L (flagged with the "J" qualifier indicating that it is an estimated value) at location A10-018-PZ. GRO was detected above its PAL in only two groundwater samples with a maximum detection of 565  $\mu$ g/L at location A10-025-PZ. A summary of the TPH-DRO/GRO PAL exceedance locations and results has been provided on **Figure GW-3**. Each location was checked for the potential presence of NAPL using an oil-water interface probe



prior to sampling. During these checks, NAPL was not detected in any of the groundwater sampling locations, although it was detected in the NAPL screening piezometer installed as A10-006-PZ. The presence of NAPL at the Site is discussed in Section 4.3.

#### 4.2.2. Groundwater Conditions: Inorganic Constituents

**Table 11** provides a summary of inorganic constituents detected above the MDLs in the groundwater samples collected from across the Site. A total of seven inorganic compounds (dissolved arsenic, dissolved cobalt, dissolved iron, dissolved manganese, dissolved thallium, dissolved vanadium, and total hexavalent chromium) were detected above their respective PALs. Arsenic, thallium, vanadium, and hexavalent chromium exceeded their PALs at only one location each. Cobalt (10 exceedances), manganese (10 exceedances), and iron (3 exceedances) were more widespread at the Site. The hexavalent chromium PAL exceedance in sample location SG06-PDM001 is suspect because results for hexavalent chromium have commonly been impacted by sample color (matrix interferences) at other property locations. A summary of the inorganic PAL exceedance locations and results has been provided as **Figure GW-4**.

#### 4.2.3. Groundwater Conditions: Results Summary

Groundwater data were screened to determine whether individual sample results may exceed the USEPA Vapor Intrusion (VI) Screening Levels (Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls). The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site. The results of the sample screening against the VI criteria are summarized in **Table 12**.

The parameters which exceeded the individual VI TCR or THQ criteria were tetrachloroethene and trichloroethene. Tetrachloroethene was detected above the VI screening level (240  $\mu$ g/L) at one shallow groundwater location (A10-025-PZ) with a detection of 1,010  $\mu$ g/L. Trichloroethene was detected above its VI screening level (22  $\mu$ g/L) at three shallow groundwater locations (A10-025-PZ, A10-027-PZ, and A10-034-PZ) with a maximum detection of 494  $\mu$ g/L at sample location A10-025-PZ.

Following the initial screening, a cumulative risk assessment was also performed for each individual sample location, with the results separated by cancer versus non-cancer risk. All compounds with detections were included in the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. The cumulative VI non-cancer hazards exceeded 1 (rounded to one significant digit) at three sample locations: A10-025-PZ, A10-027-PZ, and A10-034-PZ. Exceedances of the cumulative non-cancer hazards for multiple target organs at these three locations were caused by the chlorinated ethenes (tetrachloroethene and trichloroethene). In



addition, the cumulative cancer risks exceeded the allowable limit (1E-5) at locations A10-025-PZ and A10-027-PZ due primarily to the carcinogenic effect of trichloroethene. The results of the cumulative VI comparisons are provided in **Table 13**, with the exceedances highlighted. The groundwater locations which exceeded the cumulative VI criteria are shown in **Figure GW-5**.

The presence and absence of groundwater impacts within the Site boundaries have been adequately described. Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized). VI risks/hazards were evaluated and identified three locations which may be impacted by elevated VOC concentrations.

#### 4.3. NON-AQUEOUS PHASE LIQUID (NAPL)

Immediately after the installation of each temporary groundwater sample collection point at the Site (11 total), an oil-water interface probe was used to check for the presence of NAPL. During the initial check, NAPL was not detected in any temporary groundwater sample collection point. Additional NAPL checks were completed 48 hours after installation, and again prior to groundwater sampling (July 18 through July 20, 2016). NAPL was not detected in any temporary groundwater point or the existing well (SG06-PDM001) during any of the NAPL checks and no delineation activities were warranted at these locations.

Soil cores were screened for evidence of possible NAPL contamination during the completion of the Phase II soil borings in Parcel A10. During the field screening, only one location had observations of physical evidence of NAPL. Soil boring A10-006-SB had a visible low vicious amber sheen in the soil core from 7 to 8 feet bgs and from 9 to 9.5 feet bgs which was noted on the boring log. A strong odor was also detected accompanying the sheen. An intermediate soil sample (A10-006-SB-7) collected from the 6 to 7 foot bgs interval just above the observed sheen had a DRO detection of 281 mg/kg and a GRO detection of 47.4 mg/kg, which do not exceed the PAL of 6,200 mg/kg. There were no concentrations of DRO or GRO identified above the soil PAL at the Site.

Based on the observation of NAPL, and in accordance with the Work Plan, a temporary NAPL screening piezometer (A10-006-PZ) was installed with a screen interval from 4 to 14 feet bgs according to the same specifications as the temporary groundwater sample collection points completed throughout the Site. After installation, the piezometer was checked for the presence of accumulated product using an oil-water interface probe. The 0-hour (July 7, 2016), 48-hour (July 11, 2016), and 30-day (August 26, 2016) gauging events at this location were all absent of measurable or trace NAPL. An additional gauging event was completed approximately one year after the installation (July 31, 2017), and again NAPL was not detected. Static groundwater was measured at an approximate depth of 7 feet bgs.

The MDE provided an email on February 26, 2018 stating that the NAPL screening piezometer A10-006-PZ could be abandoned. However, prior to its abandonment, trace NAPL was detected



on January 4, 2019 at this screening location. Additional piezometers were subsequently installed surrounding A10-006-PZ in January and February 2019 to delineate the extent of potentially mobile NAPL, and measurable NAPL was discovered in the area. The details and findings of the NAPL delineation will be reported to the MDE outside of the scope of this Phase II Investigation Report. Subsequent investigation activities or response actions (if required) will be coordinated with the MDE as appropriate.



### 5.0 DATA USABILITY ASSESSMENT

The approved property-wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, TAL-Metals, cyanide, or TPH-DRO/GRO) are present in Site media (soil and groundwater) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the most current USEPA RSLs) or based on other direct guidance from the agencies, to identify the presence of exceedances in each environmental medium.

Quality control (QC) samples were collected during field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix I**. The following QC samples were submitted for analysis to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples per day
  - $\circ$  Soil VOCs only
  - Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
  - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, PCBs, hexavalent chromium, and cyanide
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, hexavalent chromium, and cyanide
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
  - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, PCBs, and hexavalent chromium
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, and hexavalent chromium
- Field Blank and Equipment Blank at a rate of one per twenty samples
  - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, hexavalent chromium, and cyanide
  - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, hexavalent chromium, and cyanide

The QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.

#### **5.1. DATA VERIFICATION**

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field log books, field data sheets, and Chain of



Custody forms to ensure that all planned samples were collected, and to ensure consistency with the field methods and decontamination procedures specified in the QAPP Worksheet 21 - Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated at the beginning of each day and re-checked as needed. The logs have been provided in **Appendix E** (PID calibration log) and **Appendix G** (multiparameter meter calibration logs).

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

#### 5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 50% of the environmental sample analyses performed by PACE and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI).

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved property-wide QAPP dated April 5, 2016 and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

Data Validation has been completed for a representative 50% of all sample results, and the DVRs provided by EDQI have been included as electronic attachments. The USEPA has previously specified that results flagged with a "JB" qualifier are erroneous, and any such results should be revised to display the "B" qualifier only. EDQI reviews and corrects any "JB" qualified results during the data validation procedure. Therefore, any result originally flagged with a "JB" qualifier in the laboratory certificate is reported as a "B" qualified non-detect result in this Phase II Investigation Report. ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI), and applied the same validation correction to any relevant "JB" qualified results. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.



#### 5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential limitations in the results have been indicated through final data flags. These flags indicate whether particular data points were quantitative estimates, biased high/low, associated with blank contamination, etc. Individual data flags are provided with the results in the detection summary tables. A qualifier code glossary is included with each DVR provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further data evaluation. A list of the analytical soil results that were rejected during data validation is provided as **Table 14**. None of the analytical groundwater results were rejected during validation. A discussion of data completeness (the proportion of valid data) is included below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. Sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 006, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that collection of soil and groundwater at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. No significant deviations from the QAPP were noted in the dataset.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.



Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement, but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix J**. This evaluation of completeness includes only the representative 50% of sample results which were randomly selected for validation.

All groundwater compounds had an overall completeness ratio of 100%, indicating that none of the aqueous results were rejected. The only soil compounds with overall completeness values below 90% were methyl acetate, bromomethane, 2,4-dinitrophenol, and 1,4-dioxane. The majority of the methyl acetate dataset was rejected (13.6% completeness), but there were no detections in the validated soil dataset and only one negligible detection (0.012 mg/kg with a "J" qualifier compared to the PAL of 1,200,000 mg/kg) in the non-validated dataset. There were no detections of methyl acetate in groundwater. Bromomethane and 2,4-dinitrophenol had significantly higher completeness ratios of 81.8% and 75.0%, respectively. Although these ratios are below the 90% goal, a significant proportion of the data was deemed suitable for use. In addition, there were no detections of either compound in soil or groundwater throughout the Site.

All of the 1,4-dioxane soil results which underwent the validation process were rejected; however, there were no detections of 1,4-dioxane in soil throughout the parcel. In addition, 1,4-dioxane had a completeness ratio of 100% in groundwater with only five detections out of the 12 groundwater samples. Although one aqueous detection exceeded the PAL, this result (0.55 ug/L in A10-010-PZ) was only slightly above the allowable limit (0.46 ug/L). Sufficient information is available in the groundwater dataset to evaluate the significance of 1,4-dioxane at the Site. Furthermore, the location which exceeded the aqueous PAL for 1,4-dioxane also exhibited exceedances of chlorinated VOCs (tetrachloroethene and trichloroethene). Since 1,4-dioxane is often associated with chlorinated VOCs, any potentially significant concentrations of 1,4-dioxane in the soil would be expected to be accompanied by a significant presence of chlorinated VOCs in the soil, which has not been the case in this parcel.

Overall, the soil and groundwater data can be used as intended, and no significant data gaps were identified. While a limited set of soil compounds did not meet the completeness goal, these compounds do not appear to be significant contaminants at the Site.



## 6.0 FINDINGS AND RECOMMENDATIONS

The objective of this Phase II Investigation was to fully characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of 12 groundwater samples and 78 soil samples (all locations/depths) were collected and analyzed to define the nature and extent of contamination in Parcel A10. The sampling and analysis plan for the parcel was developed to target specific features which represented a potential release of hazardous substances and/or petroleum products to the environment. Soil samples were analyzed for TCL-VOCs, TCL-SVOCs, TPH-DRO/GRO, TAL-Metals, hexavalent chromium, and cyanide. Shallow soil samples (0 to 1 foot bgs) were additionally analyzed for PCBs. Groundwater samples were analyzed for TCL-VOCs, TCL-SVOCs, TCL-VOCs, TCL-SVOCs, TC

#### 6.1. SOIL

The concentrations of constituents in the soil have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Lead and PCB concentrations are well below the levels that would warrant evaluation of a removal remedy. There were no locations where detections of lead exceeded 10,000 mg/kg, the designated threshold at which delineation would be required. There were no concentrations of total PCBs identified above the mandatory delineation criterion of 50 mg/kg, indicating that further action is not needed.

There were no soil PAL exceedances for VOCs or TPH-DRO/GRO, indicating that these compounds are not significant contaminants in soil at the Site. Exceedances of the PALs in soil within Parcel A10 consisted of five inorganics (arsenic, lead, manganese, thallium, and vanadium), three SVOCs (benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h]anthracene), and PCBs (total). Arsenic exceeded its PAL in the largest proportion of the samples analyzed for this compound site-wide (65 soil samples or 83%), with a maximum detection of 71.2 mg/kg in sample A10-006-SB-1. In comparison, lead, manganese, thallium, and vanadium exceeded their PALs in three samples, eight samples, 11 samples, and six samples, respectively. Three SVOCs (benzo[a]pyrene, benzo[b]fluoranthene, and dibenz[a,h] anthracene) exceeded the PALs at the Site, all of which were detected above their respective PALs at A10-008-SB-4. Benzo[a]pyrene exceeded its PAL in only one additional sample (A10-003-SB-1). Among the shallow samples collected at the Site, PCBs (total) had one PAL exceedance at a single isolated location (A10-027-SB-1) caused by a mixture of Aroclor 1248, Aroclor 1254, and Aroclor 1260 that contributed to a cumulative PCB detection of 1.121 mg/kg.



#### **6.2.** GROUNDWATER

The concentrations of constituents in the groundwater have also been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Analysis of the groundwater samples identified concentrations of seven inorganic compounds that exceeded their PALs (dissolved arsenic, dissolved cobalt, dissolved iron, dissolved manganese, dissolved thallium, dissolved vanadium, and total hexavalent chromium). The single hexavalent chromium exceedance at SG06-PDM001 is suspect because results for hexavalent chromium have commonly been impacted by sample color (matrix interferences) at other locations on the Tradepoint Atlantic property. Arsenic, thallium, and vanadium exceeded their respective PALs at a single location each. Cobalt and manganese each had 10 detections above the aqueous PALs, whereas, iron had three aqueous PAL exceedances.

Seven VOCs exceeded their respective PALs at the Site (cis-1,2-dichloroethene and 1,2dichlorethene (total), carbon tetrachloride, chloroform, tetrachloroethene, trichloroethene, and vinyl chloride), all of which were detected above their PALs in sample location A10-025-PZ. Chloroform, tetrachloroethene, and trichloroethene each exceeded their respective PALs in two, three, and four additional groundwater samples, respectively. Most notably, tetrachloroethene and its degradation products (trichloroethene, 1,2-dichlorethene, and vinyl chloride) were observed to be present in the eastern and southern areas of the Site. Four SVOCs (1,1-biphenyl, 1,4-dioxane, benz[a]anthracene, and naphthalene) were detected at concentrations above the aqueous PALs at one groundwater sample location each, excluding naphthalene which exceeded its PAL in two groundwater samples. Nine out of the 12 groundwater samples exceeded the PAL for DRO, with a maximum detection of 1,130  $\mu$ g/L (flagged with the "J" qualifier indicating that it is an estimated value) at location A10-018-PZ. GRO exceeded its PAL in two groundwater samples (A10-025-PZ and A10-027-PZ) with a maximum detection of 565  $\mu$ g/L.

Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized), therefore there is no potential for direct human exposure for a Composite Worker. In the event that future construction/excavation leads to a potential Construction Worker exposure to groundwater, health and safety plans should be implemented to limit exposure risk. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. Two parameters were detected above the individual VI TCR or THQ criteria: tetrachloroethene and trichloroethene. When the aqueous results were summed by sample location, the cumulative VI non-cancer hazards exceeded 1 (rounded to one significant digit) at three sample locations: A10-025-PZ, A10-027-PZ, and A10-034-PZ. Exceedances of the cumulative non-cancer hazards for multiple target organs at these three locations were caused by the identified chlorinated ethenes. In addition, the cumulative cancer risks exceeded 1E-5 at A10-025-PZ and A10-027-PZ due primarily to the carcinogenic effect of trichloroethene. Further assessment or



mitigation is recommended to address the potential VI risks/hazards identified at A10-025-PZ, A10-027-PZ, and A10-034-PZ if development is proposed in these areas. The selection of appropriate response measures, based on the specific development plan for the parcel, should be addressed in a project-specific Response and Development Work Plan.

#### 6.3. NON-AQUEOUS PHASE LIQUID

There were no elevated detections of DRO or GRO identified above the soil PAL (6,200 mg/kg) at the Site. None of the temporary groundwater sample collection points installed in Parcel A10 for groundwater sampling showed any evidence of NAPL during the mandatory checks. Furthermore, the exiting historical well SG06-PDM001 did not exhibit evidence of NAPL during a gauging event which was completed prior to sampling.

During field screening of the soil cores installed during this investigation, only one location had observations of physical evidence of NAPL. Soil boring A10-006-SB had a visible low vicious amber sheen in the soil core from 7 to 8 feet bgs and from 9 to 9.5 feet bgs. A strong odor was also detected accompanying the sheen. The potential mobility of NAPL to groundwater at location A10-006-SB was investigated via the installation of a temporary NAPL screening piezometer (A10-006-PZ). Based on 0-hour, 48-hour, and 30-day measurements, as well as an additional gauging event completed approximately one year after installation, it was determined that NAPL was not likely to be present in groundwater at quantities that are likely to migrate.

However, prior to the planned abandonment of A10-006-PZ, trace NAPL was detected at this screening location (January 2019). Additional piezometers were subsequently installed to delineate the extent of potentially mobile NAPL, and measurable NAPL was discovered in the area. The details and findings of the NAPL delineation will be reported to the MDE outside of the scope of this Phase II Investigation Report. Subsequent investigation activities or response actions (if required) will be coordinated with the MDE as appropriate.

The proximity of the NAPL-impacted boring A10-006-SB (and the associated piezometers) to proposed utilities should be evaluated in any future development planning for Parcel A10. Appropriate protocols should be documented in a Response and Development Work Plan (as necessary) to prevent the mobilization of any product if future utilities are proposed in the vicinity of these impacts.

#### 6.4. RECOMMENDATIONS

Sufficient remedial investigation data has been collected to present this evaluation of the nature and extent of possible constituents of concern in Parcel A10. The presence and absence of soil and groundwater impacts within Parcel A10 have been adequately described and further sitewide investigation is not warranted to characterize overall conditions; however, additional investigation may be required to further characterize impacts identified in specific areas of the Site. Recommendations for the Site are as follows:



- The boring location with physical observations of NAPL in the associated soil cores (A10-006-SB) should be considered for proximity to proposed utilities in any future development plans. The details and findings of the NAPL delineation will be reported to the MDE outside of the scope of this Phase II Investigation Report. Subsequent investigation activities or response actions (if required) will be coordinated with the MDE as appropriate. If future utilities are proposed in the vicinity of this boring, appropriate protocols for the mitigation of potential product mobility should be specified in a Response and Development Work Plan.
- Tetrachloroethene and its degradation products were observed to be present in groundwater at elevated levels in the eastern and southern areas of the Site. The nature and extent of the groundwater impacts should be further defined to determine whether response actions are warranted to reduce the detected concentrations of these VOCs to acceptable levels. A separate Work Plan to provide additional delineation of associated groundwater conditions will be coordinated with the MDE and submitted in the future.
- If an enclosed structure is proposed for construction in the vicinity of A10-025-PZ, A10-027-PZ, or A10-034-PZ, further assessment or mitigation of the potential for human exposures via the vapor intrusion to indoor air pathway should be addressed in a Response and Development Work Plan. The vapor intrusion risks associated with these locations may be reduced by any future response actions to address VOCs.



#### 7.0 REFERENCES

- ARM Group, Inc. (2016). *Phase II Investigation Work Plan: Parcel A10*. Revision 3. April 21, 2016.
- ARM Group, Inc. (2016). *Quality Assurance Project Plan: Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group, Inc. (2017). *Stormwater Pollution Prevention Plan (SWPPP)*. Revision 5. June 1, 2017.
- Rust Environment and Infrastructure (1998). Description of Current Conditions: Bethlehem Steel Corporation. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level (VISL) Calculator version 3.5 (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.



# FIGURES
























### **TABLES**

| TABLE 1     GROUNDWATER ELEVATION DATA |                                               |                                                  |                             |                                         |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| Location Name                          | <u>TOC</u><br><u>Elevation</u><br>(feet AMSL) | <u>Ground</u><br><u>Elevation</u><br>(feet AMSL) | <u>Measured</u><br>DTW (ft) | Groundwater<br>Elevation<br>(feet AMSL) |  |  |  |  |  |  |  |
| A10-002-PZ                             | 22.13                                         | 18.90                                            | 9.41                        | 12.72                                   |  |  |  |  |  |  |  |
| A10-010-PZ                             | 17.98                                         | 14.24                                            | 12.09                       | 5.89                                    |  |  |  |  |  |  |  |
| A10-015-PZ                             | 20.09                                         | 16.32                                            | 8.23                        | 11.86                                   |  |  |  |  |  |  |  |
| A10-018-PZ                             | 18.65                                         | 15.11                                            | 13.10                       | 5.55                                    |  |  |  |  |  |  |  |
| A10-020-PZ                             | 13.64                                         | 12.29                                            | 7.50                        | 6.14                                    |  |  |  |  |  |  |  |
| A10-021-PZ                             | 13.26                                         | 11.76                                            | Damaged                     | NA                                      |  |  |  |  |  |  |  |
| A10-024-PZ                             | 14.36                                         | 11.43                                            | 8.27                        | 6.09                                    |  |  |  |  |  |  |  |
| A10-025-PZ                             | 16.94                                         | 14.14                                            | 10.96                       | 5.98                                    |  |  |  |  |  |  |  |
| A10-027-PZ                             | 16.38                                         | 12.59                                            | 10.75                       | 5.63                                    |  |  |  |  |  |  |  |
| A10-029-PZ                             | 23.11                                         | 19.64                                            | 6.29                        | 16.82                                   |  |  |  |  |  |  |  |
| A10-034-PZ                             | 20.10                                         | 17.11                                            | 13.53                       | 6.57                                    |  |  |  |  |  |  |  |
| SG06-PDM001                            | 12.04                                         | 12.42                                            | 8.24                        | 3.80                                    |  |  |  |  |  |  |  |

DTW = Depth to water

TOC = Top of casing

AMSL = Above mean sea level

NA = Not Applicable (due to piezometer damage)

|                      | TABL<br>HISTORICAL SITE DI                                                                                                     | E 2<br>RAWING DETAILS          | 5                                                |                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------|
| <u>Set Name</u>      | Typical Features Shown                                                                                                         | Drawing Number                 | <u>Original Date</u><br><u>Drawn</u>             | Latest Revision<br>Date                            |
| Plant<br>Arrangement | Roads, water bodies, building/structure<br>footprints, electric lines, above-ground<br>pipelines (e.g.: steam, nitrogen, etc.) | 5047<br>5047A<br>5052<br>5052A | 1/17/1966<br>1/17/1966<br>6/30/1959<br>1/17/1966 | 3/11/1958<br>3/11/1982<br>3/11/1982<br>3/11/1982   |
| Plant Index          | Roads, water bodies, demolished<br>buildings/structures, electric lines, above-<br>ground pipelines                            | 5147<br>5147A<br>5152<br>5152A | Unknown<br>Unknown<br>Unknown<br>Unknown         | 11/10/2008<br>11/10/2008<br>2/25/2008<br>2/27/2008 |
| Plant Sewer<br>Lines | Same as above plus trenches, sumps,<br>underground piping (includes pipe<br>materials)                                         | 5547<br>5547A<br>5552<br>5552A | 9/16/1959<br>4/13/1976<br>9/16/1959<br>2/22/1962 | 3/15/1976<br>6/13/1989<br>3/9/1976<br>12/15/1987   |
| Drip Legs            | Coke Oven Gas Drip Legs Locations                                                                                              | N/A                            | N/A                                              | N/A                                                |

|             | TABLE 3<br>FIELD SHIFTED BORIN                    | )<br> G LOCAT | IONS                  |                |                      |                        |                 |
|-------------|---------------------------------------------------|---------------|-----------------------|----------------|----------------------|------------------------|-----------------|
|             |                                                   | Proposed      | Location <sup>¥</sup> | <u>Final L</u> | ocation <sup>¥</sup> | Reloc                  | ation           |
| Location ID | Sample Target                                     | Northing      | <u>Easting</u>        | Northing       | <u>Easting</u>       | <u>Distan</u><br>Direc | <u>ce &amp;</u> |
| A10-009-SB  | Oil House                                         | 571,141       | 1,464,255             | 571,123        | 1,464,249            | 18                     | SW              |
| A10-010-SB  | Oil House                                         | 571,124       | 1,464,264             | 571,119        | 1,464,273            | 10                     | SE              |
| A10-011-SB  | Pump House / Foamite Building                     | 571,223       | 1,464,127             | 571,222        | 1,464,135            | 8                      | Е               |
| A10-014-SB  | Hazardous Materials Storage                       | 571,109       | 1,464,414             | 571,091        | 1,464,396            | 25                     | SW              |
| A10-016-SB  | Large Historical AST                              | 571,482       | 1,464,028             | 571,473        | 1,464,064            | 37                     | Е               |
| A10-017-SB  | Large Historical AST                              | 571,507       | 1,464,065             | 571,545        | 1,464,039            | 46                     | NW              |
| A10-019-SB  | Maintenance of Way Yard UST (and Fuel Dispensers) | 571,301       | 1,464,482             | 571,298        | 1,464,488            | 6                      | SE              |
| A10-024-SB  | Parcel A10 Coverage                               | 571,655       | 1,464,622             | 571,660        | 1,464,637            | 16                     | Е               |
| A10-025-SB  | Parcel A10 Coverage                               | 571,920       | 1,464,921             | 571,919        | 1,464,914            | 7                      | W               |
| A10-027-SB  | Parcel A10 Coverage                               | 572,285       | 1,464,889             | 572,292        | 1,464,919            | 31                     | Е               |
| A10-029-SB  | Parcel A10 Coverage                               | 570,723       | 1,464,704             | 570,735        | 1,464,688            | 20                     | NW              |
| A10-030-SB  | Parcel A10 Coverage                               | 570,739       | 1,464,402             | 570,762        | 1,464,431            | 38                     | NE              |

<sup>¥</sup>Reported northings and eastings are not survey accurate.

Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

| TABLE 4         CHARACTERIZATION RESULTS FOR SOLID IDW         Result       Laboratory         TCL P. Limit       TCL P. Laboratory |                         |                                  |                             |                           |                          |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|-----------------------------|---------------------------|--------------------------|--|--|--|--|--|--|--|
| Parameter                                                                                                                           | <u>Result</u><br>(mg/L) | <u>Laboratory</u><br><u>Flag</u> | <u>TCLP Limit</u><br>(mg/L) | <u>TCLP</u><br>Exceedance | Laboratory<br>LOQ (mg/L) |  |  |  |  |  |  |  |
| 1,1-Dichloroethene                                                                                                                  | 0.05                    | U                                | 0.7                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| 1,2-Dichloroethane                                                                                                                  | 0.05                    | U                                | 0.5                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene                                                                                                                 | 0.5                     | U                                | 7.5                         | no                        | 0.5                      |  |  |  |  |  |  |  |
| 2,4,5-Trichlorophenol                                                                                                               | 5                       | U                                | 400                         | no                        | 5                        |  |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol                                                                                                               | 0.1                     | U                                | 2                           | no                        | 0.1                      |  |  |  |  |  |  |  |
| 2,4-Dinitrotoluene                                                                                                                  | 0.1                     | U                                | 0.13                        | no                        | 0.1                      |  |  |  |  |  |  |  |
| 2-Butanone (MEK)                                                                                                                    | 5                       | U                                | 200                         | no                        | 5                        |  |  |  |  |  |  |  |
| 2-Methylphenol                                                                                                                      | 2                       | U                                | 200                         | no                        | 2                        |  |  |  |  |  |  |  |
| 3&4-Methylphenol(m&p Cresol)                                                                                                        | 2                       | U                                | 200                         | no                        | 2                        |  |  |  |  |  |  |  |
| Arsenic                                                                                                                             | 0.05                    | U                                | 5                           | no                        | 0.05                     |  |  |  |  |  |  |  |
| Barium                                                                                                                              | 0.16                    | J                                | 100                         | no                        | 1                        |  |  |  |  |  |  |  |
| Benzene                                                                                                                             | 0.05                    | U                                | 0.5                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| Cadmium                                                                                                                             | 0.00053                 | J                                | 1                           | no                        | 0.05                     |  |  |  |  |  |  |  |
| Carbon tetrachloride                                                                                                                | 0.05                    | U                                | 0.5                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| Chlorobenzene                                                                                                                       | 1                       | U                                | 100                         | no                        | 1                        |  |  |  |  |  |  |  |
| Chloroform                                                                                                                          | 0.5                     | U                                | 6                           | no                        | 0.5                      |  |  |  |  |  |  |  |
| Chromium                                                                                                                            | 0.0019                  | В                                | 5                           | no                        | 0.05                     |  |  |  |  |  |  |  |
| Hexachlorobenzene                                                                                                                   | 0.1                     | U                                | 0.13                        | no                        | 0.1                      |  |  |  |  |  |  |  |
| Hexachloroethane                                                                                                                    | 0.5                     | U                                | 3                           | no                        | 0.5                      |  |  |  |  |  |  |  |
| Lead                                                                                                                                | 0.01                    | J                                | 5                           | no                        | 0.05                     |  |  |  |  |  |  |  |
| Mercury                                                                                                                             | 0.001                   | U                                | 0.2                         | no                        | 0.001                    |  |  |  |  |  |  |  |
| Nitrobenzene                                                                                                                        | 0.1                     | U                                | 2                           | no                        | 0.1                      |  |  |  |  |  |  |  |
| Pentachlorophenol                                                                                                                   | 5                       | U                                | 100                         | no                        | 5                        |  |  |  |  |  |  |  |
| Selenium                                                                                                                            | 0.0045                  | В                                | 1                           | no                        | 0.1                      |  |  |  |  |  |  |  |
| Silver                                                                                                                              | 0.05                    | U                                | 5                           | no                        | 0.05                     |  |  |  |  |  |  |  |
| Tetrachloroethene                                                                                                                   | 0.05                    | U                                | 0.7                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| Trichloroethene                                                                                                                     | 0.05                    | U                                | 0.5                         | no                        | 0.05                     |  |  |  |  |  |  |  |
| Vinyl chloride                                                                                                                      | 0.05                    | U                                | 0.2                         | no                        | 0.05                     |  |  |  |  |  |  |  |

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

J: The positive result for this analyte is a quantitative estimate below the laboratory LOQ.

B: This analyte was not detected substantially above the level of the associated method blank or field blank. TCLP: Toxicity Characteristic Leaching Procedure

LOQ = Limit of Quantitation

ſ

| CHARAC               | TABLE 5<br>CHARACTERIZATION RESULTS FOR LIQUID IDW |                      |                           |                                  |                             |  |  |  |  |  |  |  |
|----------------------|----------------------------------------------------|----------------------|---------------------------|----------------------------------|-----------------------------|--|--|--|--|--|--|--|
| <u>Parameter</u>     | <u>Result</u><br>(mg/L)                            | TCLP Limit<br>(mg/L) | <u>TCLP</u><br>Exceedance | <u>Laboratory</u><br><u>Flag</u> | Laboratory<br>LOQ<br>(mg/L) |  |  |  |  |  |  |  |
| 1,1-Dichloroethene   | 0.001                                              | 0.7                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| 1,2-Dichloroethane   | 0.001                                              | 0.5                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene  | 0.001                                              | 7.5                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| 2-Butanone (MEK)     | 0.01                                               | 200                  | no                        | U                                | 0.01                        |  |  |  |  |  |  |  |
| Arsenic              | 0.005                                              | 5                    | no                        | U                                | 0.005                       |  |  |  |  |  |  |  |
| Barium               | 0.0466                                             | 100                  | no                        |                                  | 0.01                        |  |  |  |  |  |  |  |
| Benzene              | 0.001                                              | 0.5                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| Cadmium              | 0.003                                              | 1                    | no                        | U                                | 0.003                       |  |  |  |  |  |  |  |
| Carbon tetrachloride | 0.001                                              | 0.5                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| Chlorobenzene        | 0.001                                              | 100                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| Chloroform           | 0.001                                              | 6                    | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |
| Chromium             | 0.0011                                             | 5                    | no                        | J                                | 0.005                       |  |  |  |  |  |  |  |
| Lead                 | 0.005                                              | 5                    | no                        | U                                | 0.005                       |  |  |  |  |  |  |  |
| Mercury              | 0.0002                                             | 0.2                  | no                        | U                                | 0.0002                      |  |  |  |  |  |  |  |
| Selenium             | 0.008                                              | 1                    | no                        | U                                | 0.008                       |  |  |  |  |  |  |  |
| Silver               | 0.006                                              | 5                    | no                        | U                                | 0.006                       |  |  |  |  |  |  |  |
| Tetrachloroethene    | 0.0035                                             | 0.7                  | no                        |                                  | 0.001                       |  |  |  |  |  |  |  |
| Trichloroethene      | 0.003                                              | 0.5                  | no                        |                                  | 0.001                       |  |  |  |  |  |  |  |
| Vinyl chloride       | 0.001                                              | 0.2                  | no                        | U                                | 0.001                       |  |  |  |  |  |  |  |

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ. J: The positive result for this analyte is a quantitative estimate below the laboratory LOQ. TCLP: Toxicity Characterization Leaching Procedure

LOQ: Limit of Quantitation

| Parameter                        | Units | PAL       | A10-001-SB-1 | A10-001-SB-5 | A10-002-SB-1 | A10-002-SB-5 | A10-003-SB-1*  | A10-003-SB-9* | A10-004-SB-1* | A10-004-SB-4* | A10-005-SB-1* | A10-005-SB-5* | A10-006-SB-1*   | A10-006-SB-7* | A10-007-SB-1     | A10-007-SB-4 | A10-008-SB-1 |
|----------------------------------|-------|-----------|--------------|--------------|--------------|--------------|----------------|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|------------------|--------------|--------------|
| Volatile Organic Compounds       | I     |           |              |              |              |              |                |               |               |               |               |               |                 |               |                  |              |              |
| 1.2.3-Trichlorobenzene           | mg/kg | 930       | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| 2-Butanone (MEK)                 | mg/kg | 190,000   | 0.01 UJ      | 0.0098 UJ    | 0.011 UJ     | 0.011 UJ     | 0.016 U        | 0.015 U       | 0.012 U       | 0.012 U       | 0.011 U       | 0.014 U       | 0.015 U         | 0.011 U       | 0.012 U          | 0.011 U      | 0.013 U      |
| Acetone                          | mg/kg | 670,000   | 0.01 U       | 0.0098 U     | 0.0073 J     | 0.016        | 0.013 J        | 0.015 J       | 0.012 U       | 0.0061 J      | 0.011 U       | 0.0073 J      | 0.024           | 0.043         | 0.042 J          | 0.18 J       | 0.019 J      |
| Benzene                          | mg/kg | 5.1       | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0028 J      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Carbon disulfide                 | mg/kg | 3,500     | 0.005 UJ     | 0.0049 UJ    | 0.0053 UJ    | 0.0054 UJ    | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.006            | 0.0053 U     | 0.0066       |
| Cyclohexane                      | mg/kg | 27,000    | 0.01 U       | 0.0098 U     | 0.011 U      | 0.011 U      | 0.016 U        | 0.015 U       | 0.012 U       | 0.012 U       | 0.011 U       | 0.014 U       | 0.015 U         | 0.011 U       | 0.012 UJ         | 0.011 UJ     | 0.013 UJ     |
| Ethylbenzene                     | mg/kg | 25        | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0029 J      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Isopropylbenzene                 | mg/kg | 9,900     | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.029         | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Methyl Acetate                   | mg/kg | 1,200,000 | 0.05 U       | 0.049 U      | 0.053 U      | 0.054 U      | 0.082 U        | 0.075 U       | 0.058 U       | 0.06 U        | 0.055 U       | 0.068 U       | 0.077 U         | 0.057 U       | 0.059 R          | 0.053 R      | 0.065 R      |
| Methyl tert-butyl ether (MTBE)   | mg/kg | 210       | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Methylene Chloride               | mg/kg | 1,000     | 0.005 UJ     | 0.0049 UJ    | 0.0053 UJ    | 0.0054 UJ    | 0.0082 U       | 0.007 B       | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.011 J          | 0.016 J      | 0.036 J      |
| Tetrachloroethene                | mg/kg | 100       | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.006 U       | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Toluene                          | mg/kg | 47,000    | 0.005 U      | 0.0049 U     | 0.0053 U     | 0.0054 U     | 0.0082 U       | 0.0075 U      | 0.0058 U      | 0.0025 J      | 0.0055 U      | 0.0068 U      | 0.0077 U        | 0.0057 U      | 0.0059 U         | 0.0053 U     | 0.0065 U     |
| Xylenes                          | mg/kg | 2,800     | 0.015 U      | 0.015 U      | 0.016 U      | 0.016 U      | 0.025 U        | 0.023 U       | 0.018 U       | 0.018 U       | 0.017 U       | 0.02 U        | 0.023 U         | 0.0068 J      | 0.018 U          | 0.016 U      | 0.02 U       |
| Semi-Volatile Organic Compounds^ |       |           |              |              |              |              |                |               |               |               |               |               |                 |               |                  |              |              |
| 1,1-Biphenyl                     | mg/kg | 200       | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.033 J        | 0.037 J       | 0.076 U       | 0.074 U       | 0.017 J       | 0.074 U       | 0.1 U           | 0.047 J       | 0.072 U          | 0.077 U      | 0.076 U      |
| 2,3,4,6-Tetrachlorophenol        | mg/kg | 25,000    | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| 2,4,5-Trichlorophenol            | mg/kg | 82,000    | 0.2 U        | 0.2 U        | 0.21 U       | 0.21 U       | 0.19 U         | 0.2 U         | 0.19 U        | 0.18 U        | 0.19 U        | 0.19 U        | 0.25 U          | 0.22 U        | 0.18 U           | 0.19 U       | 0.19 U       |
| 2,4-Dimethylphenol               | mg/kg | 16,000    | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.018 J        | 0.02 J        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.078 J       | 0.072 U          | 0.077 U      | 0.076 U      |
| 2-Chloronaphthalene              | mg/kg | 60,000    | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| 2-Methylnaphthalene              | mg/kg | 3,000     | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 0.24           | 0.41          | 0.069 J       | 0.024         | 0.21          | 0.031         | 0.065 J         | 0.034 J       | 0.0027 J         | 0.013 J      | 0.075 U      |
| 2-Methylphenol                   | mg/kg | 41,000    | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| 2-Nitroaniline                   | mg/kg | 8,000     | 0.2 U        | 0.2 U        | 0.21 U       | 0.21 U       | 0.19 U         | 0.2 U         | 0.19 U        | 0.18 U        | 0.19 U        | 0.19 U        | 0.25 U          | 0.22 U        | 0.18 U           | 0.19 U       | 0.19 U       |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg | 41,000    | 0.16 U       | 0.16 U       | 0.17 U       | 0.17 U       | 0.16 U         | 0.04 J        | 0.15 U        | 0.15 U        | 0.15 U        | 0.15 U        | 0.2 U           | 0.17 U        | 0.14 U           | 0.15 U       | 0.15 U       |
| Acenaphthene                     | mg/kg | 45,000    | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 0.22           | 0.056 J       | 0.014 J       | 0.0019 J      | 0.11          | 0.0062 J      | 0.0074 J        | 0.059 J       | 0.00098 J        | 0.089 J      | 0.075 U      |
| Acenaphthylene                   | mg/kg | 45,000    | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 0.63           | 0.029 J       | 0.13          | 0.036         | 0.02 J        | 0.0099        | 0.1 U           | 0.087 U       | 0.023            | 0.0043 J     | 0.14         |
| Acetophenone                     | mg/kg | 120,000   | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.025 J       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| Anthracene                       | mg/kg | 230,000   | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 1.6            | 0.21          | 0.2           | 0.039         | 0.31          | 0.04          | 0.044 J         | 0.12          | 0.024            | 0.046 J      | 0.1          |
| Benz[a]anthracene                | mg/kg | 21        | 0.0082 U     | 0.0023 J     | 0.0084 U     | 0.0085 U     | 2.3            | 0.19          | 0.64          | 0.16          | 0.78          | 0.12          | 0.054 J         | 0.058 J       | 0.065            | 0.079 J      | 0.36         |
| Benzaldehyde                     | mg/kg | 120,000   | 0.082 UJ     | 0.081 UJ     | 0.084 UJ     | 0.083 UJ     | 0.032 J        | 0.067 J       | 0.044 J       | 0.074 U       | 0.044 J       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 UJ         | 0.077 UJ     | 0.076 UJ     |
| Benzo[a]pyrene                   | mg/kg | 2.1       | 0.0082 U     | 0.0011 J     | 0.0084 U     | 0.0085 U     | 3.5            | 0.14          | 0.51          | 0.14          | 0.61          | 0.12          | 0.051 J         | 0.061 J       | 0.085            | 0.057 J      | 0.36         |
| Benzo[b]fluoranthene             | mg/kg | 21        | 0.001 J      | 0.0016 J     | 0.001 J      | 0.0085 U     | 5.7            | 0.31          | 0.84          | 0.22          | 1.1           | 0.23          | 0.089 J         | 0.13          | 0.22             | 0.085 J      | 0.91         |
| Benzolg,n,1)perviene             | mg/kg | 210       | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 5.8            | 0.13          | 0.39          | 0.11          | 0.41          | 0.12          | 0.042 J         | 0.05 J        | 0.067            | 0.03 J       | 0.31         |
| bis(2 Ethylhoyyd)phthalata       | mg/kg | 160       | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 2.1<br>0.024 I | 0.26          | 0.36          | 0.089         | 0.98          | 0.2           | 0.034 J         | 0.11          | 0.19             | 0.037 J      | 0.79         |
| Carbazole                        | mg/kg | 100       | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.034 J        | 0.08 U        | 0.02 J        | 0.074 0       | 0.018 J       | 0.074 U       | 0.1.11          | 0.087 U       | 0.072 U          | 0.077 U      | 0.078 U      |
| Chrysene                         | mg/kg | 2 100     | 0.082 U      | 0.081 U      | 0.004 0      | 0.085 U      | 49             | 0.04 J        | 0.041 3       | 0.030 J       | 0.12          | 0.074 0       | 0.10            | 0.087 0       | 0.072 0          | 0.023 J      | 0.028 5      |
| Dibenz[a h]anthracene            | mg/kg | 2,100     | 0.0082 U     | 0.0082 U     | 0.000000 J   | 0.0085 U     | 15             | 0.059.1       | 0.13          | 0.17          | 0.05          | 0.038         | 0.12<br>0.017 J | 0.021 J       | 0.001            | 0.003 J      | 0.091        |
| Di-n-butylphthalate              | mg/kg | 82,000    | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.07.1          | 0.021 J       | 0.022<br>0.072 U | 0.012 J      | 0.076 U      |
| Fluoranthene                     | mg/kg | 30.000    | 0.00091 J    | 0.0019 J     | 0.0013 J     | 0.0085 U     | 3.6            | 0.33          | 1.5           | 0.31          | 1.7           | 0.18          | 0.11            | 0.099         | 0.081            | 0.29 J       | 0.4          |
| Fluorene                         | mg/kg | 30.000    | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 0.27           | 0.11          | 0.027 J       | 0.0094        | 0.12          | 0.0067 J      | 0.012 J         | 0.064 J       | 0.0016 J         | 0.06 J       | 0.075 U      |
| Indeno[1,2,3-c,d]pyrene          | mg/kg | 21        | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 3.9            | 0.09          | 0.38          | 0.11          | 0.38          | 0.099         | 0.033 J         | 0.041 J       | 0.063            | 0.028 J      | 0.27         |
| Naphthalene                      | mg/kg | 17        | 0.0082 U     | 0.0082 U     | 0.0084 U     | 0.0085 U     | 0.31           | 0.25          | 0.14          | 0.033         | 0.18          | 0.04          | 0.042 J         | 0.038 J       | 0.0045 B         | 0.023 J      | 0.024 B      |
| N-Nitrosodiphenylamine           | mg/kg | 470       | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| Pentachlorophenol                | mg/kg | 4         | 0.2 U        | 0.2 U        | 0.21 U       | 0.21 U       | 0.19 U         | 0.2 U         | 0.19 U        | 0.18 U        | 0.19 U        | 0.19 U        | 0.25 U          | 0.22 U        | 0.18 U           | 0.19 U       | 0.19 U       |
| Phenanthrene                     | mg/kg |           | 0.00077 J    | 0.00096 J    | 0.0013 J     | 0.0085 U     | 2.6            | 1.4           | 0.93          | 0.18          | 1.5           | 0.16          | 0.21            | 0.35          | 0.015            | 0.29 J       | 0.095        |
| Phenol                           | mg/kg | 250,000   | 0.082 U      | 0.081 U      | 0.084 U      | 0.083 U      | 0.078 U        | 0.08 U        | 0.076 U       | 0.074 U       | 0.075 U       | 0.074 U       | 0.1 U           | 0.087 U       | 0.072 U          | 0.077 U      | 0.076 U      |
| Pyrene                           | mg/kg | 23,000    | 0.0082 U     | 0.0016 J     | 0.0011 J     | 0.0085 U     | 3.1            | 0.29          | 1.1           | 0.22          | 1.5           | 0.2           | 0.091 J         | 0.18          | 0.09             | 0.23 J       | 0.39         |
| PCBs                             |       |           |              |              |              |              |                |               |               |               |               |               |                 |               |                  |              |              |
| Aroclor 1242                     | mg/kg | 0.97      | 0.0602 U     | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.0573 U        | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| Aroclor 1248                     | mg/kg | 0.94      | 0.141        | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.0573 U        | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| Aroclor 1254                     | mg/kg | 0.97      | 0.0602 U     | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.0573 U        | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| Aroclor 1260                     | mg/kg | 0.99      | 0.0602 U     | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.206           | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| Aroclor 1268                     | mg/kg |           | 0.0602 U     | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.0573 U        | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| PCBs (total)                     | mg/kg | 0.97      | 0.141        | N/A          | 0.0623 U     | N/A          | 0.0564 U       | N/A           | 0.0588 U      | N/A           | 0.0595 U      | N/A           | 0.206           | N/A           | 0.051 U          | N/A          | 0.0582 U     |
| ТРН                              |       |           | -            |              |              | •            |                |               |               |               |               |               | •               |               | •                | •            |              |
| Diesel Range Organics            | mg/kg | 6,200     | 4 J          | 3.7 J        | 8.3 UJ       | 3.6 J        | 320            | 95.3          | 69.3          | 21.8          | 80.7          | 43.9          | 774             | 281           | 11.3 J           | 107 J        | 37.6 J       |
| Gasoline Range Organics          | mg/kg | 6,200     | 9.9 U        | 10 U         | 12 U         | 10.8 U       | 17 U           | 15.3 U        | 12.6 U        | 17.5 U        | 9.8 U         | 14 U          | 16.8 U          | 47.4          | 10.8 U           | 9 U          | 12.8 U       |
|                                  |       |           |              |              |              |              |                |               |               |               |               |               |                 |               |                  |              |              |

### Detections in bold

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

| Parameter                        | Units | PAL        | A10-008-SB-4  | A10-008-SB-10*  | A10-009A-SB-1*  | A10-009-SB-1 5* | A10-009-SB-5* | A10-010-SB-1  | A10-010-SB-8  | A10-011-SB-1 | A10-011-SB-7 | A10-012-SB-1    | A10-012-SB-4  | A10-013-SB-1  | A10-013-SB-4  | A10-014-SB-2* | A10-014-SB-5* |
|----------------------------------|-------|------------|---------------|-----------------|-----------------|-----------------|---------------|---------------|---------------|--------------|--------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| Volatile Organic Compounds       | Cinta | THE        | 1110 000 55 1 | 1110 000 55 10  | IIIO OOJII BB I | 1110 007 55 1.5 | 1110 007 55 5 | 1110 010 55 1 | 1110 010 55 0 | nio on bb i  |              | 1110 012 00 1   | 1110 012 00 1 | 1110 015 55 1 | 1110 013 55 1 | nio ori ibb 2 | IIIO OIT BE 5 |
| 1.2.3-Trichlorobenzene           | ma/ka | 930        | 0.0047.U      | N/A             | 0.0062.11       | 0.0074 U        | 0.0046 U      | 0.0085.111    | 0.0053 UI     | 0.0079.11    | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006.111     | 0.0049.111    | 0.0052 U      | 0.0048 U      |
| 2-Butanone (MEK)                 | mg/kg | 190,000    | 0.0047 0      | N/A             | 0.012 U         | 0.015 U         | 0.0040 U      | 0.0085 UJ     | 0.0033 UJ     | 0.0077 U     | 0.0051 U     | 0.0038 U        | 0.0051 U      | 0.000 05      | 0.0049.03     | 0.0052 0      | 0.0043 U      |
| Acetone                          | mg/kg | 670,000    | 0.012         | N/A             | 0.012 0         | 0.015 U         | 0.0092 0      | 0.017 U       | 0.011 0       | 0.016 UI     | 0.01 UI      | 0.012 UI        | 0.01 UI       | 0.012 U       | 0.0099 U      | 0.01 U        | 0.0097 U      |
| Benzene                          | mg/kg | 51         | 0.0047 U      | N/A             | 0.0062 U        | 0.013 C         | 0.0011        | 0.0017 C      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.001 U       | 0.002 U       | 0.0049 U      | 0.012 U       | 0.0037 U      |
| Carbon disulfide                 | mg/kg | 3.500      | 0.0047 U      | N/A             | 0.0044 J        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0065 J     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Cyclohexane                      | mg/kg | 27.000     | 0.0095 UJ     | N/A             | 0.012 U         | 0.015 U         | 0.0092 U      | 0.017 U       | 0.011 U       | 0.016 UJ     | 0.01 UJ      | 0.012 UJ        | 0.01 UJ       | 0.012 U       | 0.0099 U      | 0.01 U        | 0.0097 U      |
| Ethylbenzene                     | mg/kg | 25         | 0.0047 U      | N/A             | 0.0062 U        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Isopropylbenzene                 | mg/kg | 9,900      | 0.0019 J      | N/A             | 0.0062 U        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Methyl Acetate                   | mg/kg | 1,200,000  | 0.047 R       | N/A             | 0.062 U         | 0.074 U         | 0.046 U       | 0.085 R       | 0.053 R       | 0.079 R      | 0.051 R      | 0.058 R         | 0.051 R       | 0.06 R        | 0.049 R       | 0.052 U       | 0.048 U       |
| Methyl tert-butyl ether (MTBE)   | mg/kg | 210        | 0.0047 U      | N/A             | 0.0062 U        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Methylene Chloride               | mg/kg | 1,000      | 0.0089 J      | N/A             | 0.0062 U        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Tetrachloroethene                | mg/kg | 100        | 0.0047 U      | N/A             | 0.0062 U        | 0.01            | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Toluene                          | mg/kg | 47,000     | 0.0047 U      | N/A             | 0.0062 U        | 0.0074 U        | 0.0046 U      | 0.0085 U      | 0.0053 U      | 0.0079 U     | 0.0051 U     | 0.0058 U        | 0.0051 U      | 0.006 U       | 0.0049 U      | 0.0052 U      | 0.0048 U      |
| Xylenes                          | mg/kg | 2,800      | 0.014 U       | N/A             | 0.018 U         | 0.022 U         | 0.014 U       | 0.025 U       | 0.016 U       | 0.024 U      | 0.015 U      | 0.017 U         | 0.015 U       | 0.018 U       | 0.015 U       | 0.016 U       | 0.015 U       |
| Semi-Volatile Organic Compounds^ |       |            |               |                 |                 |                 |               |               |               |              |              |                 |               |               |               |               |               |
| 1,1-Biphenyl                     | mg/kg | 200        | 0.077 U       | N/A             | 0.071 U         | 0.021 J         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| 2,3,4,6-Tetrachlorophenol        | mg/kg | 25,000     | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| 2,4,5-Trichlorophenol            | mg/kg | 82,000     | 0.19 U        | N/A             | 0.18 U          | 0.2 U           | 0.2 U         | 0.19 U        | 0.21 U        | 0.2 U        | 0.21 U       | 0.18 U          | 0.2 U         | 0.19 U        | 0.19 U        | 0.2 U         | 0.2 U         |
| 2,4-Dimethylphenol               | mg/kg | 16,000     | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| 2-Chloronaphthalene              | mg/kg | 60,000     | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| 2-Methylnaphthalene              | mg/kg | 3,000      | 0.75          | 0.0082 U        | 0.005 J         | 0.029 J         | 0.008 U       | 0.11          | 0.0025 J      | 0.0052 J     | 0.0083 U     | 0.091           | 0.008 U       | 0.0054 J      | 0.0077 U      | 0.0044 J      | 0.0069 J      |
| 2-Methylphenol                   | mg/kg | 41,000     | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| 2-Nitroaniline                   | mg/kg | 8,000      | 0.19 U        | N/A             | 0.18 U          | 0.2 U           | 0.2 U         | 0.19 U        | 0.21 U        | 0.2 U        | 0.21 U       | 0.18 U          | 0.2 U         | 0.19 U        | 0.19 U        | 0.2 U         | 0.2 U         |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg | 41,000     | 0.15 U        | N/A             | 0.14 U          | 0.16 U          | 0.16 U        | 0.15 U        | 0.17 U        | 0.16 U       | 0.17 U       | 0.14 U          | 0.16 U        | 0.15 U        | 0.15 U        | 0.16 U        | 0.16 U        |
| Acenaphthene                     | mg/kg | 45,000     | 4.2           | 0.0082 U        | 0.00087 J       | 0.039 J         | 0.008 U       | 0.0086 J      | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.019 J         | 0.008 U       | 0.00071 J     | 0.0077 U      | 0.0015 J      | 0.0011 J      |
| Acenaphthylene                   | mg/kg | 45,000     | 0.45          | 0.0082 U        | 0.0026 J        | 0.035 J         | 0.008 U       | 0.093         | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.032 J         | 0.008 U       | 0.004 J       | 0.0077 U      | 0.028         | 0.021         |
| Acetophenone                     | mg/kg | 120,000    | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| Anthracene                       | mg/kg | 230,000    | 9.1           | 0.0082 U        | 0.0047 J        | 0.088           | 0.008 U       | 0.036 J       | 0.0016 J      | 0.0081 U     | 0.0083 U     | 0.048 J         | 0.008 U       | 0.0071 J      | 0.0077 U      | 0.038         | 0.013         |
| Benz[a]anthracene                | mg/kg | 21         | 20.8          | 0.0082 U        | 0.014           | 0.38            | 0.008 U       | 0.037 J       | 0.0085 U      | 0.0081 U     | 0.0016 J     | 0.18            | 0.008 U       | 0.021         | 0.0021 J      | 0.24          | 0.11          |
| Benzaldehyde                     | mg/kg | 120,000    | 0.077 UJ      | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.025 J       | 0.086 UJ      | 0.079 UJ     | 0.084 UJ     | 0.072 UJ        | 0.08 UJ       | 0.076 UJ      | 0.077 UJ      | 0.079 U       | 0.079 U       |
| Benzo[a]pyrene                   | mg/kg | 2.1        | 13.6          | 0.0082 U        | 0.014           | 0.39            | 0.008 U       | 0.038 J       | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.21            | 0.008 U       | 0.023         | 0.0011 J      | 0.2           | 0.12          |
| Benzo[b]fluoranthene             | mg/kg | 21         | 33.9          | 0.0082 U        | 0.062           | 0.82            | 0.008 U       | 0.083         | 0.0085 U      | 0.0009 J     | 0.0019 J     | 0.36            | 0.008 U       | 0.048         | 0.002 J       | 0.41          | 0.18          |
| Benzo[g,n,1]perviene             | mg/kg | 210        | 7.2           | 0.0082 U        | 0.0083          | 0.15            | 0.008 U       | 0.025 J       | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.094           | 0.008 U       | 0.017         | 0.0077 U      | 0.088         | 0.069         |
| Benzo[K]Iluorantnene             | mg/kg | 210        | 7.5           | 0.0082 U        | 0.056           | 0.74            | 0.008 U       | 0.075 J       | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.1             | 0.008 U       | 0.044         | 0.0077 U      | 0.38          | 0.056         |
| Cerhezele                        | mg/kg | 160        | 0.077 UJ      | IN/A<br>N/A     | 0.032 J         | 0.049 J         | 0.079 U       | 0.12 J        | 0.086 UJ      | 0.079 U      | 0.084 U      | 0.039 J         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| Chrysone                         | mg/kg | 2 100      | 0.67          | 1N/A            | 0.071 0         | 0.022 J         | 0.079 U       | 0.077 U       | 0.080 U       | 0.079 0      | 0.084 0      | 0.072 0         | 0.000 U       | 0.070 0       | 0.077 0       | 0.079 0       | 0.079 0       |
| Dibenzla hlanthracene            | mg/kg | 2,100      | 10            | 0.0082 U        | 0.049           | 0.47            | 0.008 U       | 0.072 J       | 0.0085 U      | 0.0081 U     | 0.0093 U     | 0.22<br>0.031 I | 0.008 U       | 0.024         | 0.0011 J      | 0.2           | 0.1           |
| Di-n-butyInhthalate              | mg/kg | 82,000     | 0.077 UI      | 0.0082 0<br>N/A | 0.002 J         | 0.032 J         | 0.008 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.008 U       | 0.0049 J      | 0.077 U       | 0.033         | 0.022         |
| Fluoranthene                     | mg/kg | 30,000     | 53.8          | 0.0082 U        | 0.071 0         | 0.079 0         | 0.008 U       | 0.077         | 0.00075 J     | 0.00921      | 0.004 C      | 0.072 0         | 0.008 U       | 0.034         | 0.0077.0      | 0.079 0       | 0.079 0       |
| Fluorene                         | mg/kg | 30,000     | 4 8           | 0.0082 U        | 0.0011 J        | 0.023 J         | 0.008 U       | 0.022.1       | 0.0076 J      | 0.0081 U     | 0.0083 U     | 0.022 J         | 0.008 U       | 0.001 J       | 0.0077 U      | 0.0094        | 0.0018 J      |
| Indeno[1 2 3-c d]pyrene          | mg/kg | 21         | 7.5           | 0.0082 U        | 0.0072          | 0.13            | 0.008 U       | 0.015 J       | 0.0085 U      | 0.0081 U     | 0.0083 U     | 0.088           | 0.008 U       | 0.015         | 0.0077 U      | 0.098         | 0.069         |
| Naphthalene                      | mg/kg | 17         | 1.7           | 0.0082 U        | 0.0036 J        | 0.032 J         | 0.008 U       | 0.27          | 0.016         | 0.0081 U     | 0.0083 U     | 0.05 B          | 0.008 U       | 0.0056 B      | 0.0077 U      | 0.029         | 0.11          |
| N-Nitrosodiphenylamine           | mg/kg | 470        | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| Pentachlorophenol                | mg/kg | 4          | 0.19 U        | N/A             | 0.18 U          | 0.2 U           | 0.2 U         | 0.19 U        | 0.21 U        | 0.2 UJ       | 0.21 UJ      | 0.18 UJ         | 0.2 UJ        | 0.19 U        | 0.19 U        | 0.2 U         | 0.2 U         |
| Phenanthrene                     | mg/kg |            | 43.7          | 0.0082 U        | 0.05            | 0.56            | 0.00089 J     | 0.22          | 0.0046 J      | 0.00099 B    | 0.0014 B     | 0.24            | 0.008 U       | 0.017         | 0.0016 J      | 0.14          | 0.03          |
| Phenol                           | mg/kg | 250,000    | 0.077 U       | N/A             | 0.071 U         | 0.079 U         | 0.079 U       | 0.077 U       | 0.086 U       | 0.079 U      | 0.084 U      | 0.072 U         | 0.08 U        | 0.076 U       | 0.077 U       | 0.079 U       | 0.079 U       |
| Pyrene                           | mg/kg | 23,000     | 39.9          | 0.0082 U        | 0.063           | 0.95            | 0.008 U       | 0.1           | 0.00092 J     | 0.00082 J    | 0.0013 J     | 0.3             | 0.008 U       | 0.036         | 0.002 J       | 0.35          | 0.15          |
| PCBs                             | 0.0   | <b>.</b> . |               |                 |                 |                 |               |               |               |              |              | •               |               |               |               |               |               |
| Aroclor 1242                     | mg/kg | 0.97       | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| Aroclor 1248                     | mg/kg | 0.94       | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| Aroclor 1254                     | mg/kg | 0.97       | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| Aroclor 1260                     | mg/kg | 0.99       | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| Aroclor 1268                     | mg/kg |            | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| PCBs (total)                     | mg/kg | 0.97       | N/A           | N/A             | 0.0526 U        | 0.0553 U        | N/A           | 0.0653 U      | N/A           | 0.0594 U     | N/A          | 0.0562 U        | N/A           | 0.0584 U      | N/A           | 0.0632 U      | N/A           |
| ТРН                              |       |            | -             |                 |                 |                 |               |               |               |              |              |                 |               |               |               |               |               |
| Diesel Range Organics            | mg/kg | 6,200      | 1,270 J       | 8.2 U           | 108             | 87.2            | 7.8 U         | 130 J         | 600 J         | 17.5 J       | 3.5 J        | 101 J           | 3.7 J         | 17.3 J        | 5 J           | 14.9          | 9.3           |
| Gasoline Range Organics          | mg/kg | 6,200      | 10.6 U        | N/A             | 14.6 U          | 13.3 U          | 10 U          | 14.2 U        | 11 U          | 17.3 U       | 10.6 U       | 13.8 U          | 9.6 U         | 12.9 U        | 9.3 U         | 9.5 U         | 10.4 U        |

### Detections in bold

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

|                                  |       |           |              |              |               |               |               |               |              |              |               | -            | -            | -              |              |              |              |
|----------------------------------|-------|-----------|--------------|--------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|--------------|--------------|----------------|--------------|--------------|--------------|
| Parameter                        | Units | PAL       | A10-015-SB-1 | A10-015-SB-5 | A10-016-SB-1* | A10-016-SB-6* | A10-017-SB-1* | A10-017-SB-4* | A10-018-SB-1 | A10-018-SB-5 | A10-018-SB-10 | A10-019-SB-1 | A10-019-SB-4 | A10-020-SB-1.5 | A10-020-SB-7 | A10-021-SB-2 | A10-021-SB-4 |
| Volatile Organic Compounds       |       |           |              |              |               |               |               |               |              |              |               | •            |              |                |              |              |              |
| 1,2,3-Trichlorobenzene           | mg/kg | 930       | 0.0048 UJ    | 0.0053 UJ    | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0035 J     | 0.0043 U     | N/A           | 0.0051 UJ    | 0.0043 UJ    | 0.0064 U       | 0.0058 U     | 0.0055 UJ    | 0.005 UJ     |
| 2-Butanone (MEK)                 | mg/kg | 190,000   | 0.0096 U     | 0.011 U      | 0.0099 U      | 0.0081 U      | 0.011 U       | 0.011 U       | 0.0091 U     | 0.0085 U     | N/A           | 0.01 U       | 0.0087 U     | 0.013 U        | 0.012 U      | 0.011 U      | 0.01 U       |
| Acetone                          | mg/kg | 670,000   | 0.0096 U     | 0.011 U      | 0.025         | 0.038         | 0.034         | 0.031         | 0.028 J      | 0.045 J      | N/A           | 0.0091 B     | 0.0087 U     | 0.037 J        | 0.084 J      | 0.011 U      | 0.01 U       |
| Benzene                          | mg/kg | 5.1       | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 U     | 0.0043 U     | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Carbon disulfide                 | mg/kg | 3,500     | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 U     | 0.0043 U     | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0039 J     | 0.005 U      |
| Cyclohexane                      | mg/kg | 27,000    | 0.0096 U     | 0.011 U      | 0.0099 U      | 0.023         | 0.011 U       | 0.011 U       | 0.0091 UJ    | 0.051 J      | N/A           | 0.01 U       | 0.0087 U     | 0.013 UJ       | 0.012 UJ     | 0.011 U      | 0.01 U       |
| Ethylbenzene                     | mg/kg | 25        | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.015         | 0.0055 U      | 0.0091        | 0.0046 U     | 0.089        | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Isopropylbenzene                 | mg/kg | 9,900     | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.023         | 0.005 J       | 0.021         | 0.0046 U     | 0.069        | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Methyl Acetate                   | mg/kg | 1,200,000 | 0.048 R      | 0.053 R      | 0.05 U        | 0.04 U        | 0.055 U       | 0.055 U       | 0.046 R      | 0.043 R      | N/A           | 0.051 R      | 0.043 R      | 0.064 R        | 0.058 R      | 0.055 R      | 0.05 R       |
| Methyl tert-butyl ether (MTBE)   | mg/kg | 210       | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 U     | 0.0043 U     | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Methylene Chloride               | mg/kg | 1,000     | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 UJ    | 0.0043 UJ    | N/A           | 0.0051 U     | 0.0043 U     | 0.034 J        | 0.011 J      | 0.0055 U     | 0.005 U      |
| Tetrachloroethene                | mg/kg | 100       | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 U     | 0.0043 U     | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Toluene                          | mg/kg | 47,000    | 0.0048 U     | 0.0053 U     | 0.005 U       | 0.004 U       | 0.0055 U      | 0.0055 U      | 0.0046 U     | 0.0043 U     | N/A           | 0.0051 U     | 0.0043 U     | 0.0064 U       | 0.0058 U     | 0.0055 U     | 0.005 U      |
| Xylenes                          | mg/kg | 2,800     | 0.014 U      | 0.016 U      | 0.015 U       | 0.02          | 0.0034 J      | 0.0075 J      | 0.014 U      | 0.11         | N/A           | 0.015 U      | 0.013 U      | 0.019 U        | 0.017 U      | 0.017 U      | 0.015 U      |
| Semi-Volatile Organic Compounds^ |       |           |              |              |               |               |               |               |              |              |               |              |              |                |              |              |              |
| 1,1-Biphenyl                     | mg/kg | 200       | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.4 U         | 0.4 U        | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.025 J        | 0.082 U      | 0.067 UJ     | 0.08 U       |
| 2,3,4,6-Tetrachlorophenol        | mg/kg | 25,000    | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.4 U         | 0.4 U        | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| 2,4,5-Trichlorophenol            | mg/kg | 82,000    | 0.18 U       | 0.2 U        | 0.21 U        | 0.2 U         | 0.21 U        | 0.99 U        | 1 U          | 1 U          | N/A           | 0.19 U       | 0.2 U        | 0.19 U         | 0.21 U       | 0.17 U       | 0.2 U        |
| 2,4-Dimethylphenol               | mg/kg | 16,000    | 0.073 U      | 0.079 U      | 0.083 U       | 0.24          | 0.21          | 0.49          | 0.59         | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| 2-Chloronaphthalene              | mg/kg | 60,000    | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.4 U         | 0.4 U        | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| 2-Methylnaphthalene              | mg/kg | 3,000     | 0.37 U       | 0.0079 U     | 0.0082 U      | 1.4           | 2.6           | 5.5           | 0.11         | 12.6         | N/A           | 0.0021 J     | 0.0078 U     | 0.053 J        | 0.0081 U     | 0.066 U      | 0.0081 U     |
| 2-Methylphenol                   | mg/kg | 41,000    | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.079 U       | 0.08 U       | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| 2-Nitroaniline                   | mg/kg | 8,000     | 0.18 U       | 0.2 U        | 0.21 U        | 0.2 U         | 0.21 U        | 0.99 U        | 1 U          | 1 U          | N/A           | 0.19 U       | 0.2 U        | 0.19 U         | 0.21 U       | 0.17 U       | 0.2 U        |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg | 41,000    | 0.15 U       | 0.16 U       | 0.17 U        | 0.16 U        | 0.16 U        | 0.16 U        | 0.16 U       | 0.8 U        | N/A           | 0.15 U       | 0.16 U       | 0.15 U         | 0.16 U       | 0.13 U       | 0.16 U       |
| Acenaphthene                     | mg/kg | 45,000    | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.14          | 0.23          | 0.43          | 0.056 J      | 0.35         | N/A           | 0.0077 U     | 0.0078 U     | 0.019 J        | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Acenaphthylene                   | mg/kg | 45,000    | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.063         | 0.079 J       | 0.13          | 0.094        | 0.26         | N/A           | 0.0077 U     | 0.0078 U     | 0.053 J        | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Acetophenone                     | mg/kg | 120,000   | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.54          | 0.08 U       | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| Anthracene                       | mg/kg | 230,000   | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.15          | 0.13          | 0.21          | 0.074 J      | 0.41         | N/A           | 0.001 J      | 0.0078 U     | 0.09           | 0.0014 J     | 0.066 U      | 0.0081 U     |
| Benz[a]anthracene                | mg/kg | 21        | 0.37 U       | 0.0079 U     | 0.0021 J      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.0056 J     | 0.0078 U     | 0.33           | 0.0031 J     | 0.017 J      | 0.0016 J     |
| Benzaldehyde                     | mg/kg | 120,000   | 0.073 UJ     | 0.079 UJ     | 0.083 U       | 0.078 U       | 0.082 U       | 0.079 U       | 0.08 R       | 0.4 UJ       | N/A           | 0.078 UJ     | 0.078 UJ     | 0.02 J         | 0.082 UJ     | 0.067 UJ     | 0.08 UJ      |
| Benzo[a]pyrene                   | mg/kg | 2.1       | 0.046 J      | 0.0079 U     | 0.0082 U      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.0052 J     | 0.0078 U     | 0.29           | 0.0017 J     | 0.0087 J     | 0.0081 U     |
| Benzo[b]fluoranthene             | mg/kg | 21        | 0.15 J       | 0.0011 J     | 0.0048 J      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.0083 J     | 0.081 U      | N/A           | 0.012        | 0.0078 U     | 0.59           | 0.0044 J     | 0.015 J      | 0.0011 J     |
| Benzo[g,h,i]perylene             | mg/kg |           | 0.045 J      | 0.0079 U     | 0.0082 U      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.0043 J     | 0.0078 U     | 0.18           | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Benzo[k]fluoranthene             | mg/kg | 210       | 0.14 J       | 0.0079 U     | 0.0043 J      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.011        | 0.0078 U     | 0.52           | 0.0038 J     | 0.066 U      | 0.0081 U     |
| bis(2-Ethylhexyl)phthalate       | mg/kg | 160       | 0.053 J      | 0.079 UJ     | 0.083 U       | 0.078 U       | 0.082 U       | 0.021 J       | 0.08 U       | 0.08 U       | N/A           | 0.078 UJ     | 0.078 UJ     | 0.016 B        | 0.082 U      | 0.067 UJ     | 0.08 UJ      |
| Carbazole                        | mg/kg |           | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.079 U       | 0.4 UJ       | 0.4 UJ       | N/A           | 0.078 U      | 0.078 U      | 0.053 J        | 0.082 U      | 0.067 U      | 0.08 U       |
| Chrysene                         | mg/kg | 2,100     | 0.069 J      | 0.0079 U     | 0.0058 J      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.005 J      | 0.0078 U     | 0.28           | 0.0024 J     | 0.0088 J     | 0.00083 J    |
| Dibenz[a,h]anthracene            | mg/kg | 2.1       | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.0014 J     | 0.0078 U     | 0.065 J        | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Di-n-butylphthalate              | mg/kg | 82,000    | 0.073 U      | 0.079 U      | 0.083 U       | 0.078 U       | 0.082 U       | 0.079 U       | 0.4 U        | 0.4 UJ       | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| Fluoranthene                     | mg/kg | 30,000    | 0.077 J      | 0.00086 J    | 0.0026 J      | 0.0043 J      | 0.009 J       | 0.015 J       | 0.012 J      | 0.014 J      | N/A           | 0.007 J      | 0.0078 U     | 0.46           | 0.0046 J     | 0.017 J      | 0.0018 J     |
| Fluorene                         | mg/kg | 30,000    | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.26          | 0.46          | 0.78          | 0.056 J      | 1.6          | N/A           | 0.0077 U     | 0.0078 U     | 0.019 J        | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Indeno[1,2,3-c,d]pyrene          | mg/kg | 21        | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.0079 U      | 0.083 U       | 0.079 U       | 0.081 U      | 0.081 U      | N/A           | 0.0038 J     | 0.0078 U     | 0.17           | 0.0081 U     | 0.066 U      | 0.0081 U     |
| Naphthalene                      | mg/kg | 1/        | 0.37 U       | 0.0079 U     | 0.0082 U      | 0.34          | 0.31          | 0.75          | 0.06 J       | 2.4          | N/A           | 0.0021 B     | 0.0078 U     | 0.26           | 0.0081 U     | 0.066 U      | 0.0081 U     |
| N-Nitrosodiphenylamine           | mg/kg | 4/0       | 0.073 U      | 0.079 U      | 0.085 U       | 0.078 U       | 0.082 U       | 0.079 U       | 0.4 U        | 0.4 U        | N/A           | 0.078 U      | 0.078 U      | 0.077 U        | 0.082 U      | 0.067 U      | 0.08 U       |
| Pentachiorophenoi                | mg/kg | 4         | 0.18 U       | 0.2 0        | 0.21 0        | 0.2 0         | 0.21 0        | 0.2 0         | 10           | 10           | IN/A<br>N/A   | 0.19 0       | 0.2 U        | 0.190          | 0.21 0       | 0.17 0       | 0.2 0        |
| Phenal                           | mg/kg | 250,000   | 0.041 J      | 0.00091 J    | 0.00079 J     | 0.59          | 0.021         | 0.98          | 0.08 U       |              | IN/A<br>N/A   | 0.004 J      | 0.0078 U     | 0.18           | 0.002/J      | 0.0092 J     | 0.0021 J     |
| Prieno                           | mg/kg | 230,000   | 0.073 U      | 0.079 U      | 0.085 U       | 0.078 0       | 0.082 0       | 0.079 U       | 0.08 U       | 0.4 U        | IN/A<br>N/A   | 0.078 U      | 0.078 U      | 0.077 0        | 0.082 0      | 0.067 0      | 0.08 0       |
| Pyrene                           | mg/kg | 25,000    | 0.14 J       | 0.0079 0     | 0.0022 J      | 0.013         | 0.01 / J      | 0.022 J       | 0.028 J      | 0.041 J      | IN/A          | 0.0063 J     | 0.0078 U     | 0.45           | 0.0036 J     | 0.018 J      | 0.0015 J     |
| America 1242                     |       | 0.07      | 0.05(1.11    | NT / A       | 0.0600.11     | NI/A          | 0.0606.11     | NT/ 4         | 0.0500.11    | NT/A         | NI/A          | 0.05 (9.11   | NT/A         | 0.0595 11      | NT/ 4        | 0.0602.11    | NT/A         |
| Aroclor 1242                     | mg/kg | 0.97      | 0.0561 U     | IN/A         | 0.0609 U      | N/A           | 0.0606 U      | IN/A          | 0.0599 U     | N/A          | N/A           | 0.0568 U     | IN/A         | 0.0585 U       | IN/A         | 0.0693 U     | N/A          |
| Anoclor 1248                     | mg/Kg | 0.94      | 0.0561 U     | IN/A         | 0.0009 U      | IN/A          | 0.0000 U      |               | 0.0399 U     | IN/A<br>NT/A | IN/A          | 0.0368 U     | IN/A         | 0.0385 U       |              | 0.0693 U     |              |
| Arocior 1254                     | mg/kg | 0.97      | 0.0561 U     | N/A          | 0.0609 U      | N/A           | 0.0606 U      | N/A           | 0.0599 U     | N/A          | N/A           | 0.0568 U     | N/A          | 0.0559 J       | N/A          | 0.0693 U     | N/A          |
| Anocio: 1200                     | mg/Kg | 0.99      | 0.0561 U     | IN/A         | 0.0009 U      | IN/A          | 0.0000 U      |               | 0.0399 U     | IN/A         | IN/A          | 0.0568 U     | IN/A         | 0.0385 U       | IN/A         | 0.0693 U     | IN/A         |
| ATOCIOF 1208                     | mg/kg | 0.07      | 0.0561 U     | IN/A         | 0.0609 U      | IN/A          | 0.0606 U      | IN/A          | 0.0599 U     | IN/A         | IN/A          | 0.0568 U     | IN/A         | 0.0633         | IN/A         | 0.0693 U     | IN/A         |
|                                  | mg/kg | 0.97      | 0.0561 U     | IN/A         | 0.0609 U      | IN/A          | 0.0606 U      | IN/A          | 0.0599 0     | IN/A         | IN/A          | 0.0568 U     | IN/A         | 0.1192         | IN/A         | 0.0693 U     | IN/A         |
|                                  |       | 6.200     | 204 7        | ( ) ]        | 252           | 2 200         | 4 000         | 4.040         | 0 510 T      | C 000 X      | 014 3         | 263          | 2211         | 1643           | 4.2.1        | 20 5 1       | 453          |
| Caseling Dense Organics          | mg/kg | 6,200     | 284 J        | 0.2 J        | 353           | 3,200         | 4,890         | 4,840         | 2,510 J      | 0,000 J      | 914 J         | 3.6 J        | 7.7 UJ       | 104 J          | 4.2 J        | 38.5 J       | 4.5 J        |
| Gasoline Range Organics          | mg/kg | 6,200     | 10.4 U       | 10.5 U       | 8.1 J         | 28            | 22.2          | 16.2          | 40.4         | 118          | N/A           | 10.2 U       | 9.4 U        | 12.2 U         | 9.6 U        | 9.5 U        | 9.9 U        |

### Detections in bold

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. J: The positive result reported for this analyte is a quantitative estimate.

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

| Parameter                        | Units | PAL       | A10-022-SB-2  | A10-022-SB-4  | A10-023-SB-1  | A10-023-SB-4  | A10-024-SB-1* | A10-024-SB-5*  | A10-025-SB-1* | A10-025-SB-4* | A10-026-SB-1  | A10-026-SB-5  | A10-027-SB-1  | A10-027-SB-4  | A10-027-SB-10* |
|----------------------------------|-------|-----------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Volatile Organic Compounds       | Onto  | THE       | 1110 022 55 2 | 1110 022 56 1 | 1110 023 55 1 | 1110 025 55 1 | 1110 021 55 1 | 1110 02 1 55 5 | 1110 025 50 1 | 1110 025 58 1 | 1110 020 55 1 | 1110 020 55 5 | 1110 027 55 1 | 1110 027 55 1 | 1110 027 55 10 |
| 1.2.3-Trichlorobenzene           | mø/kø | 930       | 0 0046 UI     | 0.0049 UI     | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082.U      | 0.005 U       | N/A            |
| 2-Butanone (MEK)                 | mg/kg | 190.000   | 0.0091 U      | 0.0098 U      | 0.015 U       | 0.015 U       | 0.012 U       | 0.075 U        | 0.012 U       | 0.011 U       | 0.011 U       | 0.011 U       | 0.016 U       | 0.01 U        | N/A            |
| Acetone                          | mg/kg | 670,000   | 0.0091 U      | 0.0098 U      | 0.015 UJ      | 0.17 J        | 0.0082 J      | 0.23           | 0.012 U       | 0.011 U       | 0.017 J       | 0.07 J        | 0.016 UJ      | 0.02 J        | N/A            |
| Benzene                          | mg/kg | 5.1       | 0.015         | 0.0058        | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Carbon disulfide                 | mg/kg | 3,500     | 0.0062        | 0.0049 U      | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0039 J      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Cyclohexane                      | mg/kg | 27,000    | 0.0091 U      | 0.0098 U      | 0.015 UJ      | 0.015 UJ      | 0.012 U       | 0.075 U        | 0.012 U       | 0.011 U       | 0.011 UJ      | 0.011 UJ      | 0.016 UJ      | 0.01 UJ       | N/A            |
| Ethylbenzene                     | mg/kg | 25        | 0.47          | 0.008         | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Isopropylbenzene                 | mg/kg | 9,900     | 0.094         | 0.0049 U      | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Methyl Acetate                   | mg/kg | 1,200,000 | 0.046 R       | 0.049 R       | 0.075 R       | 0.075 R       | 0.06 U        | 0.38 U         | 0.012 J       | 0.054 U       | 0.057 R       | 0.055 R       | 0.082 R       | 0.05 R        | N/A            |
| Methyl tert-butyl ether (MTBE)   | mg/kg | 210       | 0.004 J       | 0.015         | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Methylene Chloride               | mg/kg | 1,000     | 0.0046 U      | 0.0049 U      | 0.049 J       | 0.19 J        | 0.006 U       | 0.23           | 0.006 U       | 0.0054 U      | 0.026 J       | 0.0097 J      | 0.039 J       | 0.025 J       | N/A            |
| Tetrachloroethene                | mg/kg | 100       | 0.0046 U      | 0.0049 U      | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.005 U       | N/A            |
| Toluene                          | mg/kg | 47,000    | 0.12          | 0.0054        | 0.0075 U      | 0.0075 U      | 0.006 U       | 0.038 U        | 0.006 U       | 0.0054 U      | 0.0057 U      | 0.0055 U      | 0.0082 U      | 0.0025 J      | N/A            |
| Xylenes                          | mg/kg | 2,800     | 0.72 J        | 0.03          | 0.022 U       | 0.022 U       | 0.018 U       | 0.11 U         | 0.018 U       | 0.016 U       | 0.017 U       | 0.017 U       | 0.025 U       | 0.015 U       | N/A            |
| Semi-Volatile Organic Compounds^ |       |           |               |               |               |               |               |                |               |               |               |               |               |               |                |
| 1,1-Biphenyl                     | mg/kg | 200       | 0.08 U        | 0.082 U       | 0.036 J       | 0.092 U       | 0.075 U       | 0.15 J         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.035 J       | 0.03 J        | N/A            |
| 2,3,4,6-Tetrachlorophenol        | mg/kg | 25,000    | 0.08 U        | 0.082 U       | 0.075 U       | 0.092 U       | 0.075 U       | 0.15 J         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 R       | 0.073 U       | 0.074 U       | N/A            |
| 2,4,5-Trichlorophenol            | mg/kg | 82,000    | 0.2 U         | 0.21 U        | 0.19 U        | 0.23 U        | 0.19 U        | 0.042 J        | 0.2 U         | 0.2 U         | 0.18 U        | 0.19 R        | 0.18 U        | 0.19 U        | N/A            |
| 2,4-Dimethylphenol               | mg/kg | 16,000    | 0.08 U        | 0.082 U       | 0.075 U       | 0.092 U       | 0.075 U       | 1.9            | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 R       | 0.073 U       | 0.074 U       | N/A            |
| 2-Chloronaphthalene              | mg/kg | 60,000    | 0.08 U        | 0.082 U       | 0.054 J       | 0.092 U       | 0.075 U       | 0.17 U         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.073 U       | 0.074 U       | N/A            |
| 2-Methylnaphthalene              | mg/kg | 3,000     | 0.1           | 0.0082 U      | 0.12          | 0.0051 J      | 0.035 J       | 0.43           | 0.079 U       | 0.0083 U      | 0.036 J       | 0.0081        | 0.13          | 0.14          | N/A            |
| 2-Methylphenol                   | mg/kg | 41,000    | 0.08 U        | 0.082 U       | 0.015 J       | 0.092 U       | 0.075 U       | 2.2            | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 R       | 0.073 U       | 0.074 U       | N/A            |
| 2-Nitroaniline                   | mg/kg | 8,000     | 0.2 U         | 0.21 U        | 0.19 U        | 0.23 U        | 0.19 U        | 0.34 J         | 0.2 U         | 0.2 U         | 0.18 U        | 0.19 U        | 0.18 U        | 0.19 U        | N/A            |
| 3&4-Methylphenol(m&p Cresol)     | mg/kg | 41,000    | 0.16 U        | 0.16 U        | 0.046 J       | 0.18 U        | 0.15 U        | 5.8            | 0.16 U        | 0.16 U        | 0.15 U        | 0.15 R        | 0.15 U        | 0.15 U        | N/A            |
| Acenaphthene                     | mg/kg | 45,000    | 0.009 J       | 0.0082 U      | 0.012 J       | 0.0017 J      | 0.076 U       | 0.12 J         | 0.079 U       | 0.0083 U      | 0.0067 J      | 0.0076 U      | 0.021 J       | 0.037 J       | N/A            |
| Acenaphthylene                   | mg/kg | 45,000    | 0.0069 J      | 0.0082 U      | 0.48          | 0.053         | 0.017 J       | 0.23           | 0.02 J        | 0.0083 U      | 0.12          | 0.002 J       | 0.35          | 0.13          | N/A            |
| Acetophenone                     | mg/kg | 120,000   | 0.08 U        | 0.082 U       | 0.075 U       | 0.092 U       | 0.075 U       | 0.44           | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.073 U       | 0.074 U       | N/A            |
| Anthracene                       | mg/kg | 230,000   | 0.021 J       | 0.0082 U      | 0.38          | 0.038         | 0.024 J       | 0.11 J         | 0.024 J       | 0.0083 U      | 0.11          | 0.0035 J      | 0.31          | 0.26          | N/A            |
| Benz[a]anthracene                | mg/kg | 21        | 0.037 J       | 0.0082 U      | 0.89          | 0.19          | 0.13          | 0.1 J          | 0.082         | 0.0083 U      | 0.38          | 0.011         | 1.2           | 1             | N/A            |
| Benzaldehyde                     | mg/kg | 120,000   | 0.08 UJ       | 0.082 UJ      | 0.059 J       | 0.092 UJ      | 0.052 J       | 1              | 0.08 U        | 0.081 U       | 0.0/3 UJ      | 0.076 UJ      | 0.022 J       | 0.041 J       | N/A            |
| Benzolajpyrene                   | mg/kg | 2.1       | 0.036 J       | 0.0082 U      | 1.2           | 0.15          | 0.1           | 0.055 J        | 0.071 J       | 0.0083 U      | 0.4           | 0.0079        | 1.5           | 1.1           | 0.0032 J       |
| Benzo[o]huorannene               | mg/kg | 21        | 0.09          | 0.0082 U      | 3.3           | 0.29          | 0.26          | 0.12 J         | 0.19          | 0.0083 U      | 0.91          | 0.021         | 2.6           | 1.7           | 0.0098<br>N/A  |
| Benzolkifluoranthana             | mg/kg | 210       | 0.040 J       | 0.0082 U      | 1             | 0.085         | 0.084         | 0.051 J        | 0.055 J       | 0.0083 U      | 0.32          | 0.0000 J      | 1.2           | 0.82          | N/A<br>N/A     |
| bis(2 Ethylhoxyl)phthalata       | mg/kg | 160       | 0.064         | 0.0082 U      | 0.053 P       | 0.002 U       | 0.22          | 0.1 J<br>0.21  | 0.10          | 0.0085 U      | 0.79          | 0.076 U       | 0.95          | 0.04          | N/A<br>N/A     |
| Carbazole                        | mg/kg | 100       | 0.041 J       | 0.082 UJ      | 0.055 B       | 0.092 U       | 0.035 J       | 0.17 U         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.10 J        | 0.11 J        | N/A<br>N/A     |
| Chrysene                         | mg/kg | 2 100     | 0.056 J       | 0.002 U       | 1.2           | 0.072 0       | 0.073 0       | 0.069.1        | 0.081         | 0.0083 U      | 0.073 0       | 0.070 0       | 14            | 0.074.5       | N/A            |
| Dibenz[a h]anthracene            | mg/kg | 2,100     | 0.082 U       | 0.0082 U      | 0.33          | 0.03          | 0.03.1        | 0.17 U         | 0.001         | 0.0083 U      | 0.5           | 0.0021 J      | 0.37          | 0.27          | N/A            |
| Di-n-butylphthalate              | mg/kg | 82,000    | 0.08 U        | 0.082 U       | 0.075 U       | 0.092 U       | 0.05 J        | 0.17.5         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.075         | 0.074 U       | N/A            |
| Fluoranthene                     | mg/kg | 30,000    | 0.082         | 0.0082 U      | 1             | 0.35          | 0.17          | 0.25           | 0.12          | 0.00067 J     | 0.42          | 0.017         | 1.6           | 1.5           | N/A            |
| Fluorene                         | mg/kg | 30,000    | 0.02 J        | 0.0082 U      | 0.023 J       | 0.0061 J      | 0.076 U       | 0.19           | 0.079 U       | 0.0083 U      | 0.009 J       | 0.0076 U      | 0.023 J       | 0.021 J       | N/A            |
| Indeno[1,2,3-c,d]pyrene          | mg/kg | 21        | 0.034 J       | 0.0082 U      | 0.93          | 0.086         | 0.08          | 0.033 J        | 0.052 J       | 0.0083 U      | 0.28          | 0.0062 J      | 1.1           | 0.73          | N/A            |
| Naphthalene                      | mg/kg | 17        | 0.6           | 0.0082 U      | 0.24          | 0.026         | 0.045 J       | 1.1            | 0.079 U       | 0.0083 U      | 0.048 B       | 0.0068 B      | 0.13          | 0.14          | N/A            |
| N-Nitrosodiphenylamine           | mg/kg | 470       | 0.08 U        | 0.082 U       | 0.075 U       | 0.092 U       | 0.075 U       | 0.17 U         | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 U       | 0.073 U       | 0.015 J       | N/A            |
| Pentachlorophenol                | mg/kg | 4         | 0.2 U         | 0.21 U        | 0.19 U        | 0.23 U        | 0.19 U        | 0.34 J         | 0.2 U         | 0.2 U         | 0.18 U        | 0.19 R        | 0.18 U        | 0.19 U        | N/A            |
| Phenanthrene                     | mg/kg |           | 0.078 J       | 0.0082 U      | 0.45          | 0.076         | 0.077         | 0.51           | 0.073 J       | 0.00098 J     | 0.15          | 0.0096        | 0.41          | 0.68          | N/A            |
| Phenol                           | mg/kg | 250,000   | 0.08 U        | 0.082 U       | 0.025 J       | 0.092 U       | 0.075 U       | 2.2            | 0.08 U        | 0.081 U       | 0.073 U       | 0.076 R       | 0.073 U       | 0.074 U       | N/A            |
| Pyrene                           | mg/kg | 23,000    | 0.086         | 0.0082 U      | 1.1           | 0.28          | 0.16          | 0.23           | 0.1           | 0.0083 U      | 0.42          | 0.012         | 1.6           | 1.4           | N/A            |
| PCBs                             |       |           |               |               |               |               |               |                |               |               |               |               |               |               |                |
| Aroclor 1242                     | mg/kg | 0.97      | 0.0593 U      | N/A           | 0.0536 U      | N/A           | 0.0556 U      | N/A            | 0.058 U       | N/A           | 0.0598        | N/A           | 0.0557 U      | N/A           | N/A            |
| Aroclor 1248                     | mg/kg | 0.94      | 0.0593 U      | N/A           | 0.0536 U      | N/A           | 0.0556 U      | N/A            | 0.058 U       | N/A           | 0.0538 U      | N/A           | 0.334         | N/A           | N/A            |
| Aroclor 1254                     | mg/kg | 0.97      | 0.0593 U      | N/A           | 0.0536 U      | N/A           | 0.0652        | N/A            | 0.058 U       | N/A           | 0.0538 U      | N/A           | 0.508         | N/A           | N/A            |
| Aroclor 1260                     | mg/kg | 0.99      | 0.0593 U      | N/A           | 0.0536 U      | N/A           | 0.0556 U      | N/A            | 0.058 U       | N/A           | 0.066         | N/A           | 0.279         | N/A           | N/A            |
| Aroclor 1268                     | mg/kg |           | 0.0593 U      | N/A           | 0.0458 J      | N/A           | 0.0556 U      | N/A            | 0.058 U       | N/A           | 0.0538 U      | N/A           | 0.0557 U      | N/A           | N/A            |
| PCBs (total)                     | mg/kg | 0.97      | 0.0593 U      | N/A           | 0.0458 J      | N/A           | 0.0652        | N/A            | 0.058 U       | N/A           | 0.1258        | N/A           | 1.121         | N/A           | N/A            |
| ТРН                              |       |           |               |               |               |               |               |                |               |               |               |               |               |               |                |
| Diesel Range Organics            | mg/kg | 6,200     | 872 J         | 4.6 J         | 94.2 J        | 12.1 J        | 67            | 768            | 7.5 J         | 3 J           | 53.4 J        | 7.5 J         | 143 J         | 82.7 J        | N/A            |
| Gasoline Range Organics          | mg/kg | 6,200     | 182           | 9.3 U         | 12 U          | 22.3 U        | 12 U          | 45.2 U         | 12.9 U        | 10.3 U        | 10.5 U        | 14.2 U        | 10.3 U        | 11.2 U        | N/A            |
|                                  |       |           |               |               |               |               |               |                |               |               |               |               |               |               |                |

### Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

| Value         Value <th< th=""><th>Peremeter</th><th>Unite</th><th>DAI</th><th>A 10 028 SP 1</th><th>A 10 028 SP 6</th><th>A 10 020 SP 1</th><th>A 10 020 SP 4</th><th>A 10 030 SP 1</th><th>A 10 030 SP 7</th><th>A 10 031 SP 1 5</th><th>A 10 031 SP 8</th><th>A 10 032 SP 1*</th><th>A 10 032 SP 5*</th><th>A 10 022 SP 1</th><th>A 10 022 SP 4</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peremeter                        | Unite  | DAI       | A 10 028 SP 1 | A 10 028 SP 6 | A 10 020 SP 1 | A 10 020 SP 4 | A 10 030 SP 1 | A 10 030 SP 7 | A 10 031 SP 1 5 | A 10 031 SP 8 | A 10 032 SP 1* | A 10 032 SP 5* | A 10 022 SP 1 | A 10 022 SP 4 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|----------------|----------------|---------------|---------------|
| Dissertion         marks         Volt         0.005 UI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volatile Organic Compounds       | Clifts | TAL       | A10-028-5B-1  | A10-020-5B-0  | A10-027-3B-1  | A10-027-3B-4  | A10-030-3D-1  | A10-030-3D-7  | A10-031-3D-1.3  | A10-051-5B-0  | A10-052-5D-1   | A10-032-3D-3   | A10-055-5B-1  | A10-033-3D-4  |
| Discussion (Delta)         Object (Delta)         Out (Delta)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.3.Trichlorobenzene           | mg/kg  | 930       | 0.0052.111    | 0.0053 UI     | 0.0046 U      | 0.0046 U      | 0.0052.11     | 0.0049.11     | 0.0049.11       | 0.0046 U      | 0.0074 H       | 0.0062.11      | 0.0052.11     | 0.0053 U      |
| Assert         Oright         Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-Butanone (MEK)                 | mg/kg  | 190,000   | 0.01 U        | 0.0033 UJ     | 0.0040 U      | 0.0040 U      | 0.0032.0      | 0.0099 U      | 0.0049 U        | 0.0040 U      | 0.0074 U       | 0.0002 U       | 0.0052.0      | 0.0055 0      |
| Bases         Same         Same         Same         Same         Same         Same         Same         Same           Cores alution         Sig         Sig<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acetone                          | mg/kg  | 670,000   | 0.01 U        | 0.011 U       | 0.0092 UI     | 0.0091 UI     | 0.01 UI       | 0.0099 UI     | 0.0099 UI       | 0.0092 UI     | 0.015 U        | 0.012 U        | 0.01 U        | 0.011 U       |
| Core secolds         make         1.58         0.051 U         0.0051 U         0.0052 U         0.0052 U         0.0012 U         0.001 U         0.001 U         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzene                          | mg/kg  | 5.1       | 0.0052 U      | 0.0053 U      | 0.0092 US     | 0.0091 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0092 CJ     | 0.0074 U       | 0.0012 C       | 0.0052 U      | 0.0053 U      |
| Coholanza         Indig         2000         001/U         0001/U         0001/U </td <td>Carbon disulfide</td> <td>mg/kg</td> <td>3.500</td> <td>0.0052 U</td> <td>0.0053 U</td> <td>0.0046 U</td> <td>0.0046 U</td> <td>0.0052 U</td> <td>0.0049 U</td> <td>0.0049 U</td> <td>0.0046 U</td> <td>0.0074 U</td> <td>0.0062 U</td> <td>0.0052 UJ</td> <td>0.0053 UJ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon disulfide                 | mg/kg  | 3.500     | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 UJ     | 0.0053 UJ     |
| Baltheneme         mg/g         200         L0007U         0.0004U         0.0007U         0.0004U         0.0004U         0.0007U         0.0004U         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cyclohexane                      | mg/kg  | 27.000    | 0.01 U        | 0.011 U       | 0.0092 UJ     | 0.0091 UJ     | 0.01 UJ       | 0.0099 UJ     | 0.015 J         | 0.0092 UJ     | 0.015 U        | 0.012 U        | 0.01 U        | 0.011 U       |
| barrow         oragin         page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethylbenzene                     | mg/kg  | 25        | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 U      | 0.0053 U      |
| M.M.         M.M.         DAM         DAM <thdam< t<="" td=""><td>Isopropylbenzene</td><td>mg/kg</td><td>9,900</td><td>0.0052 U</td><td>0.0053 U</td><td>0.0046 U</td><td>0.0046 U</td><td>0.0052 U</td><td>0.0049 U</td><td>0.0049 U</td><td>0.0046 U</td><td>0.0074 U</td><td>0.0062 U</td><td>0.0052 U</td><td>0.0053 U</td></thdam<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Isopropylbenzene                 | mg/kg  | 9,900     | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 U      | 0.0053 U      |
| black         metry         1.00         0.00021         0.00021         0.00021         0.00021         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.000211         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121         0.00121 <th< td=""><td>Methyl Acetate</td><td>mg/kg</td><td>1,200,000</td><td>0.052 R</td><td>0.053 R</td><td>0.046 R</td><td>0.046 R</td><td>0.052 R</td><td>0.049 R</td><td>0.049 R</td><td>0.046 R</td><td>0.074 U</td><td>0.062 U</td><td>0.052 U</td><td>0.053 U</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methyl Acetate                   | mg/kg  | 1,200,000 | 0.052 R       | 0.053 R       | 0.046 R       | 0.046 R       | 0.052 R       | 0.049 R       | 0.049 R         | 0.046 R       | 0.074 U        | 0.062 U        | 0.052 U       | 0.053 U       |
| bindpact         metha         1.000         0.000210         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.000410         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110         0.00110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Methyl tert-butyl ether (MTBE)   | mg/kg  | 210       | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 U      | 0.0053 U      |
| Cincolsconciscon         eng/sg         100         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710         0.009710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methylene Chloride               | mg/kg  | 1,000     | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 UJ     | 0.0053 UJ     |
| Indexmagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemagemage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tetrachloroethene                | mg/kg  | 100       | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0049 U        | 0.0046 U      | 0.0074 U       | 0.0062 U       | 0.0052 U      | 0.0053 U      |
| NomeNomeOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmbOmb <th< td=""><td>Toluene</td><td>mg/kg</td><td>47,000</td><td>0.0052 U</td><td>0.0053 U</td><td>0.0046 U</td><td>0.0046 U</td><td>0.0052 U</td><td>0.0049 U</td><td>0.0037 J</td><td>0.0046 U</td><td>0.0074 U</td><td>0.002 J</td><td>0.0052 U</td><td>0.0053 U</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene                          | mg/kg  | 47,000    | 0.0052 U      | 0.0053 U      | 0.0046 U      | 0.0046 U      | 0.0052 U      | 0.0049 U      | 0.0037 J        | 0.0046 U      | 0.0074 U       | 0.002 J        | 0.0052 U      | 0.0053 U      |
| Stati Chapter Campand?         Implement         mp/stati         Constitution         OBSIL         OUNTIL         OBSIL         OUNTIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Xylenes                          | mg/kg  | 2,800     | 0.016 U       | 0.016 U       | 0.014 U       | 0.014 U       | 0.016 U       | 0.015 U       | 0.015 U         | 0.014 U       | 0.022 U        | 0.019 U        | 0.016 U       | 0.016 U       |
| Li Bjond         mg/g         200         0.08 U         0.08 U <td>Semi-Volatile Organic Compounds^</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Semi-Volatile Organic Compounds^ |        |           |               |               |               |               |               |               |                 |               |                |                |               |               |
| D.1.6 Formalonghand         mgkg         25.00         0.079U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-Biphenyl                     | mg/kg  | 200       | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.042 J        | 0.076 U        | 0.079 U       | 0.081 U       |
| 2.4.5.7.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,3,4,6-Tetrachlorophenol        | mg/kg  | 25,000    | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| 2.4 Boxschpiened       mg/g       6.000       0.077U       0.081U       0.081U       0.081U       0.081U       0.077U       0.078U       0.088U       0.081U       0.011U       0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4,5-Trichlorophenol            | mg/kg  | 82,000    | 0.2 U         | 0.2 U         | 0.17 U        | 0.2 U         | 0.18 U        | 0.21 U        | 0.2 U           | 0.2 U         | 0.19 U         | 0.19 U         | 0.2 U         | 0.2 U         |
| 2 Cholonombinable<br>Composition0m9 (mp2 mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2 mm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-Dimethylphenol               | mg/kg  | 16,000    | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| Sakot Angelandase         ung'ng         3.000         0.008 U         0.008 U         0.010 U         0.008 U         0.007 U         0.01 U         0.008 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Chloronaphthalene              | mg/kg  | 60,000    | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| 2.Med-price         mg/kg         4.000         0.07910         0.08110         0.08110         0.08110         0.08110         0.08110         0.07010         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09701         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711         0.09711 <t< td=""><td>2-Methylnaphthalene</td><td>mg/kg</td><td>3,000</td><td>0.008 U</td><td>0.008 U</td><td>0.0042 J</td><td>0.0081 U</td><td>0.1</td><td>0.0085 U</td><td>0.054</td><td>0.0082 U</td><td>0.59</td><td>0.0075 U</td><td>0.008 U</td><td>0.081 U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Methylnaphthalene              | mg/kg  | 3,000     | 0.008 U       | 0.008 U       | 0.0042 J      | 0.0081 U      | 0.1           | 0.0085 U      | 0.054           | 0.0082 U      | 0.59           | 0.0075 U       | 0.008 U       | 0.081 U       |
| 2-Nienanime         mgkg         4.000         0.2 U         0.2 U         0.2 U         0.2 U         0.2 U         0.1 U         0.1 U         0.2 U         0.2 U         0.1 U         0.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Methylphenol                   | mg/kg  | 41,000    | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| Back-Mergingtendending/Cecol)         ngrkg         41.000         0.16 U         0.06 U <td>2-Nitroaniline</td> <td>mg/kg</td> <td>8,000</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.17 U</td> <td>0.2 U</td> <td>0.18 U</td> <td>0.21 U</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.19 U</td> <td>0.19 U</td> <td>0.2 U</td> <td>0.2 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Nitroaniline                   | mg/kg  | 8,000     | 0.2 U         | 0.2 U         | 0.17 U        | 0.2 U         | 0.18 U        | 0.21 U        | 0.2 U           | 0.2 U         | 0.19 U         | 0.19 U         | 0.2 U         | 0.2 U         |
| Accomplative         mmp base         45.000         0.0081 U         0.0081 U         0.0081 U         0.0082 U         0.0017         0.0071 U         0.0081 U           Accomplatives         mmp base         45.000         0.0081 U         0.0081 U <td< td=""><td>3&amp;4-Methylphenol(m&amp;p Cresol)</td><td>mg/kg</td><td>41,000</td><td>0.16 U</td><td>0.16 U</td><td>0.14 U</td><td>0.16 U</td><td>0.15 U</td><td>0.17 U</td><td>0.16 U</td><td>0.16 U</td><td>0.15 U</td><td>0.15 U</td><td>0.16 U</td><td>0.16 U</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3&4-Methylphenol(m&p Cresol)     | mg/kg  | 41,000    | 0.16 U        | 0.16 U        | 0.14 U        | 0.16 U        | 0.15 U        | 0.17 U        | 0.16 U          | 0.16 U        | 0.15 U         | 0.15 U         | 0.16 U        | 0.16 U        |
| Accanghanisma         mg/g         45,000         0.008 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaphthene                     | mg/kg  | 45,000    | 0.008 U       | 0.008 U       | 0.00053 J     | 0.0081 U      | 0.016         | 0.0085 U      | 0.014           | 0.0082 U      | 0.017          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Actophance         mg/g         12.000         0.070 U         0.081 U         0.0073 U         0.0071 U         0.0071 U         0.0071 U         0.0071 U         0.0071 U         0.0081 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acenaphthylene                   | mg/kg  | 45,000    | 0.008 U       | 0.008 U       | 0.0025 J      | 0.0081 U      | 0.014         | 0.0085 U      | 0.013           | 0.0082 U      | 0.019          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Andmaceme         mg/kg         230,000         0.008 U         0.008 U         0.007 U         0.008 U         0.007 U         0.008 U         0.008 U         0.007 U         0.008 U         0.008 U         0.007 U         0.008 U <t< td=""><td>Acetophenone</td><td>mg/kg</td><td>120,000</td><td>0.079 U</td><td>0.081 U</td><td>0.069 U</td><td>0.08 U</td><td>0.073 U</td><td>0.084 U</td><td>0.081 U</td><td>0.081 U</td><td>0.077 U</td><td>0.076 U</td><td>0.079 U</td><td>0.081 U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acetophenone                     | mg/kg  | 120,000   | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| Brandshyde         mg/sg         21         0.008 U         0.008 U         0.008 U         0.008 U         0.014 U         0.008 U         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anthracene                       | mg/kg  | 230,000   | 0.008 U       | 0.008 U       | 0.0019 J      | 0.0081 UJ     | 0.062         | 0.0085 U      | 0.075           | 0.0082 U      | 0.034          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Binancialityväne         mg/sg         120000         0007 U1         0008 U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benz[a]anthracene                | mg/kg  | 21        | 0.008 U       | 0.008 U       | 0.0073        | 0.0081 UJ     | 0.14          | 0.0085 U      | 0.38            | 0.0013 J      | 0.11           | 0.0021 J       | 0.008 U       | 0.081 U       |
| Betazolpitheme         mg/kg         2.1         0.008 U         0.001 U         0.008 U         0.008 U         0.001 U         0.008 U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzaldehyde                     | mg/kg  | 120,000   | 0.079 UJ      | 0.081 UJ      | 0.069 UJ      | 0.08 UJ       | 0.028 J       | 0.084 UJ      | 0.081 UJ        | 0.081 UJ      | 0.064 J        | 0.076 U        | 0.079 UJ      | 0.081 UJ      |
| monthylinder         mg/kg         21         0.008 U         0.008 U         0.002 U         0.007 U         0.018 U         0.008 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo[a]pyrene                   | mg/kg  | 2.1       | 0.008 U       | 0.008 U       | 0.011         | 0.0081 UJ     | 0.18          | 0.0085 U      | 0.41            | 0.0082 0      | 0.088          | 0.0015 J       | 0.008 U       | 0.081 U       |
| markage         mg/kg         Colore         Colore <thcolore< <="" td=""><td>Benzo[b]huorantnene</td><td>mg/kg</td><td>21</td><td>0.008 U</td><td>0.008 U</td><td>0.023</td><td>0.0014 J</td><td>0.27</td><td>0.0085 U</td><td>0.89</td><td>0.000/8 J</td><td>0.19</td><td>0.0025 J</td><td>0.00078 J</td><td>0.081 U</td></thcolore<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo[b]huorantnene              | mg/kg  | 21        | 0.008 U       | 0.008 U       | 0.023         | 0.0014 J      | 0.27          | 0.0085 U      | 0.89            | 0.000/8 J     | 0.19           | 0.0025 J       | 0.00078 J     | 0.081 U       |
| Dimboding         Image         210         Obsect         Obsect </td <td>Benzo[k]fluoranthana</td> <td>mg/kg</td> <td>210</td> <td>0.008 U</td> <td>0.008 U</td> <td>0.0090</td> <td>0.0081 U</td> <td>0.13</td> <td>0.0085 U</td> <td>0.3</td> <td>0.0082 U</td> <td>0.003</td> <td>0.0075 U</td> <td>0.008 U</td> <td>0.081 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo[k]fluoranthana             | mg/kg  | 210       | 0.008 U       | 0.008 U       | 0.0090        | 0.0081 U      | 0.13          | 0.0085 U      | 0.3             | 0.0082 U      | 0.003          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Index product synthety and the syn | bis(2-Ethylbeyyl)phthalate       | mg/kg  | 160       | 0.008 U       | 0.008 U       | 0.021         | 0.00810       | 0.004         | 0.084 U       | 0.78            | 0.081 U       | 0.077 U        | 0.075 U        | 0.008 U       | 0.081 U       |
| Chrystee         Imple         2,100         0.008 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carbazole                        | mg/kg  | 100       | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.017 J       | 0.084 U       | 0.004 B         | 0.081 U       | 0.077 0        | 0.076 U        | 0.079 U       | 0.04.1        |
| Description         Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chrysene                         | mg/kg  | 2 100     | 0.008 U       | 0.008 U       | 0.009 0       | 0.0081 UI     | 0.19          | 0.0085 U      | 0.050 0         | 0.0082 U      | 0.0200         | 0.0013 J       | 0.008 U       | 0.081 U       |
| Dis-Build philable         mg/kg         82.00         0.079 U         0.081 U         0.062 U         0.081 U         0.081 U         0.077 U         0.076 U         0.076 U         0.078 U         0.081 U           Fluorantene         mg/kg         30.000         0.008 U         0.008 U         0.0099 U         0.0081 U         0.022         0.0083 U         0.026         0.0075 U         0.008 U         0.0081 U           Fluorantene         mg/kg         30.000         0.008 U         0.0080 U         0.0081 U         0.0095 U         0.011 U         0.026         0.0075 U         0.008 U         0.0081 U           Indeno[1,2,3-cd]pyrene         mg/kg         21         0.008 U         0.008 U         0.0081 U         0.0061 U         0.0051 U         0.0082 U         0.026         0.0075 U         0.0081 U         0.081 U           Nathinskingherylamine         mg/kg         47         0.021 U         0.017 U         0.028 U         0.0081 U         0.021 U         0.21 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibenz[a h]anthracene            | mg/kg  | 2,100     | 0.008 U       | 0.008 U       | 0.0029.J      | 0.0081 UI     | 0.034         | 0.0085 U      | 0.12            | 0.0082 U      | 0.033          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Buoranthene         mg/kg         30,000         0.008 U         0.008 U         0.0099         0.0081 U         0.22         0.0085 U         0.666         0.00903 J         0.18         0.0028 J         0.0082 J         0.0082 J         0.0082 J         0.0082 J         0.0082 J         0.0082 U         0.0081 U         0.0085 U         0.0011         0.0082 U         0.0026 J         0.0081 U         0.0081 U         0.0011         0.0082 U         0.0026 J         0.0081 U         0.0011         0.0085 U         0.0011 J         0.0082 U         0.0053 U         0.0011 J         0.008 U         0.0011 J         0.008 U         0.0011 U         0.008 U         0.0081 U         0.0011 J         0.008 U         0.0011 U         0.008 U         0.0081 U         0.008 U         0.008 U         0.0081 U         0.008 U         0.008 U         0.008 U         0.001 U <th0.001 th="" u<=""> <th< td=""><td>Di-n-butylphthalate</td><td>mg/kg</td><td>82.000</td><td>0.079 U</td><td>0.081 U</td><td>0.069 U</td><td>0.08 U</td><td>0.073 U</td><td>0.084 U</td><td>0.081 U</td><td>0.081 U</td><td>0.077 U</td><td>0.076 U</td><td>0.079 U</td><td>0.081 U</td></th<></th0.001>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Di-n-butylphthalate              | mg/kg  | 82.000    | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| Biorene         mg/kg         30,000         0.008 U         0.008 U         0.0088 J         0.0081 U         0.0096         0.0081 U         0.011         0.0082 U         0.026         0.0075 U         0.008 U         0.0081 U           Indenol1,2,3-c.dlpyrene         mg/kg         21         0.008 U         0.008 U         0.0081 U         0.064         0.0085 U         0.3         0.0082 U         0.36         0.0075 U         0.008 U         0.0081 U           Naphthalene         mg/kg         470         0.079 U         0.081 U         0.064         0.0081 U         0.081 U         0.0081 U         0.0081 U         0.0081 U         0.081 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluoranthene                     | mg/kg  | 30,000    | 0.008 U       | 0.008 U       | 0.0099        | 0.0081 UJ     | 0.22          | 0.0085 U      | 0.56            | 0.00093 J     | 0.18           | 0.0028 J       | 0.00094 J     | 0.0055 J      |
| Indeno[1,2,3-c,d]pyrene         mg/kg         21         0.008 U         0.008 U         0.0081 U         0.011         0.0082 U         0.058         0.0011 J         0.008 U         0.008 U           Naphthalene         mg/kg         17         0.008 U         0.008 U         0.0053 B         0.0011 U         0.0050 U         0.0075 U         0.0082 U         0.026 U         0.0075 U         0.008 U         0.008 U         0.0081 U         0.0051 U         0.0071 U         0.077 U         0.077 U         0.077 U         0.077 U         0.070 U         0.081 U           Pentachlorophenol         mg/kg         4         0.2 U         0.1 U         0.2 U         0.1 U         0.2 U<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluorene                         | mg/kg  | 30,000    | 0.008 U       | 0.008 U       | 0.00084 J     | 0.0081 U      | 0.0096        | 0.0085 U      | 0.011           | 0.0082 U      | 0.026          | 0.0075 U       | 0.008 U       | 0.081 U       |
| Naphthalene         mg/kg         17         0.008 U         0.008 U         0.0035 B         0.0081 U         0.064         0.0075         0.0082 U         0.36         0.0075 U         0.008 U         0.008 U           N-Nirosodiphenylamine         mg/kg         470         0.079 U         0.081 U         0.069 U         0.084 U         0.084 U         0.081 U         0.077 U         0.070 U         0.02 U         0.02 U         0.2 U         0.12 U         0.2 U         0.12 U         0.2 U         0.12 U         0.2 U         0.02 U         0.2 U         0.02 U         0.2 U         0.02 U         0.02 U         0.01 U         0.02 U         0.08 U         0.01 U         0.02 U         0.08 U         0.03 U         0.08 U         0.07 U         0.06 U         N/A         0.08 U         0.06 U         N/A         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Indeno[1,2,3-c,d]pyrene          | mg/kg  | 21        | 0.008 U       | 0.008 U       | 0.0077        | 0.0081 UJ     | 0.11          | 0.0085 U      | 0.3             | 0.0082 U      | 0.058          | 0.0011 J       | 0.008 U       | 0.081 U       |
| N-Nitrosodiphenylamine         mg/kg         470         0.079 U         0.081 U         0.069 U         0.081 U         0.073 U         0.081 U         0.081 U         0.077 U         0.077 U         0.075 U         0.079 U         0.081 U           Pentachlorophenol         mg/kg         4         0.2 U         0.17 U         0.2 U         0.18 U         0.2 U         0.2 U         0.19 U         0.19 U         0.19 U         0.091 U         0.2 U         0.081 U           Phenanthrene         mg/kg         250.000         0.079 U         0.068 U         0.068 U         0.073 U         0.084 U         0.081 U <td>Naphthalene</td> <td>mg/kg</td> <td>17</td> <td>0.008 U</td> <td>0.008 U</td> <td>0.0035 B</td> <td>0.0081 U</td> <td>0.064</td> <td>0.0085 U</td> <td>0.075</td> <td>0.0082 U</td> <td>0.36</td> <td>0.0075 U</td> <td>0.008 U</td> <td>0.081 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Naphthalene                      | mg/kg  | 17        | 0.008 U       | 0.008 U       | 0.0035 B      | 0.0081 U      | 0.064         | 0.0085 U      | 0.075           | 0.0082 U      | 0.36           | 0.0075 U       | 0.008 U       | 0.081 U       |
| Pentachlorophenol         mg/kg         4         0.2 U         0.17 UJ         0.2 UJ         0.18 UJ         0.2 UJ         0.2 U         0.2 U <td>N-Nitrosodiphenylamine</td> <td>mg/kg</td> <td>470</td> <td>0.079 U</td> <td>0.081 U</td> <td>0.069 U</td> <td>0.08 U</td> <td>0.073 U</td> <td>0.084 U</td> <td>0.081 U</td> <td>0.081 U</td> <td>0.077 U</td> <td>0.076 U</td> <td>0.079 U</td> <td>0.081 U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N-Nitrosodiphenylamine           | mg/kg  | 470       | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| Phenanthrene         mg/kg         0.008 U         0.008 U         0.008 B         0.008 U         0.033         0.008 U         0.009 U         0.008 U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pentachlorophenol                | mg/kg  | 4         | 0.2 U         | 0.2 U         | 0.17 UJ       | 0.2 UJ        | 0.18 UJ       | 0.21 UJ       | 0.2 U           | 0.2 U         | 0.19 U         | 0.19 U         | 0.2 U         | 0.2 U         |
| Phenol         mg/kg         250,000         0.079 U         0.081 U         0.069 U         0.073 U         0.081 U         0.007 U         0.070 U         0.070 U         0.070 U         0.070 U         0.070 U         0.081 U         0.081 U           Pyrene         mg/kg         23,000         0.008 U         0.008 U         0.0081 U         0.022         0.0085 U         0.47         0.0077 U         0.061 U         0.0081 U         0.081 U           Pyrene         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1248         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0571 U         N/A         0.0616 U         N/A           Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U <th< td=""><td>Phenanthrene</td><td>mg/kg</td><td></td><td>0.008 U</td><td>0.008 U</td><td>0.0068 B</td><td>0.0081 U</td><td>0.33</td><td>0.0085 U</td><td>0.29</td><td>0.00091 J</td><td>0.42</td><td>0.0015 J</td><td>0.008 U</td><td>0.081 U</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenanthrene                     | mg/kg  |           | 0.008 U       | 0.008 U       | 0.0068 B      | 0.0081 U      | 0.33          | 0.0085 U      | 0.29            | 0.00091 J     | 0.42           | 0.0015 J       | 0.008 U       | 0.081 U       |
| Pyrenemg/kg23,0000.008 U0.008 U0.0110.008 U0.0220.0085 U0.470.0007kJ0.160.0017J0.00081 J0.0081 J0.081 UPCBsAroclor 1242mg/kg0.970.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/AAroclor 1248mg/kg0.940.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/AAroclor 1246mg/kg0.970.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0571 UN/A0.0616 UN/AAroclor 1260mg/kg0.990.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/AAroclor 1266mg/kg0.990.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/AAroclor 1266mg/kg0.970.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/APCBs (tat)mg/kg0.970.0561 UN/A0.0592 UN/A0.0589 UN/A0.0606 UN/A0.0577 UN/A0.0616 UN/ADisel Range Organicsmg/kg6.2003.6 J8.8 J6.3 J7.9 U58.5 J<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phenol                           | mg/kg  | 250,000   | 0.079 U       | 0.081 U       | 0.069 U       | 0.08 U        | 0.073 U       | 0.084 U       | 0.081 U         | 0.081 U       | 0.077 U        | 0.076 U        | 0.079 U       | 0.081 U       |
| PCBs           Aroclor 1242         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0666 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1248         mg/kg         0.94         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1254         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0571 U         N/A         0.0616 U         N/A           Aroclor 1264         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0571 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pyrene                           | mg/kg  | 23,000    | 0.008 U       | 0.008 U       | 0.011         | 0.0081 UJ     | 0.22          | 0.0085 U      | 0.47            | 0.00078 J     | 0.16           | 0.0017 J       | 0.00081 J     | 0.081 U       |
| Aroclor 1242         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1248         mg/kg         0.94         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1254         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0571 U         N/A         0.0616 U         N/A           Aroclor 1254         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0571 U         N/A         0.0616 U         N/A           Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N/A         0.0592 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCBs                             |        |           |               |               |               |               |               |               |                 |               |                |                |               |               |
| Aroclor 1248         mg/kg         0.94         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1254         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0751 M/A         0.0616 U         N/A           Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.061 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.061 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aroclor 1242                     | mg/kg  | 0.97      | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0577 U       | N/A            | 0.0616 U      | N/A           |
| Aroclor 1254         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0660 U         N/A         0.0751         N/A         0.0616 U         N/A           Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0751         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U <td< td=""><td>Aroclor 1248</td><td>mg/kg</td><td>0.94</td><td>0.0561 U</td><td>N/A</td><td>0.0592 U</td><td>N/A</td><td>0.0589 U</td><td>N/A</td><td>0.0606 U</td><td>N/A</td><td>0.0577 U</td><td>N/A</td><td>0.0616 U</td><td>N/A</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aroclor 1248                     | mg/kg  | 0.94      | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0577 U       | N/A            | 0.0616 U      | N/A           |
| Aroclor 1260         mg/kg         0.99         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           Aroclor 1268         mg/kg         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0571 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0751         N/A         0.0616 U         N/A           Dissel Range Organics         mg/kg         6,200         3.6 J         8.8 J         6.3 J         7.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor 1254                     | mg/kg  | 0.97      | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0751         | N/A            | 0.0616 U      | N/A           |
| Aroclor 1268         mg/kg         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0577 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.077 U         N/A         0.0616 U         N/A           PCBs (total)         mg/kg         0.97         0.0561 U         N/A         0.0592 U         N/A         0.0589 U         N/A         0.0606 U         N/A         0.0751         N/A         0.0616 U         N/A           PTH         Diesel Range Organics         mg/kg         6.200         3.6 J         8.8 J         6.3 J         7.9 UJ         58.5 J         5.2 J         84.6 J         4.9 J         55.1         7.5 U         4.1 J         30.2 J           Gasoline Range Organics         mg/kg         6,200         10.3 U         9.3 U         9.7 U         9.9 U         11.2 U         10.2 U         9.8 U         12.2 U         11.8 U         10.2 U         11.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aroclor 1260                     | mg/kg  | 0.99      | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0577 U       | N/A            | 0.0616 U      | N/A           |
| PCBs (total)       mg/kg       0.97       0.0561 U       N/A       0.0592 U       N/A       0.0589 U       N/A       0.0660 U       N/A       0.0751       N/A       0.0616 U       N/A         TPH         Diesel Range Organics       mg/kg       6.200 <b>3.6 J 8.8 J 6.3 J</b> 7.9 UJ <b>58.5 J 5.2 J 84.6 J 4.9 J 55.1</b> 7.5 U <b>4.1 J 30.2 J</b> Gasoline Range Organics       mg/kg       6,200       10.3 U       9.3 U       9.7 U       9.9 U       11.2 U       10.2 U       9.8 U       12.2 U       11.8 U       10.2 U       11.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aroclor 1268                     | mg/kg  |           | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0577 U       | N/A            | 0.0616 U      | N/A           |
| TPH           Diesel Range Organics         mg/kg         6,200         3.6 J         8.8 J         6.3 J         7.9 UJ         58.5 J         5.2 J         84.6 J         4.9 J         55.1         7.5 U         4.1 J         30.2 J           Gasoline Range Organics         mg/kg         6,200         10.3 U         9.3 U         9.7 U         9.9 U         11.2 U         10.2 U         9.8 U         12.2 U         11.8 U         10.2 U         11.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCBs (total)                     | mg/kg  | 0.97      | 0.0561 U      | N/A           | 0.0592 U      | N/A           | 0.0589 U      | N/A           | 0.0606 U        | N/A           | 0.0751         | N/A            | 0.0616 U      | N/A           |
| Diesel Range Organics         mg/kg         6,200         3.6 J         8.8 J         6.3 J         7.9 UJ         58.5 J         5.2 J         84.6 J         4.9 J         55.1         7.5 U         4.1 J         30.2 J           Gasoline Range Organics         mg/kg         6,200         10.3 U         9.3 U         9.7 U         9.9 U         11.2 U         10.2 U         9.8 U         12.2 U         11.8 U         10.2 U         11.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ТРН                              |        |           |               |               |               |               |               |               |                 |               |                |                |               |               |
| Gasoline Range Organics         mg/kg         6,200         10.3 U         9.3 U         9.7 U         9.9 U         11.2 U         10.2 U         9.8 U         12.2 U         11.8 U         10.2 U         11.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diesel Range Organics            | mg/kg  | 6,200     | 3.6 J         | 8.8 J         | 6.3 J         | 7.9 UJ        | 58.5 J        | 5.2 J         | 84.6 J          | 4.9 J         | 55.1           | 7.5 U          | 4.1 J         | 30.2 J        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline Range Organics          | mg/kg  | 6,200     | 10.3 U        | 9.3 U         | 9.7 U         | 9.9 U         | 11.2 U        | 11.2 U        | 10.2 U          | 9.8 U         | 12.2 U         | 11.8 U         | 10.2 U        | 11.4 U        |

### Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value repesents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

| Parameter   | Units | PAL       | A10-001-SB-1 | A10-001-SB-5 | A10-002-SB-1 | A10-002-SB-5 | A10-002-SB-10* | A10-003-SB-1* | A10-003-SB-9* | A10-004-SB-1* |
|-------------|-------|-----------|--------------|--------------|--------------|--------------|----------------|---------------|---------------|---------------|
| Metals      |       |           |              |              |              |              |                |               |               |               |
| Aluminum    | mg/kg | 1,100,000 | 18,300       | 16,900       | 17,800       | 19,200       | N/A            | 11,500        | 12,200        | 19,400        |
| Antimony    | mg/kg | 470       | 2.8 U        | 2.9 U        | 2.9 U        | 3.1 U        | N/A            | 3.1 U         | 3 U           | 2.7 U         |
| Arsenic     | mg/kg | 3         | 4.1          | 3.7          | 4            | 4.3          | 4.2            | 2.6 U         | 13.3          | 16.7          |
| Barium      | mg/kg | 220,000   | 54.4         | 73.1         | 73.6         | 117          | N/A            | 115           | 179           | 429           |
| Beryllium   | mg/kg | 2,300     | 0.67 J       | 0.57 J       | 0.81 J       | 0.96 J       | N/A            | 1 U           | 0.85 J        | 1.9           |
| Cadmium     | mg/kg | 980       | 1.4 U        | 1.4 U        | 1.4 U        | 1.5 U        | N/A            | 0.86 B        | 0.98 B        | 4.3           |
| Chromium    | mg/kg | 120,000   | 21           | 19.5         | 24.4         | 28.7         | N/A            | 2,300         | 73.7          | 408           |
| Chromium VI | mg/kg | 6.3       | 0.39 B       | 0.35 B       | 0.4 B        | 0.3 B        | N/A            | 0.52 B        | 0.43 B        | 0.45 B        |
| Cobalt      | mg/kg | 350       | 4.4 J        | 3.9 J        | 9.9          | 5.4          | N/A            | 5.1 J         | 16.7          | 23            |
| Copper      | mg/kg | 47,000    | 7.4          | 7.2          | 10.5         | 12           | N/A            | 106           | 93.4          | 170           |
| Iron        | mg/kg | 820,000   | 25,400       | 21,500       | 22,500       | 23,400       | N/A            | 126,000       | 117,000       | 116,000       |
| Lead        | mg/kg | 800       | 14.3         | 11.9         | 15           | 13.2         | N/A            | 143           | 397           | 1,580         |
| Manganese   | mg/kg | 26,000    | 76.7         | 62.7         | 161          | 53.2         | N/A            | 50,200        | 3,420         | 10,700        |
| Mercury     | mg/kg | 350       | 0.0093 J     | 0.0088 J     | 0.039 J      | 0.022 J      | N/A            | 0.037 J       | 0.018 J       | 0.78          |
| Nickel      | mg/kg | 22,000    | 9.5          | 9.6          | 13.1         | 13.3         | N/A            | 26.1          | 36            | 80.8          |
| Selenium    | mg/kg | 5,800     | 3.7 U        | 3.8 U        | 3.8 U        | 4.1 U        | N/A            | 4.2 U         | 4 U           | 2.3 B         |
| Silver      | mg/kg | 5,800     | 2.8 U        | 2.9 U        | 2.9 U        | 3.1 U        | N/A            | 3.1 U         | 3 U           | 2.7 U         |
| Thallium    | mg/kg | 12        | 9.3 U        | 9.5 U        | 9.6 U        | 10.3 U       | N/A            | 102           | 7.1 J         | 21.2          |
| Vanadium    | mg/kg | 5,800     | 31.1         | 27.8         | 31.5         | 38           | N/A            | 7,590         | 414           | 1,610         |
| Zinc        | mg/kg | 350,000   | 27.7         | 26.5         | 67.2         | 48           | N/A            | 31.4          | 543           | 1,420         |
| Other       |       |           |              |              |              |              |                |               |               |               |
| Cyanide     | mg/kg | 150       | 0.05 J       | 0.59 U       | 0.61 U       | 0.73 U       | N/A            | 1.6           | 2.1           | 6.9           |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-004-SB-4* | A10-004-SB-10* | A10-005-SB-1* | A10-005-SB-5* | A10-006-SB-1* | A10-006-SB-7* | A10-007-SB-1 | A10-007-SB-4 |
|-------------|-------|-----------|---------------|----------------|---------------|---------------|---------------|---------------|--------------|--------------|
| Metals      |       |           | -             |                |               | -<br>         |               |               |              |              |
| Aluminum    | mg/kg | 1,100,000 | 8,240         | N/A            | 30,500        | 7,300         | 12,600        | 13,700        | 44,300       | 7,750        |
| Antimony    | mg/kg | 470       | 2.6 U         | N/A            | 2.2 U         | 2.4 U         | 3.2 U         | 2.7 U         | 2.4 UJ       | 2.5 UJ       |
| Arsenic     | mg/kg | 3         | 6             | 5.9            | 16.5          | 4.3           | 71.2          | 6.6           | 3.1          | 5.7          |
| Barium      | mg/kg | 220,000   | 102           | N/A            | 643           | 82.6          | 96.2          | 62.6          | 731 J        | 85.9 J       |
| Beryllium   | mg/kg | 2,300     | 0.85 U        | N/A            | 2.6           | 0.23 J        | 0.61 J        | 0.61 J        | 5.3          | 0.15 J       |
| Cadmium     | mg/kg | 980       | 0.71 B        | N/A            | 0.39 B        | 1.4 B         | 1.6 U         | 0.82 B        | 0.32 J       | 0.77 J       |
| Chromium    | mg/kg | 120,000   | 1,440         | N/A            | 359           | 1,840         | 26.7          | 112           | 71           | 830          |
| Chromium VI | mg/kg | 6.3       | 1.3 B         | N/A            | 0.48 B        | 1.4 B         | 0.48 B        | 0.87 B        | 0.35 B       | 0.46 B       |
| Cobalt      | mg/kg | 350       | 15.4          | N/A            | 2.2 J         | 4.7           | 4.8 J         | 6.1           | 3.4 J        | 3.6 J        |
| Copper      | mg/kg | 47,000    | 116           | N/A            | 17.2          | 64            | 23            | 447           | 20 J         | 32 J         |
| Iron        | mg/kg | 820,000   | 183,000       | N/A            | 37,800        | 96,900        | 18,800        | 29,100        | 28,000       | 83,600       |
| Lead        | mg/kg | 800       | 73.4          | N/A            | 15.9          | 543           | 83.1          | 1,030         | 9.5 J        | 21.5 J       |
| Manganese   | mg/kg | 26,000    | 32,000        | 56,000         | 17,600        | 28,800        | 604           | 1,880         | 7,980        | 94,000       |
| Mercury     | mg/kg | 350       | 0.05 J        | N/A            | 0.16          | 0.057 J       | 0.024 J       | 0.024 J       | 0.0027 J     | 0.053 J      |
| Nickel      | mg/kg | 22,000    | 42.9          | N/A            | 5.2 J         | 13.6          | 13.1          | 12.4          | 13.9         | 25.2         |
| Selenium    | mg/kg | 5,800     | 3.4 U         | N/A            | 2.9 U         | 3.3 U         | 4.3 U         | 3.6 U         | 2.9 J        | 3.3 U        |
| Silver      | mg/kg | 5,800     | 2.6 U         | N/A            | 2.2 U         | 2.4 U         | 3.2 U         | 2.7 U         | 2.4 U        | 3.2          |
| Thallium    | mg/kg | 12        | 81.1          | 36.4           | 19            | 67.7          | 10.7 U        | 6.4 J         | 8 U          | 23.9         |
| Vanadium    | mg/kg | 5,800     | 7,200         | 10,600         | 1,850         | 5,810         | 44.8          | 460           | 91.2         | 1,580        |
| Zinc        | mg/kg | 350,000   | 65.5          | N/A            | 60.3          | 401           | 91.6          | 99.5          | 12.4 J       | 101 J        |
| Other       |       |           |               |                |               |               |               |               |              |              |
| Cyanide     | mg/kg | 150       | 2.8           | N/A            | 0.9           | 4.5           | 0.26 J        | 0.19 J        | 0.61 J       | 0.16 J       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-008-SB-1 | A10-008-SB-4 | A10-008-SB-10* | A10-009A-SB-1* | A10-009-SB-1.5* | A10-009-SB-5* | A10-010-SB-1 | A10-010-SB-8 |
|-------------|-------|-----------|--------------|--------------|----------------|----------------|-----------------|---------------|--------------|--------------|
| Metals      |       |           |              |              |                |                |                 |               |              |              |
| Aluminum    | mg/kg | 1,100,000 | 42,100       | 15,300       | N/A            | 32,300         | 16,600          | 16,500        | 16,900       | 15,800       |
| Antimony    | mg/kg | 470       | 2.8 UJ       | 2.6 UJ       | N/A            | 2.5 U          | 2.6 U           | 3.3 U         | 2.6 UJ       | 2.5 UJ       |
| Arsenic     | mg/kg | 3         | 3.8          | 9.5          | 9.5            | 2.1 U          | 2.6             | 6             | 20.5         | 12.3         |
| Barium      | mg/kg | 220,000   | 652 J        | 93.8 J       | N/A            | 495            | 195             | 47.3          | 213 J        | 43.4 J       |
| Beryllium   | mg/kg | 2,300     | 4.8          | 0.76 J       | N/A            | 2.7            | 1.6             | 0.41 J        | 1.5          | 0.96         |
| Cadmium     | mg/kg | 980       | 0.4 J        | 2.3          | N/A            | 0.46 B         | 0.42 B          | 0.19 B        | 0.58 B       | 1.2 U        |
| Chromium    | mg/kg | 120,000   | 34.5         | 35.8         | N/A            | 12.8           | 136             | 17.8          | 138          | 23.7         |
| Chromium VI | mg/kg | 6.3       | 0.41 B       | 0.51 B       | N/A            | 0.25 B         | 0.43 B          | 0.23 B        | 0.37 B       | 0.31 B       |
| Cobalt      | mg/kg | 350       | 1.5 J        | 9.2          | N/A            | 0.94 J         | 4.2 J           | 3 J           | 5.5          | 8            |
| Copper      | mg/kg | 47,000    | 12.9 J       | 32.3 J       | N/A            | 5.8            | 16              | 4.8 J         | 23.3         | 11.9         |
| Iron        | mg/kg | 820,000   | 8,550        | 35,100       | N/A            | 5,600          | 24,100          | 21,300        | 32,700       | 29,400       |
| Lead        | mg/kg | 800       | 17.1 J       | 65.7 J       | N/A            | 7.3            | 15.9            | 10.2          | 25 J         | 68 J         |
| Manganese   | mg/kg | 26,000    | 5,510        | 721          | N/A            | 8,220          | 6,500           | 51            | 2,710 J      | 483 J        |
| Mercury     | mg/kg | 350       | 0.11 U       | 0.081 J      | N/A            | 0.1 U          | 0.11 U          | 0.11 U        | 0.032 J      | 0.012 J      |
| Nickel      | mg/kg | 22,000    | 3.6 J        | 16.3         | N/A            | 4.6 B          | 12.6            | 8.6 J         | 19.4 J       | 10.5 J       |
| Selenium    | mg/kg | 5,800     | 4.5          | 3.5 U        | N/A            | 3.4 U          | 3.5 U           | 4.4 U         | 3.5 U        | 3.3 U        |
| Silver      | mg/kg | 5,800     | 2.8 U        | 2.6 U        | N/A            | 2.5 U          | 2.6 U           | 3.3 U         | 2.6 U        | 2.5 U        |
| Thallium    | mg/kg | 12        | 9.3 U        | 8.7 U        | N/A            | 8.4 U          | 8.7 U           | 10.9 U        | 8.8 U        | 8.2 U        |
| Vanadium    | mg/kg | 5,800     | 74.6         | 47.4         | N/A            | 147            | 197             | 24.6          | 203 J        | 91 J         |
| Zinc        | mg/kg | 350,000   | 33.2 J       | 2,290 J      | N/A            | 17.8           | 56.9            | 21.8          | 47.9         | 41.6         |
| Other       |       |           |              |              |                |                |                 |               |              |              |
| Cyanide     | mg/kg | 150       | 0.59         | 0.16 J       | N/A            | 0.41 J         | 0.41 J          | 0.65 U        | 0.19 J       | 0.71 U       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-010-SB-10 | A10-011-SB-1 | A10-011-SB-7 | A10-011-SB-10* | A10-012-SB-1 | A10-012-SB-4 | A10-013-SB-1 | A10-013-SB-4 |
|-------------|-------|-----------|---------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|
| Metals      |       |           |               |              |              |                |              |              |              |              |
| Aluminum    | mg/kg | 1,100,000 | N/A           | 8,140        | 16,100       | N/A            | 37,500       | 9,940        | 14,400       | 28,700       |
| Antimony    | mg/kg | 470       | N/A           | 2.5 UJ       | 2.6 UJ       | N/A            | 2.4 UJ       | 2.9 UJ       | 3 UJ         | 2.5 UJ       |
| Arsenic     | mg/kg | 3         | 24.3          | 2.1 U        | 14.4         | 14.7           | 2 U          | 4.7          | 4.7          | 5.4          |
| Barium      | mg/kg | 220,000   | N/A           | 19.2 J       | 63.6 J       | N/A            | 273 J        | 30.6 J       | 70.5 J       | 102 J        |
| Beryllium   | mg/kg | 2,300     | N/A           | 0.19 J       | 1.1          | N/A            | 3.5          | 0.32 J       | 0.48 J       | 0.96         |
| Cadmium     | mg/kg | 980       | N/A           | 1.2 U        | 1.3 U        | N/A            | 0.29 B       | 1.5 U        | 0.43 B       | 0.35 B       |
| Chromium    | mg/kg | 120,000   | N/A           | 10.1         | 31.6         | N/A            | 764          | 12.5         | 26.5         | 63.6         |
| Chromium VI | mg/kg | 6.3       | N/A           | 0.39 B       | 0.56 B       | N/A            | 0.47 B       | 0.42 B       | 0.37 B       | 0.46 B       |
| Cobalt      | mg/kg | 350       | N/A           | 2.7 J        | 7            | N/A            | 3.9 U        | 2.7 J        | 4.8 J        | 2.8 J        |
| Copper      | mg/kg | 47,000    | N/A           | 4.4          | 13.1         | N/A            | 44.5         | 2.8 J        | 18.6         | 39.4         |
| Iron        | mg/kg | 820,000   | N/A           | 8,310        | 22,500       | N/A            | 75,700       | 12,800       | 18,800       | 43,200       |
| Lead        | mg/kg | 800       | N/A           | 5.8          | 17           | N/A            | 13.6         | 6.3          | 70.9 J       | 44.9 J       |
| Manganese   | mg/kg | 26,000    | N/A           | 49.7         | 95.8         | N/A            | 38,500       | 84.6         | 247 J        | 72.1 J       |
| Mercury     | mg/kg | 350       | N/A           | 0.02 J       | 0.011 J      | N/A            | 0.1 U        | 0.11 U       | 0.12         | 0.0064 J     |
| Nickel      | mg/kg | 22,000    | N/A           | 8.5          | 14.7         | N/A            | 5.6 J        | 7.1 J        | 10.7 J       | 22.5 J       |
| Selenium    | mg/kg | 5,800     | N/A           | 3.3 U        | 3.5 U        | N/A            | 3.1 U        | 3.9 U        | 4.1 U        | 3.3 U        |
| Silver      | mg/kg | 5,800     | N/A           | 2.5 U        | 2.6 U        | N/A            | 2.4 U        | 2.9 U        | 3 U          | 2.5 U        |
| Thallium    | mg/kg | 12        | N/A           | 8.3 U        | 8.8 U        | N/A            | 7.8 U        | 9.7 U        | 10.1 U       | 8.3 U        |
| Vanadium    | mg/kg | 5,800     | N/A           | 11.2 J       | 46.3 J       | N/A            | 10,000 J     | 28.1 J       | 32.4 J       | 107 J        |
| Zinc        | mg/kg | 350,000   | N/A           | 25.6 J       | 54 J         | N/A            | 32 J         | 14.8 J       | 118          | 284          |
| Other       |       |           |               |              |              |                |              |              |              |              |
| Cyanide     | mg/kg | 150       | N/A           | 0.74 U       | 0.63 U       | N/A            | 1.4          | 0.69 U       | 0.6 U        | 0.64 U       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-014-SB-2* | A10-014-SB-5* | A10-015-SB-1 | A10-015-SB-5 | A10-016-SB-1* | A10-016-SB-6* | A10-017-SB-1* | A10-017-SB-4* |
|-------------|-------|-----------|---------------|---------------|--------------|--------------|---------------|---------------|---------------|---------------|
| Metals      |       |           |               |               |              |              |               |               |               |               |
| Aluminum    | mg/kg | 1,100,000 | 17,000        | 17,900        | 23,700       | 14,300       | 15,400        | 15,200        | 14,800        | 15,500        |
| Antimony    | mg/kg | 470       | 2.6 U         | 2.5 U         | 2.6 UJ       | 2.9 UJ       | 2.8 U         | 2.4 U         | 3.1 U         | 2.8 U         |
| Arsenic     | mg/kg | 3         | 4.2           | 4.3           | 3.2          | 9.8          | 3.5           | 2 U           | 2.6 U         | 3.6           |
| Barium      | mg/kg | 220,000   | 127           | 149           | 210 J        | 46.6 J       | 73.5          | 38.8          | 38.1          | 37.5          |
| Beryllium   | mg/kg | 2,300     | 1.3           | 0.63 J        | 2.4          | 0.54 J       | 0.61 J        | 0.32 J        | 0.29 J        | 0.31 J        |
| Cadmium     | mg/kg | 980       | 0.59 B        | 0.28 B        | 0.45 B       | 1.4 U        | 0.19 B        | 1.2 U         | 0.22 B        | 1.4 U         |
| Chromium    | mg/kg | 120,000   | 76.4          | 21.8          | 269          | 26.1         | 21.4          | 16.2          | 15.9          | 15.6          |
| Chromium VI | mg/kg | 6.3       | 0.33 B        | 0.33 B        | 0.35 B       | 0.37 B       | 0.3 B         | 0.23 B        | 0.25 B        | 0.38 B        |
| Cobalt      | mg/kg | 350       | 7.5           | 2.6 J         | 4.3          | 2.1 J        | 10.7          | 3.2 J         | 3.5 J         | 3.4 J         |
| Copper      | mg/kg | 47,000    | 21.4          | 8.6           | 47.3         | 8.1          | 11            | 5.9           | 5.2           | 4.2 J         |
| Iron        | mg/kg | 820,000   | 17,900        | 17,000        | 50,000       | 28,800       | 18,300        | 11,500        | 9,000         | 10,400        |
| Lead        | mg/kg | 800       | 77.3          | 22.4          | 13.9 J       | 8.2 J        | 23.5          | 10.4          | 11.9          | 10.9          |
| Manganese   | mg/kg | 26,000    | 1,350         | 1,210         | 3,590 J      | 158 J        | 168           | 69.2          | 38.3          | 39.9          |
| Mercury     | mg/kg | 350       | 0.069 J       | 0.034 J       | 0.029 J      | 0.0084 J     | 0.019 J       | 0.057 J       | 0.029 J       | 0.05 J        |
| Nickel      | mg/kg | 22,000    | 12.3          | 8.9 B         | 18.8 J       | 7.8 J        | 14.8          | 8.1 B         | 6.6 J         | 8.8 J         |
| Selenium    | mg/kg | 5,800     | 3.4 U         | 3.3 U         | 3.4 U        | 3.9 U        | 3.7 U         | 3.2 U         | 4.1 U         | 3.8 U         |
| Silver      | mg/kg | 5,800     | 2.6 U         | 2.5 U         | 2.6 U        | 2.9 U        | 2.8 U         | 2.4 U         | 3.1 U         | 2.8 U         |
| Thallium    | mg/kg | 12        | 8.6 U         | 8.4 U         | 4 J          | 9.6 U        | 9.3 U         | 8.1 U         | 10.3 U        | 9.4 U         |
| Vanadium    | mg/kg | 5,800     | 197           | 45            | 322 J        | 50.8 J       | 29.5          | 23            | 21.5          | 19.6          |
| Zinc        | mg/kg | 350,000   | 156           | 39.4          | 42.4         | 24.5         | 69.1          | 27.7          | 24.9          | 24.6          |
| Other       |       |           |               |               |              |              |               |               |               |               |
| Cyanide     | mg/kg | 150       | 0.2 J         | 0.69 U        | 0.16 J       | 0.62 U       | 0.69 U        | 0.62 U        | 0.067 J       | 0.043 J       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-018-SB-1 | A10-018-SB-5 | A10-018-SB-10 | A10-019-SB-1 | A10-019-SB-4 | A10-020-SB-1.5 | A10-020-SB-7 | A10-020-SB-10* |
|-------------|-------|-----------|--------------|--------------|---------------|--------------|--------------|----------------|--------------|----------------|
| Metals      |       |           |              |              |               |              |              |                |              |                |
| Aluminum    | mg/kg | 1,100,000 | 15,100       | 16,500       | N/A           | 28,200       | 12,800       | 11,900         | 19,300       | N/A            |
| Antimony    | mg/kg | 470       | 3 UJ         | 2.6 UJ       | N/A           | 2.3 UJ       | 2.5 UJ       | 3.4 UJ         | 3.3 UJ       | N/A            |
| Arsenic     | mg/kg | 3         | 6            | 4.8          | 13.4          | 4.8          | 2.1 U        | 6.7            | 6.8          | 5.1            |
| Barium      | mg/kg | 220,000   | 71.8 J       | 40.9 J       | N/A           | 254 J        | 50.6 J       | 223 J          | 70 J         | N/A            |
| Beryllium   | mg/kg | 2,300     | 0.8 J        | 0.38 J       | N/A           | 4.2          | 0.44 J       | 0.23 J         | 1.1          | N/A            |
| Cadmium     | mg/kg | 980       | 0.27 B       | 1.3 U        | N/A           | 0.24 B       | 0.13 B       | 1.8            | 1.7 U        | N/A            |
| Chromium    | mg/kg | 120,000   | 23           | 22.1         | N/A           | 15.4         | 15.9         | 749            | 31.4         | N/A            |
| Chromium VI | mg/kg | 6.3       | 0.33 B       | 0.38 B       | N/A           | 0.32 B       | 0.37 B       | 0.45 B         | 0.63 B       | N/A            |
| Cobalt      | mg/kg | 350       | 8            | 3.3 J        | N/A           | 3.8 J        | 3.8 J        | 6.6            | 4.6 J        | N/A            |
| Copper      | mg/kg | 47,000    | 14.4         | 7.8          | N/A           | 7.5          | 7.1          | 90.1 J         | 10.2 J       | N/A            |
| Iron        | mg/kg | 820,000   | 23,100 J     | 15,200 J     | N/A           | 13,300       | 9,830        | 139,000        | 14,900       | N/A            |
| Lead        | mg/kg | 800       | 23.6 J       | 10.6 J       | N/A           | 12 J         | 10.4 J       | 418 J          | 15.7 J       | N/A            |
| Manganese   | mg/kg | 26,000    | 273          | 67.2         | N/A           | 1,320 J      | 39.2 J       | 17,200         | 35.7         | N/A            |
| Mercury     | mg/kg | 350       | 0.075 J-     | 0.024 J-     | N/A           | 0.029 J      | 0.0023 J     | 0.12 U         | 0.007 J      | N/A            |
| Nickel      | mg/kg | 22,000    | 16.9         | 8.3 J        | N/A           | 7.9 J        | 10.8 J       | 24.1           | 15.6         | N/A            |
| Selenium    | mg/kg | 5,800     | 4 U          | 2.7 B        | N/A           | 3.1 U        | 3.3 U        | 4.6 U          | 4.4 U        | N/A            |
| Silver      | mg/kg | 5,800     | 3 U          | 2.6 U        | N/A           | 2.3 U        | 2.5 U        | 3.4 U          | 3.3 U        | N/A            |
| Thallium    | mg/kg | 12        | 9.9 U        | 8.6 U        | N/A           | 7.7 U        | 8.3 U        | 34.9           | 11.1 U       | N/A            |
| Vanadium    | mg/kg | 5,800     | 33.2         | 27.2         | N/A           | 28.4 J       | 18.2 J       | 3,320          | 32           | N/A            |
| Zinc        | mg/kg | 350,000   | 89.1 J       | 22.2 J       | N/A           | 24.2         | 29.5         | 437 J          | 23.1 J       | N/A            |
| Other       |       |           |              |              |               |              |              |                |              |                |
| Cyanide     | mg/kg | 150       | 0.052 J      | 0.66 U       | N/A           | 0.64 U       | 0.57 U       | 0.45 J         | 0.11 J       | N/A            |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-021-SB-2 | A10-021-SB-4 | A10-021-SB-10 | A10-022-SB-2 | A10-022-SB-4 | A10-023-SB-1 | A10-023-SB-4 | A10-024-SB-1* |
|-------------|-------|-----------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|---------------|
| Metals      |       |           |              |              |               |              |              |              |              |               |
| Aluminum    | mg/kg | 1,100,000 | 27,200       | 19,400       | N/A           | 28,200       | 17,100       | 7,730        | 35,700       | 33,300        |
| Antimony    | mg/kg | 470       | 2.6 UJ       | 2.6 UJ       | N/A           | 3 UJ         | 2.9 UJ       | 2.6 UJ       | 2.8 UJ       | 2.6 U         |
| Arsenic     | mg/kg | 3         | 2.2 U        | 5.7          | 13.1          | 5.9          | 5.1          | 7.7          | 3.7          | 4.4           |
| Barium      | mg/kg | 220,000   | 275 J        | 129 J        | N/A           | 219 J        | 83.3 J       | 175 J        | 739 J        | 409           |
| Beryllium   | mg/kg | 2,300     | 5            | 1.2          | N/A           | 2.7          | 0.76 J       | 0.88         | 3.3          | 4.5           |
| Cadmium     | mg/kg | 980       | 0.28 B       | 1.3 U        | N/A           | 0.66 B       | 1.5 U        | 0.61 J       | 9.4          | 1.2 B         |
| Chromium    | mg/kg | 120,000   | 23.7         | 21.4         | N/A           | 29.2         | 24.1         | 293          | 152          | 26.5          |
| Chromium VI | mg/kg | 6.3       | 0.37 B       | 0.38 B       | N/A           | 0.53 B       | 0.38 B       | 0.4 B        | 0.44 B       | 0.31 B        |
| Cobalt      | mg/kg | 350       | 2.4 J        | 7            | N/A           | 7.3          | 7.9          | 8.7          | 2.1 J        | 3.2 J         |
| Copper      | mg/kg | 47,000    | 5.7          | 13.3         | N/A           | 14.6         | 9.5          | 78.3 J       | 17.1 J       | 34.7          |
| Iron        | mg/kg | 820,000   | 11,900       | 14,000       | N/A           | 20,500       | 20,900       | 66,500       | 29,800       | 21,900        |
| Lead        | mg/kg | 800       | 8.4 J        | 18.3 J       | N/A           | 25.7 J       | 13.2 J       | 46.9 J       | 37.5 J       | 121           |
| Manganese   | mg/kg | 26,000    | 1,390 J      | 79.5 J       | N/A           | 1,050 J      | 88.9 J       | 9,600        | 9,550        | 1,880         |
| Mercury     | mg/kg | 350       | 0.0043 J     | 0.0082 J     | N/A           | 0.0029 J     | 0.12 U       | 0.056 J      | 0.0045 J     | 0.023 J       |
| Nickel      | mg/kg | 22,000    | 5 J          | 15.9 J       | N/A           | 14.4 J       | 17.4 J       | 30.9         | 5.4 J        | 11.8          |
| Selenium    | mg/kg | 5,800     | 3.5 U        | 3.4 U        | N/A           | 2.3 J        | 3.9 U        | 3.5 U        | 3.2 J        | 2.8 B         |
| Silver      | mg/kg | 5,800     | 2.6 U        | 2.6 U        | N/A           | 3 U          | 2.9 U        | 0.73 J       | 2.8 U        | 2.6 U         |
| Thallium    | mg/kg | 12        | 8.8 U        | 8.6 U        | N/A           | 9.9 U        | 9.7 U        | 4.9 J        | 5.2 J        | 8.7 U         |
| Vanadium    | mg/kg | 5,800     | 54.7 J       | 26.9 J       | N/A           | 39.9 J       | 30.7 J       | 325          | 313          | 39.4          |
| Zinc        | mg/kg | 350,000   | 19.3         | 35.8         | N/A           | 79.7         | 42.3         | 134 J        | 1,070 J      | 210           |
| Other       |       |           |              |              |               |              |              |              |              |               |
| Cyanide     | mg/kg | 150       | 0.046 J      | 0.64 U       | N/A           | 0.91         | 0.68 U       | 0.96         | 0.26 J       | 0.57 J        |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-024-SB-5* | A10-025-SB-1* | A10-025-SB-4* | A10-025-SB-10* | A10-026-SB-1 | A10-026-SB-5 | A10-027-SB-1 | A10-027-SB-4 |
|-------------|-------|-----------|---------------|---------------|---------------|----------------|--------------|--------------|--------------|--------------|
| Metals      |       |           |               |               |               |                |              |              |              |              |
| Aluminum    | mg/kg | 1,100,000 | 7,000         | 14,700        | 11,900        | N/A            | 28,800       | 16,900       | 23,600       | 9,410        |
| Antimony    | mg/kg | 470       | 6 U           | 2.4 U         | 2.9 U         | N/A            | 2.6 UJ       | 2.6 UJ       | 2.8 UJ       | 5 J          |
| Arsenic     | mg/kg | 3         | 5.2           | 7.1           | 17.1          | 12             | 5.7          | 2.2 UJ       | 5.5          | 21.3         |
| Barium      | mg/kg | 220,000   | 160           | 52.2          | 22.4          | N/A            | 363 J        | 387 J        | 218 J        | 202 J        |
| Beryllium   | mg/kg | 2,300     | 0.61 J        | 0.65 J        | 0.28 J        | N/A            | 2.4          | 0.87 U       | 3.1          | 0.88         |
| Cadmium     | mg/kg | 980       | 0.51 B        | 0.13 B        | 1.4 U         | N/A            | 0.96 J       | 0.56 J       | 1.1 J        | 2.7          |
| Chromium    | mg/kg | 120,000   | 43            | 21.5          | 29.7          | N/A            | 486          | 1,960        | 199          | 172          |
| Chromium VI | mg/kg | 6.3       | 0.71 J        | 0.34 B        | 0.39 B        | N/A            | 0.43 B       | 1.1 B        | 0.48 B       | 0.44 B       |
| Cobalt      | mg/kg | 350       | 5.9 J         | 4.9           | 2.3 J         | N/A            | 7            | 0.91 J       | 5.8          | 27.9         |
| Copper      | mg/kg | 47,000    | 56.9          | 14.2          | 9.6           | N/A            | 63.6 J       | 34.4 J       | 72.2 J       | 375 J        |
| Iron        | mg/kg | 820,000   | 56,000        | 14,900        | 17,500        | N/A            | 84,400       | 89,700       | 71,700       | 156,000      |
| Lead        | mg/kg | 800       | 113           | 17.6          | 10.2          | N/A            | 230 J        | 3 J          | 95.3 J       | 241 J        |
| Manganese   | mg/kg | 26,000    | 1,340         | 236           | 42.4          | N/A            | 13,100       | 46,100       | 6,230        | 4,630        |
| Mercury     | mg/kg | 350       | 0.0065 J      | 0.0033 J      | 0.16          | N/A            | 0.11 U       | 0.11 U       | 0.18         | 0.37         |
| Nickel      | mg/kg | 22,000    | 20.6          | 12.2          | 7.1 J         | N/A            | 26.6         | 8.8          | 25.8         | 91.5         |
| Selenium    | mg/kg | 5,800     | 8 U           | 3.2 U         | 3.8 U         | N/A            | 3.5 U        | 3.5 U        | 3.8 U        | 3.2 U        |
| Silver      | mg/kg | 5,800     | 6 U           | 2.4 U         | 2.9 U         | N/A            | 2.6 U        | 1.7 J        | 2.8 U        | 1.9 J        |
| Thallium    | mg/kg | 12        | 8 U           | 7.9 U         | 9.5 U         | N/A            | 10.1         | 88           | 9.5 U        | 8.1 U        |
| Vanadium    | mg/kg | 5,800     | 73.9          | 41.1          | 49            | N/A            | 843          | 7,200        | 178          | 208          |
| Zinc        | mg/kg | 350,000   | 164           | 49.8          | 24.4          | N/A            | 191 J        | 7.5 J        | 250 J        | 830 J        |
| Other       |       |           |               |               |               |                |              |              |              |              |
| Cyanide     | mg/kg | 150       | 0.14 J        | 0.37 J        | 0.74 U        | N/A            | 0.65         | 0.42 J       | 1.6          | 0.46 J       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-027-SB-10* | A10-028-SB-1 | A10-028-SB-6 | A10-029-SB-1 | A10-029-SB-4 | A10-030-SB-1 | A10-030-SB-7 |
|-------------|-------|-----------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Metals      |       |           |                |              |              |              |              |              |              |
| Aluminum    | mg/kg | 1,100,000 | N/A            | 20,700       | 11,400       | 5,780        | 16,500       | 36,000       | 13,100       |
| Antimony    | mg/kg | 470       | N/A            | 2.9 UJ       | 3.1 UJ       | 2.7 UJ       | 2.6 UJ       | 2.3 UJ       | 2.9 UJ       |
| Arsenic     | mg/kg | 3         | 13.1           | 5.5          | 2.8          | 6.9          | 2.1 U        | 1.9 U        | 4.4          |
| Barium      | mg/kg | 220,000   | N/A            | 65.4 J       | 35.7 J       | 36.2 J       | 62.3 J       | 265 J        | 36.3 J       |
| Beryllium   | mg/kg | 2,300     | N/A            | 0.61 J       | 0.39 J       | 0.42 J       | 0.61 J       | 5.6          | 0.67 J       |
| Cadmium     | mg/kg | 980       | N/A            | 0.16 B       | 1.5 U        | 1.4 U        | 1.3 U        | 0.61 B       | 1.4 U        |
| Chromium    | mg/kg | 120,000   | N/A            | 31.1         | 14.1         | 17.5         | 18.4         | 145          | 14.8         |
| Chromium VI | mg/kg | 6.3       | N/A            | 0.42 B       | 0.38 B       | 0.38 B       | 0.38 B       | 0.26 B       | 0.5 B        |
| Cobalt      | mg/kg | 350       | N/A            | 5.5          | 3.7 J        | 1.2 J        | 4.7          | 2.8 J        | 6.1          |
| Copper      | mg/kg | 47,000    | N/A            | 11.4         | 6.7          | 9.5          | 5            | 18           | 6.8          |
| Iron        | mg/kg | 820,000   | N/A            | 28,700       | 19,200       | 14,700       | 14,300       | 49,200       | 27,000       |
| Lead        | mg/kg | 800       | N/A            | 12.3 J       | 9.1 J        | 14.3         | 10.7         | 42.7         | 8.4          |
| Manganese   | mg/kg | 26,000    | N/A            | 105 J        | 104 J        | 347          | 466          | 4,930        | 77           |
| Mercury     | mg/kg | 350       | N/A            | 0.0038 J     | 0.02 J       | 0.025 J      | 0.015 J      | 0.11 U       | 0.0072 J     |
| Nickel      | mg/kg | 22,000    | N/A            | 14.2 J       | 9.3 J        | 3.8 J        | 12.7         | 8.7          | 13.1         |
| Selenium    | mg/kg | 5,800     | N/A            | 3.9 U        | 4.1 U        | 2.8 J        | 3.4 U        | 3.1 U        | 3.9 U        |
| Silver      | mg/kg | 5,800     | N/A            | 2.9 U        | 3.1 U        | 2.7 U        | 2.6 U        | 2.3 U        | 2.9 U        |
| Thallium    | mg/kg | 12        | N/A            | 9.7 U        | 10.3 U       | 9.1 U        | 8.5 U        | 7.7 U        | 9.6 U        |
| Vanadium    | mg/kg | 5,800     | N/A            | 39 J         | 18.5 J       | 35.7 J       | 30.3 J       | 234 J        | 22.2 J       |
| Zinc        | mg/kg | 350,000   | N/A            | 45.8         | 27.8         | 22.5 J       | 29.5 J       | 68.5 J       | 31.3 J       |
| Other       |       |           |                |              |              |              |              |              |              |
| Cyanide     | mg/kg | 150       | N/A            | 0.72 U       | 0.61 U       | 0.067 J      | 0.72 U       | 0.77         | 0.036 J      |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

| Parameter   | Units | PAL       | A10-031-SB-1.5 | A10-031-SB-8 | A10-031-SB-10* | A10-032-SB-1* | A10-032-SB-5* | A10-033-SB-1 | A10-033-SB-4 |
|-------------|-------|-----------|----------------|--------------|----------------|---------------|---------------|--------------|--------------|
| Metals      |       |           |                |              |                |               |               |              |              |
| Aluminum    | mg/kg | 1,100,000 | 12,900         | 14,800       | N/A            | 13,000        | 3,440         | 15,500       | 10,700       |
| Antimony    | mg/kg | 470       | 2.6 UJ         | 2.6 UJ       | N/A            | 2.8 U         | 2.6 U         | 2.7 U        | 2.9 U        |
| Arsenic     | mg/kg | 3         | 10.6           | 15.9         | 4              | 8.4           | 18.5          | 5.9          | 3.4          |
| Barium      | mg/kg | 220,000   | 73 J           | 50.6 J       | N/A            | 204           | 63.8          | 62.8         | 78.6         |
| Beryllium   | mg/kg | 2,300     | 0.7 J          | 0.98         | N/A            | 1.5           | 0.88 U        | 0.69 J       | 0.61 J       |
| Cadmium     | mg/kg | 980       | 1.2 J          | 1.3 U        | N/A            | 4             | 0.66 B        | 1.4 U        | 1.4 U        |
| Chromium    | mg/kg | 120,000   | 105            | 42.8         | N/A            | 256           | 1,340         | 23.1         | 17.9         |
| Chromium VI | mg/kg | 6.3       | 0.47 B         | 0.92 B       | N/A            | 1.3 B         | 0.76 B        | 0.43 B       | 0.39 B       |
| Cobalt      | mg/kg | 350       | 43.1           | 5.9          | N/A            | 14.6          | 50.2          | 4.7          | 7.8          |
| Copper      | mg/kg | 47,000    | 142 J          | 13.2 J       | N/A            | 138           | 355           | 9.6          | 13.6         |
| Iron        | mg/kg | 820,000   | 60,100         | 27,700       | N/A            | 62,300        | 361,000       | 19,300       | 12,300       |
| Lead        | mg/kg | 800       | 98.2 J         | 19.2 J       | N/A            | 1,020         | 6.2           | 9            | 47.2         |
| Manganese   | mg/kg | 26,000    | 1,500          | 72           | N/A            | 6,850         | 31,900        | 108          | 179          |
| Mercury     | mg/kg | 350       | 0.1 J          | 0.0029 J     | N/A            | 0.051 J       | 0.11 U        | 0.011 J      | 0.045 J      |
| Nickel      | mg/kg | 22,000    | 40             | 16.2         | N/A            | 52.7          | 111           | 12.7         | 11           |
| Selenium    | mg/kg | 5,800     | 3.5 U          | 3.5 U        | N/A            | 3.8 U         | 3.5 U         | 3.6 U        | 3.8 U        |
| Silver      | mg/kg | 5,800     | 0.64 J         | 2.6 U        | N/A            | 2.8 U         | 2.6 U         | 2.7 U        | 2.9 U        |
| Thallium    | mg/kg | 12        | 8.6 U          | 8.6 U        | N/A            | 20.2          | 78.6          | 9 U          | 9.5 U        |
| Vanadium    | mg/kg | 5,800     | 173            | 39.4         | N/A            | 1,640         | 5,610         | 29.7         | 23.1         |
| Zinc        | mg/kg | 350,000   | 278 J          | 48.7 J       | N/A            | 1,560         | 4.4 U         | 38.7         | 64.8         |
| Other       |       |           |                |              |                |               |               |              |              |
| Cyanide     | mg/kg | 150       | 1.2            | 0.59 U       | N/A            | 4.3           | 0.38 J        | 0.66 U       | 0.74 U       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

N/A indicates that the parameter was not analyzed for this sample

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

|                       | TABLE 8<br>SUMMARY OF SOIL PAL EXCEEDANCES |                                       |                                          |                   |           |             |  |  |  |  |  |  |  |  |
|-----------------------|--------------------------------------------|---------------------------------------|------------------------------------------|-------------------|-----------|-------------|--|--|--|--|--|--|--|--|
| <u>Parameter</u>      | <u>CAS#</u>                                | <u>Frequency of</u><br>Detections (%) | <u>Sample ID of</u><br><u>Max Result</u> | <u>Max Result</u> | PAL Solid | <u>Unit</u> |  |  |  |  |  |  |  |  |
| Arsenic               | 7440-38-2                                  | 86                                    | A10-006-SB-1                             | 71.2              | 3         | mg/kg       |  |  |  |  |  |  |  |  |
| Benzo[a]pyrene        | 50-32-8                                    | 61                                    | A10-008-SB-4                             | 13.6              | 2.1       | mg/kg       |  |  |  |  |  |  |  |  |
| Benzo[b]fluoranthene  | 205-99-2                                   | 77                                    | A10-008-SB-4                             | 33.9              | 21        | mg/kg       |  |  |  |  |  |  |  |  |
| Dibenz[a,h]anthracene | 53-70-3                                    | 47                                    | A10-008-SB-4                             | 3.2               | 2.1       | mg/kg       |  |  |  |  |  |  |  |  |
| Lead                  | 7439-92-1                                  | 100                                   | A10-004-SB-1                             | 1,580             | 800       | mg/kg       |  |  |  |  |  |  |  |  |
| Manganese             | 7439-96-5                                  | 100                                   | A10-007-SB-4                             | 94,000            | 26,000    | mg/kg       |  |  |  |  |  |  |  |  |
| PCBs (total)          | 1336-36-3                                  | 24                                    | A10-027-SB-1                             | 1.121             | 0.97      | mg/kg       |  |  |  |  |  |  |  |  |
| Thallium              | 7440-28-0                                  | 25                                    | A10-003-SB-1                             | 102               | 12        | mg/kg       |  |  |  |  |  |  |  |  |
| Vanadium              | 744-62-2                                   | 100                                   | A10-004-SB-10                            | 10,600            | 5,800     | mg/kg       |  |  |  |  |  |  |  |  |

| SOI                | L PAL EXCE  | TA<br>EDANCI | ABLE 9<br>ES FOR SPECIFIC TAI | RGETS   |         |       |
|--------------------|-------------|--------------|-------------------------------|---------|---------|-------|
|                    |             | Sample       |                               | PAL     | Result  | Final |
| Target Feature     | Boring ID   | Depth        | Parameter                     | (mg/kg) | (mg/kg) | Flag  |
|                    | A 10 001 CD | 1            | Arsenic                       | 3       | 4.1     |       |
|                    | A10-001-5B  | 5            | Arsenic                       | 3       | 3.7     |       |
| Boiler House       |             | 1            | Arsenic                       | 3       | 4       |       |
|                    | A10-002-SB  | 5            | Arsenic                       | 3       | 4.3     |       |
|                    |             | 10           | Arsenic                       | 3       | 4.2     |       |
|                    |             | 1            | Benzo[a]pyrene                | 2.1     | 3.5     |       |
|                    |             | 1            | Manganese                     | 26,000  | 50,200  |       |
|                    | A10-003-SB  | 1            | Thallium                      | 12      | 102     |       |
|                    |             | 1            | Vanadium                      | 5,800   | 7,590   |       |
|                    |             | 9            | Arsenic                       | 3       | 13.3    |       |
|                    |             | 1            | Arsenic                       | 3       | 16.7    |       |
|                    |             | 1            | Lead                          | 800     | 1,580   |       |
| Incinerator        |             | 1            | Thallium                      | 12      | 21      |       |
| incinerator        |             | 4            | Arsenic                       | 3       | 6       |       |
|                    |             | 4            | Manganese                     | 26,000  | 32,000  |       |
|                    | A10-004-SB  | 4            | Thallium                      | 12      | 81.1    |       |
|                    |             | 4            | Vanadium                      | 5,800   | 7,200   |       |
|                    |             | 10           | Arsenic                       | 3       | 5.9     |       |
|                    |             | 10           | Manganese                     | 26,000  | 56,000  |       |
|                    |             | 10           | Thallium                      | 12      | 36.4    |       |
|                    |             | 10           | Vanadium                      | 5,800   | 10,600  |       |
|                    |             | 1            | Arsenic                       | 3       | 17      |       |
|                    |             | 1            | Thallium                      | 12      | 19      |       |
|                    | A10-005-SB  | 5            | Arsenic                       | 3       | 4       |       |
|                    | 1110 005 SB | 5            | Manganese                     | 26,000  | 28,800  |       |
| Machine Shop       |             | 5            | Thallium                      | 12      | 67.7    |       |
|                    |             | 5            | Vanadium                      | 5,800   | 5,810   |       |
|                    |             | 1            | Arsenic                       | 3       | 71.2    |       |
|                    | A10-006-SB  | 7            | Arsenic                       | 3       | 6.6     |       |
|                    |             | 7            | Lead                          | 800     | 1,030   |       |
|                    |             | 1            | Arsenic                       | 3       | 3.1     |       |
|                    | A10-007-SB  | 4            | Arsenic                       | 3       | 5.7     |       |
|                    | A10-007-5D  | 4            | Manganese                     | 26,000  | 94,000  |       |
|                    |             | 4            | Thallium                      | 12      | 23.9    |       |
| Maintenance of Way |             | 1            | Arsenic                       | 3       | 3.8     |       |
| Shop               |             | 4            | Arsenic                       | 3       | 9.5     |       |
|                    | A10-008-SB  | 4            | Benzo[a]pyrene                | 2.1     | 13.6    |       |
|                    | 710-000-0D  | 4            | Benzo[b]fluoranthene          | 21      | 33.9    |       |
|                    |             | 4            | Dibenz[a,h]anthracene         | 2.1     | 3.2     |       |
|                    |             | 10           | Arsenic                       | 3       | 9.5     |       |

| SO                    | L PAL EXCE         | TA<br>EDANCI | BLE 9<br>ES FOR SPECIFIC TAI | RGETS          |                |             |
|-----------------------|--------------------|--------------|------------------------------|----------------|----------------|-------------|
|                       |                    | Sample       |                              | PAL            | Result         | Final       |
| <u>Target Feature</u> | Boring ID          | <u>Depth</u> | Parameter                    | <u>(mg/kg)</u> | <u>(mg/kg)</u> | <u>Flag</u> |
|                       | A10-009-SB         | 5            | Arsenic                      | 3              | 6              |             |
| 011                   |                    | 1            | Arsenic                      | 3              | 21             |             |
| Oil House             | A10-010-SB         | 8            | Arsenic                      | 3              | 12.3           |             |
|                       |                    | 10           | Arsenic                      | 3              | 24             |             |
|                       | A 10 011 SD        | 7            | Arsenic                      | 3              | 14             |             |
| Pump                  | A10-011-5D         | 10           | Arsenic                      | 3              | 15             |             |
| House/Foamite         |                    | 1            | Manganese                    | 26,000         | 38,500         |             |
| Building              | A10-012-SB         | 1            | Vanadium                     | 5,800          | 10,000         | J           |
|                       |                    | 4            | Arsenic                      | 3              | 4.7            |             |
|                       | A 10-013-SB        | 1            | Arsenic                      | 3              | 4.7            |             |
|                       | A10-015-5D         | 4            | Arsenic                      | 3              | 5.4            |             |
| Hazardous Materials   | A10-014-SB         | 2            | Arsenic                      | 3              | 4.2            |             |
| Storage               | 7110 014 <b>5D</b> | 5            | Arsenic                      | 3              | 4.3            |             |
|                       | A10-015-SB         | 1            | Arsenic                      | 3              | 3.2            |             |
|                       | A10-015-5B         | 5            | Arsenic                      | 3              | 9.8            |             |
|                       | A10-016-SB         | 1            | Arsenic                      | 3              | 3.5            |             |
| Large Historical      | A10-017-SB         | 4            | Arsenic                      | 3              | 3.6            |             |
| AST                   | A10-018-SB         | 1            | Arsenic                      | 3              | 6              |             |
| 7101                  |                    | 5            | Arsenic                      | 3              | 4.8            |             |
|                       |                    | 10           | Arsenic                      | 3              | 13             |             |
|                       | A10-019-SB         | 1            | Arsenic                      | 3              | 4.8            |             |
|                       |                    | 1.5          | Arsenic                      | 3              | 6.7            |             |
|                       | A10-020-SB         | 1.5          | Thallium                     | 12             | 34.9           |             |
| Maintenance of Way    | 1110 020 22        | 7            | Arsenic                      | 3              | 6.8            |             |
| Yard UST (and Fuel    |                    | 10           | Arsenic                      | 3              | 5.1            |             |
| Dispensers)           | A10-021-SB         | 4            | Arsenic                      | 3              | 5.7            |             |
|                       |                    | 10           | Arsenic                      | 3              | 13.1           |             |
|                       | A10-022-SB         | 2            | Arsenic                      | 3              | 5.9            |             |
|                       |                    | 4            | Arsenic                      | 3              | 5.1            |             |
|                       |                    | 1.5          | Arsenic                      | 3              | 10.6           |             |
| Repair Shop Interior  | A10-031-SB         | 8            | Arsenic                      | 3              | 15.9           |             |
|                       |                    | 10           | Arsenic                      | 3              | 4              |             |
|                       |                    | 1            | Arsenic                      | 3              | 8.4            |             |
|                       |                    | 1            | Lead                         | 800            | 1,020          |             |
| Lumber Storage        | A10-032-SB         | 1            | Thallium                     | 12             | 20.2           |             |
| Warehouse             |                    | 5            | Arsenic                      | 3              | 18.5           |             |
|                       |                    | 5            | Manganese                    | 26,000         | 31,900         |             |
|                       |                    | 5            | Thallium                     | 12             | 78.6           |             |
| Nelson Box            | A10-033-SB         | 1            | Arsenic                      | 3              | 5.9            |             |
| Company Building      | A10-033-SB         | 4            | Arsenic                      | 3              | 3.4            |             |

J = The positive result is a quantitative estimate.

# Table 10Summary of Organics Detected in the Groundwater<br/>Parcel A10<br/>Tradepoint Atlantic<br/>Sparrows Point, Maryland

| Parameter                       | Units | PAL    | A10-002-PZ* | A10-010-PZ | A10-015-PZ | A10-018-PZ | A10-020-PZ* | A10-021-PZ | A10-024-PZ* | A10-025-PZ* | A10-027-PZ | A10-029-PZ | A10-034-PZ | SG06-PDM001 |
|---------------------------------|-------|--------|-------------|------------|------------|------------|-------------|------------|-------------|-------------|------------|------------|------------|-------------|
| Volatile Organics Compounds     |       |        |             |            |            |            |             |            |             |             |            |            |            |             |
| 1,1-Dichloroethane              | μg/L  | 2.7    | 1 U         | 0.49 J     | 1 U        | 1 U        | 0.64 J      | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 0.23 J     | 1 U         |
| 1,1-Dichloroethene              | μg/L  | 7      | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 1.2         | 1 U        | 1 U        | 0.28 J     | 1 U         |
| 1,2-Dichlorobenzene             | μg/L  | 600    | 1 U         | 3.1        | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         |
| 1,2-Dichloroethene (Total)      | μg/L  | 70     | 2 U         | 1.5 J      | 2 U        | 0.82 J     | 1 J         | 2 U        | 2 U         | <b>190</b>  | 8.5        | 1.3 J      | 10.2       | 2 U         |
| Benzene                         | μg/L  | 5      | 1 U         | 1 U        | 1 U        | 0.68 J     | 1 U         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         |
| Carbon tetrachloride            | μg/L  | 5      | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 6.2         | 1 U        | 1 U        | 1 U        | 1 U         |
| Chlorobenzene                   | μg/L  | 100    | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 1.1         | 1 U        | 1 U        | 0.21 J     | 1 U         |
| Chloroform                      | μg/L  | 0.22   | 1 U         | 1 U        | 1 U        | 1 U        | 0.53 J      | 12.3       | 1 U         | 1.7         | 1 U        | 1 U        | 1 U        | 1 U         |
| cis-1,2-Dichloroethene          | μg/L  | 70     | 1 U         | 1.5        | 1 U        | 0.82 J     | 1           | 1 U        | 1 U         | 188         | 8.5        | 1.3        | 10.1       | 1 U         |
| Cyclohexane                     | μg/L  | 13,000 | 10 U        | 10 U       | 10 U       | 0.46 J     | 10 U        | 10 UJ      | 10 U        | 10 U        | 10 UJ      | 10 UJ      | 10 UJ      | 10 U        |
| Isopropylbenzene                | μg/L  | 450    | 1 U         | 1 U        | 1 U        | 1.1        | 1 U         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         |
| Methyl tert-butyl ether (MTBE)  | μg/L  | 14     | 1 U         | 1 U        | 1 U        | 1 U        | 2.7         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 0.61 J     | 1 U         |
| Tetrachloroethene               | μg/L  | 5      | 1 U         | 14.2       | 1 U        | 1.7        | 3.9         | 1 U        | 1 U         | 1,010       | 123        | 4.6        | 34.2       | 1 U         |
| trans-1,2-Dichloroethene        | μg/L  | 100    | 1 U         | 1 U        | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 1.4         | 1 U        | 1 U        | 1 U        | 1 U         |
| Trichloroethene                 | μg/L  | 5      | 1 U         | 7.6        | 1 U        | 3.5        | 3.3         | 1 U        | 1 U         | 494         | 255        | 5          | 33.5       | 1 U         |
| Vinyl chloride                  | μg/L  | 2      | 1 U         | 0.35 J     | 1 U        | 1 U        | 1 U         | 1 U        | 1 U         | 22.6        | 0.24 J     | 1 U        | 1.4        | 1 U         |
| Semi-Volatile Organic Compounds | ^     |        |             |            |            |            |             |            |             |             |            |            |            |             |
| 1,1-Biphenyl                    | μg/L  | 0.83   | 1 U         | 1 U        | 1 U        | 1          | 1 U         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 1.1 U      | 1 U         |
| 1,4-Dioxane                     | μg/L  | 0.46   | 0.1 U       | 0.55       | 0.1 U      | 0.05 J     | 0.31        | 0.1 U      | 0.1 U       | 0.1 U       | 0.1 U      | 0.084 J    | 0.27       | 0.1 U       |
| 2-Methylnaphthalene             | μg/L  | 36     | 0.1 U       | 0.11 U     | 0.1 U      | 18.3       | 0.1 U       | 0.1 U      | 0.1 U       | 0.041 J     | 0.1 U      | 0.1 U      | 0.1 U      | 0.1 U       |
| Acenaphthene                    | μg/L  | 530    | 0.1 U       | 0.11 U     | 0.1 U      | 0.45       | 0.1 U       | 0.1 U      | 0.1 U       | 0.1 U       | 0.1 U      | 0.1 U      | 0.1 U      | 0.1 U       |
| Acenaphthylene                  | μg/L  | 530    | 0.1 U       | 0.11 U     | 0.1 U      | 0.12       | 0.1 U       | 0.1 U      | 0.1 U       | 0.1 U       | 0.1 U      | 0.1 U      | 0.1 U      | 0.1 U       |
| Anthracene                      | μg/L  | 1,800  | 0.1 U       | 0.11 U     | 0.015 J    | 0.047 J    | 0.1 U       | 0.1 U      | 0.1 U       | 0.1 U       | 0.013 J    | 0.1 U      | 0.1 U      | 0.025 J     |
| Benz[a]anthracene               | μg/L  | 0.03   | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.018 J     | 0.032 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| Benzaldehyde                    | μg/L  | 1,900  | 1 U         | 1 U        | 1 U        | 1.1        | 1 U         | 1 U        | 1 U         | 1 U         | 1 U        | 1 U        | 1.1 U      | 1 U         |
| Benzo[a]pyrene                  | μg/L  | 0.2    | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.011 J     | 0.022 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| Benzo[b]fluoranthene            | μg/L  | 0.25   | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.029 J     | 0.039 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| Benzo[g,h,i]perylene            | μg/L  |        | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.1 U       | 0.02 J     | 0.1 U      | 0.1 U      | 0.1 U       |
| Benzo[k]fluoranthene            | μg/L  | 2.5    | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.027 J     | 0.021 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| Caprolactam                     | μg/L  | 9,900  | 0.17 J      | 2.5 U      | 2.5 U      | 2.6 U      | 2.5 U       | 2.5 U      | 2.6 U       | 2.6 U       | 2.6 U      | 2.6 U      | 2.7 U      | 2.6 U       |
| Chrysene                        | μg/L  | 25     | 0.1 U       | 0.11 U     | 0.1 U      | 0.1 U      | 0.1 U       | 0.1 U      | 0.1 U       | 0.011 J     | 0.018 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| Diethylphthalate                | μg/L  | 15,000 | 0.24 J      | 1 U        | 1 U        | 2.5        | 1 U         | 1 U        | 0.47 J      | 1 U         | 1 U        | 1 U        | 1.1 U      | 1 U         |
| Fluoranthene                    | μg/L  | 800    | 0.1 U       | 0.11 U     | 0.1 U      | 0.013 J    | 0.013 J     | 0.1 U      | 0.1 U       | 0.013 J     | 0.025 J    | 0.015 J    | 0.1 U      | 0.1 U       |
| Fluorene                        | μg/L  | 290    | 0.1 U       | 0.11 U     | 0.1 U      | 1.2        | 0.1 U       | 0.1 U      | 0.1 U       | 0.1 U       | 0.1 U      | 0.1 U      | 0.1 U      | 0.1 U       |
| Naphthalene                     | μg/L  | 0.17   | 0.018 J     | 0.11 U     | 0.018 B    | 8.2        | 0.1 U       | 0.1 U      | 0.1 U       | 1.1         | 0.025 B    | 0.021 B    | 0.1 U      | 0.1 U       |
| Phenanthrene                    | μg/L  |        | 0.1 U       | 0.11 U     | 0.1 U      | 1.2        | 0.019 J     | 0.1 U      | 0.1 U       | 0.1 U       | 0.017 J    | 0.022 J    | 0.1 U      | 0.1 U       |
| Pyrene                          | μg/L  | 120    | 0.1 U       | 0.11 U     | 0.1 U      | 0.016 J    | 0.1 U       | 0.1 U      | 0.1 U       | 0.013 J     | 0.025 J    | 0.1 U      | 0.1 U      | 0.1 U       |
| ТРН                             |       |        |             |            |            |            |             |            |             |             |            |            |            |             |
| Diesel Range Organics           | μg/L  | 47     | 105 U       | 68.2 J     | 407 J      | 1,130 J    | 65.1 J      | 105 UJ     | 62.2 J      | 110         | 104 UJ     | 53.2 J     | 52.6 J     | 81.5 J      |
| Gasoline Range Organics         | μg/L  | 47     | 200 U       | 200 U      | 200 U      | 200 U      | 200 U       | 200 U      | 200 U       | 565         | 146 J      | 200 U      | 200 U      | 200 U       |

### **Detections in bold**

### Values in red indicate an exceedance of the Project Action Limit (PAL)

\* indicates non-validated data

^ PAH compounds were analyzed via SIM

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. J: The positive result reported for this analyte is a quantitative estimate.

B: This analyte was not detected substantially above the level of the associated method blank/preparation or field blank.

Page 1 of 1

| Parameter            | Units | PAL    | A10-002-PZ* | A10-010-PZ | A10-015-PZ | A10-018-PZ | A10-020-PZ* | A10-021-PZ | A10-024-PZ* | A10-025-PZ* | A10-027-PZ | A10-029-PZ   | A10-034-PZ | SG06-PDM001 |
|----------------------|-------|--------|-------------|------------|------------|------------|-------------|------------|-------------|-------------|------------|--------------|------------|-------------|
|                      |       |        |             |            |            |            |             |            |             |             |            |              |            |             |
| Metals               |       |        |             |            |            |            |             |            |             |             |            |              |            |             |
| Chromium VI          | μg/L  | 0.035  | 10 U        | 10 U       | 10 U       | 10 U       | 10 U        | 10 U       | 10 U        | 10 U        | 10 U       | 10 U         | 10,000 U   | 75          |
| Aluminum, Dissolved  | μg/L  | 20,000 | 1,020       | 410        | 120        | 245        | 87          | 20.3 J     | 50 U        | 73.7        | 51         | 79.8         | 80.6       | 51.7        |
| Arsenic, Dissolved   | μg/L  | 10     | 5 U         | 5 U        | 3.3 J      | 10.7       | 5 U         | 5 U        | 9.8         | 5 U         | 5 U        | <b>4.6 J</b> | 5 U        | 5 U         |
| Barium, Dissolved    | μg/L  | 2,000  | 32.5        | 36         | 14.4       | 68.6       | 33.4        | 18.4       | 57.7        | 38          | 15.8       | 21.9         | 45.4       | 11.8        |
| Beryllium, Dissolved | μg/L  | 4      | 1.4         | 1 U        | 1 U        | 1 U        | 0.39 J      | 1 U        | 1 U         | 1 U         | 1 U        | 1 U          | 0.59 J     | 1 U         |
| Cadmium, Dissolved   | μg/L  | 5      | 0.59 J      | 3 U        | 3 U        | 3 U        | 0.75 J      | 0.5 J      | 3 U         | 3 U         | 0.53 J     | 0.61 J       | 0.75 J     | 3 U         |
| Chromium, Dissolved  | μg/L  | 100    | 0.82 J      | 1.3 J      | 5 U        | 1.5 J      | 2 J         | 5 U        | 5 U         | 1.2 J       | 0.93 J     | 2.4 J        | 3.8 J      | 87.1        |
| Cobalt, Dissolved    | μg/L  | 6      | 30.6        | 23.3       | 11.2       | 83.8       | 55          | 1.5 J      | 53.2        | 124         | 18         | 41.8         | 60.1       | 5 U         |
| Copper, Dissolved    | μg/L  | 1,300  | 2.4 J       | 5 U        | 5 U        | 5 U        | 5 U         | 5 U        | 5 U         | 5 U         | 5 U        | 5 U          | 5 U        | 1.6 J       |
| Iron, Dissolved      | μg/L  | 14,000 | 184         | 49,100     | 3,740      | 52,200     | 4,360       | 2,090      | 64,600      | 3,910       | 1,900      | 2,760        | 8,430      | 13.7 J      |
| Lead, Dissolved      | μg/L  | 15     | 2.8 J       | 5 U        | 5 U        | 5 U        | 5 U         | 5 U        | 5 U         | 5 U         | 5 U        | 5 U          | 5 U        | 5 U         |
| Manganese, Dissolved | μg/L  | 430    | 395         | 4,740      | 527        | 7,920      | 822         | 446 J      | 3,060       | 1,580       | 673 J      | 460 J        | 1,090 J    | 5 U         |
| Nickel, Dissolved    | μg/L  | 390    | 23.9        | 23         | 23.6       | 11.4       | 57.4        | 7.1 J      | 14.7        | 93.2        | 24.4 J     | 47.9 J       | 68.9 J     | 10 U        |
| Selenium, Dissolved  | μg/L  | 50     | 7.8 J       | 8 U        | 8 U        | 8 U        | 8 U         | 5.4 J      | 8 U         | 8 U         | 8 U        | 5.7 J        | 4.2 J      | 4.8 J       |
| Silver, Dissolved    | μg/L  | 94     | 6 U         | 6 U        | 6 U        | 0.6 J      | 6 U         | 6 U        | 6 U         | 6 U         | 6 U        | 6 U          | 6 U        | 6 U         |
| Thallium, Dissolved  | μg/L  | 2      | 10 U        | 10 U       | 10 U       | 10 U       | 10 U        | 10 U       | 10 U        | 10 U        | 10 U       | 10 U         | 10 U       | 5.8 J       |
| Vanadium, Dissolved  | μg/L  | 86     | 0.9 J       | 2.6 J      | 1.4 J      | 2.5 J      | 0.98 J      | 0.89 J     | 2.6 J       | 1.3 J       | 0.88 J     | 0.9 J        | 1.2 J      | 977         |
| Zinc, Dissolved      | μg/L  | 6,000  | 39.3        | 19.4       | 19         | 10         | 52.1        | 2.6 B      | 15.4        | 74.8        | 26.2       | 49           | 77.8       | 10 U        |
| Other                |       |        |             |            |            |            |             |            |             |             |            |              |            |             |
| Cyanide              | μg/L  | 200    | 10 U        | 10 U       | 10 U       | 10 U       | 10 U        | 10 U       | 10 U        | 10 U        | 10 U       | 4.3 J        | 2.4 J      | 10 U        |

### **Detections in bold**

Values in red indicate an exceedance of the Project Action Limit (PAL)

\* indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

Table 12Vapor Intrusion Criteria Comparison

| Sample Location | Parameter         | Result<br>(ug/L) | Final<br>Flag | Target Groundwater<br>Concentration (ug/L)<br>TCR=1E-05 or THQ=1 | Exceeds<br>Criteria | Comparison=<br><u>Result</u><br>Target | Toxicity Type |
|-----------------|-------------------|------------------|---------------|------------------------------------------------------------------|---------------------|----------------------------------------|---------------|
| A10-025-PZ*     | Tetrachloroethene | 1,010            |               | 240                                                              | YES                 | 4.21                                   | NC            |
| A10-025-PZ*     | Trichloroethene   | 494              |               | 22 (74)                                                          | YES                 | 22.45 (6.68)                           | NC (C)        |
| A10-027-PZ      | Trichloroethene   | 255              |               | 22 (74)                                                          | YES                 | 11.59 (3.45)                           | NC (C)        |
| A10-034-PZ      | Trichloroethene   | 33.5             |               | 22 (74)                                                          | YES                 | 1.52 (0.45)                            | NC (C)        |

C indicates carcinogenic

NC indicates non-carcinogenic

\* indicates non-validated data

|                                |      |                                          |                                 | Cur          | nulative Vapo    | r Intrusion Cr | iteria Compa     | rison        |                  |              |                  |              |                  |              |                  |
|--------------------------------|------|------------------------------------------|---------------------------------|--------------|------------------|----------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|
|                                |      |                                          | A10-002-PZ                      |              | A10-010-PZ       |                | A10-015-PZ       |              | A10-018-PZ       |              | A10-020-PZ       |              | A10-021-PZ       |              |                  |
| Parameter                      | Туре | Organ Systems                            | VI Screening<br>Criteria (ug/L) | Conc. (ug/L) | Cancer Risk      | Conc. (ug/L)   | Cancer Risk      | Conc. (ug/L) | Cancer Risk      | Conc. (ug/L) | Cancer Risk      | Conc. (ug/L) | Cancer Risk      | Conc. (ug/L) | Cancer Risk      |
| Cancer Risk                    |      |                                          |                                 |              |                  | -              |                  | -            |                  | -            |                  |              |                  |              |                  |
| 1,4-Dioxane                    | SVOC |                                          | 130,000                         | 0.1 U        | 0                | 0.55           | 4.2E-11          | 0.1 U        | 0                | 0.05 J       | 3.8E-12          | 0.31         | 2.4E-11          | 0.1 U        | 0                |
| Naphthalene                    | SVOC |                                          | 200                             | 0.018 J      | 9.0E-10          | 0.11 U         | 0                | 0.018 B      | 0                | 8.2          | 4.1E-07          | 0.1 U        | 0                | 0.1 U        | 0                |
| 1,1-Dichloroethane             | VOC  |                                          | 330                             | 1 U          | 0                | 0.49 J         | 1.5E-08          | 1 U          | 0                | 1 U          | 0                | 0.64 J       | 1.9E-08          | 1 U          | 0                |
| Benzene                        | VOC  |                                          | 69                              | 1 U          | 0                | 1 U            | 0                | 1 U          | 0                | 0.68 J       | 9.9E-08          | 1 U          | 0                | 1 U          | 0                |
| Carbon tetrachloride           | VOC  |                                          | 18                              | 1 U          | 0                | 1 U            | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                |
| Chloroform                     | VOC  |                                          | 36                              | 1 U          | 0                | 1 U            | 0                | 1 U          | 0                | 1 U          | 0                | 0.53 J       | 1.5E-07          | 12.3         | 3.4E-06          |
| Methyl tert-butyl ether (MTBE) | VOC  |                                          | 20,000                          | 1 U          | 0                | 1 U            | 0                | 1 U          | 0                | 1 U          | 0                | 2.7          | 1.4E-09          | 1 U          | 0                |
| Trichloroethene                | VOC  |                                          | 74                              | 1 U          | 0                | 7.6            | 1.0E-06          | 1 U          | 0                | 3.5          | 4.7E-07          | 3.3          | 4.5E-07          | 1 U          | 0                |
| Vinyl Chloride                 | VOC  |                                          | 25                              | 1 U          | 0                | 0.35 J         | 1.4E-07          | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                |
|                                |      | Cumulative Vapor Intrusion               | n Cancer Risk                   |              | 9E-10            |                | 1E-06            |              | 0E+00            |              | 1E-06            |              | 6E-07            |              | 3E-06            |
| Non-Cancer Hazard              |      |                                          |                                 |              |                  |                |                  |              |                  |              |                  |              |                  |              |                  |
|                                |      |                                          |                                 | Conc. (ug/L) | Non-Cancer<br>HQ | Conc. (ug/L)   | Non-Cancer<br>HQ | Conc. (ug/L) | Non-Cancer<br>HQ | Conc. (ug/L) | Non-Cancer<br>HQ | Conc. (ug/L) | Non-Cancer<br>HQ | Conc. (ug/L) | Non-Cancer<br>HQ |
| Tetrachlorethene               | VOC  | Nervous; Ocular                          | 240                             | 1 U          | 0                | 14.2           | 0.06             | 1 U          | 0                | 1.7          | 0.007            | 3.9          | 0.02             | 1 U          | 0                |
|                                | C    | Cumulative Vapor Intrusion Non-C         | Cancer Hazard                   |              | 0                |                | 0                |              | 0                |              | 0                |              | 0                |              | 0                |
| Trichloroethene                | VOC  | Cardiovascular; Developmental;<br>Immune | 22                              | 1 U          | 0                | 7.6            | 0.3              | 1 U          | 0                | 3.5          | 0.2              | 3.3          | 0.2              | 1 U          | 0                |
|                                | C    | Cumulative Vapor Intrusion Non-C         | Cancer Hazard                   |              | 0                |                | 0                |              | 0                |              | 0                |              | 0                |              | 0                |

Table 13

|                                |      |                                          |                                 | A10-0        | 24-PZ            | A10-0        | 25-PZ            | A10-0        | 27-PZ            | A10-0        | 29-PZ            | A10-03       | 34-PZ            | SG06-P       | DM001            |
|--------------------------------|------|------------------------------------------|---------------------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|
| Parameter                      | Туре | Organ Systems                            | VI Screening<br>Criteria (ug/L) | Conc. (ug/L) | Cancer Risk      |
| Cancer Risk                    |      |                                          |                                 |              |                  |              |                  |              |                  |              |                  |              |                  |              |                  |
| 1,4-Dioxane                    | SVOC |                                          | 130,000                         | 0.1 U        | 0                | 0.1 U        | 0                | 0.1 U        | 0                | 0.084 J      | 6.5E-12          | 0.27         | 2.1E-11          | 0.1 U        | 0                |
| Naphthalene                    | SVOC |                                          | 200                             | 0.1 U        | 0                | 1.1          | 5.5E-08          | 0.025 B      | 0                | 0.025 B      | 0                | 0.1 U        | 0                | 0.1 U        | 0                |
| 1,1-Dichloroethane             | VOC  |                                          | 330                             | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 0.23 J       | 7.0E-09          | 1 U          | 0                |
| Benzene                        | VOC  |                                          | 69                              | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                |
| Carbon tetrachloride           | VOC  |                                          | 18                              | 1 U          | 0                | 6.2          | 3.4E-06          | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                |
| Chloroform                     | VOC  |                                          | 36                              | 1 U          | 0                | 1.7          | 4.7E-07          | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                |
| Methyl tert-butyl ether (MTBE) | VOC  |                                          | 20,000                          | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 1 U          | 0                | 0.61 J       | 3.1E-10          | 1 U          | 0                |
| Trichloroethene                | VOC  |                                          | 74                              | 1 U          | 0                | 494          | 6.7E-05          | 255          | 3.4E-05          | 5            | 6.8E-07          | 33.5         | 4.5E-06          | 1 U          | 0                |
| Vinyl Chloride                 | VOC  |                                          | 25                              | 1 U          | 0                | 22.6         | 9.0E-06          | 0.24 J       | 9.6E-08          | 1 U          | 0                | 1.4          | 5.6E-07          | 1 U          | 0                |
|                                |      | Cumulative Vapor Intrusion               | n Cancer Risk                   |              | 0E+00            |              | 8E-05            |              | 3E-05            |              | 7E-07            |              | 5E-06            |              | 0E+00            |
| Non-Cancer Hazard              |      |                                          |                                 |              |                  |              |                  |              |                  |              |                  |              |                  |              |                  |
|                                |      |                                          |                                 | Conc. (ug/L) | Non-Cancer<br>HQ |
| Tetrachlorethene               | VOC  | Nervous; Ocular                          | 240                             | 1 U          | 0                | 1,010        | 4                | 123          | 0.5              | 4.6          | 0.02             | 34.2         | 0.1              | 1 U          | 0                |
|                                | 0    | Cumulative Vapor Intrusion Non-C         | Cancer Hazard                   |              | 0                |              | 4                |              | 1                |              | 0                |              | 0                |              | 0                |
| Trichloroethene                | VOC  | Cardiovascular; Developmental;<br>Immune | 22                              | 1 U          | 0                | 494          | 22               | 255          | 12               | 5            | 0.2              | 33.5         | 2                | 1 U          | 0                |
|                                | 0    | Cumulative Vapor Intrusion Non-C         | Cancer Hazard                   |              | 0                |              | 22               |              | 12               |              | 0                |              | 2                |              | 0                |

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria: TCR > 1E-05 or THI > 1 Conc. = Concentration

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. J: The positive result reported for this analyte is a quantitative estimate.



### Parcel A10 - Table 14

Rejected Results for Soil

| Parameter    |              | Result | Units | PAL       | Exceeds PAL? | Flag |
|--------------|--------------|--------|-------|-----------|--------------|------|
| Sample:      | A10-001-SB-1 |        |       | _         |              |      |
| 1,4-Dioxan   | e            | 0.1    | mg/kg | 24        | no           | R    |
| Bromomethane |              | 0.005  | mg/kg | 30        | no           | R    |
| Sample:      | A10-001-SB-5 |        |       | _         |              |      |
| 1,4-Dioxan   | e            | 0.098  | mg/kg | 24        | no           | R    |
| Bromometh    | hane         | 0.0049 | mg/kg | 30        | no           | R    |
| Sample:      | A10-002-SB-1 |        |       |           |              |      |
| 1,4-Dioxan   | e            | 0.11   | mg/kg | 24        | no           | R    |
| Bromometh    | hane         | 0.0053 | mg/kg | 30        | no           | R    |
| Sample:      | A10-002-SB-5 |        |       |           |              |      |
| 1,4-Dioxan   | e            | 0.11   | mg/kg | 24        | no           | R    |
| Bromomethane |              | 0.0054 | mg/kg | 30        | no           | R    |
| Sample:      | A10-007-SB-1 |        |       |           |              |      |
| 1,4-Dioxan   | e            | 0.12   | mg/kg | 24        | no           | R    |
| Methyl Ace   | tate         | 0.059  | mg/kg | 1,200,000 | no           | R    |
| Sample:      | A10-007-SB-4 |        |       |           |              |      |
| 1,4-Dioxan   | e            | 0.11   | mg/kg | 24        | no           | R    |
| 2,4-Dinitro  | phenol       | 0.19   | mg/kg | 1,600     | no           | R    |
| Methyl Ace   | tate         | 0.053  | mg/kg | 1,200,000 | no           | R    |
| Sample:      | A10-008-SB-1 |        |       | _         |              |      |
| 1,4-Dioxan   | e            | 0.13   | mg/kg | 24        | no           | R    |
| Methyl Ace   | tate         | 0.065  | mg/kg | 1,200,000 | no           | R    |
| Sample:      | A10-008-SB-4 |        |       |           |              |      |
|              | •            | 0.095  | mg/kg | 2/        | no           | D    |



### Rejected Results for Soil

|                      | -      |       |           |              |      |
|----------------------|--------|-------|-----------|--------------|------|
| Parameter            | Result | Units | PAL       | Exceeds PAL? | Flag |
| Sample: A10-008-SB-4 |        |       |           |              |      |
| Methyl Acetate       | 0.047  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-010-SB-1 |        |       |           |              |      |
| 1,4-Dioxane          | 0.17   | mg/kg | 24        | no           | R    |
| Methyl Acetate       | 0.085  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-010-SB-8 |        |       |           |              |      |
| 1,4-Dioxane          | 0.11   | mg/kg | 24        | no           | R    |
| Methyl Acetate       | 0.053  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-011-SB-1 |        |       |           |              |      |
| 1,4-Dioxane          | 0.16   | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol    | 0.2    | mg/kg | 1,600     | no           | R    |
| Methyl Acetate       | 0.079  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-011-SB-7 |        |       |           |              |      |
| 1,4-Dioxane          | 0.1    | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol    | 0.21   | mg/kg | 1,600     | no           | R    |
| Methyl Acetate       | 0.051  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-012-SB-1 |        |       |           |              |      |
| 1,4-Dioxane          | 0.12   | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol    | 0.18   | mg/kg | 1,600     | no           | R    |
| Methyl Acetate       | 0.058  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-012-SB-4 |        |       |           |              |      |
| 1,4-Dioxane          | 0.1    | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol    | 0.2    | mg/kg | 1,600     | no           | R    |
| Methyl Acetate       | 0.051  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-013-SB-1 |        |       |           |              |      |
| 1,4-Dioxane          | 0.12   | mg/kg | 24        | no           | R    |
| Methyl Acetate       | 0.06   | mg/kg | 1,200,000 | no           | R    |
| Parameter           | Result | Units | PAL       | Exceeds PAL? | Flag |
|---------------------|--------|-------|-----------|--------------|------|
| Sample: A10-013-SB- | 4      |       |           |              |      |
| 1,4-Dioxane         | 0.099  | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.049  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-015-SB- | 1      |       |           |              |      |
| 1,4-Dioxane         | 0.096  | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.048  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-015-SB- | 5      |       |           |              |      |
| 1,4-Dioxane         | 0.11   | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.053  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-018-SB- | 1      |       |           |              |      |
| 1,4-Dioxane         | 0.091  | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol   | 1      | mg/kg | 1,600     | no           | R    |
| Benzaldehyde        | 0.08   | mg/kg | 120,000   | no           | R    |
| Bromomethane        | 0.0046 | mg/kg | 30        | no           | R    |
| Methyl Acetate      | 0.046  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-018-SB- | 5      |       |           |              |      |
| 1,4-Dioxane         | 0.085  | mg/kg | 24        | no           | R    |
| Bromomethane        | 0.0043 | mg/kg | 30        | no           | R    |
| Methyl Acetate      | 0.043  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-019-SB- | 1      |       |           |              |      |
| 1,4-Dioxane         | 0.1    | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.051  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-019-SB- | 4      |       |           |              |      |
| 1,4-Dioxane         | 0.087  | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.043  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-020-SB- | 1.5    |       |           |              |      |
| 1,4-Dioxane         | 0.13   | mg/kg | 24        | no           | R    |
| Methyl Acetate      | 0.064  | mg/kg | 1,200,000 | no           | R    |



| Parameter   |                | Result | Units | PAL       | Exceeds PAL? | Flag |
|-------------|----------------|--------|-------|-----------|--------------|------|
| Sample:     | A10-020-SB-7   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.12   | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.058  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-021-SB-2   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.11   | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.055  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-021-SB-4   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.1    | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.05   | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-022-SB-2   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.091  | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.046  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-022-SB-4   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.098  | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.049  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-023-SB-1   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.15   | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.075  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-023-SB-4   |        |       | _         |              |      |
| 1,4-Dioxan  | e              | 0.15   | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.075  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-026-SB-1   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.11   | mg/kg | 24        | no           | R    |
| Methyl Ace  | tate           | 0.057  | mg/kg | 1,200,000 | no           | R    |
| Sample:     | A10-026-SB-5   |        |       |           |              |      |
| 1,4-Dioxan  | e              | 0.11   | mg/kg | 24        | no           | R    |
| 2,3,4,6-Tet | rachlorophenol | 0.076  | mg/kg | 25,000    | no           | R    |



| Parameter                    | Result | Units | PAL       | Exceeds PAL? | Flag |
|------------------------------|--------|-------|-----------|--------------|------|
| Sample: A10-026-SB-5         |        |       |           |              |      |
| 2,4,5-Trichlorophenol        | 0.19   | mg/kg | 82,000    | no           | R    |
| 2,4,6-Trichlorophenol        | 0.076  | mg/kg | 210       | no           | R    |
| 2,4-Dichlorophenol           | 0.076  | mg/kg | 2,500     | no           | R    |
| 2,4-Dimethylphenol           | 0.076  | mg/kg | 16,000    | no           | R    |
| 2,4-Dinitrophenol            | 0.19   | mg/kg | 1,600     | no           | R    |
| 2-Chlorophenol               | 0.076  | mg/kg | 5,800     | no           | R    |
| 2-Methylphenol               | 0.076  | mg/kg | 41,000    | no           | R    |
| 3&4-Methylphenol(m&p Cresol) | 0.15   | mg/kg | 41,000    | no           | R    |
| Methyl Acetate               | 0.055  | mg/kg | 1,200,000 | no           | R    |
| Pentachlorophenol            | 0.19   | mg/kg | 4         | no           | R    |
| Phenol                       | 0.076  | mg/kg | 250,000   | no           | R    |
| Sample: A10-027-SB-1         |        |       |           |              |      |
| 1,4-Dioxane                  | 0.16   | mg/kg | 24        | no           | R    |
| Methyl Acetate               | 0.082  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-027-SB-4         |        |       |           |              |      |
| 1,4-Dioxane                  | 0.1    | mg/kg | 24        | no           | R    |
| Methyl Acetate               | 0.05   | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-028-SB-1         |        |       |           |              |      |
| 1,4-Dioxane                  | 0.1    | mg/kg | 24        | no           | R    |
| Methyl Acetate               | 0.052  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-028-SB-6         |        |       |           |              |      |
| 1,4-Dioxane                  | 0.11   | mg/kg | 24        | no           | R    |
| Methyl Acetate               | 0.053  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-029-SB-1         |        |       |           |              |      |
| 1,4-Dioxane                  | 0.092  | mg/kg | 24        | no           | R    |



no

no

R

R

1,600

1,200,000

2,4-Dinitrophenol

Methyl Acetate

mg/kg

mg/kg

0.17

0.046

|                    | 5      | ,     |           |              |      |
|--------------------|--------|-------|-----------|--------------|------|
| Parameter          | Result | Units | PAL       | Exceeds PAL? | Flag |
| Sample: A10-029-SB | -4     |       | _         |              |      |
| 1,4-Dioxane        | 0.091  | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol  | 0.2    | mg/kg | 1,600     | no           | R    |
| Methyl Acetate     | 0.046  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-030-SB | -1     |       |           |              |      |
| 1,4-Dioxane        | 0.1    | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol  | 0.18   | mg/kg | 1,600     | no           | R    |
| Methyl Acetate     | 0.052  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-030-SB | -7     |       |           |              |      |
| 1,4-Dioxane        | 0.099  | mg/kg | 24        | no           | R    |
| 2,4-Dinitrophenol  | 0.21   | mg/kg | 1,600     | no           | R    |
| Methyl Acetate     | 0.049  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-031-SB | -1.5   |       |           |              |      |
| 1,4-Dioxane        | 0.099  | mg/kg | 24        | no           | R    |
| Methyl Acetate     | 0.049  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-031-SB | -8     |       |           |              |      |
| 1,4-Dioxane        | 0.092  | mg/kg | 24        | no           | R    |
| Methyl Acetate     | 0.046  | mg/kg | 1,200,000 | no           | R    |
| Sample: A10-033-SB | -1     |       |           |              |      |
| 1,4-Dioxane        | 0.1    | mg/kg | 24        | no           | R    |
| Bromomethane       | 0.0052 | mg/kg | 30        | no           | R    |
| Sample: A10-033-SB | -4     |       |           |              |      |
| 1,4-Dioxane        | 0.11   | mg/kg | 24        | no           | R    |
| Bromomethane       | 0.0053 | mg/kg | 30        | no           | R    |



n n n n n n n n

"

"

"

# **APPENDIX A**

#### 11

- " "

| Table 1 - Soil | Samples |
|----------------|---------|
|                |         |

| Source Area/<br>Description          | REC &<br>Finding/<br>SWMU/ AOC | Figure or<br>Drawing of<br>Reference | RATIONALE                                                                                                  | Number of<br>Locations | Sample<br>Locations    | Boring Depth                           | Sample Depth*                                                                                                           | Analytical Parameters:<br>Soil Samples        |
|--------------------------------------|--------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Boiler House                         |                                | Drawing<br>5047-A                    | Investigate potential impacts related to the boiler house (potential leaks or releases).                   | 2                      | A10-001 and<br>A10-002 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Incinerator                          |                                | Drawing<br>5147                      | Investigate potential impacts related to the incinerator (potential leaks or releases).                    | 2                      | A10-003 and<br>A10-004 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Machine Shop                         |                                | Drawing<br>5147                      | Investigate potential impacts related to the machine shop (potential leaks or releases).                   | 2                      | A10-005 and<br>A10-006 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Maintenance of<br>Way Repair<br>Shop |                                | Drawing<br>5052                      | Investigate potential impacts related to the maintenance of way repair shop (potential leaks or releases). | 2                      | A10-007 and<br>A10-008 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Oil House                            |                                | Drawing<br>5147                      | Investigate potential impacts related to the oil house (potential leaks or releases).                      | 2                      | A10-009 and<br>A10-010 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Pump House/<br>Foamite<br>Building   |                                | Drawings<br>5047 and<br>5147         | Investigate potential impacts related to the pump house/foamite building (potential leaks or releases).    | 2                      | A10-011 and<br>A10-012 | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |

| Source Area/<br>Description                                | REC &<br>Finding/<br>SWMU/ AOC | Figure or<br>Drawing of<br>Reference       | RATIONALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of<br>Locations | Sample<br>Locations           | Boring Depth                              | Sample Depth*                                                                                                                            | Analytical Parameters:<br>Soil Samples        |
|------------------------------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Hazardous<br>Materials<br>Storage                          | REC 10A,<br>Finding 240        | REC<br>Location<br>Map/<br>Drawing<br>5147 | During Weaver Boos' site visit, an ATEC building was<br>observed to contain a hazardous materials storage room.<br>The building held several ASTs and containers, the<br>condition of which could not be determined due to<br>restricted access (building locks). An additional AST<br>with a hazardous materials label was observed along the<br>western exterior wall. It is unknown whether any leaks<br>or spills occurred. The location of the storage room was<br>confirmed by ARM. Several boilers were observed in<br>the storage room ,but there was no evidence of<br>hazardous materials.            | 3                      | A10-013<br>through<br>A10-015 | Total depth of 20<br>feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening.                  | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Large Historical<br>AST                                    | REC 10B,<br>Finding 241        | REC<br>Location<br>Map/<br>Drawing<br>5052 | A large circular structure appearing to be an AST<br>surrounded by a berm was identified on historical aerial<br>photography. Based on the size and location, it is<br>reasonable that the AST may have contained petroleum<br>products. The condition of the tank and berm, as well<br>as the contents and spill/leak history, are unknown.                                                                                                                                                                                                                                                                    | 3                      | A10-016<br>through<br>A10-018 | Total depth of 20 feet or groundwater.    | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening.                  | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Maintenance of<br>Way Yard UST<br>(and Fuel<br>Dispensers) | REC 12A,<br>Finding 246        | REC<br>Location<br>Map/<br>Drawing<br>5147 | The Maintenance of Way Yard located north of the<br>ATEC facility was identified as containing a 12,000-<br>gallon gasoline UST, listed as permanently out of<br>service. Additionally, three (3) fuel dispensers were<br>observed outside of a building in the yard. It is<br>unknown whether the dispensers were associated with<br>the UST, or if they had underground piping which may<br>have leaked or spilled. ARM confirmed the location of<br>the fuel dispensers, and observed a concrete pad which<br>may overly the UST. A spill of de minimis quantities of<br>PVC glue was also noted by the MDE. | 4                      | A10-019<br>through<br>A10-022 | Total depth of 20<br>feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening.                  | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Parcel A10<br>Coverage                                     |                                |                                            | Investigate potential impacts related to any historical<br>activities which may have occurred<br>(potential leaks or releases).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                      | A10-023<br>through<br>A10-030 | Total depth of 20 feet or groundwater.    | <ul> <li>0-1', 4-5', 9-10' bgs.</li> <li>4-5' interval may be adjusted in the field based on observations or field screening.</li> </ul> | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Repair Shop<br>Interior                                    |                                | Drawing<br>5047                            | MDE Request. Investigate potential impacts related to<br>any historical activities in the repair shop (potential<br>leaks or releases).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                      | A10-031                       | Total depth of 20 feet or groundwater.    | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening.                  | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |

| Source Area/<br>Description       | REC &<br>Finding/<br>SWMU/ AOC | Figure or<br>Drawing of<br>Reference | RATIONALE                                                                                                                                                    | Number of<br>Locations | Sample<br>Locations | Boring Depth                           | Sample Depth*                                                                                                           | Analytical Parameters:<br>Soil Samples        |
|-----------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Lumber Storage<br>Warehouse       |                                | Drawing<br>5052-A                    | MDE Request. Investigate potential impacts related to<br>any historical activities in the lumber storage<br>warehouses (potential leaks or releases).        | 1                      | A10-032             | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
| Nelson Box<br>Company<br>Building |                                | Drawing<br>5047 and<br>5047-A        | MDE Request. Investigate potential impacts related to<br>any historical activities in the main Nelson Box<br>Company building (potential leaks or releases). | 1                      | A10-033             | Total depth of 20 feet or groundwater. | 0-1', 4-5', 9-10' bgs.<br>4-5' interval may be<br>adjusted in the field<br>based on observations<br>or field screening. | VOC, SVOC,<br>Metals, DRO/GRO,<br>PCBs (0-1') |
|                                   |                                |                                      | Total:                                                                                                                                                       | 33                     |                     |                                        |                                                                                                                         |                                               |

Soil Borings Sampling Density Requirements (from **Worksheet 17 - Sampling Design and Rationale**) No Engineered Barrier (16-40 acres): 1 boring per 1.5 acres with no less than 15. Engineered Barrier (1-15 acres): 0.5 boring per acre with no less than 2. No Engineered Barrier (17.0 acres) = **15 borings required**, **15 proposed** 

Engineered Barrier (14.6 acres) = **8 borings required, 18 proposed** Parking/Roads (11.7 acres) Buildings (3.0 acres) VOCs - Volatile Organic Compounds (Target Compound List)
SVOCs - Semivolatile Organic Compounds (Target Compound List)
Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)
PCBs - Polychlorinated Biphenyls
DRO/GRO - Diesel Range Organics/Gasoline Range Organics
bgs - Below Ground Surface

|                                                            |                                |                                            |                            | water bumpies          | ,                                                 |                                                      |                                                             |                                                              |
|------------------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------|------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Source Area/<br>Description                                | REC &<br>Finding/<br>SWMU/ AOC | Figure or<br>Drawing of<br>Reference       | Condition of Existing Well | Number of<br>Locations | Sample<br>Locations                               | Boring Depth                                         | Screen Interval                                             | Analytical Parameters:<br>Groundwater Samples†               |
| Boiler House                                               |                                | Drawing<br>5047-A                          | N/A                        | 1                      | A10-002                                           | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Oil House                                                  |                                | Drawing<br>5147                            | N/A                        | 1                      | A10-010                                           | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Hazardous<br>Materials<br>Storage                          | REC 10A,<br>Finding 240        | REC<br>Location<br>Map/<br>Drawing<br>5147 | N/A                        | 1                      | A10-015                                           | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Large Historical<br>AST                                    | REC 10B,<br>Finding 241        | REC<br>Location<br>Map/<br>Drawing<br>5052 | N/A                        | 1                      | A10-018                                           | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Maintenance of<br>Way Yard UST<br>(and Fuel<br>Dispensers) | REC 12A,<br>Finding 246        | REC<br>Location<br>Map/<br>Drawing<br>5147 | N/A                        | 2                      | A10-020 and<br>A10-021                            | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Parcel A10<br>Coverage                                     |                                |                                            | N/A                        | 4                      | A10-024,<br>A10-025,<br>A10-027<br>and<br>A10-029 | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Machine Shop/<br>Incinerator                               |                                | Drawing<br>5147                            | N/A                        | 1                      | A10-034*                                          | Total depth of 7 feet below water table.             | 7 feet below water table<br>to 3 feet above water<br>table. | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
| Existing<br>Groundwater<br>Well                            |                                |                                            | Good structural condition. | 1                      | SG06-<br>PDM001                                   | Total depth of 14<br>feet bgs<br>(historic reported) | 14 to 4 feet bgs<br>(historic reported)                     | VOC, SVOC, Dissolved<br>Metals, DRO/GRO                      |
|                                                            |                                |                                            | Total:                     | 12                     |                                                   |                                                      |                                                             |                                                              |
| *Piezometer only                                           | - no additional s              | oil samples.                               |                            |                        |                                                   |                                                      |                                                             | †Field measurements<br>include pH, DO, ORP,<br>conductivity, |

Table 2 - Groundwater Samples

temperature.

n n n n n n n n n

"

"

"

# **APPENDIX B**

#### "

- "

|                      | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-001-SB<br>(page 1 of 1) |                          |                          |                          | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>North<br>Eastir | ner<br>ing (US ft)<br>ng (US ft) | : 7/6/2016<br>: 80s, Sunny<br>: 571130.63<br>: 1464890.46 |
|----------------------|---------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------|
| Depth (ft.)          | % Recovery                                                                                              | PID Reading (PPM)        | Sample ID/Interval       |                          | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                  | USCS                             | REMARKS                                                   |
| -0                   |                                                                                                         | -                        | A10-001-SB-1             | (0-5') CL/<br>reddish y  | AY with some CONCI<br>ellow, moist, medium                                                                                                                 | RETE and GRAVEL, soft to f plasticity, cohesive                                                                                                                                                            | ïrm,                             |                                  |                                                           |
| -                    | 60                                                                                                      | 0.2                      |                          |                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                  | CL                               |                                                           |
| 5-                   |                                                                                                         | 0.2                      | A10-001-SB-5             |                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                           |
|                      |                                                                                                         | 0.6                      |                          | (5-5.9') S<br>yellow, w  | ANDY CLAY, very so<br>et, low plasticity, cohe                                                                                                             | ft, light gray and reddish<br>esive                                                                                                                                                                        |                                  | CL                               | Wet at 5.5' bgs                                           |
| -                    |                                                                                                         | 1.5                      |                          | (5.9-7.5')<br>non plast  | SILTY SLAG GRAVE<br>ic, non cohesive                                                                                                                       | EL, loose, very dark gray, we                                                                                                                                                                              | ŀt,                              | GW/GM                            |                                                           |
| -                    | 100                                                                                                     | 4.2                      |                          | (7.5-9.5')<br>light gray | SILT, hard, brown gr,<br>, dry to moist, non pla                                                                                                           | ading to reddish yellow and stic, non cohesive                                                                                                                                                             |                                  |                                  |                                                           |
| _                    |                                                                                                         | 4.9                      |                          |                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                  | ML                               |                                                           |
| 10-                  |                                                                                                         | 0.3                      |                          | (9.5-10')<br>and pale    | SAND with CLAY, me<br>brown, very moist, nc                                                                                                                | dium dense, reddish yellow<br>n plastic, non cohesive                                                                                                                                                      |                                  | SP                               |                                                           |
|                      |                                                                                                         |                          |                          | End of Bo                | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                  |                                  |                                                           |
| Total Bo<br>Boring t | Drehole D<br>Terminated                                                                                 | epth: 10'<br>d at 10' bé | bgs.<br>gs due to water. |                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                           |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-002-SB<br>(page 1 of 1) |                         |                             |                           | p Inc.<br>ngineers<br>SB<br>of 1)                           | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weat<br>North<br>Eastin | her<br>ing (US ft)<br>ng (US ft) | : 7/6/2016<br>: 80s, Sunny<br>: 571158.50<br>: 1464916.50 |
|---------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|---------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|-----------------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery              | PID Reading (PPM)           | Sample ID/Interval        |                                                             | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    | USCS                            | REMARKS                          |                                                           |
| 0<br>-<br>-<br>-                                                                                        | 60                      | -<br>-<br>0.4<br>1.3<br>0.3 | A10-002-SB-1              | (0-0.2') C<br>cohesive<br>(0.2-5') C<br>pale brov<br>medium | CONCRETE, loose, wh<br>LAY, soft grading to v<br>vn mottling changing t<br>plasticity to high plasti                                                       | nitish, dry, non plastic, non<br>very soft, reddish yellow and<br>to light gray, dry to very mois<br>icity, cohesive                                                                                       | /                               | CL                               |                                                           |
| 5—<br>-<br>-                                                                                            | 60                      | -<br>-<br>0.3<br>0.3        |                           | (5-8') CL/<br>high plas<br>(8-9.5') S<br>mottled, (         | AY, soft, light gray wit<br>ticity, cohesive<br>ANDY CLAY, firm, re<br>dry, medium plasticity                                                              | h black streaks, very moist,<br>ddish yellow and pale browr                                                                                                                                                | 1                               | CL                               |                                                           |
| -<br>10<br>-                                                                                            |                         | 0.4                         | A10-002-SB-10             | (9.5-12')<br>very mois                                      | SAND, fine grained, r<br>st to wet, non plastic,                                                                                                           | nedium dense, reddish yello<br>non cohesive                                                                                                                                                                | w,                              | SP                               | Wet at 10' bgs                                            |
| -<br>-                                                                                                  | 80                      | -                           |                           | (13-15') (<br>very mois<br>(13-15') (<br>mottling,          | CLAY, firm, very pale<br>moist, high plasticity,                                                                                                           | brown and pale brown<br>cohesive                                                                                                                                                                           |                                 | CL                               |                                                           |
| - 15                                                                                                    | 100                     | -                           |                           | (15-17') (<br>cohesive                                      | CLAY, soft, pale brown                                                                                                                                     | n, moist, high plasticity,                                                                                                                                                                                 |                                 | CL                               |                                                           |
| -<br>-<br>20-                                                                                           | -                       |                             |                           | Ena of Ba                                                   | Bund                                                                                                                                                       |                                                                                                                                                                                                            |                                 |                                  |                                                           |
| 20-<br>Total Bo<br>Boring t                                                                             | orehole D<br>terminated | epth: 17'<br>d at 17' b     | bgs.<br>gs due to water a | ind piezome                                                 | ter installation.                                                                                                                                          |                                                                                                                                                                                                            |                                 |                                  |                                                           |

|             | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants |                   | o Inc.             | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin | Date<br>Weat                                                                           | ner             | : 7/7/2016<br>: 90s, Sunny |                             |
|-------------|---------------------------------------------------------------|-------------------|--------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|----------------------------|-----------------------------|
| E           | Boring                                                        | g ID: A           | \10-003-S          | в                                                                                       | Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                                  | : M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | North<br>Eastir | ing (US ft)<br>ng (US ft)  | : 571308.90<br>: 1464834.32 |
|             |                                                               |                   | (page 1            | of 1)                                                                                   |                                                                                                                  |                                                                                        |                 | 1                          |                             |
| Depth (ft.) | % Recovery                                                    | PID Reading (PPM) | Sample ID/Interval |                                                                                         | DESC                                                                                                             | RIPTION                                                                                | NSCS            | REMARKS                    |                             |
| 0-          |                                                               |                   |                    | (0-0.2') C                                                                              | ONCRETE, loose, wh                                                                                               | nite, dry, non plastic, non                                                            |                 | -                          |                             |
|             |                                                               | -                 | A10-003-SB-1       | (0.2-0.5')                                                                              | SILT, soft, very dark                                                                                            | brown, dry, non plastic, non                                                           | /               |                            |                             |
| -           |                                                               | -                 |                    | (0.5-1.5')<br>and SILT,                                                                 | SAND, fine to mediur<br>, loose, very dark brow                                                                  | n grained, with small GRAV<br>wn, dry, non plastic, non                                | EL              | SW                         |                             |
| -           | 60                                                            | 30.7              |                    | (1.5-3') SI<br>plastic, no                                                              | LAG GRAVEL, loose,<br>on cohesive                                                                                | brownish gray, dry, non                                                                | SW/GW           |                            |                             |
| -           |                                                               | 20.7              |                    | (3-4') SIL<br>plastic, no                                                               | T type material, soft, y<br>on cohesive                                                                          | white with oxidation, moist, r                                                         | -               |                            |                             |
| _           |                                                               | 0.2               |                    | (4-5') SLA<br>non cohes                                                                 | AG GRAVEL, loose, b<br>sive                                                                                      | rownish gray, dry, non plast                                                           | ic,             | SW/GW                      |                             |
| 5—          |                                                               | -                 |                    | (5-9') SAN<br>brown and                                                                 | ND and SLAG GRAVI<br>d gray, dry, non plasti                                                                     | EL, fine to coarse SAND, loc<br>ic, non cohesive                                       | ose,            |                            |                             |
|             |                                                               | 14.1              |                    |                                                                                         |                                                                                                                  |                                                                                        |                 | 00/00                      |                             |
| -           | 70                                                            | 10.3              |                    |                                                                                         |                                                                                                                  |                                                                                        |                 | SP/GP                      |                             |
|             |                                                               | 82.1              | A10-003-SB-9       |                                                                                         |                                                                                                                  |                                                                                        |                 |                            |                             |
| -           |                                                               | 49.1              |                    | (9-10') SII<br>plasticity,                                                              | LTY CLAY, soft, yello<br>cohesive                                                                                | wish brown, wet, low                                                                   |                 | CL                         | Wet at 9' bgs               |
| 10—         |                                                               |                   | 1                  | End of Bo                                                                               | pring                                                                                                            |                                                                                        |                 |                            |                             |
|             |                                                               |                   |                    |                                                                                         |                                                                                                                  |                                                                                        |                 |                            |                             |
| Total Bo    | orehole De                                                    | epth: 10'         | bgs.               | nd pizzar i                                                                             |                                                                                                                  |                                                                                        |                 |                            |                             |
| Boring t    | eminated                                                      | a at 10' d(       | js que to water a  | na piezomet                                                                             | instaliation.                                                                                                    |                                                                                        |                 |                            |                             |
|             |                                                               |                   |                    |                                                                                         |                                                                                                                  |                                                                                        |                 |                            |                             |

|                      | Boring                      | AR<br>Ear                | M Group<br>th Resource Er<br>and Consulta<br>A10-004-S | p Inc.                     | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site LocationSite Location: Sparrows Point, MDARM RepresentativeARM Representative: L. PerrinChecked byChecked by: M. Replogle, E.I.T.Northing (US frDrilling Company: Green Services, Inc.Easting (US ft)Driller: Don MarcheseDrilling Equipment |                                         |     |       | : 7/7/2016<br>: 90s, Sunny<br>: 571369.31<br>: 1464833.07 |
|----------------------|-----------------------------|--------------------------|--------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|-------|-----------------------------------------------------------|
|                      |                             |                          | (page 1                                                | of 1)                      | Drilling Equipment                                                                                                                                                                                                                                                                                                                                                    | : Geoprobe 7822DT                       |     |       |                                                           |
| Depth (ft.)          | % Recovery                  | PID Reading (PPM)        | Sample ID/Interval                                     |                            | DESC                                                                                                                                                                                                                                                                                                                                                                  | RIPTION                                 |     | nscs  | REMARKS                                                   |
| 0-                   |                             | -                        | A10-004-SB-1                                           | (0-0.3') C<br>cohesive     | ONCRETE, loose, wl                                                                                                                                                                                                                                                                                                                                                    | hite, dry, non plastic, non             | /   | -     |                                                           |
| -                    |                             | -                        |                                                        | (1-3.4') S<br>cohesive     | ILT, soft, very dark br                                                                                                                                                                                                                                                                                                                                               | own, dry, non plastic, non              | /   | ML    |                                                           |
| -                    | 60                          | 3.4                      |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| _                    |                             | 37.5                     | A10-004-SB-4                                           | (3.4-9.5')<br>brown an     | SLAG, SAND and Gl<br>d gray to gray, dry, no                                                                                                                                                                                                                                                                                                                          | RAVEL sized, with SILT, loos            | se, |       |                                                           |
| _                    |                             | 5.1                      |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       | • •                                     |     |       |                                                           |
| 5-                   |                             | -                        |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| _                    |                             | -                        |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     | GW/SW |                                                           |
| _                    | 50                          | 5.7                      |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| _                    |                             | 7.8                      |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| -                    |                             | 3.3                      | A10-004-SB-10                                          |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| 10-                  |                             |                          |                                                        | (9.5-10') (<br>plasticity, | CLAYEY SILT, yellow<br>cohesive                                                                                                                                                                                                                                                                                                                                       | lowich brown, moist, low                | /   | ML    | Wet at 10' bgs                                            |
| _                    |                             | -                        |                                                        | plasticity,                | cohesive                                                                                                                                                                                                                                                                                                                                                              | iowish brown, wet, nigh                 |     |       |                                                           |
| _                    |                             | -                        |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     | CL    |                                                           |
| -                    | 50                          | -                        |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
| -                    |                             | -                        |                                                        | (13.5-14.4<br>mottling,    | 5') CLAY, very firm, ro<br>dry, high plasticity, co                                                                                                                                                                                                                                                                                                                   | eddish yellow and light gray<br>bhesive |     | CL    |                                                           |
| 15-                  |                             | -                        |                                                        | (14.5-15')                 | SANDY CLAY, soft,                                                                                                                                                                                                                                                                                                                                                     | reddish yellow, very moist,             |     | CL    |                                                           |
| -                    |                             |                          |                                                        | End of Bo                  | pring                                                                                                                                                                                                                                                                                                                                                                 |                                         | /   |       |                                                           |
| Total Bo<br>Boring t | I<br>prehole D<br>erminated | epth: 15'<br>d at 15' bi | bgs.<br>gs due to water.                               |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |
|                      |                             |                          |                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                       |                                         |     |       |                                                           |

|                      | Boring                   | AR<br>Eart               | M Group<br>th Resource Er<br>and Consulta<br>A10-005-S<br>(page 1 | p Inc.<br>gincers<br>nts<br>SB<br>of 1)                         | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site LocationSite Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Northing (US ft)Drilling Company: Green Services, Inc.Easting (US ft)Driller: Don MarcheseDrilling EquipmentChecked by: Geoprobe 7822DTImage: Company in the second |                                                                                                                        |  |         | : 7/7/2016<br>: 80s, Sunny<br>: 571264.10<br>: 1464835.31 |
|----------------------|--------------------------|--------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|---------|-----------------------------------------------------------|
| Depth (ft.)          | % Recovery               | PID Reading (PPM)        | Sample ID/Interval                                                |                                                                 | DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RIPTION                                                                                                                |  | NSCS    | REMARKS                                                   |
| 0-                   |                          | -                        | A10-005-SB-1                                                      | (0-0.4') C<br>cohesive<br>(0.4-0.6')<br>(0.6-5') S<br>dark brow | ONCRETE, loose, wh<br>SILT, soft, red, dry, n<br>ILTY SAND with very<br>/n, gray and brown, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nite, dry, non plastic, non<br>on plastic, non cohesive<br>large SLAG at 2.5', loose,<br>ry, non plastic, non cohesive |  | -<br>ML |                                                           |
| -                    | 60                       | 12.0<br>17.1             |                                                                   |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |  | SM      |                                                           |
| 5—                   |                          | 18.3                     | A10-005-SB-5                                                      | (5-8') SAN                                                      | ND, fine to coarse, wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th large SLAG GRAVEL,<br>n plastic, non cohesive                                                                       |  |         |                                                           |
| -                    |                          | -                        |                                                                   |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |  | SW      |                                                           |
| -                    | 60                       | 1.8                      |                                                                   | (8-10') CL                                                      | AY with SAND, verv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | soft grading to firm, dark                                                                                             |  |         | Wet at 8' bgs                                             |
| _                    |                          | 0.2                      |                                                                   | yellowish<br>mottling,                                          | brown grading to ligh<br>wet, high plasticity, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t gray and reddish yellow<br>bhesive                                                                                   |  | CL      |                                                           |
| 10—                  |                          | 0.0                      |                                                                   | End of Bo                                                       | pring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                        |  |         |                                                           |
| Total Bo<br>Boring t | Drehole De<br>Terminated | epth: 10'<br>d at 10' bo | bgs.<br>gs due to water.                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |  |         |                                                           |

| E                    | Boring                 | AR<br>Eart               | M Group<br>th Resource Er<br>and Consultat | p Inc.<br>agineers<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agines<br>agin | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatProject Description: Sparrows Point - Parcel A10Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: Green Services, Inc.Driller: Don MarcheseDrilling Equipment: Geoprobe 7822DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |      | ner<br>ing (US ft)<br>ig (US ft) | : 7/7/2016<br>: 90s, Sunny<br>: 571203.33<br>: 1464836.17                                                      |
|----------------------|------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|----------------------------------|----------------------------------------------------------------------------------------------------------------|
| Depth (ft.)          | % Recovery             | PID Reading (PPM)        | Sample ID/Interval                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RIPTION                                                                                        | nscs | REMARKS                          |                                                                                                                |
| 0—                   |                        | -<br>4.6                 | A10-006-SB-1                               | (0-0.5') C<br>cohesive<br>(0.5-1.5')<br>dry, non p<br>(1.5-2.5')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ONCRETE, loose, where showing a straight of the second straight of the straight of the second straight of the straight of the second stra | nite, dry, non plastic, non<br>soft, red then brownish yellov<br>grained, loose, black, dry, r | w,   | -<br>ML                          |                                                                                                                |
| -                    | 90                     | 4.2<br>3.7<br>2.3        |                                            | (2.5-5') C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAY, firm, yellowish t<br>to high plasticity, coh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | prown, dry to moist, medium<br>esive                                                           |      | CL                               |                                                                                                                |
| 5—                   |                        | 11.3<br>127.0            | A10-006-SB-7                               | (5-7') CL/<br>brown, dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AY grading to SANDY<br>y to very moist, medi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLAY, firm to soft, yellowisl<br>um plasticity, cohesive                                       | h    | CL                               |                                                                                                                |
| -                    | 100                    | 12.6<br>110.8            |                                            | (7-7.5') S<br>non cohe<br>(7.5-9') C<br>plasticity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND, fine grained, loo<br>sive<br>LAY, very firm, yellow<br>cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ose, brown, wet, non plastic,<br>/ish brown, dry, high                                         | /    | SP<br>CL                         | Wet at 7' bgs<br>High sheen and low viscosity<br>product from 7-8' and 9-9.5'<br>bgs, strong odor, amber color |
| _                    |                        | 133.5                    |                                            | (9-9.5') S.<br>plastic, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND, fine grained, loo<br>on cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ose, yellowish brown, non                                                                      | /    | SP<br>SP-SC                      |                                                                                                                |
| 10                   |                        | -                        |                                            | (9.5-10') (<br>plastic, no<br>(10-15') C<br>yellowish<br>medium p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLAYEY SAND, dens<br>on cohesive<br>CLAY, firm to very firm<br>red and yellowish bro<br>plasticity, cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se, yellowish brown, dry, non<br>n, yellowish brown grading to<br>own mottling, moist to dry,  | ,/   |                                  |                                                                                                                |
| -                    |                        | -                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |      | CL                               |                                                                                                                |
| 15—                  |                        | -                        |                                            | End of Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |      |                                  |                                                                                                                |
| Total Bo<br>Boring t | prehole D<br>erminated | epth: 15'<br>d at 15' bç | bgs.<br>gs due to water a                  | and piezome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ter installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |      |                                  |                                                                                                                |

| E                    | Boring                 | AR<br>Eart               | M Group<br>th Resource Er<br>and Consultat | p Inc.<br>agineers<br>agines<br>BB<br>of 1)          | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site LocationSite Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Northing (UDrilling Company: Green Services, Inc.Easting (USDriller: Don MarcheseDrilling Equipment |                                                                                 |   |          | : 7/8/2016<br>: 90s, Sunny<br>: 571532.49<br>: 1464371.45 |
|----------------------|------------------------|--------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---|----------|-----------------------------------------------------------|
| Depth (ft.)          | % Recovery             | PID Reading (PPM)        | Sample ID/Interval                         |                                                      | DESC                                                                                                                                                                                                                                                                                                                              | RIPTION                                                                         |   | NSCS     | REMARKS                                                   |
| 0-                   |                        | - 5.0                    | A10-007-SB-1                               | (0-0.3') S<br>plastic, no<br>(0.3-2.5')<br>moist, no | ILT with trace GRAVE<br>on cohesive<br>SLAG GRAVEL, loos<br>n plastic, non cohesiv                                                                                                                                                                                                                                                | EL, soft, brown, dry, non<br>e, grayish brown, dry to very<br>e                 | , | ML<br>GP |                                                           |
| -                    | 80                     | 34.3<br>46.3             | A10-007-SB-4                               | (2.5-5') S<br>yellowish<br>mottling, r               | ILT with organic matte<br>brown and brown wit<br>moist to very moist, lo                                                                                                                                                                                                                                                          | er throughout, firm to soft,<br>h some greenish gray<br>ow plasticity, cohesive |   | ML       |                                                           |
| 5                    |                        | -                        |                                            | (5-7.5') S<br>greenish                               | ILT with CLAY, very s<br>gray mottling, wet, lov                                                                                                                                                                                                                                                                                  | soft to soft, brown and w plasticity, cohesive                                  |   | ML       | Wet at 5.5' bgs                                           |
| -                    | 90                     | -                        |                                            | (7.5-10') (<br>dry, low p                            | CLAY, hard, reddish y<br>lasticity, cohesive                                                                                                                                                                                                                                                                                      | vellow and yellowish brown,                                                     |   |          |                                                           |
| - 10–                |                        | -                        |                                            | End of Bo                                            | pring                                                                                                                                                                                                                                                                                                                             |                                                                                 |   | CL       |                                                           |
| Total Bo<br>Boring t | prehole D<br>erminated | epth: 10'<br>d at 10' bថ | bgs.<br>gs due to water.                   |                                                      |                                                                                                                                                                                                                                                                                                                                   |                                                                                 |   |          |                                                           |

| E           | Boring     | AR<br>Eart        | M Group<br>th Resource En<br>and Consultant<br>A10-008-S<br>(page 1 | BB                                  | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastir | ner<br>ing (US ft)<br>ng (US ft) | : 7/8/2016<br>: 90s, Sunny<br>: 571531.45<br>: 1464344.54 |
|-------------|------------|-------------------|---------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------|
| Depth (ft.) | % Recovery | PID Reading (PPM) | Sample ID/Interval                                                  |                                     | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    | I                                 | nscs                             | REMARKS                                                   |
| 0-          |            | -                 | A10-008-SB-1                                                        | (0-0.4') S<br>\plastic, no          | ILT with SLAG GRAV                                                                                                                                         | EL, soft, brown, dry, non                                                                                                                                                                                  | /                                 | ML                               |                                                           |
| -           |            | 7.4               |                                                                     | (0.4-2.5')<br>white, dry            | SLAG GRAVEL and<br>to very moist, non pl                                                                                                                   | SAND, loose, brown and astic, non cohesive                                                                                                                                                                 |                                   | GP/SP                            |                                                           |
| _           | 80         | 56.8              |                                                                     | (2.5-5') S                          | ILT, hard, light olive b                                                                                                                                   | rown, dry, low plasticity,                                                                                                                                                                                 |                                   |                                  |                                                           |
| _           |            | 91.8              | A10-008-SB-4                                                        | Concorve                            |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | ML                               |                                                           |
| 5-          |            | 21.7              |                                                                     |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |
| -           |            | 6.7               |                                                                     | (5-7') CLA<br>mottling,             | AY, soft to firm, green moist, high plasticity,                                                                                                            | ish gray and reddish yellow cohesive                                                                                                                                                                       |                                   | CI                               |                                                           |
| _           |            | 7.3               |                                                                     |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |
| _           | 100        | 7.7               |                                                                     | (7-10') CL<br>dry, medi             | AY, hard, reddish ye<br>um plasticity, cohesiv                                                                                                             | llow and very pale brown,<br>e                                                                                                                                                                             |                                   |                                  |                                                           |
| _           |            | 2.1               |                                                                     |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                               |                                                           |
| 10-         |            | -                 | A10-008-SB-10                                                       |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |
|             |            | -                 |                                                                     | (10-12.5')<br>yellow mo             | CLAY, very soft, ver<br>ottling, wet, high plast                                                                                                           | y pale brown with reddish<br>icity, cohesive                                                                                                                                                               |                                   |                                  | Wet at 10.5' bgs                                          |
| _           |            | -                 |                                                                     |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                               |                                                           |
| -           | 90         | -                 |                                                                     | (12.5-13.<br>medium p               | 5') SANDY CLAY, sof<br>blasticity, cohesive                                                                                                                | t, very pale brown, wet,                                                                                                                                                                                   |                                   | CL                               |                                                           |
| -           |            | -                 |                                                                     | (13.5-15')<br>reddish y<br>cohesive | SAND, fine to mediu<br>ellow to yellowish red                                                                                                              | m grained, medium dense,<br>, wet, non plastic, non                                                                                                                                                        |                                   | SW                               |                                                           |
| 15—         |            | -                 |                                                                     | End of Br                           | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                   |                                  | Heavy oxidation from 14-15 bgs                            |
|             |            |                   |                                                                     |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |
| Total Bo    | orehole D  | epth: 15'         | bgs.                                                                |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |
| DURING T    | lenninate( | Jai 15 D(         | ys due to water.                                                    |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                  |                                                           |

| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oring      | AR<br>Eart        | M Group<br>th Resource En<br>and Consultant<br>10-009A-<br>(page 1 | p Inc.<br>gineers<br>SB<br>of 1) | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Hand Auger | Date<br>Weath<br>Northi<br>Eastin | ner<br>ng (US ft)<br>g (US ft) | : 7/21/2016<br>: 90s, Sunny<br>: 571140.51<br>: 1464254.60 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------------------------------|
| Depth (ft.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % Recovery | PID Reading (PPM) | Sample ID/Interval                                                 |                                  | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                               |                                   | NSCS                           | REMARKS                                                    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | -                 |                                                                    | (0-0.5') C<br>cohesive           | ONCRETE, loose, lig                                                                                                                                        | ht gray, dry, non plastic, non                                                                                                                                                                        | I                                 | -                              |                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100        | 0.7               | A10-009A-SB-1                                                      | (0.5-1') S<br>GRAVEL             | AND, fine to medium<br>, loose, brown, dry, no                                                                                                             | grained, with very small<br>on plastic, non cohesive                                                                                                                                                  |                                   | SW                             |                                                            |
| (EnviroAnalytics Group/150298M EAG_Sparrows Point Area AlDocuments\Parcel A10\Boring Logs\2_Bor Logs\A10-009A-SB.bor       Data       Dat | vrehole D  | apth: 1' h        | 05                                                                 | End of Bo                        | bring                                                                                                                                                      |                                                                                                                                                                                                       |                                   |                                |                                                            |

|                             | Boring     |                   | M Group            | p Inc.                    | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc. | Date<br>Weath<br>Northi<br>Eastir | ner<br>ng (US ft)<br>g (US ft) | : 7/21/2016<br>: 90s, Sunny<br>: 571123.10<br>: 1464248.71 |
|-----------------------------|------------|-------------------|--------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------------------------------|
|                             |            | , 10. 7           | (page 1            | of 1)                     | Driller<br>Drilling Equipment                                                                                             | : Don Marchese<br>: Geoprobe 7822DT                                                                                                                                 |                                   |                                |                                                            |
| Depth (ft.)                 | % Recovery | PID Reading (PPM) | Sample ID/Interval |                           | nscs                                                                                                                      | REMARKS                                                                                                                                                             |                                   |                                |                                                            |
| -0                          |            |                   |                    | (0-0.5') A                | SPHALT, loose, gray                                                                                                       | , dry, non plastic, non cohes                                                                                                                                       | ive                               | -                              |                                                            |
| -<br>-<br>1_<br>-<br>-<br>- |            | -                 | A10-009-SB-1.5     | (0.5-2') S<br>grained, I  | ILTY SAND with very<br>oose, black, dry, non                                                                              | small GRAVEL, fine to med<br>plastic, non cohesive                                                                                                                  | ium                               | SW                             |                                                            |
| 2                           | 70         | 11.6              |                    | (2-2.5') S<br>cohesive    | ILT, hard, reddish yel                                                                                                    | low, dry, non plastic, non                                                                                                                                          |                                   | ML                             |                                                            |
| -<br>3-                     | 70         | 11.0              |                    | (2.5-3.5')<br>plastic, no | SLAG GRAVEL, loose, brown and gray, wet, non on cohesive                                                                  |                                                                                                                                                                     |                                   | GP                             |                                                            |
| -<br>-<br>4                 |            | 4.0               |                    | (3.5-4.5')<br>moist, hig  | CLAY, firm light gray and yellowish brown mottling, h plasticity, cohesive                                                |                                                                                                                                                                     |                                   | CL                             |                                                            |
|                             |            | 0.0               | A10-009-SB-5       | (4.5-5') S<br>mottling,   | ANDY CLAY, firm, lig<br>moist, low plasticity, c                                                                          | ht gray and reddish yellow cohesive                                                                                                                                 |                                   | CL                             | Wat at 5' bas                                              |
| -<br>-                      |            |                   |                    | (5-5.2') S<br>verv pale   | AND with CLAY, fine brown, wet, non plas                                                                                  | grained, loose, light gray and tic, non cohesive                                                                                                                    | d /                               | SP                             | Werard bys                                                 |
| 6-                          |            | -                 |                    | (5.2-7.5')<br>very mois   | SANDY CLAY, firm, I<br>st, low plasticity, cohe                                                                           | ight gray and very pale brow<br>sive                                                                                                                                | /<br>/n,                          |                                |                                                            |
| -                           |            | -                 |                    |                           |                                                                                                                           |                                                                                                                                                                     |                                   | CL                             |                                                            |
| 7                           | 100        | -                 |                    | (7 5-7 7')                |                                                                                                                           | e grained loose very pale                                                                                                                                           |                                   | SP                             |                                                            |
| -<br>8<br>-                 |            |                   |                    | brown, w<br>(7.7-7.9')    | SANDY CLAY, soft, i                                                                                                       | reddish yellow, wet, low                                                                                                                                            | /                                 | CL                             |                                                            |
| 9-                          |            | -                 |                    | (7.9-8.9')<br>yellow, w   | SAND, fine to mediur<br>et, non plastic, non co                                                                           | m grained, loose, reddish<br>bhesive                                                                                                                                | ]<br>/                            | 300                            |                                                            |
| -                           |            | -                 |                    | (8.9-10')<br>medium p     | CLAY with SAND, sof<br>plasticity, cohesive                                                                               | t, very pale brown, moist,                                                                                                                                          |                                   | CL                             |                                                            |
| 10-                         |            |                   |                    | End of Bo                 | pring                                                                                                                     |                                                                                                                                                                     |                                   |                                |                                                            |
| -<br>-<br>-<br>11-          |            |                   |                    |                           |                                                                                                                           |                                                                                                                                                                     |                                   |                                |                                                            |
| Total Bo                    | orehole De | epth: 10'         | bgs.               |                           |                                                                                                                           |                                                                                                                                                                     |                                   |                                |                                                            |
| Boring t                    | erminated  | d at 10' b        | gs due to water.   |                           |                                                                                                                           |                                                                                                                                                                     |                                   |                                |                                                            |

|                                                                                                             |                              | Boring                  | AR<br>Eart                                                                                            | M Group<br>th Resource Er<br>and Consultation<br>A10-010-S<br>(page 1 | p Inc.                                                                                                                                                                                                                                                           | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                                                                                                                                                                                                                                                                                | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT                                                                                                                                                                                                                                                              | Date<br>Weather<br>Northing (US ft)<br>Easting (US ft) |                                                            | : 7/11/2016<br>: 80s, Sunny<br>: 571119.28<br>: 1464273.31 |
|-------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                             | Depth (ft.)                  | % Recovery              | PID Reading (PPM)                                                                                     | Sample ID/Interval                                                    |                                                                                                                                                                                                                                                                  | DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | USCS                                                       | REMARKS                                                    |
| ialytics Group\150298M EAG_Sparrows Point Area A\Documents\Parcel A10\Boring Logs\2_Bor Logs\A10-010-SB.bor | 0                            | 96                      | 2.9<br>53.2<br>147.5<br>31.7<br>0.3<br>-<br>13.3<br>319.9<br>3.4<br>5.5<br>-<br>-<br>-<br>-<br>-<br>- | A10-010-SB-1 A10-010-SB-8 A10-010-SB-8                                | (0-0.4') A<br>cohesive<br>(0.4-0.8')<br>(0.8-1.3')<br>brown, di<br>(1.3-2') S<br>dry to we<br>(2-3.5') C<br>very mois<br>(3.5-4.5')<br>dry, medi<br>(4.5-5') S<br>wet, non<br>(5-6') SA<br>gray, wet<br>(6-7.5') S<br>brownish<br>(7.5-10')<br>yellow moist, hig | SPHALT, loose, dark<br>SILT, soft, brown, dry<br>SAND and very smal<br>ry, non plastic, non co<br>LAG, SAND to GRAV<br>t, non plastic, non col<br>CLAYEY SAND, dense<br>st, non plastic, non co<br>CLAY, very firm, ligh<br>ium plasticity, cohesive<br>AND, fine grained, m<br>plastic, non cohesive<br>ND, fine to medium gr<br>non plastic, non coh<br>ANDY CLAY with sm<br>gray, wet, low plastic<br>CLAY with SAND, ver<br>ottling, high plasticity, | gray, dry, non plastic, non<br>, non plastic, non cohesive<br>I GRAVEL, loose, very dark<br>hesive<br>/EL sized, loose, gray and re-<br>nesive<br>a, very pale brown, moist to<br>hesive<br>a gray and very pale brown,<br>e<br>edium dense, very pale brown<br>anined, loose, light brownish<br>esive<br>all pockets of SAND, soft, lig-<br>ity, cohesive<br>ry firm, light gray and reddish<br>cohesive<br>y soft, very pale brown<br>d reddish yellow mottling, ver | /                                                      | -<br>ML<br>SP/GP<br>GP/SP<br>SP-SC<br>CL<br>SP<br>SW<br>CL | Slightly vitreous<br>Moderate oxidation                    |
| 0-13-2017 P:\EnviroA                                                                                        | 15 –<br>Total Bo<br>Boring f | orehole D<br>terminated | epth: 24'<br>d at 24' bç                                                                              | l<br>bgs.<br>gs due to water a                                        | L                                                                                                                                                                                                                                                                | ter installation.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 1                                                          | 1                                                          |

| -                            |                              | Boring               | AR<br>Eart                 | M Group<br>h Resource Er<br>and Consulta<br>10-010-S<br>(page 2 | p Inc.<br>agineers<br>agines<br>agineers<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weathe<br>Northin<br>Easting | er<br>og (US ft)<br>g (US ft) | : 7/11/2016<br>: 80s, Sunny<br>: 571119.28<br>: 1464273.31 |
|------------------------------|------------------------------|----------------------|----------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|------------------------------------------------------------|
| -                            | Depth (ft.)                  | % Recovery           | PID Reading (PPM)          | Sample ID/Interval                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                   |                                      | nscs                          | REMARKS                                                    |
|                              | 15—                          |                      | -                          |                                                                 | (15-17') (<br>plasticity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLAY, very soft, light (<br>cohesive                                                                                                                       | grownish gray, wet, high                                                                                                                                                                                  |                                      | CL                            |                                                            |
| 0-SB.bor                     | -                            | 100                  | -                          |                                                                 | (17-20') S<br>brown to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAND, fine to medium<br>reddish yellow, wet, r                                                                                                             | grained, medium dense, str<br>on plastic, non cohesive                                                                                                                                                    | ong                                  | SW                            | Wet at 17' bgs                                             |
| gs\2_Bor Logs\A10-01         | 20-                          |                      | -                          |                                                                 | (20-23') S<br>brown to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND, fine to medium<br>light gray to gray, wet                                                                                                             | grained, loose, very pale<br>, non plastic, non cohesive                                                                                                                                                  |                                      | SW                            |                                                            |
| its\Parcel A10\Boring Lo     | -                            | 100                  | -                          |                                                                 | (23-24') (<br>cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLAY, soft, dark gray,                                                                                                                                     | moist, high plasticity,                                                                                                                                                                                   |                                      | CL                            |                                                            |
| barrows Point Area A\Documen | -<br>25 —<br>-               |                      |                            |                                                                 | End of Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pring                                                                                                                                                      |                                                                                                                                                                                                           |                                      |                               |                                                            |
| nalytics Group\150298M EAG_S | -                            |                      |                            |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                           |                                      |                               |                                                            |
| 10-13-2017 P:\EnviroAr       | 30 –<br>Total Bo<br>Boring t | prehole Doterminated | epth: 24' l<br>d at 24' bç | bgs.<br>js due to water a                                       | and piezome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ter installation.                                                                                                                                          |                                                                                                                                                                                                           |                                      |                               |                                                            |

|                      | Boring                 | AR<br>Ear               | M Group<br>th Resource En<br>and Consultar<br>A10-011-S | p Inc.<br>gineers<br>hts<br>B<br>of 1)  | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>North<br>Eastir | her<br>ing (US ft)<br>ng (US ft) | : 7/12/2016<br>: 80s, Sunny<br>: 571222.23<br>: 1464135.22 |
|----------------------|------------------------|-------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------|
| Depth (ft.)          | % Recovery             | PID Reading (PPM)       | Sample ID/Interval                                      |                                         | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                  | nscs                             | REMARKS                                                    |
| 0-                   |                        | 192.2                   | A10-011-SB-1                                            | (0-1.5') S<br>brown an                  | ILTY SLAG, GRAVEI<br>d light gray, dry, non                                                                                                                | and SAND sized, loose, plastic, non cohesive                                                                                                                                                               |                                  | GP-GM                            |                                                            |
| -                    |                        | 207.3                   |                                                         | (1.5-2.5')<br>cohesive                  | SILT, firm, brownish                                                                                                                                       | yellow, dry, non plastic, non                                                                                                                                                                              |                                  | ML                               |                                                            |
| _                    | 100                    | 40.0<br>41.3            |                                                         | (2.5-5') S<br>very firm,<br>low plasti  | ILTY CLAY with very<br>brownish yellow and<br>city, cohesive                                                                                               | thin layer of SAND at depth,<br>reddish yellow mottling, dry,                                                                                                                                              |                                  | CL                               |                                                            |
| -                    |                        | 26.6                    |                                                         |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                            |
| 5-                   |                        | 231.6                   |                                                         | (5-6') SIL<br>dry, low p                | TY CLAY, very firm, I<br>lasticity, cohesive                                                                                                               | ight gray and reddish yellow,                                                                                                                                                                              | I                                | CL                               |                                                            |
| -                    | 100                    | 269.0                   | A10-011-SB-7                                            | (6-8') CLA<br>yellow mo                 | AY with SAND, very fi<br>ottling, dry, medium p                                                                                                            | irm, light gray and reddish<br>lasticity, cohesive                                                                                                                                                         |                                  | CL                               |                                                            |
| -                    | 100                    | 30.0<br>0.9             |                                                         | (8-10') CL<br>mottling,                 | AY with SAND, soft, moist, high plasticity,                                                                                                                | light gray and reddish yellow cohesive                                                                                                                                                                     | 1                                |                                  |                                                            |
| 40                   |                        | 15.2                    | A10-011-SB-10                                           |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                            |
| 10-                  |                        | 0.0                     |                                                         | (10-14') C<br>trace redo<br>plasticity, | CLAY, firm grading to<br>dish yellow mottling, r<br>cohesive                                                                                               | soft, very pale brown with<br>noist to very moist, high                                                                                                                                                    |                                  |                                  |                                                            |
| _                    |                        | 0.0                     |                                                         |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  | CL                               |                                                            |
| -                    | 100                    | 0.0                     |                                                         |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                            |
| -                    |                        | 0.0                     |                                                         | (14-15') C                              | CLAY, very soft, very                                                                                                                                      | pale brown, very moist to                                                                                                                                                                                  |                                  |                                  | Wet at 14' bgs                                             |
| 15—                  |                        | -                       |                                                         | wet, high                               | plasticity, cohesive                                                                                                                                       |                                                                                                                                                                                                            |                                  | CL                               |                                                            |
|                      |                        |                         |                                                         |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                            |
| Total Bo<br>Boring t | orehole D<br>erminated | epth: 15'<br>d at 15' b | bgs.<br>gs due to water.                                |                                         |                                                                                                                                                            |                                                                                                                                                                                                            |                                  |                                  |                                                            |

|                      | ARM Group Inc<br>Earth Resource Engineers<br>and Consultants |                            |                             |                                         | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative                      | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin | Date<br>Weat    | ner                       | : 7/12/2016<br>: 80s, Sunny |
|----------------------|--------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-----------------------------|
| E                    | Boring                                                       | g ID: A                    | <b>\10-012-S</b><br>(page 1 | <b>5B</b><br>of 1)                      | Drilling Company : Green Services, Inc. Ea<br>Driller : Don Marchese<br>Drilling Equipment : Geoprobe 7822DT |                                                                                                                  | North<br>Eastir | ing (US ft)<br>ng (US ft) | : 571211.06<br>: 1464132.14 |
| Depth (ft.)          | % Recovery                                                   | PID Reading (PPM)          | Sample ID/Interval          |                                         | DESC                                                                                                         | RIPTION                                                                                                          |                 | nscs                      | REMARKS                     |
| 0-                   |                                                              | 6.2                        | A10-012-SB-1                | (0-0.9') O<br>cohesive                  | DRGANIC SILT, soft, brown, dry, non plastic, non                                                             |                                                                                                                  |                 | OL/OH                     | Small roots throughout      |
| _                    |                                                              | 102.7                      |                             | (0.9-2') S                              | ILTY SLAG, GRAVEL                                                                                            | and SAND sized                                                                                                   |                 | GP-GM                     |                             |
| -                    | 100                                                          | 80.1                       |                             | (2-3') CLA                              | AY, firm, brown, moist                                                                                       | t, high plasticity, cohesive                                                                                     |                 | СН                        |                             |
| _                    |                                                              | 65.3                       | A10-012-SB-4                | (3-3.5') C<br>plasticity,<br>(3.5-5.5') | LAY, firm, brown and<br>cohesive<br>SAND, fine to mediur                                                     | reddish yellow, dry, medium<br>m grained, medium dense,                                                          |                 | CL                        |                             |
| -                    |                                                              | 3.8                        |                             | reddish y                               | ellow, moist, non plas                                                                                       | tic, non cohesive                                                                                                |                 | sw                        |                             |
| 5-                   |                                                              | 3.7                        |                             | (5.5-6') S<br>plastic, no               | ILTY SAND, very fine<br>on cohesive                                                                          | grained, firm, light gray, nor                                                                                   | 1               | SM                        | Wet at 6' bas               |
|                      |                                                              | -                          |                             | (6-6.5') S<br>cohesive                  | AND, loose, light gray                                                                                       | /, wet, non plastic, non                                                                                         |                 | SW                        |                             |
| -                    | 100                                                          | -                          |                             | (6.5-8') S.<br>mottling, i              | ANDY CLAY, firm, re-<br>moist, cohesive, med                                                                 | ddish yellow and light gray<br>ium plasticity, cohesive                                                          |                 | CL                        |                             |
| -                    |                                                              | -                          |                             | (8-10') CL<br>moist, hig                | AY, firm, reddish yell<br>h plasticity, cohesive                                                             | low and light gray mottling,                                                                                     |                 |                           |                             |
| -                    |                                                              | 2.2                        |                             |                                         |                                                                                                              |                                                                                                                  |                 | UL                        |                             |
| 10-                  |                                                              |                            |                             | End of Bo                               | oring                                                                                                        |                                                                                                                  |                 |                           |                             |
| Total Bo<br>Boring t | orehole D<br>terminated                                      | epth: 10' l<br>d at 10' bç | bgs.<br>gs due to water.    |                                         |                                                                                                              |                                                                                                                  |                 |                           |                             |

| -                       | AR                               | M Group                                                                                                                | gincers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client : EnviroAnalytics Group Dat<br>ARM Project No. : 150298M-5-3 We<br>Project Description : Sparrows Point - Parcel A10<br>Site Location : Sparrows Point, MD<br>ARM Representative : L. Perrin<br>Checked by : M. Replogle, E.I.T. Nor<br>Drilling Company : Green Services, Inc. Eas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 7/11/2016<br>: 80s, Sunny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boring                  | g ID: A                          | A10-013-S                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Northi<br>Eastir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng (US ft)<br>ng (US ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : 571121.34<br>: 1464433.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                       |                                  | (page 1                                                                                                                | of 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| % Recovery              | PID Reading (PPM)                | Sample ID/Interval                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                  |                                                                                                                        | (0-0.2') O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RGANIC SILT, soft, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | prown, dry, non plastic, non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | -                                | A10-013-SB-1                                                                                                           | (0.2-3') SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ILT, very firm, brown,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dry, non plastic, non cohesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ve/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Small roots throughout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | 3.7                              |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 90                      | 11.4                             |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 10.7                             | A10-013-SB-4                                                                                                           | (3-4.5') Si<br>dry, low p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ILTY CLAY, very firm<br>lasticity, cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , light gray and reddish yello                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 9.0                              |                                                                                                                        | (4.5-6') Sa<br>reddish ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AND, fine grained, me<br>ellow, moist to very m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | edium dense, light gray and<br>loist, non plastic, non cohesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | -                                |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                  |                                                                                                                        | (6-6.5') S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANDY CLAY, soft, lig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ht gray and reddish yellow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wet at 6' bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | -                                |                                                                                                                        | (6.5-7.5')<br>yellow, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAND, medium dens<br>et, non plastic, non co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e, light gray and reddish<br>bhesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100                     | -                                |                                                                                                                        | (7.5-8') Sa<br>wet. low p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANDY CLAY, soft, lig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ht gray and reddish yellow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | -                                |                                                                                                                        | (8-9.7') C<br>mottling, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LAY with SAND, soft, moist, high plasticity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | light gray and reddish yellow cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                  |                                                                                                                        | (9.7-10') \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SANDY CLAY, soft, v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ery pale brown, very moist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                  |                                                                                                                        | End of Bc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| orehole D<br>terminated | epth: 10'  <br>d at 10' bç       | bgs.<br>gs due to water.                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | Boring<br>Boring<br>%<br>%<br>90 | Boring ID: A<br>Boring ID: A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | ARM GROUP         Boring ID: A10-013-SB-1         Image: Im | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants           Boring ID: A10-013-SB<br>(page 1 of 1)           Image: Image 1 of 1           Image 1 of 1 | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Drilling Equipment         Ling Consultants         Boring ID: A10-013-SB<br>(page 1 of 1)         Ling Consultants         Ling Constrest Consultants | Image: Section of the section of th | Image: Second state of the second state of | Client Bardwardsking Group, AMP Project No. 1: EnvisionApplies Group, Sparrows Point, Parcel A10, Sin Location 2: Sparrows Point, Parcel A10, Sin Location 2: Sparrows Point, ND AAM, Sin Location 2: Sparrows Point, Parcel A10, Sin Location 2: Sparrows Point, ND AAM, Sin Location 2: Sparrows Point, ND AAM, Sin Location 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Point, Parcel A10, Sin Ling (US ft) 2: Sparrows Parcel A10, Sin Ling |

| E                    | Boring                  | AR<br>Eart                | M Group<br>th Resource Er<br>and Consultant<br>A10-014-S<br>(page 1 | BB                                                  | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: Green Services, Inc.Driller: Don MarcheseDrilling Equipment: Geoprobe 7822DT |                                                                  | : 7/21/2016<br>: 80s, Sunny<br>: 571091.15<br>: 1464396.38 |             |               |
|----------------------|-------------------------|---------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------------|---------------|
| Depth (ft.)          | % Recovery              | PID Reading (PPM)         | Sample ID/Interval                                                  |                                                     | DESC                                                                                                                                                                                                                                                                                                            | USCS                                                             | REMARKS                                                    |             |               |
| 0-                   |                         | -                         |                                                                     | (0-0.5') C<br>cohesive<br>(0.5-1') S<br>plastic, no | ONCRETE, loose, lig<br>LAG SAND and GRA<br>on cohesive                                                                                                                                                                                                                                                          | ht gray, dry, non plastic, nor<br>VEL, loose, light gray, dry, r | า<br>างก                                                   | NA<br>GP/SP |               |
| _                    |                         | 0.0                       | A10-014-SB-2                                                        | (1-5') SIL<br>brown, dr                             | TY CLAY, soft, yellov<br>y to moist, medium p                                                                                                                                                                                                                                                                   | vish brown and very pale<br>lasticity, cohesive                  |                                                            |             | Hand augered  |
| _                    | 100                     | 0.0                       |                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            | CL          |               |
| _                    |                         | 0.0                       | A10-014-SB-5                                                        |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            |             |               |
| 5-                   | 100                     | 0.0                       |                                                                     | (5-6.3') C<br>dry to mo                             | LAY, soft, yellowish b<br>ist, high plasticity, co                                                                                                                                                                                                                                                              | prown and light gray mottling<br>hesive                          | ,                                                          | CL          | Wet at 5' bgs |
| _                    |                         | 0.1                       |                                                                     | (6.3-6.5')<br>brown, m<br>End of bo                 | CLAYEY SAND, fine<br>oist, non plastic, non<br>pring                                                                                                                                                                                                                                                            | grained, loose, yellowish<br>cohesive                            | /                                                          | SP          |               |
| -                    |                         |                           |                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            |             |               |
| -                    |                         |                           |                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            |             |               |
| 10-                  |                         |                           |                                                                     |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            |             |               |
| Total Bo<br>Boring t | prehole De<br>erminated | epth: 6.5'<br>d at 6.5' b | bgs.<br>gs.                                                         |                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                  |                                                            |             |               |

| E                    | Boring                 | AR<br>Eart                 | M Group<br>th Resource En<br>and Consultant<br>A10-015-S<br>(page 1 | p Inc.<br>ugineers<br>SB<br>of 1)                                            | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northin<br>Eastin | er<br>ng (US ft)<br>g (US ft) | : 7/11/2016<br>: 80s, Sunny<br>: 571084.12<br>: 1464416.22 |
|----------------------|------------------------|----------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------------------------------|
| Depth (ft.)          | % Recovery             | PID Reading (PPM)          | Sample ID/Interval                                                  |                                                                              | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                    | NSCS                          | REMARKS                                                    |
| - 0                  | 100                    | 3.9<br>4.6<br>2.6<br>2.9   | A10-015-SB-1                                                        | (0-0.1') A<br>cohesive<br>(0.1-0.7')<br>non cohe<br>(0.7-4.5')<br>moist, low | SPHALT, loose, drak<br>SILT with GRAVEL, s<br>sive<br>CLAY, firm, reddish y<br>v plasticity, cohesive                                                      | gray, dry, non plastic, non<br>soft, brown, dry, non plastic,<br>rellow and light gray mottling                                                                                                            | ,<br>,                             | ML<br>CL                      |                                                            |
| 5                    | 60                     | 5.0<br>-<br>1.3            | A10-015-SB-5                                                        | (4.5-8') S.<br>and light                                                     | AND, fine grained, me<br>gray, moist to wet, no                                                                                                            | edium dense, reddish yellow<br>n plastic, non cohesive                                                                                                                                                     |                                    | SP                            | Wet at 6.5' bgs                                            |
| -<br>10—             |                        | 0.5                        |                                                                     | (8-10') CL<br>wet, non p                                                     | AYEY SAND, loose,<br>plastic, non cohesive                                                                                                                 | reddish yellow and light gray                                                                                                                                                                              | /,                                 | SP-SC                         |                                                            |
| -                    | 80                     | -                          |                                                                     | (11.5-12')<br>brown, we<br>(12-14') (                                        | ) SAND, fine to mediu<br>et, non plastic, non cc<br>CLAY with SAND, ver                                                                                    | m grained, loose, very pale<br>hesive                                                                                                                                                                      | /                                  | CL<br>SW                      |                                                            |
| -                    |                        | -                          |                                                                     | reddish ye<br>(14-15') C<br>cohesive                                         | ellow, very moist, higi<br>                                                                                                                                | moist, high plasticity,                                                                                                                                                                                    |                                    | CL                            |                                                            |
| 15-                  |                        |                            |                                                                     | End of Bo                                                                    | oring                                                                                                                                                      |                                                                                                                                                                                                            |                                    |                               |                                                            |
| Total Bo<br>Boring t | orehole D<br>erminated | əpth: 15'  <br>1 at 15' bç | bgs.<br>3s due to water.                                            |                                                                              |                                                                                                                                                            |                                                                                                                                                                                                            |                                    |                               |                                                            |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-016-SB<br>(page 1 of 1) |            |                         |                    |                           | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weat<br>North<br>Eastin | her<br>ing (US ft)<br>ng (US ft) | : 7/21/2016<br>: 90s, Sunny<br>: 571472.60<br>: 1464064.32 |
|---------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|------------------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery | PID Reading (PPM)       | Sample ID/Interval |                           | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                 | nscs                             | REMARKS                                                    |
| 0                                                                                                       |            |                         | A10.016 SP 1       | (0-5') SIL                | TY CLAY, soft, browr                                                                                                                                       | n, dry, low plasticity, cohesive                                                                                                                                                                           | Э                               |                                  | some resta                                                 |
|                                                                                                         | 20         | -<br>-<br>28.0<br>102.8 | A10-016-SB-6       | (5-6.5') S<br>low plasti  | ILTY CLAY, soft, gray<br>city, cohesive                                                                                                                    | yish brown, very moist to we                                                                                                                                                                               | t,                              | CL                               |                                                            |
| 6                                                                                                       | 100        | 189.7                   |                    | (6.5-5') S<br>plasticity, | ANDY CLAY, very so cohesive                                                                                                                                | ft, grayish brown, wet, low                                                                                                                                                                                |                                 | CL                               | Wet at 6' bgs<br>Strong odor, no visible product           |
| -<br>8-<br>-<br>-<br>-<br>9-                                                                            | 100        | 51.3                    |                    | (8-10') CL<br>medium p    | AY, hard, light gray a<br>plasticity, cohesive                                                                                                             | and reddish yellow, dry,                                                                                                                                                                                   |                                 | CL                               |                                                            |
|                                                                                                         |            | 78.5                    |                    |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                 |                                  |                                                            |
| 10-                                                                                                     |            |                         |                    | End of Bo                 | oring                                                                                                                                                      |                                                                                                                                                                                                            |                                 |                                  |                                                            |
| -<br>-<br>-<br>11-                                                                                      |            |                         |                    |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                 |                                  |                                                            |
| Total Bo                                                                                                | orehole D  | epth: 10'               | bgs.               |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                 |                                  |                                                            |
| Boring to                                                                                               | erminated  | d at 10' bộ             | gs due to water.   |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                 |                                  |                                                            |



| F                                                                                                               | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants |                          |                          | p Inc.                                 | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services. Inc. | Date<br>Weath<br>North | ner<br>ing (US ft) | : 7/21/2016<br>: 90s, Sunny<br>: 571544.56<br>: 1464039 25 |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|--------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------------------------------------------------------------|
| E                                                                                                               | Boring                                                        | g ID: /                  | page 1)                  | SB<br>of 1)                            | Driller<br>Drilling Equipment                                                                                             | : Don Marchese<br>: Geoprobe 7822DT                                                                                                                                 | 2000                   | .9 (00)            |                                                            |
| Depth (ft.)                                                                                                     | % Recovery                                                    | PID Reading (PPM)        | Sample ID/Interval       |                                        | DESC                                                                                                                      | RIPTION                                                                                                                                                             |                        | nscs               | REMARKS                                                    |
| 0                                                                                                               |                                                               | -                        | A10-017-SB-1             | (0-2.5') C<br>plasticity,              | LAY with SILT, very s<br>cohesive                                                                                         | soft, brown, wet, low                                                                                                                                               |                        | CL                 |                                                            |
| -                                                                                                               | 50                                                            | 168.6                    |                          | (2.5-3') C<br>plasticity,              | LAY with SILT, soft, t                                                                                                    | prown, very moist, low                                                                                                                                              |                        | CL                 |                                                            |
| 3                                                                                                               |                                                               | 197.0                    | A10-017-SB-4             | (3-4') SIL<br>dry, low p               | TY CLAY, very firm, I<br>lasticity, cohesive                                                                              | ight gray and reddish yellow                                                                                                                                        | ,                      | CL                 |                                                            |
| 4                                                                                                               |                                                               | 29.5                     |                          | (4-5') CL/<br>non plast                | AYEY SAND, fine gra                                                                                                       | ined, loose, light gray, wet,                                                                                                                                       |                        | SP                 | Wet at 4' bgs<br>Moderate odor                             |
| 5<br>-<br>6<br>-<br>7<br>-<br>8<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 100                                                           | -                        |                          | (5-10') SI<br>very pale<br>plasticity, | LTY CLAY with trace<br>brown with reddish y<br>cohesive                                                                   | SAND, firm, light gray and<br>ellow mottling, moist, mediu                                                                                                          | m                      | CL                 |                                                            |
| Total Bo<br>Boring t                                                                                            | orehole D<br>erminated                                        | epth: 10'<br>d at 10' bę | bgs.<br>gs due to water. |                                        |                                                                                                                           |                                                                                                                                                                     |                        |                    |                                                            |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-018-SB<br>(page 1 of 2) |                         |                            |                           |                                         | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastir | ner<br>ing (US ft)<br>ng (US ft) | : 7/14/2016<br>: 90s, Sunny<br>: 571522.55<br>: 1464029.88 |
|---------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|---------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery              | PID Reading (PPM)          | Sample ID/Interval        |                                         | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                   |                                   | USCS                             | REMARKS                                                    |
| 0-                                                                                                      |                         | -                          | A10-018-SB-1              | (0-2.5') O<br>moist to v                | RGANIC CLAY, very vet, medium plasticity                                                                                                                   | soft, yellowish brown, very<br>, cohesive                                                                                                                                                                 |                                   |                                  | Abundant organic matter                                    |
| _                                                                                                       |                         | -                          |                           |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                   | CL                               |                                                            |
| -                                                                                                       | 80                      | 282.2<br>154.6             |                           | (2.5-5') C<br>plasticity,               | LAY, soft to firm, ligh<br>cohesive                                                                                                                        | t olive brown, moist, high                                                                                                                                                                                |                                   | CL                               | Moderate odor                                              |
| _                                                                                                       |                         | 386.5                      | A10-018-SB-5              |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                   |                                  |                                                            |
| 5                                                                                                       | 70                      | -<br>-<br>185.6            |                           | (5-8.5') S.<br>light olive              | ANDY CLAY, more S<br>brown, wet, high pla                                                                                                                  | AND with depth, very soft, sticity, cohesive                                                                                                                                                              |                                   | CL                               | Super saturated CLAY at 6.5' bgs                           |
| -                                                                                                       |                         | 118.2<br>31.3              |                           | (8.5-10') (<br>and light<br>plasticity, | CLAY with trace SAN<br>gray and very pale br<br>cohesive                                                                                                   | D, soft to firm, reddish yellov<br>own mottling, moist, high                                                                                                                                              | v                                 | CL                               |                                                            |
| 10                                                                                                      |                         | -                          |                           | (10-15') C<br>trace light<br>moist, hig | CLAY with SAND, soft<br>t gray and reddish ye<br>h plasticity, cohesive                                                                                    | to firm, very pale brown with<br>llow mottling, very moist to                                                                                                                                             | ז                                 |                                  |                                                            |
| _                                                                                                       | 50                      | -                          |                           |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                   | CL                               |                                                            |
| - 15-                                                                                                   |                         | -                          |                           |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                   |                                  |                                                            |
| Total Bo<br>Boring t                                                                                    | orehole De<br>erminated | epth: 27'  <br>d at 27' bç | bgs.<br>gs due to water a | ind piezomet                            | ter installation.                                                                                                                                          |                                                                                                                                                                                                           |                                   |                                  |                                                            |
|                                                                                                         |                         |                            |                           |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                   |                                  |                                                            |

|                                       | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-018-SB<br>(page 2 of 2)  |            |                   |                    |                                                 | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastin | ing (US ft)<br>ng (US ft) | : 7/14/2016<br>: 90s, Sunny<br>: 571522.55<br>: 1464029.88 |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------------------------------------------|
| -                                     | Depth (ft.)                                                                                              | % Recovery | PID Reading (PPM) | Sample ID/Interval |                                                 | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                   |                                   | nscs                      | REMARKS                                                    |
| B-SB.bor                              | 15 —<br>-<br>-                                                                                           | 100        | -                 |                    | (15-19.5")<br>trace ligh<br>moist, hig          | ) CLAY with SAND, ve<br>t gray and reddish yel<br>gh plasticity, cohesive                                                                                  | ery soft, very pale brown with<br>low mottling, very moist to                                                                                                                                             |                                   | CL                        |                                                            |
| cel A10\Boring Logs\2_Bor Logs\A10-0' | 20                                                                                                       | 50         | -                 |                    | (19.5-20')<br>high plas<br>(20-23') Soft, light | ) SANDY CLAY, very<br>ticity, cohesive<br>SAND with CLAY, fine<br>olive brown, wet, nor                                                                    | soft, very pale brown, moist,<br>to medium grained, very<br>plastic, non cohesive                                                                                                                         |                                   | SW                        | Wet at 20' bgs                                             |
| _Sparrows Point Area A\Documents\Pare | - 25                                                                                                     |            | -                 |                    | (25-27') N<br>pushed to                         | No core recovered due                                                                                                                                      | e to heaving sand; driller<br>zometer.                                                                                                                                                                    |                                   | SW                        |                                                            |
| viroAnalytics Group\150298M EAG_      | -<br>-<br>30-                                                                                            |            |                   |                    | End of Bo                                       | oring                                                                                                                                                      |                                                                                                                                                                                                           |                                   |                           |                                                            |
| 01-04-2018 P:\En                      | Total Borehole Depth: 27' bgs.<br>Boring terminated at 27' bgs due to water and piezometer installation. |            |                   |                    |                                                 |                                                                                                                                                            |                                                                                                                                                                                                           |                                   |                           |                                                            |

| E                    | Boring                                                                       | AR<br>Ear           | M Group<br>th Resource Er<br>and Consultan | p Inc.                                   | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weather<br>Northing (US<br>Easting (US f | : 7/11/2016<br>: 80s, Sunny<br>ft) : 571297.81<br>t) : 1464487.94 |  |  |  |
|----------------------|------------------------------------------------------------------------------|---------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Depth (ft.)          | % Recovery                                                                   | PID Reading (PPM)   | 1 aged)<br>Sample ID/Interval              | of 1)                                    | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    | USCS                                             | REMARKS                                                           |  |  |  |
| 0-                   |                                                                              | 10.4                |                                            | (0-1') CO<br>cohesive<br>(1-1.3') S      | NCRETE, loose, light                                                                                                                                       | gray, dry, non plastic, non                                                                                                                                                                                | -<br>SM                                          |                                                                   |  |  |  |
| -                    | 100                                                                          | 15.6<br>19.6        | A10-019-SB-2                               | (1.3-4') S<br>cohesive                   | oose, brown, wet, noi<br>ILT, hard, very pale b                                                                                                            | rown, dry, low plasticity,                                                                                                                                                                                 | ML                                               |                                                                   |  |  |  |
| -                    |                                                                              | 14.8                | A10-019-SB-4                               | (4-5.5') S.                              | ANDY CLAY, firm, ve                                                                                                                                        | ry pale brown with trace                                                                                                                                                                                   |                                                  | _                                                                 |  |  |  |
| 5—                   |                                                                              | 3.7<br>0.0          |                                            | reddish ye<br>(5.5-6.5')                 | ellow mottling, moist,<br>CLAYEY SILT, hard,                                                                                                               | medium plasticity, cohesive<br>light gray and reddish yellov                                                                                                                                               | CL<br>v,                                         | _                                                                 |  |  |  |
| -                    | 100                                                                          | 10.0<br>10.7<br>6.9 |                                            | dry, low p<br>(6.5-10') (<br>mottling, d | lasticity, cohesive                                                                                                                                        | e brown and reddish yellow<br>v, cohesive                                                                                                                                                                  | CL                                               |                                                                   |  |  |  |
| -                    |                                                                              | 5.5                 | A10-019-SB-10                              |                                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                                  |                                                                   |  |  |  |
| -                    |                                                                              | -                   |                                            | (10-15') C<br>reddish y                  | CLAY, soft to very soft<br>ellow mottling, moist t                                                                                                         | t, very pale brown and<br>to wet, high plasticity, cohesi                                                                                                                                                  | ve                                               |                                                                   |  |  |  |
| -                    | 90                                                                           | 0.0                 |                                            |                                          |                                                                                                                                                            |                                                                                                                                                                                                            | CL                                               |                                                                   |  |  |  |
| _                    |                                                                              | 0.0                 |                                            |                                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                                  |                                                                   |  |  |  |
| 15—                  |                                                                              |                     |                                            | End of Bc                                | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                                  | Wet at 15' bgs                                                    |  |  |  |
| Total Bo<br>Boring t | Total Borehole Depth: 15' bgs.<br>Boring terminated at 15' bgs due to water. |                     |                                            |                                          |                                                                                                                                                            |                                                                                                                                                                                                            |                                                  |                                                                   |  |  |  |

|                   | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants |                         |                      | p Inc.                                             | Client       : EnviroAnalytics Group       II         ARM Project No.       : 150298M-5-3       N         Project Description       : Sparrows Point - Parcel A10       Site Location       : Sparrows Point, MD         ARM Representative       : L. Perrin       Checked by       M Replace E LT       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                 | her        | : 7/8/2016<br>: 90s, Sunny  |
|-------------------|---------------------------------------------------------------|-------------------------|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|------------|-----------------------------|
| E                 | Boring                                                        | g ID: /                 | A10-020-S<br>(page 1 | <b>SB</b><br>of 1)                                 | Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Easting (US ft) |            | : 571349.75<br>: 1464418.77 |
| Depth (ft.)       | % Recovery                                                    | PID Reading (PPM)       | Sample ID/Interval   |                                                    | DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USCS                                                                                   | REMARKS         |            |                             |
| -0<br>-<br>-<br>- | 70                                                            | -<br>8.0<br>32.4<br>0.9 | A10-020-SB-1.5       | (0-0.3') C<br>cohesive<br>(0.3-4') S<br>to wet, no | ONCRETE, loose, where the second seco | nite, dry, non plastic, non<br>VEL and SAND, brown, moi<br>ve                          | /               | -<br>GW/SW |                             |
| 5-                |                                                               | 0.3<br>4.0              |                      | (4-6.5') C<br>brown mo                             | LAYEY SILT, hard, re<br>ottling, dry, low plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eddish yellow and very pale<br>sity, cohesive                                          |                 | ML         |                             |
| -                 | 100                                                           | 8.7<br>-<br>-           | A10-020-SB-7         | (6.5-7.5')<br>and very<br>(7.5-8.5')<br>low plasti | CLAY, very soft to ha<br>pale brown, wet, high<br>SANDY CLAY, very<br>city, cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL<br>CL<br>SW                                                                         |                 |            |                             |
| -<br>10-          |                                                               | 3.5                     | A10-020-SB-10        | (8.5-9') S                                         | AND, fine grained, loo<br>on cohesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ose, very pale brown, wet, no                                                          | on              | CL         |                             |
| -                 |                                                               | -                       |                      | (9-10) S/<br>brown, di<br>(10-12.5)<br>brown, m    | y, low plasticity, cohe<br>SANDY CLAY, firm,<br>oist, low plasticity, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reddish yellow and yellowish<br>reddish yellow and very pale<br>hesive                 | ə]              | CL         |                             |
| -                 | 70                                                            | -                       |                      | (12.5-15')<br>pale brov                            | ) CLAY, firm to very s<br>vn mottling, moist to v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oft, reddish yellow and very<br>vet, high plasticity, cohesive                         |                 | CL         |                             |
| 15—<br>-          |                                                               | -                       |                      | (15-17') (<br>brown, w                             | CLAY with trace SANI<br>et, high plasticity, coh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D, soft to very soft, very pale<br>esive                                               |                 | CL         |                             |
| -                 | 100                                                           | -                       |                      | (17-20') \$<br>dense, re                           | GAND, fine to medium<br>ddish yellow, wet, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | grained, medium dense to<br>n plastic, non cohesive                                    |                 | sw         | Wet at 17' bgs              |
| 20                |                                                               | -                       |                      | (20-24') N<br>bored to                             | No core recovered due 24' and set piezomete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e to heaving sand. Drillers<br>er.                                                     |                 |            |                             |
| -                 |                                                               | -                       |                      | End of bo                                          | pring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                 |            |                             |
| 25-               |                                                               |                         |                      |                                                    | ······'A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                 |            |                             |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-021-SB<br>(page 1 of 1) |                         |                          |                           |                                                                 | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastin | ner<br>ng (US ft)<br>g (US ft) | : 7/11/2016<br>: 80s, Sunny<br>: 571257.27<br>: 1464510.42 |
|---------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|---------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery              | PID Reading (PPM)        | Sample ID/Interval        |                                                                 | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                   | nscs                           | REMARKS                                                    |
| 0                                                                                                       | 96                      | 2.8<br>12.4<br>8.8       | A10-021-SB-2              | (0-1') CO<br>cohesive<br>(1-2') GR<br>plastic, no<br>(2-5') CL/ | NCRETE, loose, whit<br>AVELLY SILT, firm, b<br>on cohesive<br>AY, hard, reddish yell                                                                       | e, dry, non plastic, non<br>rown and black, dry, non<br>ow, dry, low plasticity,                                                                                                                           |                                   | NA<br>ML                       |                                                            |
| -<br>5—                                                                                                 |                         | 11.4<br>3.2<br>2.1       | A10-021-SB-4              | (5-6.5') C                                                      | LAYEY SILT, very fire                                                                                                                                      | n, moist, low plasticity,                                                                                                                                                                                  |                                   | CL                             |                                                            |
| -                                                                                                       | 100                     | 9.4<br>6.3<br>0.2        |                           | (6.5-6.7')<br>very mois<br>(6.7-8.5')<br>dry, medi              | SAND, fine grained, t<br>it, non plastic, non co<br>CLAY, hard, very pal<br>um plasticity, cohesiv                                                         | medium dense, reddish yello<br>hesive<br>e brown and reddish yellow,<br>e                                                                                                                                  | ow,                               | SP<br>CL                       |                                                            |
| -<br>10—<br>-                                                                                           |                         | 0.4<br>-<br>-            | A10-021-SB-10             | (8.5-10')<br>medium p<br>(10-15') C<br>mottling,                | SANDY CLAY, soft to<br>blasticity, cohesive<br>CLAY, soft, very pale<br>moist, high plasticity,                                                            | firm, moist to very moist,<br>prown with reddish yellow<br>cohesive                                                                                                                                        |                                   | CL                             |                                                            |
| -                                                                                                       | 60                      | 0.0<br>0.0<br>0.0        |                           |                                                                 |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                             | Saturated CLAY                                             |
| 15                                                                                                      | 100                     | -                        |                           | (15-17') C<br>high plast<br>(17-20') S                          | CLAY, very soft, dark<br>iicity, cohesive<br>GAND, fine to medium                                                                                          | yellowish brown, very moist,<br>grained, loose, strong brow                                                                                                                                                | 'n                                | CL                             | Wet at 17' bgs                                             |
| -<br>-<br>20-                                                                                           |                         | -                        |                           | to reddish                                                      | n yellow, wet, non pla                                                                                                                                     | stic, non cohesive                                                                                                                                                                                         |                                   | SW                             |                                                            |
| -                                                                                                       | 0                       | -                        |                           | advanced                                                        | I to 24' and installed p                                                                                                                                   | biezometer.                                                                                                                                                                                                | ,                                 |                                |                                                            |
| -<br>25—                                                                                                |                         | -                        |                           | End of bo                                                       | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                   |                                |                                                            |
| Total Bo<br>Boring t                                                                                    | prehole De<br>erminated | epth: 24'<br>d at 24' bi | bgs.<br>gs due to water a | nd piezome                                                      | ter installation.                                                                                                                                          |                                                                                                                                                                                                            |                                   |                                |                                                            |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-022-SB<br>(page 1 of 1) |                              |                          |                          |                                                    | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: Green Services, Inc.Driller: Don MarcheseDrilling Equipment: Geoprobe 7822DT |                                                                    |     | her<br>ing (US ft)<br>ng (US ft) | : 7/11/2016<br>: 80s, Sunny<br>: 571320.85<br>: 1464538.93 |
|---------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----|----------------------------------|------------------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery                   | PID Reading (PPM)        | Sample ID/Interval       |                                                    | DESC                                                                                                                                                                                                                                                                                                            | RIPTION                                                            |     | USCS                             | REMARKS                                                    |
| 0-                                                                                                      |                              | 5.4                      |                          | (0-0.1') A<br>non cohe<br>(0.1-1.5')<br>to wet, no | SPHALT, loose, very<br>sive<br>SLAG GRAVEL and<br>on plastic, non cohesi                                                                                                                                                                                                                                        | dark gray, dry, non plastic,<br>SAND, loose, light gray, moi<br>ve | st  | -<br>GP/SP                       |                                                            |
|                                                                                                         |                              | 5177                     | A10-022-SB-2             | (1.5-2') S<br>cohesive                             | ILT, hard, very dark g                                                                                                                                                                                                                                                                                          | ray, wet, non plastic, non                                         |     | ML                               | Strong sweet oder 1525' bas                                |
|                                                                                                         | 100                          | 1791                     |                          | (2-2.5') S.<br>wet, low p<br>(2.5-5') C            | ANDY SILT, very soft<br>blasticity, cohesive<br>LAY, hard, very pale                                                                                                                                                                                                                                            | , very dark brown and gray,<br>brown and reddish yellow            | ML  |                                  |                                                            |
| -                                                                                                       |                              | 740.3                    | A10-022-SB-4             | mottling, e                                        | ary, iow plasticity, cor                                                                                                                                                                                                                                                                                        | IESIVE                                                             |     | CL                               |                                                            |
| F                                                                                                       |                              | 129.4                    |                          |                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                    |     |                                  |                                                            |
| 5-                                                                                                      |                              | -                        |                          | (5-8') SIL                                         | TY CLAY, very firm, r                                                                                                                                                                                                                                                                                           | noist, low plasticity, cohesive                                    | Э   | CI                               |                                                            |
| -                                                                                                       | 70                           | -                        |                          |                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                    |     |                                  | Wet at 8' bos                                              |
| _                                                                                                       |                              | -                        |                          | (8-9.5') S.<br>wet, non                            | AND, fine grained, mo<br>plastic, non cohesive                                                                                                                                                                                                                                                                  | edium dense, very pale brow                                        | /n, | SP                               |                                                            |
| 10-                                                                                                     |                              | -                        |                          | (9.5-10') \$<br>plasticity,                        | SANDY CLAY, soft, v<br>cohesive                                                                                                                                                                                                                                                                                 | ery pale brown, wet, low                                           |     | CL                               |                                                            |
|                                                                                                         |                              |                          |                          | End of Bo                                          | pring                                                                                                                                                                                                                                                                                                           |                                                                    |     |                                  |                                                            |
| Total Bo<br>Boring t                                                                                    | I<br>orehole D<br>terminated | epth: 10'<br>d at 10' bo | bgs.<br>gs due to water. |                                                    |                                                                                                                                                                                                                                                                                                                 |                                                                    |     |                                  |                                                            |

|                      | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants |                          | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin | Date<br>Weath                                                   | ner                                                                                    | : 7/8/2016<br>: 90s, Sunny |                           |                             |
|----------------------|---------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------------------|
| E                    | Boring                                                        | , ID: <i>I</i>           | A10-023-S<br>(page 1                                                                    | 6B<br>of 1)                                                                                                      | Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Northi<br>Eastir           | ing (US ft)<br>ng (US ft) | : 571834.23<br>: 1464150.48 |
| Depth (ft.)          | % Recovery                                                    | PID Reading (PPM)        | Sample ID/Interval                                                                      |                                                                                                                  | DESC                                                            | RIPTION                                                                                |                            | nscs                      | REMARKS                     |
| 0-                   |                                                               | -                        | A10-023-SB-1                                                                            | (0-2.5') S<br>plastic, no                                                                                        | ILT with small GRAVI<br>on cohesive                             | EL, soft, dark brown, dry, no                                                          | n                          |                           | Trace organics              |
| -                    |                                                               | 0.9                      |                                                                                         |                                                                                                                  |                                                                 |                                                                                        |                            | ML                        |                             |
| -                    | 90                                                            | 2.0                      |                                                                                         | (2.5-4.2')<br>dry to ver                                                                                         | SLAG GRAVEL and<br>y moist at bottom, no                        | SAND, loose, gray to brown<br>n plastic, non cohesive                                  | ,                          |                           |                             |
| -                    |                                                               | 7.7                      | A10-023-SB-4                                                                            |                                                                                                                  |                                                                 |                                                                                        |                            | GP/SP                     |                             |
| 5-                   |                                                               | 0.2                      |                                                                                         | (4.2-6.5')<br>wet, non                                                                                           | SAND, medium dens<br>plastic, non cohesive                      | e, reddish yellow, very mois                                                           | t to                       |                           |                             |
| _                    |                                                               | -                        |                                                                                         |                                                                                                                  |                                                                 |                                                                                        |                            | SP                        | Wet at 6' bgs               |
| _                    |                                                               | -                        |                                                                                         | (6.5-8.5')<br>wet, non                                                                                           | SLAG GRAVEL and plastic, non cohesive                           | SAND, loose, brown and rec                                                             | d,                         |                           |                             |
| -                    | 90                                                            | -                        |                                                                                         |                                                                                                                  |                                                                 |                                                                                        |                            | GP/SP                     |                             |
| _                    |                                                               | -                        |                                                                                         | (8.5-10') (<br>wet, high                                                                                         | CLAY with trace SAN plasticity, cohesive                        | D, very soft, light olive brown                                                        | n,                         |                           |                             |
| 10-                  |                                                               | -                        |                                                                                         |                                                                                                                  |                                                                 |                                                                                        |                            | UL                        |                             |
|                      |                                                               |                          |                                                                                         |                                                                                                                  | nng                                                             |                                                                                        |                            |                           |                             |
| Total Bo<br>Boring t | prehole Do<br>erminated                                       | epth: 10'<br>d at 10' bç | bgs.<br>gs due to water.                                                                |                                                                                                                  |                                                                 |                                                                                        |                            |                           |                             |
| E                     | Boring                  | AR<br>Eart               | M Group<br>th Resource Er<br>and Consultant<br>A10-024-S<br>(page 1 | p Inc.<br>gineers<br>nts<br>BB<br>of 1) | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: W. Mader P.G., CPSS<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT | A10<br>Northing (US ft)<br>Easting (US ft) |      | : 7/7/2016<br>: 90s, Sunny<br>: 571660.31<br>: 1464637.15 |
|-----------------------|-------------------------|--------------------------|---------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|-----------------------------------------------------------|
| Depth (ft.)           | % Recovery              | PID Reading (PPM)        | Sample ID/Interval                                                  |                                         | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                   |                                            | nscs | REMARKS                                                   |
| 0-                    |                         | -                        |                                                                     | (0-1.9') O                              | RGANIC SILT, soft, o                                                                                                                                       | lark brown, moist, non plasti                                                                                                                                                                             | С,                                         |      |                                                           |
| -                     |                         | 2.6                      | A10-024-SB-1                                                        | non cone                                | SIVE                                                                                                                                                       |                                                                                                                                                                                                           |                                            | OL   | Small roots, some small wood<br>fragments                 |
| -                     | 70                      | 13                       |                                                                     | (1.9-2.5')                              | SILTY SAND with sm                                                                                                                                         | nall GRAVEL, loose, brown to                                                                                                                                                                              | 0                                          | SM   |                                                           |
|                       | 10                      | 1.3                      |                                                                     | (2.5-5') S                              | ILT, soft, black, moist                                                                                                                                    | , non plastic, non cohesive                                                                                                                                                                               | /                                          | ML   | Large wood fragments throughout                           |
| 5_                    |                         | 0.3                      | A10-024-SB-5                                                        |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |
| - 3                   |                         | -                        |                                                                     | (5-7') WO<br>moist, no                  | 7') WOOD fragments with CLAY, loose, dark brown, very ist, non plastic, non cohesive                                                                       |                                                                                                                                                                                                           |                                            |      |                                                           |
| -                     | 90                      | 0.1                      |                                                                     | (7-8') SAN<br>to wet. hid               | NDY CLAY, very soft,                                                                                                                                       | yellowish brown, very moist                                                                                                                                                                               |                                            | CL   |                                                           |
|                       |                         | 0.0                      |                                                                     | (8-10') CL<br>cohesive                  | _AY, soft, yellowish b                                                                                                                                     | rown, wet, high plasticity,                                                                                                                                                                               |                                            | CI   |                                                           |
| 10_                   |                         | 0.0                      |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |
| -                     |                         | -                        |                                                                     | (10-15') S<br>yellow, w                 | SAND, fine to medium<br>et, non plastic, non co                                                                                                            | grained, dense, reddish<br>hesive                                                                                                                                                                         |                                            |      | Wet at 11' bgs                                            |
| -                     | 80                      | -                        |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            | sw   |                                                           |
|                       |                         | -                        |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |
| 15                    |                         | -                        |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |
| 15                    |                         | -                        |                                                                     | (15-18') S<br>cohesive                  | SANDY CLAY, soft, lig                                                                                                                                      | ht gray, moist, low plasticity                                                                                                                                                                            | ,                                          |      |                                                           |
|                       |                         | -                        |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            | CL   |                                                           |
|                       | 50                      | -                        |                                                                     |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |
| -                     |                         | -                        |                                                                     | (18-20') S<br>brown, we                 | SAND, fine grained, de<br>et, non plastic, non co                                                                                                          | ense, reddish yellow and pal<br>hesive                                                                                                                                                                    | e                                          | SP   |                                                           |
| 20-                   |                         | -                        |                                                                     | End of Bo                               | pring                                                                                                                                                      |                                                                                                                                                                                                           |                                            |      |                                                           |
|                       |                         |                          |                                                                     |                                         | 200 Y                                                                                                                                                      |                                                                                                                                                                                                           |                                            |      |                                                           |
| Total Bo<br>Boring to | orehole De<br>erminated | epth: 20'<br>d at 20' bç | bgs.<br>gs due to water.                                            |                                         |                                                                                                                                                            |                                                                                                                                                                                                           |                                            |      |                                                           |

| E                    | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-025-SB<br>(page 1 of 1) |                            |                           | B                                                                             | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastir | ner<br>ing (US ft)<br>ng (US ft) | : 7/7/2016<br>: 90s, Sunny<br>: 571918.78<br>: 1464914.07 |
|----------------------|---------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------|
| Depth (ft.)          | % Recovery                                                                                              | PID Reading (PPM)          | Sample ID/Interval        |                                                                               | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                   | nscs                             | REMARKS                                                   |
| -0                   | 94                                                                                                      | 63.6<br>56.7<br>38.8       | A10-025-SB-1              | (0-0.7') O<br>cohesive<br>(0.7-1.5')<br>cohesive<br>(1.5-2.5')<br>mottling, o | RGANIC SILT, soft, v<br>SLAG GRAVEL, loos<br>SILT, very firm, reddi<br>dry, low plasticity, col                                                            | very dark, non plastic, non<br>e, gray, dry, non plastic, non<br>sh yellow with pale brown<br>nesive                                                                                                       | /<br>'/                           | OL<br>GP/SP<br>ML                | Tufts of grass and roots                                  |
| -<br>5—              |                                                                                                         | 13.9<br>5.6<br>0.2         | A10-025-SB-4              | (2.5-5') S<br>firm, redd<br>plasticity,<br>(5-10') SI<br>pale brow            | AND grading to SANI<br>ish yellow, dry to moi<br>non cohesive gradin<br>LTY CLAY, very firm<br>n mottling, dry to wet                                      | DY CLAY, fine grained, very<br>st, non plastic grading to low<br>g to cohesive<br>to soft, reddish yellow with<br>c, cohesive, medium plasticity                                                           | ,                                 | SP-CL                            |                                                           |
| -                    | 100                                                                                                     | 0.2<br>0.3<br>0.0          |                           |                                                                               |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                               |                                                           |
| -<br>10—<br>-        |                                                                                                         | 0.0<br>0.0<br>0.0          | A10-025-SB-10             | (10-15') C<br>cohesive,                                                       | CLAY, very soft, pale<br>high plasticity                                                                                                                   | brown, very moist to wet,                                                                                                                                                                                  |                                   |                                  |                                                           |
| -                    | 100                                                                                                     | 0.0<br>0.0<br>0.0          |                           |                                                                               |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                               |                                                           |
| 15—<br>-<br>-        |                                                                                                         | -                          |                           | (15-20') S<br>reddish y                                                       | AND, fine to medium<br>ellow, wet, non plasti                                                                                                              | grained, medium dense,<br>c, non cohesive                                                                                                                                                                  |                                   |                                  | Wet at 15' bgs                                            |
|                      | 100                                                                                                     | -                          |                           |                                                                               |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | SW                               |                                                           |
| Total Bo<br>Boring t | prehole D                                                                                               | epth: 20' l<br>d at 20' bg | bgs.<br>gs due to water a | End of Bo                                                                     | oring                                                                                                                                                      |                                                                                                                                                                                                            |                                   |                                  |                                                           |

| E                    | Boring                 | AR<br>Eart               | M Group<br>th Resource Er<br>and Consultant<br>A10-026-S<br>(page 1 | BB                        | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weathe<br>Northing<br>Easting | r<br>g (US ft)<br>(US ft) | : 7/8/2016<br>: 90s, Sunny<br>: 572000.90<br>: 1464550.22 |
|----------------------|------------------------|--------------------------|---------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|-----------------------------------------------------------|
| Depth (ft.)          | % Recovery             | PID Reading (PPM)        | Sample ID/Interval                                                  |                           | DESC                                                                                                                                                       | USCS                                                                                                                                                                                                      | REMARKS                               |                           |                                                           |
| 0-                   |                        | -                        | A10-026-SB-1                                                        | (0-0.8') S<br>cohesive    | ILT, firm dark brown,                                                                                                                                      | moist, non plastic, non                                                                                                                                                                                   |                                       | ML                        |                                                           |
| -                    |                        | -                        |                                                                     | (0.8-4') S<br>brown, m    | LAG with SILT, SANI<br>oist, non plastic, non                                                                                                              | D, and some GRAVEL, loose<br>cohesive                                                                                                                                                                     | 3,                                    |                           | Trace CLAY lenses                                         |
| _                    | 60                     | 16.3                     |                                                                     |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       | SW                        |                                                           |
|                      |                        | 127.1                    |                                                                     |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       |                           |                                                           |
| F                    |                        | 142.8                    | A10-026-SB-5                                                        | (4-8') SLA<br>coating of  | AG GRAVEL, loose, b<br>n SLAG, moist to wet                                                                                                                | prown and gray with white so<br>, non plastic, non cohesive                                                                                                                                               | ft                                    |                           |                                                           |
| 5-                   |                        | -                        |                                                                     |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       | GP                        |                                                           |
| -                    |                        | 22.2                     |                                                                     |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       |                           |                                                           |
|                      | 80                     | 11.1                     |                                                                     |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       |                           | Wet at 7.5' bgs                                           |
|                      |                        | 0.2                      |                                                                     | (8-8.9') C<br>soft, blacl | LAY with some SANE<br><, wet, high plasticity,                                                                                                             | D and GRAVEL at top, very cohesive                                                                                                                                                                        |                                       | CL                        |                                                           |
| _                    |                        | 0.3                      |                                                                     | (8.9-10') (<br>cohesive   | CLAY, hard, reddish y                                                                                                                                      | vellow, dry, low plasticity,                                                                                                                                                                              |                                       | CL                        |                                                           |
| 10—                  |                        |                          | 1                                                                   | End of Bo                 | pring                                                                                                                                                      |                                                                                                                                                                                                           | I                                     |                           |                                                           |
| Total Bo<br>Boring t | prehole D<br>erminated | epth: 10'<br>d at 10' bç | bgs.<br>gs due to water.                                            |                           |                                                                                                                                                            |                                                                                                                                                                                                           |                                       |                           |                                                           |

| E           | Boring     | AR<br>Eart        | M Group<br>h Resource Er<br>and Consultation<br>A10-027-S<br>(page 1 | BB                        | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10Site LocationSite Location: Sparrows Point, MDARM RepresentativeARM Representative: L. PerrinChecked byChecked by: M. Replogle, E.I.T.Northing (US ft)Drilling Company: Green Services, IncEasting (US ft)Driller: Don MarcheseDrilling Equipment: Geoprobe 7822DT |                                                           |   | er<br>ng (US ft)<br>g (US ft) | : 7/8/2016<br>: 90s, Sunny<br>: 572292.23<br>: 1464919.22 |
|-------------|------------|-------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---|-------------------------------|-----------------------------------------------------------|
| Depth (ft.) | % Recovery | PID Reading (PPM) | Sample ID/Interval                                                   |                           | DESC                                                                                                                                                                                                                                                                                                                                                                                   | RIPTION                                                   |   | NSCS                          | REMARKS                                                   |
| 0-          |            | -                 | A10-027-SB-1                                                         | (0-0.5') O<br>\cohesive   | RGANIC SILT, soft, b                                                                                                                                                                                                                                                                                                                                                                   | prown, dry, non plastic, non                              |   | OL                            | Abundant very small roots                                 |
| -           |            | -                 |                                                                      | (0.5-4') S<br>brown, dr   | ILT with trace SAND,<br>y, non plastic, non co                                                                                                                                                                                                                                                                                                                                         | soft, brown grading to dark<br>hesive                     |   | M                             |                                                           |
| -           | 60         | 2.1               |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
| _           |            | 97.0              | A10-027-SB-4                                                         | (4-5') CL/                | AY, soft, yellowish bro                                                                                                                                                                                                                                                                                                                                                                | own, moist, medium plasticity                             |   |                               |                                                           |
| 5-          |            | 0.1               |                                                                      | cohésive<br>(5-6') SAI    | ND with CLAY, fine to                                                                                                                                                                                                                                                                                                                                                                  | medium grained, medium                                    |   | SW/SC                         |                                                           |
| -           |            | 0.6               |                                                                      | dense, br<br>(6-10') Cl   | ownish yellow, moist,<br>AY, verv firm to firm.                                                                                                                                                                                                                                                                                                                                        | non plastic, non cohesive<br>brownish vellow with reddish |   | 011/00                        |                                                           |
| - 100 6.2   |            |                   |                                                                      |                           | ottling, moist, high pla                                                                                                                                                                                                                                                                                                                                                               | sticity, cohesive                                         |   |                               |                                                           |
| -           | 100        | 0.5               |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   | CL                            |                                                           |
| _           |            | 0.2               |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
| 10-         |            | -                 |                                                                      | (10-14.8')                | ) CLAY with trace SAI                                                                                                                                                                                                                                                                                                                                                                  | ND, soft to very soft,                                    |   |                               |                                                           |
| -           |            | -                 |                                                                      | cohesive                  | yellow, moist, to very                                                                                                                                                                                                                                                                                                                                                                 | moist, nign plasticity,                                   |   |                               |                                                           |
| -           | 100        | -                 |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   | CL                            | Very saturated CLAY                                       |
| -           |            | -                 |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               | beginning at 12.5' bgs                                    |
| _           |            | -                 |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
| 15-         |            | -                 |                                                                      | (14.8-15')<br>plasticity, | SANDY CLAY, soft, cohesive                                                                                                                                                                                                                                                                                                                                                             | light gray, wet, medium                                   |   | SP                            | Wet at 15' bgs                                            |
| -           |            | -                 |                                                                      | (15-16.2')<br>plastic, no | ) SAND, fine grained,<br>on cohesive                                                                                                                                                                                                                                                                                                                                                   | loose, brown, wet, non                                    |   | CL                            |                                                           |
| -           |            | -                 |                                                                      | (16.2-16.)<br>plasticity, | 9') SANDY CLAY, sof<br>cohesive                                                                                                                                                                                                                                                                                                                                                        | t, light gray, wet, medium                                |   |                               |                                                           |
|             | 80         | -                 |                                                                      | (16.9-20')<br>vellowish   | ) SAND, fine to mediu<br>red to reddish yellow                                                                                                                                                                                                                                                                                                                                         | m grained, medium dense,<br>, wet, non plastic, non       | / | SW                            |                                                           |
| 20_         |            | -                 |                                                                      | cohesive                  |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
| 20-         |            | -                 |                                                                      | (20-22') A<br>advanced    | Apparent heaving san<br>d to 22' and set piezor                                                                                                                                                                                                                                                                                                                                        | d, no sleeve collected, drillers<br>meter                 | 5 |                               |                                                           |
|             |            | -                 |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
|             |            |                   |                                                                      | End of Bo                 | oring                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |   |                               |                                                           |
| Total Bo    | brehole De | epth: 22'         | bgs.                                                                 |                           | ten leete II. d                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |
| Boring t    | erminated  | a at 22' bộ       | js due to water a                                                    | nd piezome                | ter installation.                                                                                                                                                                                                                                                                                                                                                                      |                                                           |   |                               |                                                           |
|             |            |                   |                                                                      |                           |                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |   |                               |                                                           |

|                                                           | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-028-SB<br>(page 1 of 1) |                          |                          |                          | p Inc.<br>agineers<br>agineers<br>agineers<br>agineers<br>agine<br>agineers<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine<br>agine | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                    | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastin | ng (US ft)<br>g (US ft) | : 7/11/2016<br>: 80s, Sunny<br>: 571004.46<br>: 1464397.18 |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|------------------------------------------------------------|
|                                                           | Depth (ft.)                                                                                             | % Recovery               | PID Reading (PPM)        | Sample ID/Interval       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DESC                                                                                                                                                                                          | RIPTION                                                                                                                                                                                                    |                                   | NSCS                    | REMARKS                                                    |
| SB.bor                                                    | 0<br>-<br>-                                                                                             | 94                       | 0.2<br>1.0<br>1.8<br>1.9 | 028-SB-1.5               | (0-0.5') C<br>cohesive<br>(0.5-1') S<br>cohesive<br>(1-4.5') S<br>brown mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ONCRETE, loose, wh<br>ILT, very firm, reddish<br>ILTY CLAY, very firm<br>ottling, dry, low plastic                                                                                            | hite, dry, non plastic, non<br>n yellow, dry, non plastic, nor<br>, reddish yellow and very pal<br>ity, cohesive                                                                                           | /<br>e                            | -<br>ML<br>CL           |                                                            |
| <pre> .Parcel A10\Boring Logs\2_Bor Logs\A10-028-S </pre> | 5                                                                                                       | 100                      | 5.0<br>3.8<br>2.6<br>1.8 | A10-028-SB-6             | (4.5-5') S<br>yellow, m<br>(5-5.5') S<br>plasticity,<br>(5.5-6') S<br>yellow, w<br>(6-10') Cl<br>mottling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ILTY SAND, fine grain<br>loist, non plastic, non<br>ANDY CLAY, soft, re-<br>cohesive<br>ILTY SAND, fine grain<br>et, non plastic, non co<br>LAY, very firm, very p<br>moist, high plasticity, | ned, medium dense, reddish<br>cohesive<br>ddish yellow, very moist, low<br>ned, medium dense, reddish<br>bhesive<br>ale brown and reddish yellov<br>cohesive                                               | /                                 | SM<br>CL<br>SM<br>CL    |                                                            |
| 38M EAG_Sparrows Point Area A\Documents                   | 10—<br>-<br>-                                                                                           | 60                       | 1.0<br>-<br>-<br>-       | A10-028-SB-10            | (10-13') S<br>reddish y<br>(13-15') C<br>yellow mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SANDY CLAY, very so<br>ellow mottling, wet, hi<br>CLAY, very soft, very<br>ottling, wet, high plast                                                                                           | oft, very pale brown and<br>gh plasticity, cohesive<br>pale brown with trace reddisl<br>icity, cohesive                                                                                                    | 1                                 | CL                      | Wet at 12' bgs<br>Very saturated CLAY                      |
| iroAnalytics Group\15029                                  | -<br>15—                                                                                                |                          | -                        |                          | End of Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pring                                                                                                                                                                                         |                                                                                                                                                                                                            |                                   | CL                      |                                                            |
| 10-13-2017 P:\Env                                         | Fotal Bo<br>Boring t                                                                                    | brehole De<br>terminated | epth: 15'<br>d at 15' bg | bgs.<br>gs due to water. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                            |                                   |                         |                                                            |

| E                    | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-029-SB |                          |                          |                                     | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weath<br>Northi<br>Eastin | ner<br>ng (US ft)<br>ıg (US ft) | : 7/12/2016<br>: 80s, Sunny<br>: 570735.43<br>: 1464688.13 |
|----------------------|----------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------------------|
|                      |                                                                                        | (Mc                      | (page 1                  | of 1)                               |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                 |                                                            |
| Depth (ft.)          | % Recovery                                                                             | PID Reading (PF          | Sample ID/Interv         |                                     | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    |                                   | NSCS                            | REMARKS                                                    |
| 0                    |                                                                                        | 1.9                      | A10-029-SB-1             | (0-1.5') S<br>dry, non p            | ILTY SAND, fine grai<br>plastic, non cohesive                                                                                                              | ned, loose, brownish yellow,                                                                                                                                                                               |                                   | SM                              |                                                            |
| _                    |                                                                                        | 7.8                      |                          | (1.5-5.3')<br>reddish y<br>medium p | CLAY, firm to soft, br<br>ellow mottling, dry to<br>plasticity, cohesive                                                                                   | rown and very pale brown an very moist, low plasticity to                                                                                                                                                  | ıd                                |                                 |                                                            |
| _                    | 100                                                                                    | 7.3                      |                          |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                 |                                                            |
| _                    |                                                                                        | 3.6                      | A10-029-SB-4             |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | CL                              |                                                            |
| 5-                   |                                                                                        | 0.0                      |                          |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                 |                                                            |
| _                    |                                                                                        | 0.0                      |                          | (5.3-8') S<br>and reddi             | AND, fine grained, m<br>sh yellow, moist to w                                                                                                              | edium dense, brownish yello<br>et, non plastic, non cohesive                                                                                                                                               | )W                                |                                 |                                                            |
| _                    |                                                                                        | 0.2                      |                          |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | SP                              | Wet at 7' bgs                                              |
| _                    | 100                                                                                    | -                        |                          |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                 |                                                            |
|                      |                                                                                        | -                        |                          | (8-10') SA<br>gray then             | AND, fine grained, loc<br>strong brown, wet, n                                                                                                             | se, reddish yellow and light<br>on plastic, non cohesive                                                                                                                                                   |                                   | SP                              |                                                            |
| 10-                  |                                                                                        | -                        |                          |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   | 51                              |                                                            |
| 10-                  |                                                                                        |                          |                          | End of Bo                           | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                   |                                 |                                                            |
| Total Bo<br>Boring t | L<br>prehole D<br>erminated                                                            | epth: 10'<br>d at 10' bç | bgs.<br>gs due to water. |                                     |                                                                                                                                                            |                                                                                                                                                                                                            |                                   |                                 |                                                            |

|                      | Boring                      | AR<br>Ear                | M Group<br>th Resource En<br>and Consultant<br>A10-030-S<br>(page 1 | p Inc.<br>gineers<br>hts<br>B<br>of 1)                               | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10VeatherSite Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Northing (US ft)Drilling Company: Green Services, IncEasting (US ft)Driller: Don MarcheseDrilling Equipment |                                                                                     |    | : 7/12/2016<br>: 80s, Sunny<br>: 570761.87<br>: 1464431.41 |                 |
|----------------------|-----------------------------|--------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|------------------------------------------------------------|-----------------|
| Depth (ft.)          | % Recovery                  | PID Reading (PPM)        | Sample ID/Interval                                                  |                                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                         |                                                                                     |    |                                                            | REMARKS         |
| 0                    |                             | 9.8                      | A10-030-SB-1                                                        | (0-0.5') S.<br>cohesive<br>(0.5-2') S.<br>dry, non p                 | ANDY SILT, soft, bro<br>ANDY SILT with SLA<br>plastic, non cohesive                                                                                                                                                                                                                                                                 | wn, dry, non plastic, non<br>G GRAVEL, soft, dark browr                             | n, | ML                                                         |                 |
| _                    | 90                          | 3.9<br>3.3               |                                                                     | (2-3.1') C<br>reddish ye                                             | LAYEY SILT, very firr<br>ellow, dry, low plastic                                                                                                                                                                                                                                                                                    | n, brownish yellow and<br>ity, cohesive                                             |    | ML                                                         |                 |
| -                    |                             | 2.9                      |                                                                     | (3.1-7') C<br>dry, low p                                             | LAY, hard, reddish ye<br>lasticity, cohesive                                                                                                                                                                                                                                                                                        | ellow and brownish yellow,                                                          |    |                                                            |                 |
| 5—                   |                             | 6.8                      |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                     |    | CL                                                         |                 |
| -                    |                             | 2.5<br>8.5               | A10-030-SB-7                                                        |                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                     |    |                                                            |                 |
| -                    | 100                         | -                        |                                                                     | (7-7.5') S.<br>plasticity,<br>(7.5-10') S<br>medium o<br>plastic, no | ANDY CLAY, firm, re-<br>cohesive<br>SAND, fine to mediun<br>lense, reddish yellow<br>on cohesive                                                                                                                                                                                                                                    | ddish yellow, moist, low<br>n grained, loose grading to<br>and light gray, wet, non |    | CL                                                         | Wet at 7.5' bgs |
| -                    |                             | 0.2                      |                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                     |    | SW                                                         |                 |
| 10—                  |                             | 0.0                      |                                                                     | End of Bo                                                            | oring                                                                                                                                                                                                                                                                                                                               |                                                                                     |    |                                                            |                 |
| Total Bo<br>Boring t | L<br>prehole D<br>erminated | epth: 10'<br>d at 10' bo | bgs.<br>gs due to water.                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                     |    |                                                            |                 |

10-13-2017 P:EnviroAnalytics Group\150298M EAG\_Sparrows Point Area A\Documents\Parcel A10\Boring Logs\2\_Bor Logs\A10-030-SB.bor

|                  | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-031-SB<br>(page 1 of 1) |            |                   |                    | p Inc.                    | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weat<br>North<br>Easti | her<br>ing (US ft)<br>ng (US ft) | : 7/8/2016<br>: 90s, Sunny<br>: 571327.23<br>: 1464457.87 |
|------------------|---------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------------|
|                  | Depth (ft.)                                                                                             | % Recovery | PID Reading (PPM) | Sample ID/Interval |                           | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    | nscs                           | REMARKS                          |                                                           |
|                  | 0-                                                                                                      |            | _                 |                    | (0-0.5') C                | ONCRETE, loose, wh                                                                                                                                         | nite, dry, non plastic, non                                                                                                                                                                                |                                | NA                               |                                                           |
|                  | -                                                                                                       |            | 34.9              | A10-031-SB-1.5     | (0.5-2.5')<br>wet, non    | SILTY SLAG, GRAV<br>plastic, non cohesive                                                                                                                  | EL and SAND-sized, loose,                                                                                                                                                                                  | red,                           | SW/GW                            |                                                           |
|                  |                                                                                                         | 92         | 1.7               |                    | (2.5-3') S                | ILT, hard, reddish yel                                                                                                                                     | low, dry, low plasticity,                                                                                                                                                                                  |                                | ML                               |                                                           |
|                  | -                                                                                                       |            | 0.3               |                    | (3-4.3') C                | LAY with SAND, very                                                                                                                                        | v soft, white, wet, low                                                                                                                                                                                    | /                              | CL                               | Saturated CLAY 3-4.3' bgs                                 |
| -SB.bor          | -                                                                                                       |            | 4.8               |                    | (4.3-5') C                | LAY, hard, white and                                                                                                                                       | yellowish red, dry, low                                                                                                                                                                                    | CI                             |                                  |                                                           |
| A10-031          | 5-                                                                                                      |            | 1.0               |                    | plasticity,<br>(5-8.5') C | cohesive<br>LAY, hard, reddish ye                                                                                                                          | ellow and light gray mottling,                                                                                                                                                                             |                                |                                  |                                                           |
| Logs\2_Bor Logs\ | -                                                                                                       |            | 8.5               |                    | ury, mea                  | un plasificity, conesiv                                                                                                                                    | 6                                                                                                                                                                                                          |                                | CL                               |                                                           |
| \Boring          | -                                                                                                       | 100        | 8.6               | A10-031-SB-8       |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                |                                  |                                                           |
| arcel A10        |                                                                                                         |            | 0.5               |                    | (8.5-10')                 | SANDY CLAY, very fi                                                                                                                                        | rm, reddish yellow and light                                                                                                                                                                               |                                |                                  |                                                           |
| uments/P         |                                                                                                         |            | 0.4               | A10-031-SB-10      | gray mou                  | ung, moist, mealum p                                                                                                                                       | asticity, conesive                                                                                                                                                                                         |                                | CL                               |                                                           |
| ea A\Docu        | 10-                                                                                                     |            | -                 |                    | (10-14') (<br>plasticity, | CLAY, very firm to firm<br>cohesive                                                                                                                        | n, reddish yellow, moist, higł                                                                                                                                                                             | ۱                              |                                  |                                                           |
| s Point Ar       | -                                                                                                       |            | -                 |                    |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                |                                  |                                                           |
| 3_Sparrow        | -                                                                                                       | 100        | -                 |                    |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                | CL                               |                                                           |
| 98M EA(          | -                                                                                                       |            | -                 |                    |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                |                                  |                                                           |
| 3roup\15029      | -                                                                                                       |            | -                 |                    | (14-15') S<br>wet, high   | SANDY CLAY, soft, ve<br>plasticity, cohesive                                                                                                               | ery pale brown, very moist to                                                                                                                                                                              | )                              | CL                               | Wet at 14' bgs                                            |
| Analytics (      | 15—                                                                                                     |            |                   | I                  | End of Bo                 | oring                                                                                                                                                      |                                                                                                                                                                                                            |                                | ı                                |                                                           |
| :\Enviro≜<br>I   | Total Bo                                                                                                | orehole D  | epth: 15'         | bgs.               |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                |                                  |                                                           |
| 10-13-2017 F     | Boring t                                                                                                | erminated  | d at 15' b        | gs due to water.   |                           |                                                                                                                                                            |                                                                                                                                                                                                            |                                |                                  |                                                           |

|                             | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants |                   | p Inc.             | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin | Date<br>Weather                                                                        | : 7/7/2016<br>: 90s, Sunny  |                                       |
|-----------------------------|---------------------------------------------------------------|-------------------|--------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|
| E                           | Boring                                                        | g ID: A           | \10-032-S          | в                                                                                       | Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment                                                  | : M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Northing (US<br>Easting (US | S ft) : 571563.52<br>ft) : 1464896.33 |
|                             |                                                               |                   | (page 1            | of 1)                                                                                   |                                                                                                                  |                                                                                        |                             |                                       |
| Depth (ft.)                 | % Recovery                                                    | PID Reading (PPM) | Sample ID/Interval |                                                                                         | DESC                                                                                                             | USCS                                                                                   | REMARKS                     |                                       |
| 0-                          |                                                               |                   |                    | (0-0.5') C                                                                              | ONCRETE, loose, wh                                                                                               | ite, dry, non plastic, non                                                             | NA                          | A                                     |
| _                           |                                                               | -                 | A10-032-SB-1       | (0.5-1.8')<br>moist, noi                                                                | SILT with SAND, soft<br>n plastic, non cohesiv                                                                   | , very dark brown, dry to<br>e                                                         | MI                          | -                                     |
| -                           | 60                                                            | 2.5               |                    | (1.8-3.5')<br>plastic, no                                                               | BRICK GRAVEL and<br>on cohesive                                                                                  | SAND, loose, yellow, dry, n                                                            | on _                        |                                       |
| _                           |                                                               | 13.6              |                    | (3.5-5') Sl<br>brown, dr                                                                | LAG GRAVEL and S/<br>y, non plastic, non co                                                                      | AND, loose, gray and dark hesive                                                       |                             |                                       |
| 5-                          |                                                               | 34.6              | A10-032-SB-5       |                                                                                         |                                                                                                                  |                                                                                        | GP/3                        | SP                                    |
| -                           |                                                               | -<br>2.4          |                    | (5-7') SIL<br>non plasti                                                                | TY SLAG GRAVEL a<br>c, cohesive                                                                                  | nd SAND, loose, brown, dry,                                                            | GP-0                        | ЭM                                    |
| -                           | 70                                                            | 1.6               |                    | (7-9') SLA<br>yellow, dr                                                                | NG, BRICK, and GRA<br>y, non plastic, non co                                                                     | VEL, loose, dark gray and<br>hesive                                                    | GI                          |                                       |
|                             |                                                               | 0.8               |                    |                                                                                         |                                                                                                                  |                                                                                        |                             |                                       |
| -                           |                                                               | 1.8               |                    | (9-9.5') S<br>cohesive,<br>(9.5-10') S                                                  | ILTY SLAG GRAVEL<br>non plastic<br>SILT, soft, gravish bro                                                       | and SAND, loose, brown, dr                                                             | <sup>y,</sup> GP-(          | GM<br>Wet at 9.5' bgs                 |
| 10–<br>Total Bo<br>Boring t | prehole D                                                     | epth: 10'         | bgs.               | cohesive<br>End of Bc                                                                   | pring                                                                                                            |                                                                                        |                             | -                                     |
| 20mg t                      | aidi                                                          |                   | 50 440 10 Water.   |                                                                                         |                                                                                                                  |                                                                                        |                             |                                       |

| ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-033-SB<br>(page 1 of 1) |                        |                          |                          | B<br>of 1)                                         | Client<br>ARM Project No.<br>Project Description<br>Site Location<br>ARM Representative<br>Checked by<br>Drilling Company<br>Driller<br>Drilling Equipment | : EnviroAnalytics Group<br>: 150298M-5-3<br>: Sparrows Point - Parcel A10<br>: Sparrows Point, MD<br>: L. Perrin<br>: M. Replogle, E.I.T.<br>: Green Services, Inc.<br>: Don Marchese<br>: Geoprobe 7822DT | Date<br>Weather<br>Northing (U<br>Easting (US | : 7<br>: 9<br>S ft) : 5<br>ft) : 1 | 7/6/2016<br>10s, Sunny<br>170913.26<br>464890.86 |
|---------------------------------------------------------------------------------------------------------|------------------------|--------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------|--------------------------------------------------|
| Depth (ft.)                                                                                             | % Recovery             | PID Reading (PPM)        | Sample ID/Interval       |                                                    | DESC                                                                                                                                                       | RIPTION                                                                                                                                                                                                    | SCS                                           |                                    | REMARKS                                          |
| 0-                                                                                                      |                        | -                        | A10-033-SB-1             | (0-4') CLA<br>brown mc                             | AY with SILT, firm to s<br>attling, moist to wet, n                                                                                                        | soft, reddish yellow and light<br>nedium plasticity, cohesive                                                                                                                                              |                                               |                                    |                                                  |
| -                                                                                                       |                        | 0.4                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            | C                                             |                                    |                                                  |
| _                                                                                                       | 75                     | 0.7                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            |                                               |                                    |                                                  |
|                                                                                                         |                        | 1.9                      | A10-033-SB-4             |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            |                                               |                                    |                                                  |
| 5-                                                                                                      |                        | 0.1                      |                          | (4-4.4') C<br>dry, non p<br>(4.4-8.5')<br>brown, m | ONCRETE with large<br>plastic, non cohesive<br>CLAY, soft to very fir<br>pist to dry, medium p                                                             | SLAG GRAVEL, hard, gray<br>m, reddish yellow and pale<br>lasticity, cohesive                                                                                                                               | ,                                             |                                    |                                                  |
| _                                                                                                       |                        | 0.2                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            |                                               |                                    |                                                  |
| _                                                                                                       |                        | 0.3                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            | С                                             |                                    |                                                  |
| _                                                                                                       | 100                    | 1.5                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            |                                               |                                    |                                                  |
| -                                                                                                       |                        | 0.3                      |                          | (8.5-10') \$<br>very pale                          | SAND, fine grained, r<br>brown and yellow, w                                                                                                               | nedium dense, light gray and<br>et, non plastic, non cohesive                                                                                                                                              | 1                                             | Wet at 8                           | 9.5' bgs                                         |
| 10-                                                                                                     |                        | 0.3                      |                          |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            | SI                                            |                                    |                                                  |
| 10-                                                                                                     |                        |                          |                          | End of Bo                                          | pring                                                                                                                                                      |                                                                                                                                                                                                            |                                               |                                    |                                                  |
| Total Bo<br>Boring t                                                                                    | prehole D<br>erminated | epth: 10'<br>d at 10' bę | bgs.<br>gs due to water. |                                                    |                                                                                                                                                            |                                                                                                                                                                                                            |                                               |                                    |                                                  |

| E                               | ARM Group Inc<br>Earth Resource Engineers<br>and Consultants<br>Boring ID: A10-034-SB<br>(page 1 of 1) |                   |                    | p Inc.<br>agineers<br>ats<br>SB<br>of 1) | Client: EnviroAnalytics GroupDateARM Project No.: 150298M-5-3WeatherProject Description: Sparrows Point - Parcel A10WeatherSite Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Northing (US ft)Drilling Company: Green Services, Inc.Easting (US ft)Driller: Don MarcheseDrilling Equipment |                                                 | : 7/7/2016<br>: 80s, Sunny<br>: 571288.34<br>: 1464804.71 |       |                |
|---------------------------------|--------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------|----------------|
| Depth (ft.)                     | % Recovery                                                                                             | PID Reading (PPM) | Sample ID/Interval |                                          | DESC                                                                                                                                                                                                                                                                                                                                 | RIPTION                                         |                                                           | USCS  | REMARKS        |
| 0-                              |                                                                                                        | -                 |                    | (0-3.1') A                               | SPHALT, loose, gray                                                                                                                                                                                                                                                                                                                  | , dry, non plastic, non cohes                   | ive                                                       |       |                |
| -                               | 40                                                                                                     | -                 | None               |                                          | ,, <u>.</u> ,                                                                                                                                                                                                                                                                                                                        |                                                 |                                                           | -     |                |
| _                               |                                                                                                        | 3.5               | (See Below)        | (3.1-4') S                               | LAG GRAVEL and S                                                                                                                                                                                                                                                                                                                     | AND, loose, light gray and                      |                                                           | GP/SP |                |
| 5-                              |                                                                                                        | 3.7<br>-<br>-     |                    | (4-7.1') S<br>non cohe                   | y, non plastic, non co<br>ANDY SILT, soft, dar<br>sive                                                                                                                                                                                                                                                                               | nesive<br>k brown, moist, non plastic,          | /                                                         | ML    |                |
| _                               | 60                                                                                                     | 0.3               |                    | (7.1-8') C                               | LAY, very soft, brown                                                                                                                                                                                                                                                                                                                | , very moist to wet, medium                     |                                                           | CL    | Very saturated |
| _                               |                                                                                                        | 0.3               |                    | (8-12') CL                               | _AY, very firm, yellow                                                                                                                                                                                                                                                                                                               | /                                               |                                                           |       |                |
| -                               |                                                                                                        | 0.3               |                    | mottling,                                | mottling, dry, medium plasticity, cohesive                                                                                                                                                                                                                                                                                           |                                                 |                                                           |       |                |
| 10-                             |                                                                                                        | 0.0               |                    |                                          |                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                           | CL    |                |
| -                               | 100                                                                                                    | 0.0               |                    | (12-13') (<br>reddish y                  | CLAY, very soft, yellow<br>ellow, very moist to w                                                                                                                                                                                                                                                                                    | vish brown with trace<br>et, medium plasticity, |                                                           | CL    |                |
| _                               |                                                                                                        | 0.0               |                    | cohesive                                 |                                                                                                                                                                                                                                                                                                                                      | wish brown and light gray                       | /                                                         | CI    |                |
| 15—                             |                                                                                                        | 0.0               |                    | mottling,                                | dry, medium plasticity                                                                                                                                                                                                                                                                                                               | v, cohesive                                     |                                                           |       |                |
| -                               |                                                                                                        | 0.0<br>0.0        |                    | (15-17') C<br>plasticity,                | CLAY, soft, yellowish<br>cohesive                                                                                                                                                                                                                                                                                                    | orown, moist, medium                            |                                                           | CL    |                |
| -                               | 100                                                                                                    | 0.0               |                    | (17-19') C                               | CLAY, very soft, yellow                                                                                                                                                                                                                                                                                                              | vish brown, very moist to                       |                                                           |       |                |
| -                               |                                                                                                        | 0.0               |                    | wet, high                                | plasticity, cohesive                                                                                                                                                                                                                                                                                                                 |                                                 |                                                           | CL    |                |
| -                               |                                                                                                        | 0.0               |                    | (19-20') S                               | SANDY CLAY, very so                                                                                                                                                                                                                                                                                                                  | oft, very moist to wet, high                    |                                                           | CL    |                |
| 20-                             |                                                                                                        | -                 |                    | (20-25') N                               | lo recovery due to ap                                                                                                                                                                                                                                                                                                                | parent heaving sand; drillers                   | ^                                                         |       |                |
| -                               |                                                                                                        | -                 |                    | advanced                                 | I to 25' and installed p                                                                                                                                                                                                                                                                                                             | biezometer.                                     |                                                           |       |                |
| _                               | 0                                                                                                      | -                 |                    |                                          |                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                           |       |                |
| -                               |                                                                                                        | -                 |                    |                                          |                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                           |       |                |
| -                               |                                                                                                        | -                 |                    |                                          |                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                           |       |                |
| 25-                             |                                                                                                        |                   |                    | End of Bo                                | pring                                                                                                                                                                                                                                                                                                                                |                                                 |                                                           |       |                |
| Total Br                        | prehole D                                                                                              | epth: 25' I       | oas.               |                                          |                                                                                                                                                                                                                                                                                                                                      |                                                 |                                                           |       |                |
| Boring t<br>installat<br>No sam | erminated<br>ion.<br>ples taker                                                                        | h at 25' bç       | vork plan.         | sand layer a                             | nd piezometer                                                                                                                                                                                                                                                                                                                        |                                                 |                                                           |       |                |

# **APPENDIX C**

TRIAD Listens, Designs & Delivers



September 21, 2016

Mr. James Calenda EnviroAnalytis Group, LLC 1650 Des Peres Road, Suite 303 St. Louis, MO 63131

Re: Sparrows Point Well Survey Sparrows Point, MD Triad Engineering Job No. 03-15-0343

Mr. Calenda:

Below are the specified surveyed wells, date of last field work completed on August 25, 2016. The coordinate values shown were derived from G.P.S. observations based on National Geodetic Surveys stations "GIS 1", PID AC7684 and "GIS 2", PID AC7685 which purport to be on NAD83(2011) Maryland Grid coordinate system with NAVD88 (AMSL) elevations.

| DESCRIPTION | NORTHING  | EASTING    | TOP CASING<br>ELEVATION | GROUND AT WELL<br>ELEVATION |
|-------------|-----------|------------|-------------------------|-----------------------------|
| A10-002-PZ  | 571161.93 | 1464918.46 | 22.13                   | 18.90                       |
| A10-010-PZ  | 571116.39 | 1464272.67 | 17.98                   | 14.24                       |
| A10-015-PZ  | 571076.94 | 1464417.67 | 20.09                   | 16.32                       |
| A10-018-PZ  | 571514.97 | 1464077.29 | 18.65                   | 15.11                       |
| A10-020-PZ  | 571348.36 | 1464416.91 | 13.64                   | 12.29                       |
| A10-021-PZ  | 571256.27 | 1464510.46 | 13.26                   | 11.76                       |
| A10-024-PZ  | 571659.56 | 1464636.91 | 14.36                   | 11.43                       |
| A10-025-PZ  | 571918.14 | 1464914.72 | 16.94                   | 14.14                       |
| A10-027-PZ  | 572288.37 | 1464921.09 | 16.38                   | 12.59                       |
| A10-029-PZ  | 570731.74 | 1464689.15 | 23.11                   | 19.64                       |
| A10-034-PZ  | 571289.59 | 1464806.40 | 20.10                   | 17.11                       |
| SG06-PDM001 | 572030.13 | 1464372.48 | 12.04                   | 12.42                       |

# **APPENDIX D**



This document is the property of ARM Group Inc. and is delivered on the express condition that it is not to be disclosed, reproduced in whole or in part, or used for manufacture by anyone other than ARM Group Inc. This restriction does not apply to information obtained from another source.

# **APPENDIX E**

|                 | PID CALIBRATION LOG |                |         |               |                       |               |          |  |
|-----------------|---------------------|----------------|---------|---------------|-----------------------|---------------|----------|--|
| PROJECT NAME:   | Area A, Parce       | l A10 Phase II |         | SAMPLER NA    | ME: L. Perrin, N. Kur | tz            |          |  |
| PROJECT NUMBE   | ER: 150298M-        | 5              |         | DATE: July 6, | 2016                  | PAGE_1_of_1_  |          |  |
|                 |                     |                |         |               |                       |               |          |  |
|                 | SAMPLER             |                | FRESH   |               | STANDARD              |               |          |  |
| DATE/TIME       | INITIALS            | PID SERIAL #   | AIR CAL | STANDARD      | CONCENTRATION         | METER READING | COMMENTS |  |
| 7/6/2016 8:13   | LP                  | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 101.5         | -        |  |
| 7/7/2016 8:10   | NK                  | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 100.4         | -        |  |
| 7/8/2016 8:20   | NK/LP               | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 99.8          | -        |  |
| 7/11/2016 8:00  | NK/LP               | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 101.8         | -        |  |
| 7/12/2016 8:30  | NK/LP               | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 100.0         | -        |  |
| 7/13/2016 13:09 | LP                  | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 100.0         | -        |  |
| 7/21/2016 8:00  | LP                  | 592-913262     | 0.0     | Isobutylene   | 100 ppm               | 100.0         | -        |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |
|                 |                     |                |         | Isobutylene   | 100 ppm               |               |          |  |

### **APPENDIX F**

|                   | -                                | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-002-PZ                                                                                                        |   |               |                                                                             |  |  |
|-------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|-----------------------------------------------------------------------------|--|--|
| Site              | Client:<br>Sparrov<br>S<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed: 7/6/16Drilling ComCasing/Riser Type: PVCTOC ElevatiBorehole Diameter: 2.25"0-Hr DTWDrilling Method: 7822DT Geoprobe48-Hr DTWDriller: Don MarcheseARM Repre |   |               | : Green Services, Inc<br>: 22.1'<br>: 9.2' TOC<br>: 9.5' TOC<br>: L. Perrin |  |  |
| Depth in Feet     | Surf. Elev.                      | DESCRIF                                                                                                              | PTION                                                                                                                                                                      | п |               | REMARKS                                                                     |  |  |
| 0                 |                                  | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.2'                                                         |                                                                                                                                                                            |   |               | Northing (US ft): 571161.93<br>Easting (US ft): 1464918.46                  |  |  |
| 2                 |                                  | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"                                   |                                                                                                                                                                            |   | 1" PVC Riser  |                                                                             |  |  |
| 5                 |                                  | Sand Pack:<br>Top: 5' bgs<br>Bottom: 17' bgs<br>Grain Size: WG #1                                                    |                                                                                                                                                                            |   |               | No product detected                                                         |  |  |
| 7                 |                                  | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 5' bgs<br>Grain Size: 3/8" chips/granula                              | ar (30-50 mesh)                                                                                                                                                            |   | Sand Pack     |                                                                             |  |  |
| 10-               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 11-               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 12—<br>13—        |                                  |                                                                                                                      |                                                                                                                                                                            |   | 1" PVC Screen |                                                                             |  |  |
| 14—               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 15-               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 17-               |                                  | End of Boring                                                                                                        |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 18-               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 19—               |                                  |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| 20-               | onth: 17'                        |                                                                                                                      |                                                                                                                                                                            |   |               |                                                                             |  |  |
| TOC: TO<br>DTW: D | op of PVC                        | casing<br>ater                                                                                                       |                                                                                                                                                                            |   |               |                                                                             |  |  |

|                                                                                                        | <b>A</b>                              | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                                                                                                                                    | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-010-PZ                    |                                                                                                                      |                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Site                                                                                                   | Client:<br>Sparro<br>S<br>ARM P       | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1                                                                                                             | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/11/16Drilling Company: PVCTOC Elevation: 2.25"0-Hr DTW: 7822DT Geoprobe48-Hr DTW: Don MarcheseARM Representation | : Green Services, Inc<br>: 18.0'<br>: 12.8' TOC<br>: 12.3' TOC<br>: 12.3' TOC<br>tive : L. Perrin |  |  |
| Depth in Feet                                                                                          | Surf. Elev.                           | DESCRIF                                                                                                                                                                                                                          | ντιον                                                                                  |                                                                                                                      | REMARKS                                                                                           |  |  |
| 0<br>1<br>2<br>3                                                                                       |                                       | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.7'<br>Screen Type: PVC<br>Screen Diameter: 1"                                                                                                                          |                                                                                        |                                                                                                                      | Northing (US ft): 571116.39<br>Easting (US ft): 1464272.67                                        |  |  |
| 4-<br>5-<br>6-<br>7-<br>8-<br>9-<br>10-<br>11-<br>12-<br>13-<br>14-<br>15-<br>16-<br>17-<br>18-<br>19- |                                       | Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"<br>Sand Pack:<br>Top: 12' bgs<br>Bottom: 24' bgs<br>Grain Size: WG #1<br>Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 12' bgs<br>Grain Size: 3/8" chips/granul. | ar (30-50 mesh)                                                                        |                                                                                                                      | No product detected                                                                               |  |  |
| 20-<br>21-<br>22-<br>23-<br>24-<br>25-<br>Total D<br>TOC: T<br>DTW: D                                  | epth: 24' I<br>op of PVC<br>epth to w | End of Boring<br>ogs<br>C casing<br>rater                                                                                                                                                                                        |                                                                                        |                                                                                                                      |                                                                                                   |  |  |

|                               |                                      | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-015-PZ                    |                                                                    |              |                                                                                |                                                                                |
|-------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Site                          | Client:<br>SparrovSp<br>ARM Pr       | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/11/16<br>: PVC<br>: 2.25"<br>: 7822DT Geopro<br>: Don Marchese | be           | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 20.1'<br>: 9.1' TOC<br>: 9.1' TOC<br>ve : L. Perrin |
| Depth in Feet                 | Surf. Elev.                          | DESCRIF                                                                                                              | ΫΤΙΟΝ                                                                                  |                                                                    |              |                                                                                | REMARKS                                                                        |
| 0                             |                                      | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.8'                                                         |                                                                                        |                                                                    | -Bentonite s | seal<br>ser                                                                    | Northing (US ft): 571076.94<br>Easting (US ft): 1464417.67                     |
| 3-                            |                                      | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"                                   |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 5—<br>6—                      |                                      | Sand Pack:<br>Top: 2' bgs<br>Bottom: 13.5' bgs<br>Grain Size: WG #1                                                  |                                                                                        |                                                                    | -Sand Pack   | K                                                                              | No product detected                                                            |
| 7—                            |                                      |                                                                                                                      |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 8-                            |                                      | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 2' bgs<br>Grain Size: 3/8" chins/grapul                               | ar (30-50 mesh)                                                                        |                                                                    |              | reen                                                                           |                                                                                |
| 9—                            |                                      | Gran Gize. 5/6 Grips/granul                                                                                          | ar (30-30 mesh)                                                                        |                                                                    |              |                                                                                |                                                                                |
| 10—                           |                                      |                                                                                                                      |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 11—                           |                                      |                                                                                                                      |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 12—                           |                                      |                                                                                                                      |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 13-                           |                                      | Find of Device                                                                                                       |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 14—                           |                                      | Ena of Boring                                                                                                        |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| 15-                           |                                      |                                                                                                                      |                                                                                        |                                                                    |              |                                                                                |                                                                                |
| Total De<br>TOC: Te<br>DTW: D | epth: 13.5<br>op of PVC<br>epth to w | ' bgs<br>C casing<br>ater                                                                                            |                                                                                        |                                                                    |              |                                                                                |                                                                                |

01-04-2018 P:\EnviroAnalytics Group\150298M EAG\_Sparrows Point Area A\Documents\Parcel A10\Piezometer Logs\2\_Bor Logs\A10-015-PZ.bor

|                                 | Ş                                      | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                                                       | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-018-PZ                    |                                                                      |                                                                                 |                                                                                  |  |
|---------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Site                            | Client:<br>Sparro<br>S<br>ARM P        | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1                                | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/14/16<br>: PVC<br>: 2.25"<br>: 7822DT Geoprobe<br>: Don Marchese | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representativ | : Green Services, Inc<br>: 18.7'<br>: 10.8' TOC<br>: 13.2' TOC<br>/e : L. Perrin |  |
| Depth in Feet                   | Surf. Elev.                            | DESCRIF                                                                                                                                             | ΫΤΙΟΝ                                                                                  | П                                                                    |                                                                                 | REMARKS                                                                          |  |
| 0                               |                                        | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.5'                                                                                        |                                                                                        |                                                                      |                                                                                 | Northing (US ft): 571514.97<br>Easting (US ft): 1464077.29                       |  |
| 5<br>6<br>7<br>8<br>9           |                                        | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"<br>2-5' PrePacked PVC Well Scree                                 | n (17-27')                                                                             | ——————————————————————————————————————                               | seal                                                                            | No product detected                                                              |  |
| 10                              |                                        | Sand Pack:<br>Top: 17' bgs<br>Bottom: 27' bgs<br>Grain Size: WG #1                                                                                  |                                                                                        |                                                                      |                                                                                 |                                                                                  |  |
| 15—<br>16—<br>17—<br>18—<br>19— |                                        | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 12' bgs<br>Grain Size: 3/8" chips/granul:<br>(0- 12') 3/8" chips<br>2-2.5' Bentonite Sleeve (12-17') | ar (30-50 mesh)                                                                        |                                                                      | k                                                                               |                                                                                  |  |
| 20-<br>21-<br>22-<br>23-<br>24- |                                        |                                                                                                                                                     |                                                                                        |                                                                      | creen                                                                           |                                                                                  |  |
| 24<br>25-<br>26-<br>27-         |                                        | End of Boring                                                                                                                                       |                                                                                        |                                                                      |                                                                                 |                                                                                  |  |
| 28-<br>29-<br>30-               |                                        |                                                                                                                                                     |                                                                                        |                                                                      |                                                                                 |                                                                                  |  |
| Total De<br>TOC: Te<br>DTW: D   | epth: 27' I<br>op of PVC<br>9epth to w | ogs<br>C casing<br>vater                                                                                                                            |                                                                                        |                                                                      |                                                                                 |                                                                                  |  |

|                                          | -                               | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-020-PZ                    |                                                                                                                                                    |                                                                                                                                             |  |
|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Site                                     | Client:<br>Sparro<br>S<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/8/16         D           : PVC         T           : 2.25"         0           : 7822DT Geoprobe         44           : Don Marchese         A | rilling Company : Green Services, Inc<br>OC Elevation : 13.6'<br>-Hr DTW : 7.9' TOC<br>8-Hr DTW : 7.7' TOC<br>RM Representative : L. Perrin |  |
| Depth in Feet                            | Surf. Elev.                     | DESCRIF                                                                                                              | PTION                                                                                  | П                                                                                                                                                  | REMARKS                                                                                                                                     |  |
| 0<br>1<br>2<br>3<br>4                    |                                 | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 1.4'                                                         |                                                                                        |                                                                                                                                                    | Northing (US ft):571348.36<br>Easting (US ft): 1464416.91                                                                                   |  |
| 5<br>6<br>7<br>8<br>9                    |                                 | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"                                   |                                                                                        | ——Bentonite sea                                                                                                                                    | al No product det57134                                                                                                                      |  |
| 10-<br>11-<br>12-<br>13-                 |                                 | Sand Pack:<br>Top: 12' bgs<br>Bottom: 24' bgs<br>Grain Size: WG #1                                                   |                                                                                        |                                                                                                                                                    |                                                                                                                                             |  |
| 14                                       |                                 | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 12' bgs<br>Grain Size: 3/8" chips/granul:                             | ar (30-50 mesh)                                                                        |                                                                                                                                                    |                                                                                                                                             |  |
| 19—<br>20—<br>21—                        |                                 |                                                                                                                      |                                                                                        | 1" PVC Scree                                                                                                                                       | en                                                                                                                                          |  |
| 22 –<br>23 –<br>24 –<br>25 –<br>Total De | epth: 24' l                     | End of Boring                                                                                                        |                                                                                        |                                                                                                                                                    |                                                                                                                                             |  |
| TOC: TO<br>DTW: D                        | op of PVC                       | C casing<br>rater                                                                                                    |                                                                                        |                                                                                                                                                    |                                                                                                                                             |  |

01-04-2018 P:\EnviroAnalytics Group\150298M EAG\_Sparrows Point Area A\Documents\Parcel A10\Piezometer Logs\2\_Bor Logs\A10-020-PZ.bor

|                            | <b>P</b>                   | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                   | LOG OF                                                                                 | TEMPORARY C                                                          | GROUNDWAT<br>POINT: A10-02                                                     | ER SAMPLE<br>21-PZ                                                             |
|----------------------------|----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Site                       | Client:<br>Sparro<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/11/16<br>: PVC<br>: 2.25"<br>: 7822DT Geoprobe<br>: Don Marchese | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 13.3'<br>: 7.8' TOC<br>: 7.1' TOC<br>ve : L. Perrin |
| Depth in Feet              | Surf. Elev.                | DESCRIF                                                                                         | PTION                                                                                  |                                                                      |                                                                                | REMARKS                                                                        |
| 0-<br>1-<br>2-<br>3-<br>4- |                            | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 1.5'                                    |                                                                                        |                                                                      |                                                                                | Northing (US ft): 571256.27<br>Easting (US ft): 1464510.46                     |
| 5—<br>6—<br>7—<br>8—       |                            | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"              |                                                                                        | Bento                                                                | nite seal<br>C Riser                                                           | No product detected                                                            |
| 9                          |                            | Sand Pack:<br>Top: 12' bgs<br>Bottom: 24' bgs<br>Grain Size: WG #1                              |                                                                                        |                                                                      |                                                                                |                                                                                |
| 14—<br>15—<br>16—<br>17—   |                            | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 12' bgs<br>Grain Size: 3/8" chips/granula        | ar (30-50 mesh)                                                                        | Sand                                                                 | Pack                                                                           |                                                                                |
| 18—<br>19—<br>20—<br>21—   |                            |                                                                                                 |                                                                                        | 1" PV                                                                | C Screen                                                                       |                                                                                |
| 22-<br>23-<br>24-<br>25-   | onth: 24'1                 | End of Boring                                                                                   |                                                                                        |                                                                      |                                                                                |                                                                                |
| TOC: TO<br>DTW: D          | op of PVC                  | casing<br>ater                                                                                  |                                                                                        |                                                                      |                                                                                |                                                                                |

01-04-2018 P:\EnviroAnalytics Group\150298M EAG\_Sparrows Point Area A\Documents\Parcel A10\Piezometer Logs\2\_Bor Logs\A10-021-PZ.bor

|                                       | <b>P</b>                               | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-024-PZ                    |                                                                     |                                                                                |                                                                                 |  |
|---------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Site                                  | Client:<br>Sparro<br>S<br>ARM P        | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/7/16<br>: PVC<br>: 2.25"<br>: 7822DT Geoprobe<br>: Don Marchese | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 14.4'<br>: 11.8' TOC<br>: 8.8' TOC<br>ve : L. Perrin |  |
| Depth in Feet                         | Surf. Elev.                            | DESCRIF                                                                                                              | PTION                                                                                  |                                                                     |                                                                                | REMARKS                                                                         |  |
| 0                                     |                                        | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 2.9'                                                         |                                                                                        | Bentonite                                                           | seal                                                                           | Northing (US ft): 571659.56<br>Easting (US ft): 1464636.91                      |  |
| 5-<br>6-<br>7-<br>8-<br>9-            |                                        | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"                                   |                                                                                        | 1" PVC R                                                            | iser                                                                           | No product detected                                                             |  |
| 10-<br>11-<br>12-<br>13-<br>14-       |                                        | Sand Pack:<br>Top: 8' bgs<br>Bottom: 20' bgs<br>Grain Size: WG #1                                                    |                                                                                        | Sand Pac                                                            | k                                                                              |                                                                                 |  |
| 15—<br>16—<br>17—<br>18—<br>19—       |                                        | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 8' bgs<br>Grain Size: 3/8" chips/granul                               | ar (30-50 mesh)                                                                        |                                                                     | creen                                                                          |                                                                                 |  |
| 20-<br>21-<br>22-<br>23-<br>24-       |                                        | End of Boring                                                                                                        |                                                                                        |                                                                     |                                                                                |                                                                                 |  |
| 25 –<br>Total De<br>TOC: Te<br>DTW: D | epth: 20' l<br>op of PV(<br>pepth to w | ogs<br>C casing<br>rater                                                                                             |                                                                                        |                                                                     |                                                                                |                                                                                 |  |

01-04-2018 P:\EnviroAnalytics Group\150298M EAG\_Sparrows Point Area A\Documents\Parcel A10\Piezometer Logs\2\_Bor Logs\A10-024-PZ.bor

|                            | <b>A</b>                        | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPL<br>COLLECTION POINT: A10-025-PZ                     |                                                                     |                                                                                |                                                                               |
|----------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Site                       | Client:<br>Sparro<br>S<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/7/16<br>: PVC<br>: 2.25"<br>: 7822DT Geoprobe<br>: Don Marchese | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 16.9'<br>: 10.7' TOC<br>: 11.3' TOC<br>: L. Perrin |
| Depth in Feet              | Surf. Elev.                     | DESCRIF                                                                                                              | PTION                                                                                  |                                                                     |                                                                                | REMARKS                                                                       |
| 0-<br>1-<br>2-<br>3-<br>4- |                                 | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 2.8'                                                         |                                                                                        | Bentonite s                                                         | eal                                                                            | Northing (US ft): 571918.14<br>Easting (US ft): 1464914.72                    |
| 5                          |                                 | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"<br>2-5' PrePacked PVC Well Scree  | en (10-20')                                                                            | 1" PVC Ris                                                          | er                                                                             | No product detected                                                           |
| 10-<br>11-<br>12-<br>13-   |                                 | Sand Pack:<br>Top: 8' bgs<br>Bottom: 20' bgs<br>Grain Size: WG #1                                                    |                                                                                        | ——————————————————————————————————————                              |                                                                                |                                                                               |
| 14                         |                                 | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 8' bgs<br>Grain Size: 3/8" chips/granul                               | ar (30-50 mesh)                                                                        |                                                                     | een                                                                            |                                                                               |
| 20-<br>21-<br>22-          |                                 | End of Boring                                                                                                        |                                                                                        |                                                                     |                                                                                |                                                                               |
| 23-<br>24-<br>25-          |                                 |                                                                                                                      |                                                                                        |                                                                     |                                                                                |                                                                               |
| Total Do                   | epth: 20'                       |                                                                                                                      |                                                                                        |                                                                     |                                                                                |                                                                               |

|                    |                   | <b>A</b>                          | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                          | LOG OF                                                                                 | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-027-PZ |                   |           |                                                                                | ER SAMPLE<br>27-PZ                                                            |
|--------------------|-------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|-----------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                    | Site              | Client:<br>: Sparro<br>S<br>ARM P | : EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/8/16<br>: PVC<br>: 2.25"<br>: 7822D<br>: Don M                  | T Geop<br>archese | robe      | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 16.4'<br>: 11.4' TOC<br>: 11.3' TOC<br>: L. Perrin |
|                    | Depth in Feet     | Surf. Elev.                       | DESCRIF                                                                                                                | PTION                                                                                  |                                                                     | ſ                 | ]         |                                                                                | REMARKS                                                                       |
|                    | 0                 |                                   | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.8'                                                           |                                                                                        |                                                                     |                   |           |                                                                                | Northing (US ft): 572288.37<br>Easting (US ft): 1464921.09                    |
|                    | 3-<br>4-          |                                   |                                                                                                                        |                                                                                        |                                                                     |                   |           | seal                                                                           |                                                                               |
| )-027-PZ.bor       | 5—<br>6—<br>7—    |                                   | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'<br>Slot Size: 0.010"                                     |                                                                                        |                                                                     |                   | 1" PVC R  | iser                                                                           | No product detected                                                           |
| 2_Bor Logs\A10     | 8—<br>9—          |                                   | 2-5' PrePacked PVC Well Scree                                                                                          | n (12-22')                                                                             |                                                                     |                   |           |                                                                                |                                                                               |
| iezometer Logs\    | 10-<br>11-<br>12- |                                   | Sand Pack:<br>Top: 10' bgs<br>Bottom: 22' bgs<br>Grain Size: WG #1                                                     |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| ts\Parcel A10\P    | 13—<br>14—        |                                   |                                                                                                                        |                                                                                        |                                                                     |                   | -Sand Pac | k                                                                              |                                                                               |
| int Area A\Documen | 15—<br>16—<br>17— |                                   | Bentonite Seal:<br>Top: 0 (surface)<br>Bottom: 10' bgs<br>Grain Size: 3/8" chips/granula                               | ar (30-50 mesh)                                                                        |                                                                     |                   |           | creen                                                                          |                                                                               |
| Sparrows Poi       | 18—<br>19—<br>20— |                                   |                                                                                                                        |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| 98M EAG            | 21 —              |                                   |                                                                                                                        |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| ıp\1502{           | 22-               |                                   | End of Boring                                                                                                          |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| ics Grou           | 23-               |                                   |                                                                                                                        |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| roAnalyt           | 24-<br>25-        |                                   |                                                                                                                        |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| P:\Envi            | Total De          | epth: 22' I                       | bgs                                                                                                                    |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |
| 01-04-2018         | TOC: TO<br>DTW: D | op of PVC<br>Depth to w           | C casing<br>vater                                                                                                      |                                                                                        |                                                                     |                   |           |                                                                                |                                                                               |

|                   | P                               | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-029-PZ                                                                                                           |  |                      |                                                                                | ER SAMPLE<br>29-PZ                                                             |
|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Site              | Client:<br>Sparro<br>S<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed: 7/12/16Drilling ComCasing/Riser Type: PVCTOC ElevatiBorehole Diameter: 2.25"0-Hr DTWDrilling Method: 7822DT Geoprobe48-Hr DTWDriller: Don MarcheseARM Represe |  |                      | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representati | : Green Services, Inc<br>: 23.1'<br>: 7.3' TOC<br>: 6.8' TOC<br>ve : L. Perrin |
| Depth in Feet     | Surf. Elev.                     | DESCRIF                                                                                                              | PTION                                                                                                                                                                         |  | 1                    |                                                                                | REMARKS                                                                        |
| 0—<br>1—          |                                 | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.5'                                                         |                                                                                                                                                                               |  | Bentonite            | seal                                                                           | Northing (US ft): 570731.74<br>Easting (US ft): 1464689.15                     |
| 2—<br>3—          |                                 |                                                                                                                      |                                                                                                                                                                               |  | <u></u><br>1" PVC Ri | iser                                                                           |                                                                                |
| 4—                |                                 | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 10'                                                        |                                                                                                                                                                               |  |                      |                                                                                | No product detected                                                            |
| 5—<br>6—          |                                 | Slot Size: 0.010"                                                                                                    |                                                                                                                                                                               |  | -Sand Pac            | k                                                                              | No product detected                                                            |
| 7-                |                                 | Sand Pack:<br>Top: 2' bgs<br>Bottom: 14' bgs                                                                         |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| 9—                |                                 | Grain Size: wG #1                                                                                                    |                                                                                                                                                                               |  |                      | creen                                                                          |                                                                                |
| 10—               |                                 | Bentonite Seal:<br>Top: 0 (surface)                                                                                  |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| 11-               |                                 | Grain Size: 3/8" chips/granula                                                                                       | ar (30-50 mesh)                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| 12-               |                                 |                                                                                                                      |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| 13-               |                                 |                                                                                                                      |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| 15-               |                                 | End of Boring                                                                                                        |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| Total De          | epth: 14' t                     | bgs                                                                                                                  |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |
| TOC: To<br>DTW: D | op of PVC<br>epth to w          | casing<br>ater                                                                                                       |                                                                                                                                                                               |  |                      |                                                                                |                                                                                |

|                          | <b>P</b>                        | ARM Group Inc.<br>Earth Resource Engineers<br>and Consultants                                                        | LOG OF TEMPORARY GROUNDWATER SAMPLE<br>COLLECTION POINT: A10-034-PZ                    |                                                                      |                                                                                 |                                                                                |
|--------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Site                     | Client:<br>Sparro<br>S<br>ARM P | EnviroAnalytics Group<br>ws Point - Area A Parcel A10<br>parrows Point, MD<br>roject No.: 150298M-5-3<br>Page 1 of 1 | Date Installed<br>Casing/Riser Type<br>Borehole Diameter<br>Drilling Method<br>Driller | : 7/12/16<br>: PVC<br>: 2.25"<br>: 7822DT Geoprobe<br>: Don Marchese | Drilling Company<br>TOC Elevation<br>0-Hr DTW<br>48-Hr DTW<br>ARM Representativ | : Green Services, Inc<br>: 20.1'<br>: 7.3' TOC<br>: 6.8' TOC<br>ve : L. Perrin |
| Depth in Feet            | Surf. Elev.                     | DESCRIF                                                                                                              | PTION                                                                                  |                                                                      |                                                                                 | REMARKS                                                                        |
| 0                        |                                 | Riser Type: PVC<br>Riser Diameter: 1"<br>Riser Stickup: 3.0'                                                         |                                                                                        |                                                                      |                                                                                 | Northing (US ft): 571289.59<br>Easting (US ft): 1464806.40                     |
| 4                        |                                 | Screen Type: PVC<br>Screen Diameter: 1"<br>Screen Amount: 5'<br>Slot Size: 0.010"                                    |                                                                                        |                                                                      |                                                                                 | No product detected                                                            |
| 8                        |                                 | Bentonite Seal:                                                                                                      |                                                                                        | Benton                                                               | ite seal<br>Riser                                                               |                                                                                |
| 11-<br>12-<br>13-<br>14- |                                 | Grain Size: 3/8" chips/granul.<br>(0- 15') 3/8" chips<br>(15-20') 1-5' Bentonite Sleeve                              | ar (30-50 mesh)                                                                        |                                                                      |                                                                                 |                                                                                |
| 15—<br>16—<br>17—        |                                 |                                                                                                                      |                                                                                        |                                                                      |                                                                                 |                                                                                |
| 18-<br>19-<br>20-<br>21- |                                 |                                                                                                                      |                                                                                        | Sand P                                                               | ack                                                                             |                                                                                |
| 22                       |                                 |                                                                                                                      |                                                                                        |                                                                      | Screen                                                                          |                                                                                |
| 20-<br>26-               | onth: 14' l                     | End of Boring                                                                                                        |                                                                                        |                                                                      |                                                                                 |                                                                                |
| TOC: TO<br>DTW: D        | op of PVC                       | C casing<br>vater                                                                                                    |                                                                                        |                                                                      |                                                                                 |                                                                                |

# CRRGPFKZ'I "

| L<br>Ten            | ow Flow<br>nporary I          | Sampli<br>Piezom | ing<br>eters |                            |                                 | ARN<br>Earth Reso         | M G<br>Durce Engin       | roup In<br>neers and Cons          | nC.<br>ultants      |  |  |
|---------------------|-------------------------------|------------------|--------------|----------------------------|---------------------------------|---------------------------|--------------------------|------------------------------------|---------------------|--|--|
| Project Name:       | Area A                        | Parro            | GIA I        |                            | Project Num                     | ıber: \5                  | DZaB                     | M-5                                |                     |  |  |
| Piezometer Nur      | nber: AIN                     | - 002            | PZ           |                            | Date: 7-18-16 0900              |                           |                          |                                    |                     |  |  |
| Piezometer Dia      | meter (in):                   | 1                |              |                            | One Well Volume (gal): N L576   |                           |                          |                                    |                     |  |  |
| Depth to Produc     | ct (ft):                      | a                |              |                            | OED Contro                      | oller Setting             | 5: -                     |                                    |                     |  |  |
| Depth to Water      | (ft)                          | 1 TOC            |              |                            | Flow Rate (1                    | mL/min)                   | - King                   |                                    |                     |  |  |
| Product Thickne     | $(\mathbf{r})$                | A                | _            |                            | Length of ti                    | me Purged (               | $\frac{300}{\text{min}}$ | 72 110                             |                     |  |  |
| Depth to Botton     | $n (ff) \cdot Q$              | ALL TO           | 0            |                            | Longth of th                    | ine i uigeu (             |                          | 33 11                              |                     |  |  |
| Beptil to Botton    |                               | .99.10           |              | PURG                       | ING RECOR                       | SD                        |                          |                                    | a handy and the sal |  |  |
|                     |                               |                  |              | ICRO                       | Specific                        | Dissolved                 | Concession of the second |                                    |                     |  |  |
| Time                | Volume<br>Purged<br>(gallons) | DTW<br>(feet)    | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1      | Conductance<br>(ms/cm)<br>± 3%  | Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10      | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments            |  |  |
| 933                 | 1.50                          | 0.45             | 21.26        | 5.53                       | 0.780                           | 0.49                      | 188.4                    | 25.4                               | light gran          |  |  |
| 936                 | 1.95                          | 10.46            | 21.33        | 5.53                       | 0.779                           | 0.50                      | 194.9                    | 34.1                               | 0.0                 |  |  |
| 939                 | 2.00                          | 10.46            | 21.21        | 5,55                       | 0.775                           | 0.49                      | 194.1                    | 38.8                               |                     |  |  |
| 942                 | 2 25                          | 10.46            | 21.27        | 5.54                       | 0. 77.2                         | 0.46                      | 194.7                    | 359                                |                     |  |  |
| 947                 | 2.65                          | 10,46            | 21 34        | 653                        | 0.773                           | 0.45                      | 97.7                     | 38.4                               |                     |  |  |
| 950                 | 7.90                          | 10.46            | 21.24        | 5.56                       | 0.770                           | 0.44                      | 1975                     | 36.10                              |                     |  |  |
| 100                 | 0.10                          |                  | 1            | 0.00                       |                                 |                           | 111.2                    | 2010                               |                     |  |  |
|                     |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
| -                   |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              |                            |                                 |                           |                          |                                    |                     |  |  |
| HERE SHOP SHOP IN A |                               |                  |              |                            | C                               | PROOPR                    |                          |                                    | ARE LINE MERCA      |  |  |
| Li - Markine_       |                               |                  | MON          | ITORIN                     | G SAMPLE                        | RECORD                    |                          | sindağı Vürindevi te               |                     |  |  |
| Sample              | e ID                          | Time C           | ollected     | Param                      | eter/Order                      | Conta                     | ainer                    | Perservative                       | Collected?          |  |  |
|                     |                               |                  |              | TCI                        | L-VOCs                          | 3 - 40 m                  | L VOA                    | HCl                                | V                   |  |  |
|                     |                               |                  |              | TP.                        | H-GRO                           | 3 - 40 m                  | L VOA                    | HCl                                | ×                   |  |  |
|                     |                               |                  |              | TP.                        | H-DRO                           | <b>2</b> - 1 L .          | Amber                    | none                               | $\langle \rangle$   |  |  |
|                     | 0.2                           |                  | r            | TCL                        | -SVOCs                          | 2-1L                      | Amber                    | none                               |                     |  |  |
| 03                  | -9-2                          | 095              | ל            | C                          | yanide                          | 1 - 250 m                 | L Plastic                | NaOH                               |                     |  |  |
| A10-000             |                               |                  |              | TAL·<br>M<br>(Dis<br>Field | -Metals &<br>ercury<br>ssolved) | 1 - 250 m                 | L Plastic                | HNO3                               | У<br>У              |  |  |
|                     |                               |                  |              | TT                         | a niereu                        |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              | Her                        | kavalent                        |                           |                          |                                    |                     |  |  |
|                     |                               |                  |              | Chi                        | romium                          | 1 - 250 m                 | L Plastic                | None                               | $\checkmark$        |  |  |
|                     |                               |                  |              | (Di                        | ssolved)                        |                           |                          |                                    | /                   |  |  |
|                     |                               |                  |              | Field                      | Filtered                        |                           |                          | L                                  | - N.C               |  |  |
|                     |                               |                  | Ma           | atrix Spil                 | ke                              | _                         |                          |                                    |                     |  |  |
|                     |                               |                  | 1            | Juplicate                  |                                 |                           |                          |                                    | N N                 |  |  |
| Sampled I           | By: <u>LLP</u>                |                  | Commen       | is: Dev<br>pui             | 900 - 9<br>zeel 93              | 133<br>3-950              |                          |                                    |                     |  |  |
|                     | Casing Volu                   | ume: 1" I.D.     | = 0.041 gab  | ft - 2" I.D.               | = 0.163 gal/ft - 4              | 4" I.D. = 0.653           | gal/ft - 6" I.           | <b>D.</b> = 1.47 gal/ft            |                     |  |  |
|                     |                               |                  | _īk          | ft x <u>0</u> ,            | 041 gal/ft = 0.                 | 656 (gal)                 |                          | <i>07.6</i>                        |                     |  |  |

| L<br>Tei         | Low Flow<br>mporary I         | Sampl<br>Piezom | ing<br>eters      |                                      |                                                     | ARI<br>Earth Reso                      | M G                 | roup In<br>neers and Cons          | <b>IC</b> .<br>ultants |  |  |
|------------------|-------------------------------|-----------------|-------------------|--------------------------------------|-----------------------------------------------------|----------------------------------------|---------------------|------------------------------------|------------------------|--|--|
| Project Name:    | Area A                        | Par             | el An             | 2                                    | Project Num                                         | iber: ( 🔊                              | TO ZABY             | 1-5-3                              |                        |  |  |
| Piezometer Nur   | mber: Alo                     | -010            | -P2               |                                      | Date:                                               | 7-20-1                                 | 6                   | 1205                               |                        |  |  |
| Piezometer Dia   | umeter (in):                  | 1               |                   |                                      | One Well Volume (gal): 0, 9                         |                                        |                     |                                    |                        |  |  |
| Depth to Produ   | ict (ft):                     | A               |                   |                                      | QED Contro                                          | oller Setting                          | s:                  |                                    |                        |  |  |
| Depth to Water   | (ft).11.94 TOD                | Before .>       | Ager 12           | NOTOC                                | Flow Rate (1                                        | nL/min)                                | 300                 |                                    |                        |  |  |
| Product Thickn   | ess (ft): N                   | A               |                   | -                                    | Length of tin                                       | ne Purged (                            | min)                | 50                                 |                        |  |  |
| Depth to Botton  | m (ft): 25.                   | 38700           |                   |                                      |                                                     |                                        |                     |                                    |                        |  |  |
|                  |                               | A 22            |                   | PURG                                 | ING RECOI                                           | 2D                                     | 1.2.1.2             |                                    |                        |  |  |
| Time             | Volume<br>Purged<br>(gallons) | DTW<br>(feet)   | Temp<br>(°C)      | pH<br>(s.u.)<br>± 0.1                | Specific<br>Conductance<br>(ms/cm)<br>± 3%          | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10 | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments               |  |  |
| 1250             | 2.14.0                        | 12.06           | 20.18             | 6.39                                 | 0.911                                               | 0.37                                   | -42.3               | 3349 AU                            |                        |  |  |
| 1255             | 4.4                           | 12.05           | 20:35             | 6.30                                 | 0.932                                               | 0.24                                   | - 46.8              | 3653.Au                            |                        |  |  |
| 1300             | 4.8                           | 12.05           | 20.47             | 6.30                                 | 0.936                                               | 0.18                                   | -52.6               | 3471 AU                            |                        |  |  |
| 1305             | 5.2                           | 12.05           | 20.65             | 6.29                                 | 0.933                                               | 0.26                                   | -55.2               | 3058AU                             |                        |  |  |
| 1310             | 5.6                           | 12.05           | 20.79             | 6.29                                 | 0.933                                               | 0.25                                   | -55,8               | 2588 AU                            |                        |  |  |
| 1315             | 6.0                           | 12.04           | 20.97             | 6.26                                 | 0.930                                               | 0.24                                   | -56.1               | 1659 AU                            |                        |  |  |
| 1320             | 6.4                           | 12.04           | 21.04             | 6.25                                 | 0.927                                               | 0.34                                   | -55.9               | 1364 AL                            |                        |  |  |
| 1325             | 6.8                           | 12.04           | 21.18             | 6.23                                 | 0.923                                               | 0.31                                   | -55.0               | 895 AU                             |                        |  |  |
| 13:30            | 7.2                           | 12.04           | 20.94             | 6.22                                 | 0.923                                               | 0.32                                   | -53.6               | 706 AU                             |                        |  |  |
| 1335             | 7.6                           | 12.03           | 20.88             | 6.21                                 | 0.919                                               | 0.31                                   | -525                | 173 Mu                             |                        |  |  |
| 1337 1340        | 7.85                          | 12.03           | 20.82             | 6.21                                 | 0.917                                               | 0.30                                   | -51.2               | 149 274                            |                        |  |  |
| 1340             | 8.0                           | 12.03           | 20.90             | 6.21                                 | 0.917                                               | 8.28                                   | -50.8               | 144 NTA                            |                        |  |  |
|                  | - P-1                         |                 |                   |                                      |                                                     |                                        |                     |                                    |                        |  |  |
| a shintan in sto |                               |                 | MON               | ITORIN                               | G SAMPLE                                            | RECORD                                 |                     |                                    |                        |  |  |
| Sampl            | e ID                          | Time C          | ollected          | Param                                | eter/Order                                          | Conta                                  | iner                | Perservative                       | Collected?             |  |  |
|                  |                               |                 |                   | TC                                   | L-VOCs                                              | 3 - 40 m                               | L VOA               | HC1                                | Y                      |  |  |
|                  |                               |                 |                   | TP                                   | H-GRO                                               | 3 - 40 m                               | L VOA               | HC1                                | Y                      |  |  |
|                  |                               |                 |                   | TP                                   | H-DRO                                               | 2 - 1 L .                              | Amber               | none                               | 4                      |  |  |
|                  |                               |                 |                   | TCL-SVOCs                            |                                                     | 2-1 L Amber                            |                     | none                               | 4                      |  |  |
|                  |                               |                 |                   | C                                    | yanide                                              | 1 - 250 m                              | L Plastic           | NaOH                               |                        |  |  |
| A10-010-P2       |                               | 134             | D                 | TAL-<br>M<br>(Dis<br>Field           | Metals &<br>ercury<br>ssolved)<br>I <b>Filtered</b> | 1 - 250 mL Plastic                     |                     | HNO3                               | <b>S</b>               |  |  |
|                  |                               |                 |                   |                                      | kavalent<br>romium<br>ssolved) 1 - 250 mL Plastic   |                                        | None                | None y                             |                        |  |  |
|                  |                               |                 | Ma                | trix Spil                            | ke                                                  |                                        |                     |                                    | $\mathcal{N}$          |  |  |
|                  |                               |                 | Γ                 | Duplicate                            |                                                     |                                        |                     |                                    | $\mathcal{N}$          |  |  |
| Sampled I        | Ву:                           | 9               | Commen<br>D<br>Pu | ts: <del>Pto</del><br>W: 17<br>rged. | > Ded.<br>205-1250<br>1250-131                      | 4 gailon                               | ns due              | to high t                          | urbidity               |  |  |
|                  | Casing Volu                   | me: 1" I.D.     | = 0.041 gal/      | ft - 2" I.D.                         | = 0.163 gal/ft - 4<br>$\frac{04}{2}$ gal/ft = 0     | "I.D. = 0.653                          | gal/ft - 6" I.      | <b>D.</b> = 1.47 gal/ft            |                        |  |  |

| L<br>Ter                   | ow Flow                | Sampl<br>Piezom    | ing<br>leters |                          |                                   | AR<br>Earth Rese               | M G                      | roup Ir                 | <b>IC</b> .      |  |  |
|----------------------------|------------------------|--------------------|---------------|--------------------------|-----------------------------------|--------------------------------|--------------------------|-------------------------|------------------|--|--|
| Project Name               | Area A                 | Deces              | 010           |                          | Project Nur                       | nher: 19                       | Ciguna                   | (C                      |                  |  |  |
| Piezometer Nur             | nber: Nid-             | Tarce              | - 87          |                          | Date: 7-20-16 810                 |                                |                          |                         |                  |  |  |
| Piezometer Dia             | meter (in):            | 1                  | 10            |                          | One Well Volume (gal):            |                                |                          |                         |                  |  |  |
| Depth to Produc            | et (ft):               | A                  |               |                          | OFD Controller Settings           |                                |                          |                         |                  |  |  |
| Depth to Water             | $(ft) \cdot ha \beta $ | 3 TEL              |               | 3 10 000                 | Flow Rate (mI/min)                |                                |                          |                         |                  |  |  |
| Product Thickn             | ess(ft)                | NA                 | / Deu .       | <u>1.12 (a</u>           | Length of ti                      | me Purged (                    | $\frac{300}{\text{min}}$ | 77                      |                  |  |  |
| Depth to Bottor            | n (ft):                | 90 7               | nc            |                          | Lengui oi ti                      | ine i uigeu (                  | 11111 <i>)</i>           | 21                      |                  |  |  |
|                            |                        | × +0 1             |               | PURC                     | ING RECO                          | RD                             | STOLEN'S                 | TEL CONTENT             |                  |  |  |
| and compared to the second |                        |                    |               |                          | Specific                          | Dissolved                      |                          |                         |                  |  |  |
| Time                       | Volume                 | DTW                | Temp          | pH<br>(au)               | Conductance                       | Oxygen                         | ORP                      | Turbidity               |                  |  |  |
| THIC                       | (gallons)              | (feet)             | (°C)          | $\pm 0.1$                | (ms/cm)                           | (mg/L)                         | (mv) + 10                | (N10)<br>+ 10% or < 5   | Comments         |  |  |
| 0                          | (8)                    |                    |               | - 011                    | ± 3%                              | ± 0.3                          | - 10                     | 10/001 3                |                  |  |  |
| 856                        | 1.75                   | 9.12               | 20.42         | 5.88                     | 0.748                             | 0.47                           | 43.5                     | 626 AU                  |                  |  |  |
| 101                        | 2.15                   | 9.12               | 20.48         | 5.95                     | 0,737                             | 0.39                           | 41.2                     | 628 AU                  |                  |  |  |
| 406                        | 2.55                   | 9.11               | 20.75         | 5.80                     | 0,725                             | 0.46                           | 44.4                     | 84.1                    |                  |  |  |
| 911                        | 2.95                   | 9.11               | 20.91         | 5.85                     | 0.718                             | 0.45                           | 47.2                     | 37.8                    |                  |  |  |
| 914                        | 3,20                   | 9.11               | 20.90         | 5.85                     | 0.718                             | 0.49                           | 48.1                     | 18.1                    |                  |  |  |
| 917                        | 3.45                   | 9111               | 20.90         | 5.85                     | 0.717                             | 0.42                           | 46.5                     | 13.4                    |                  |  |  |
| 920                        | 370                    | 9.10               | 20.98         | 5.87                     | 0.714                             | 0.50                           | 47.9                     | 13.9                    |                  |  |  |
| 923                        | 3,95                   | 9.10               | 21.10         | 5.87                     | 0.710                             | 0.44                           | 47.3                     | 12.7                    |                  |  |  |
|                            |                        |                    |               |                          |                                   |                                |                          |                         |                  |  |  |
|                            |                        |                    |               |                          |                                   |                                |                          |                         |                  |  |  |
|                            |                        |                    |               |                          |                                   |                                |                          |                         |                  |  |  |
|                            |                        |                    |               |                          |                                   |                                |                          |                         |                  |  |  |
| =                          |                        |                    |               |                          |                                   | 1.                             |                          |                         |                  |  |  |
|                            | ALCONTRACTOR           |                    | MON           | ITORIN                   | G SAMPLE                          | RECORD                         |                          |                         | Tell and a state |  |  |
| Sample                     | e ID                   | Time C             | ollected      | Param                    | eter/Order                        | Conta                          | iner                     | Perservative            | Collected?       |  |  |
| 100                        |                        |                    |               | TC                       | L-VOCs                            | 3 - 40 m                       | L VOA                    | HCl                     | 1/               |  |  |
|                            |                        |                    |               | TP                       | H-GRO                             | 3 - 40 m                       | L VOA                    | HC1                     | - Č              |  |  |
|                            |                        |                    |               | TP                       | H-DRO                             | 2 - 1 L .                      | Amber                    | none                    | t                |  |  |
|                            |                        |                    |               | TCL                      | -SVOCs                            | 2-1 L Amber                    |                          | none                    | 1,               |  |  |
|                            |                        |                    |               | C                        | yanide                            | 1 - 250 m                      | L Plastic                | NaOH                    | V                |  |  |
|                            |                        |                    |               | TAL-                     | Metals &                          |                                |                          |                         |                  |  |  |
| N                          |                        | 925                |               | М                        | ercury                            |                                |                          |                         | Y                |  |  |
| H10-015                    | -PZ                    |                    |               | (Dis                     | ssolved)                          | 1 - 250 m                      | L Plastic                | HNO3                    | · · · · · ·      |  |  |
|                            |                        |                    |               | Field                    | Filtered                          |                                |                          |                         |                  |  |  |
|                            |                        |                    |               | Hey                      | cavalent                          |                                |                          |                         |                  |  |  |
|                            |                        |                    |               | Chi                      | romium                            |                                |                          |                         |                  |  |  |
|                            |                        |                    |               | (Dis                     | ssolved)                          | 1 - 250 m                      | L Plastic                | None                    | У                |  |  |
|                            |                        |                    |               | Field                    | Filtered                          |                                |                          |                         |                  |  |  |
|                            |                        |                    | Ma            | trix Spil                | ce                                |                                |                          |                         | N                |  |  |
|                            |                        |                    | E             | Duplicate                |                                   |                                |                          |                         | N                |  |  |
|                            |                        |                    | Commen        | ts:                      |                                   |                                |                          |                         |                  |  |  |
| Sampled B                  | By:L                   | P                  |               |                          |                                   |                                |                          |                         |                  |  |  |
|                            |                        |                    |               |                          |                                   |                                |                          |                         |                  |  |  |
|                            | Casing Volu            | <u>me:</u> 1" I.D. | = 0.041 gal/  | ft - 2" 1.D.<br>ft x 0.0 | = 0.163  gal/ft - 4<br>gal/ft $=$ | " <b>I.D.</b> = 0.653<br>(gal) | gal/ft - 6" I.           | <b>D.</b> = 1.47 gal/ft |                  |  |  |

|            | tempe<br>Low Flo              | w San         | Piezon              | neter                 |                                            | ARN<br>Earth Reso                       | M G1                                 | roup In<br>neers and Const         | nC.<br>ultants     |
|------------|-------------------------------|---------------|---------------------|-----------------------|--------------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------|--------------------|
| Froject Na | ame: Area                     | Afar          | cer Alo             |                       | Project Num                                | ber: 15                                 | 0298m                                | 1-5                                |                    |
| -Well Num  | ber: Piczoy                   | Alo-1         | 018-p2              | -                     | Date:                                      | 7-20-11                                 | 0                                    | 1530                               |                    |
| Well Dian  | neter (in):                   | 1             |                     |                       | One Well V                                 | olume (gal):                            | 2)<br>13                             |                                    |                    |
| Total Dep  | th (ft): 🥱                    | 0.05 T        | x                   |                       | QED Contro                                 | oller Settings                          | 5:                                   |                                    |                    |
| Depth to V | Water (ft)                    | 3.1784        | DC I                | ter our               | Flow Rate (1                               | nL/min)                                 | 300                                  |                                    |                    |
| Condition  | of Casing /                   | Pad: 🔨        | AI                  |                       | Length of tir                              | ne Purged (i                            | min)   8                             | 3                                  |                    |
|            | and the second                |               |                     | W                     | ELL PURGI                                  | NG RECOI                                | RD                                   | The second                         |                    |
| Time       | Volume<br>Purged<br>(gallons) | DTW<br>(feet) | Temp<br>(°C)        | pH<br>(s.u.)<br>± 0.1 | Specific<br>Conductance<br>(ms/cm)<br>± 3% | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3  | ORP<br>(mV)<br>± 10                  | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments           |
| 1552       | 1.85                          | 13,17         | 16.61               | 6.58                  | 0.732                                      | 0.34                                    | -234,1                               | 98                                 |                    |
| 1557       | 2.25                          | 13.17         | 17.84               | 6.54                  | 0.739                                      | 0.34                                    | -215.2                               | 139                                |                    |
| 1602       | 2.65                          | 13.17         | 13.12               | 6.54                  | 0.737                                      | 0.32                                    | -218.6                               | 129                                |                    |
| 1607       | \$3.05                        | 13,17         | 17.99               | 6.51                  | 0.733                                      | 0.36                                    | -215.0                               | 133                                |                    |
| 1610       | 3.30                          | 13.16         | 18.30               | 6.49                  | 0.730                                      | 0.38                                    | - 207.7                              | 130                                |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
| _          |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            | _                             |               |                     |                       |                                            |                                         |                                      |                                    |                    |
| 14.5 63    |                               | 1. 19 1. 201  | 1000                | MON                   | ITORING SA                                 | MPLE RE                                 | CORD                                 |                                    |                    |
| Samj       | ple ID                        | Time C        | ollected            | Param                 | eter/Order                                 | Conta                                   | ainer                                | Perservative                       | Collected?         |
|            |                               |               |                     | TCI                   | L-VOCs                                     | 3 - 40 mL VOA                           |                                      | HCl                                | Y                  |
|            |                               |               |                     | TP                    | H-GRO                                      | 3 - 40 m                                | L VOA                                | HCl                                |                    |
|            |                               |               |                     | TP                    | H-DRO                                      | 2-1L                                    | Amber                                | none                               | X                  |
| -          |                               |               |                     | TCL                   | -SVOCs                                     | 2-1L.                                   | Amber                                | none                               | Y                  |
| Mod        | NB-PZ                         | 161           | 5                   | Mercu                 | ury (Total)                                | 1 - 250 m                               | L Plastic                            | HNO3                               | N                  |
| 110-       |                               |               |                     | Hey<br>Chi            | romium                                     | 1 - 250 m                               | L Plastic                            | None                               | Field Filtered Y   |
|            |                               |               |                     | C                     | yanide                                     | 1 - 250 m                               | L Plastic                            | NaOH                               | У                  |
|            |                               |               |                     | TAL-<br>Mercury       | Metals &<br>(Dissolved)                    | 1 - 250 m                               | L Plastic                            | HNO3                               | y (Field filtered) |
|            |                               |               |                     |                       |                                            |                                         |                                      |                                    |                    |
|            |                               |               |                     | Matrix                | Spike                                      |                                         |                                      |                                    |                    |
|            |                               |               |                     | Dupli                 | cate                                       | <b>T</b> 1 1 1                          | TT*1, 1J-4                           |                                    | /-                 |
|            | Sampled B                     | y:            | Commen              | ts: **Dis<br>Des: 16  | solved metal $530 - 1552$                  | s are Field                             | Filtered**                           | ,                                  |                    |
|            | 1                             |               | ru<br>ru            | Ju . I                |                                            |                                         | -                                    | 10 00 00 00 00                     | a 1/0              |
|            | -                             | Casing Volu   | <u>ıme:</u> 1" I.D. | = 0.041 gal/          | ft - 2" I.D. = 0.16<br>ft x644             | 53 gal/ft - 4" <b>1.</b><br>al/ft =0.61 | <b>D.</b> = 0.653 ga<br><u>(gal)</u> | al/tt - 6" I.D. = ].4              | / gal/it           |

| -limporary<br>piezonie | Low Flow                      | Samp<br>ent We | ling<br>Ils                    |                       |                                            | ARI<br>Earth Reso                      | M G<br>ource Engi   | roup In<br>neers and Const         | nC.<br>ultants |
|------------------------|-------------------------------|----------------|--------------------------------|-----------------------|--------------------------------------------|----------------------------------------|---------------------|------------------------------------|----------------|
| Project Name:          | Area A                        | Parcel         | ALD                            |                       | Project Nun                                | nber: 150                              | 298m                | -5                                 |                |
| Well Number:           | A10-02                        | 0-93           | -                              |                       | Date:                                      | 7-18-                                  | -16                 | 1515                               |                |
| Well Diameter (        | (in):                         |                |                                |                       | One Well V                                 | olume (gal):                           | :                   |                                    |                |
| Depth to Produc        | ct (ft): N                    | F              |                                |                       | QED Contro                                 | oller Setting                          | s:                  |                                    |                |
| Depth to Water         | (ft): 7.06                    | TOC            |                                |                       | Flow Rate (1                               | mL/min)                                | 300                 | allorin                            |                |
| Product Thickne        | ess (ft): N                   | ٨              |                                |                       | Length of tin                              | me Purged (                            | min)                | 32:15                              |                |
| Depth to Botton        | n (ft): 24,                   | 77 TO          | С                              |                       | Condition o                                | f Pad/Cover                            | :                   | ·                                  |                |
|                        |                               |                |                                | PURG                  | NG RECOR                                   | D                                      | St or net           |                                    |                |
| Time                   | Volume<br>Purged<br>(gallons) | DTW<br>(feet)  | Temp<br>(°C)                   | pH<br>(s.u.)<br>± 0.1 | Specific<br>Conductance<br>(ms/cm)<br>± 3% | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10 | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments       |
| 1547                   | 3,00                          | 7.07           | 17.71                          | 5.82                  | 0.527                                      | 0.31                                   | -110.5              | 86                                 |                |
| 1550                   | 3.25                          | 2.07           | 17.80                          | 5.80                  | 0.524                                      | 0.27                                   | -105.4              | 53                                 |                |
| 1553                   | 3.50                          | 7.07           | 17.93                          | 5.78                  | 0.523                                      | 0.26                                   | -98.2               | 35                                 |                |
| 1556                   | 3.75                          | 7.08           | 17.92                          | 5.77                  | 0. 524                                     | 0.26                                   | .97.2               | 38.5                               |                |
| 1559                   | 4,00                          | 7.08           | 17.94                          | 5.77                  | 0. 524                                     | 0.25                                   | -88.4               | 41,5                               |                |
| 1602                   | 4.25                          | 7.08           | 17.99                          | 5.77                  | 0 524                                      | 0.26                                   | -79.7               | 38.9                               |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        | _                   |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
|                        |                               |                |                                |                       |                                            |                                        |                     |                                    |                |
| のに見ています。               | 告款目的                          |                | MO                             | NITORINO              | G SAMPLE R                                 | ECORD                                  |                     |                                    |                |
| Sample                 | e ID                          | Time C         | ollected                       | Parame                | eter/Order                                 | Conta                                  | ainer               | Perservative                       | Collected?     |
|                        |                               |                |                                | TCL                   | -VOCs                                      | 3 - 40 m                               | L VOA               | HC1                                | У              |
|                        |                               |                |                                | TPH                   | I-GRO                                      | 3 - 40 m                               | L VOA               | HCl                                | Ý              |
|                        |                               |                |                                | TPH                   | I-DRO                                      | 2 - 1 L Amber                          |                     | none                               | 4              |
|                        |                               |                |                                | TCL-                  | SVOCs                                      | 2-1 L Amber                            |                     | none                               |                |
|                        |                               |                | TAL-Me<br>Mercury              |                       | Metals &<br>ry (total)                     | 1 - 250 mL Plastic                     |                     | HNO3                               | V              |
| A10-200                | 0-P-2                         | 160            | 5                              | Hexavaler<br>(te      | nt Chromium<br>otal)                       | 1 - 250 m                              | L Plastic           | none                               | ý              |
| 110 000                | •                             |                |                                | Cy.                   | anide                                      | 1 - 250 m                              | L Plastic           | NaOH                               | 7              |
|                        |                               |                |                                | TAL-Mercury<br>Field  | Metals &<br>(Dissolved)<br><b>Filtered</b> | 1 - 250 m                              | L Plastic           | HNO3                               | Ý              |
|                        |                               |                |                                | Hexavalen<br>(Diss    | t Chromium                                 | 1 - 250 m                              | L Plastic           | none                               | 1.7            |
|                        |                               |                |                                | Field                 | Filtered                                   |                                        |                     |                                    | У              |
|                        |                               |                |                                | Р                     | CB                                         | 2 - 1 L .                              | Amber               | None                               | N              |
|                        |                               |                | N                              | latrix Spike          | e                                          |                                        |                     |                                    | Ň              |
|                        |                               |                |                                | Duplicate             |                                            |                                        |                     |                                    | N              |
| Sampled H              | By: LL                        | P              | Commen                         | ts: Ded<br>Durge      | -1515-15                                   | 602                                    |                     |                                    |                |
|                        | Casing V                      | olume: 1" I.   | $D_{\star} = 0.041 \text{ gs}$ | al/ft - 2" I.D. =     | = 0.163 gal/ft - 4"<br>41 gal/ft =         | I.D. = 0.653 g<br>(gal)                | al/ft - 6" I.D.     | = 1.47 gal/ft                      |                |

| 10            |                                                             | Plezom                                | leters       |                                                          | Project Number: 150298M-5                    |                                                                                                                              |           |                                    |              |  |  |
|---------------|-------------------------------------------------------------|---------------------------------------|--------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------|--------------|--|--|
| Project Name  | : Area A Pa                                                 | scel f                                | 410          |                                                          |                                              |                                                                                                                              |           |                                    |              |  |  |
| Piezometer N  | lumber:                                                     | A10-                                  | 021-         | PZ                                                       | Date: 7-19-16 1305                           |                                                                                                                              |           |                                    |              |  |  |
| Piezometer D  | Diameter (in):                                              | 1                                     |              |                                                          | One Well V                                   | olume (gal)                                                                                                                  | D.,       | 00                                 |              |  |  |
| Depth to Prod | Depth to Water (ft): 6.89 TOC<br>Product Thickness (ft): NA |                                       |              |                                                          |                                              |                                                                                                                              | s:        |                                    |              |  |  |
| Product Thiel |                                                             |                                       |              |                                                          |                                              |                                                                                                                              | min)      |                                    |              |  |  |
| Depth to Bott | tom (ft): $24$                                              | 37 -                                  | TOC          |                                                          | Lengur of th                                 | ine i urgeu (                                                                                                                | 11111) 1  | 0                                  |              |  |  |
| THE STRATES   |                                                             | .07                                   |              | PURC                                                     | SING RECO                                    | RD                                                                                                                           | SWIE SE   |                                    | N 1945 - 561 |  |  |
| Time          | Volume<br>Purged<br>(gallons)                               | DTW<br>(feet)                         | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1                                    | Specific<br>Conductance<br>(ms/cm)<br>± 3%   | $\begin{array}{c c} Dissolved \\ Oxygen \\ (mg/L) \\ \pm 0.3 \end{array} \begin{array}{c} ORP \\ (mV) \\ \pm 10 \end{array}$ |           | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments     |  |  |
| 1340          | 2.10                                                        | 6.67                                  | 18.53        | 6.40                                                     | 0.556                                        | 0.27                                                                                                                         | -222.5    | 156                                |              |  |  |
| 1345          | 2.50                                                        | 6.67                                  | 18.69        | 6.35                                                     | 0.556                                        | 8,27                                                                                                                         | -233.0    | 104                                |              |  |  |
| 1350          | 2.90                                                        | 6.67                                  | 18.46        | 6.32                                                     | 0.557                                        | 0.28                                                                                                                         | -199.4    | 101.1                              |              |  |  |
| 1353          | 3,15                                                        | 6.66                                  | 18.61        | 6.31                                                     | 0.556                                        | 0.28                                                                                                                         | -253.3    | 105.2                              |              |  |  |
| 1356          | 3,35                                                        | 6.66                                  | 18.60        | 6.30                                                     | 0.556                                        | 0.28                                                                                                                         | 260.7     | 103.3                              |              |  |  |
|               |                                                             |                                       | MON          |                                                          | CCAMDIE                                      | DECODD                                                                                                                       |           |                                    |              |  |  |
| Sam           | nle ID                                                      | Time (                                | ollected     | Param                                                    | G SAMPLE                                     | Cont                                                                                                                         | viner     | Darcorustiva                       | Callastad    |  |  |
|               |                                                             |                                       |              | TCL-VOCs                                                 |                                              | 3 - 40  m                                                                                                                    |           | HCl                                | Confected    |  |  |
|               |                                                             |                                       |              | TPH-GRO                                                  |                                              | 3 - 40 mL VOA                                                                                                                |           | HC1                                |              |  |  |
|               |                                                             |                                       |              | TPH-DRO                                                  |                                              | 2 - 1 L Amber                                                                                                                |           | none                               |              |  |  |
|               |                                                             |                                       |              | TCL-SVOCs                                                |                                              | 2-1 L Amber                                                                                                                  |           | none                               | Ý.           |  |  |
|               |                                                             | 126                                   | 3            | Cyanide                                                  |                                              | 1 - 250 m                                                                                                                    | L Plastic | NaOH                               | Y_           |  |  |
| A10-021-PZ    |                                                             | TA<br>(I)<br>Fie<br>(I)<br>(I)<br>Fie |              | TAL-Metals &<br>Mercury<br>(Dissolved)<br>Field Filtered |                                              | 1 - 250 mL Plastic                                                                                                           |           | HNO3                               | У            |  |  |
|               |                                                             |                                       |              | Hez<br>Chi<br>(Dis<br>Field                              | xavalent<br>romium<br>ssolved)<br>I Filtered | 1 - 250 mL Plastic                                                                                                           |           | None                               | Ý            |  |  |
|               |                                                             |                                       | Ma           | atrix Spil                                               | ke                                           |                                                                                                                              |           |                                    | N            |  |  |
|               |                                                             |                                       | Ι            | Duplicate                                                |                                              |                                                                                                                              |           |                                    | N            |  |  |
| Commission    | By: LC                                                      | 2                                     | Commen       | ts: De<br>Pu                                             | N° Concert i 12                              | 1305-13                                                                                                                      | 1340      |                                    |              |  |  |
| L               | ow Flow        | Sampli              | ing          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AR                                | M G             | roup I                   | nc.                                   |  |
|-----------------|----------------|---------------------|--------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--------------------------|---------------------------------------|--|
| Ten             | nporary H      | Piezom              | eters        |                           | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Earth Reso                        | ource Engi      | neers and Cons           | ultants                               |  |
| Project Name:   | Area A.        | Parte               | 1 A10        |                           | Project Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iber: 15                          | 02980           | 1-5                      |                                       |  |
| Piezometer Nun  | nber: AD-      | 024-                | PZ           |                           | Date: 7-18-16 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                 |                          |                                       |  |
| Piezometer Dia  | meter (in):    | 1                   |              |                           | One Well Volume (gal): $\mathcal{D}_{-}\mathcal{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                 |                          |                                       |  |
| Depth to Produc | ct (ft):       | A                   |              |                           | QED Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oller Settings                    | 3:              |                          |                                       |  |
| Depth to Water  | (ft): 5.1      | 7. 17               | -            |                           | Flow Rate (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mL/min)                           | 3000            | Lasta                    |                                       |  |
| Product Thickne | ess (ft):      | LA                  |              | -                         | Length of ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me Purged (                       | min)            | 21. 211                  |                                       |  |
| Depth to Bottor | n (ft): 22-    | 46 TT               | Y.           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 (                               |                 | 1,24                     |                                       |  |
| ALCAL PLANT AND |                | TO IL               | ~            | PURC                      | ING RECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RD                                |                 |                          | New Break Street                      |  |
|                 |                |                     |              |                           | Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dissolved                         |                 |                          |                                       |  |
| T               | Volume         | DTW                 | Temp         | pH                        | Conductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oxygen                            | ORP             | Turbidity                | Commente                              |  |
| Time            | (gallons)      | (feet)              | (°C)         | (s.u.)<br>+ 0.1           | (ms/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (mg/L)                            | (mv) + 10       | (N I U)<br>+ 10% or < 5  | Comments                              |  |
|                 | (ganons)       |                     |              | ± 0.1                     | ± 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ± 0.3                             | ±10             | 10/001 3                 | _                                     |  |
| 1211            | 2.50           | 9.35                | 18:37        | 6.02                      | 0.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.29                              | 6.6             | 1508 AU                  | Enorgh Monard                         |  |
| 1216            | 2.90           | 9.38                | 20.33        | 6.00                      | 0.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.13                              | 3.0             | 914 AU                   | · · · ·                               |  |
| 1220            | 3.30           | 9.40                | 19.15        | 6.05                      | 0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.69                              | 5.8             | 614AU                    |                                       |  |
| 1225            | 370            | 9.40                | 19.29        | 6.08                      | 0.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.44                              | 12              | LOY NTU                  | Slightly abude                        |  |
| 1228            | 3.95           | 9.4D                | 19.46        | 6.09                      | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D. 39                             | 1.6             | 72,6                     | 1 9 0                                 |  |
| 12.31           | 4.70           | 941                 | 1931         | 6.10                      | 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.40                              | 1.3             | 45.9                     |                                       |  |
| 1734            | 4345           | 9.41                | 19.49        | bill                      | 0 724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.40                              | 0.9             | 34.4                     |                                       |  |
| 12387           | 4.70           | 941                 | 1955         | 6.17                      | 0,778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.42                              | 0.8             | 28.3                     | claac                                 |  |
| 1242            | 5.11           | 9.42                | 1945         | 6.11                      | 0.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.44                              | 05              | 21.6                     | and                                   |  |
| 12/26           | 521            | 9 42                | 19 24        | 6.14                      | 0.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DUE                               | 10 7            | 242                      |                                       |  |
| 1272            | 2.20           | 1.90                | 11.29        | 0.19                      | 0,107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                              | 0.5             | 07.2                     |                                       |  |
|                 |                |                     |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          |                                       |  |
|                 |                |                     |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          | · · · · · · · · · · · · · · · · · · · |  |
| NEW STATE       |                | COLUMN THE          | MON          | TTODIN                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DECODD                            | Statistics was  | Columbia and             | ten kalenaren da                      |  |
| (FAL-3)         |                |                     | WION         | TIORIN                    | G SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECORD                            | N N SA BI       |                          |                                       |  |
| Sample          | e ID           | Time C              | ollected     | Paran                     | neter/Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conta                             | ainer           | Perservative             | Collected?                            |  |
|                 |                |                     |              | TC                        | CL-VOCs 3 - 40 mL VOA HCl V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                 |                          | V                                     |  |
|                 |                |                     |              | TP                        | H-GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 - 40 m                          | L VOA           | HCl                      | X/                                    |  |
|                 |                |                     |              | TP                        | H-DRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>2 - 1 L</u>                    | Amber           | none                     | - Y                                   |  |
|                 |                |                     |              | TCI                       | L-SVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-1L                              | Amber           | none                     | X                                     |  |
|                 |                |                     |              | <u> </u>                  | yanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>1 - 250 m</u>                  | L Plastic       | NaOH                     | V                                     |  |
| A10-020         | -22-1          | 125                 | 0            | TAL                       | -Metals &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                 |                          |                                       |  |
| 1100            |                |                     |              | M                         | lercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 250 m                         | I Plastic       | HNO3                     | N                                     |  |
|                 |                |                     |              | (Di                       | ssolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 250 m                           | L'i fuotio      | Intos                    | )                                     |  |
|                 |                |                     |              | Field                     | l Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                 |                          |                                       |  |
|                 |                |                     |              | He                        | xavalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                 |                          |                                       |  |
|                 |                |                     |              | Ch                        | romium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 250                             | I D14           | NT                       | X 13                                  |  |
|                 | (Dissolved)    |                     |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          |                                       |  |
|                 | Field Filtered |                     |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          |                                       |  |
|                 |                |                     | Ma           | atrix Spi                 | ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                 |                          | Λ.                                    |  |
|                 |                |                     | I            | Duplicate                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                 |                          | N                                     |  |
|                 | 1.1            | 2                   | Commen       | its: De                   | U-1140-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1211                              |                 |                          |                                       |  |
| Sampled I       | By:            |                     | -            | Purged                    | 1-1211-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45                                |                 |                          |                                       |  |
|                 |                |                     |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                 |                          |                                       |  |
|                 | Casing Volu    | <u>ume:</u> 1" I.D. | = 0.041 gal. | /ft - 2" I.D.<br>ft x 0.1 | = 0.163  gal/ft - 0.163  gal/ft - 0.163  gal/ft = 0.163 | 4" <b>I.D.</b> = $0.653$<br>(gal) | 8 gal/ft - 6" I | <b>.D.</b> = 1.47 gal/ft |                                       |  |

| Low Flow Sampling<br>Temporary Piezometers |                               |                    |              |                                 | ARM Group Inc.<br>Earth Resource Engineers and Consultants  |                                        |                     |                                    |                    |  |
|--------------------------------------------|-------------------------------|--------------------|--------------|---------------------------------|-------------------------------------------------------------|----------------------------------------|---------------------|------------------------------------|--------------------|--|
| Project Name:                              | Area A F                      | arcel              | AIO          |                                 | Project Num                                                 | nber: 15                               | 2981                | 1-5                                |                    |  |
| Piezometer Nur                             | nber: AID.                    | 025-4              | P-2          |                                 | Date: 7-18-16 1742                                          |                                        |                     |                                    |                    |  |
| Piezometer Dia                             | meter (in):                   |                    |              |                                 | One Well Volume (gal): 0,74                                 |                                        |                     |                                    |                    |  |
| Depth to Produc                            | ct (ft): N                    | A                  |              |                                 | QED Controller Settings:                                    |                                        |                     |                                    |                    |  |
| Depth to Water                             | (ft): 10.40                   | ) TOC              |              |                                 | Flow Rate (1                                                | mL/min)                                | 30                  | omlim                              | 1                  |  |
| Product Thickn                             | ess (ft): 🔥                   | A                  |              |                                 | Length of tin                                               | me Purged (                            | min) 🔁              | 5:31                               |                    |  |
| Depth to Bottor                            | n (ft): 20. 3                 | 35 78              |              |                                 |                                                             |                                        |                     | 0                                  |                    |  |
|                                            | · 1. 现在 桥内上 - 11              |                    |              | PURC                            | SING RECO                                                   | RD                                     | ilene yr            | 37-339 2 TO W                      |                    |  |
| Time                                       | Volume<br>Purged<br>(gallons) | DTW<br>(feet)      | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1           | Specific<br>Conductance<br>(ms/cm)<br>± 3%                  | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10 | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments           |  |
| 1407                                       | 2,50                          | 10.55              | 18.20        | 6.12                            | 0.828                                                       | 0.30                                   | -3,4                | 781 AU                             | brown              |  |
| 1412                                       | 2.90                          | 10:55              | 19.02        | 6.06                            | 0.813                                                       | 0,33                                   | -2.1                | 1071 AU                            | Very pale prim     |  |
| 1417                                       | 3.30                          | 10.55              | 18.97        | 6.03                            | D. 814                                                      | 0.33                                   | -2-7                | 633 AU                             |                    |  |
| 1422                                       | 3.70                          | 10.55              | 18.54        | 6.05                            | 0.810                                                       | 0.36                                   | 1.3                 | 949NTU                             | $\checkmark$       |  |
| 1427                                       | 4.10                          | 10.56              | 18.43        | 6.04                            | 0.801                                                       | 0.39                                   | 3.9                 | 86.3                               |                    |  |
| 1432                                       | 4.50                          | 10.56              | 18.21        | 6.02                            | 0.798                                                       | 0.41                                   | 5.9                 | 64.3                               | helithe cloude     |  |
| 1435                                       | 4.75                          | 10.56              | 18.62        | 6.00                            | 0.794                                                       | 0,43                                   | 8.3                 | 581                                | 0 0                |  |
| 1438                                       | 5.00                          | 10.52              | 18.73        | 5.93                            | 0.792                                                       | 0.43                                   | 8.8                 | 55.7                               | Chapit             |  |
|                                            |                               |                    |              |                                 |                                                             |                                        | 0.00                |                                    | ÷                  |  |
|                                            |                               |                    |              |                                 |                                                             |                                        |                     |                                    |                    |  |
|                                            |                               |                    |              |                                 |                                                             |                                        |                     |                                    |                    |  |
|                                            |                               |                    |              |                                 |                                                             |                                        |                     |                                    |                    |  |
|                                            |                               |                    |              |                                 |                                                             |                                        |                     |                                    |                    |  |
|                                            |                               |                    | MON          | ITORIN                          | G SAMPLE                                                    | RECORD                                 |                     |                                    | No. No. in provide |  |
| Sample                                     | e ID                          | Time C             | ollected     | Param                           | neter/Order                                                 | Conta                                  | ainer               | Perservative                       | Collected?         |  |
|                                            |                               |                    |              | TC                              | L-VOCs                                                      | 3 - 40 m                               | L VOA               | HCl                                | V                  |  |
|                                            |                               |                    |              | TP                              | H-GRO                                                       | 3 - 40 m                               | L VOA               | HCI                                | ý v                |  |
|                                            |                               |                    |              | TP                              | H-DRO                                                       | 2 - 1 L .                              | Amber               | none                               |                    |  |
|                                            |                               |                    |              | TCI                             | L-SVOCs                                                     | 2-1L                                   | Amber               | none                               | $\langle \rangle$  |  |
|                                            | l.                            |                    |              | С                               | yanide                                                      | 1 - 250 m                              | L Plastic           | NaOH                               | Č,                 |  |
| A10-025                                    | -PZ                           | 141                | 10           | TAL<br>M<br>(Di<br><b>Field</b> | AL-Metals &<br>Mercury<br>Dissolved) 1 - 250 mL Plastic HNO |                                        | HNO3                | Y                                  |                    |  |
| He<br>Ch<br>(D<br>Fiel                     |                               |                    |              |                                 | xavalent<br>romium<br>ssolved)<br>I Filtered                | 1 - 250 m                              | L Plastic           | None                               | У                  |  |
|                                            |                               |                    | Ma           | atrix Spil                      | ke                                                          |                                        |                     |                                    | N                  |  |
|                                            |                               |                    | Ι            | Duplicate                       | )                                                           |                                        |                     |                                    | N                  |  |
| Sampled I                                  | By: Ut                        | 2                  | Commen       | ts: D<br>Pu                     | ev - 1342-                                                  | -1407<br>- 1438                        |                     |                                    |                    |  |
|                                            | Casing Volu                   | <u>me:</u> 1" I.D. | = 0.041 gal/ | ft - 2" I.D.<br>ft x b.         | = 0.163 gal/ft - 4<br>$\frac{0}{1}$ gal/ft = $\frac{0}{1}$  | " I.D. = 0.653<br>フリ (gal)             | gal/ft - 6" I.      | <b>D.</b> = 1.47 gal/ft            |                    |  |

| L<br>Ten          | ow Flow<br>nporary l          | Sampl<br>Piezom     | ing<br>eters                     |                                                     |                                                       | AR<br>Earth Res                        | M G                    | roup In<br>neers and Cons          | nC.<br>ultants |  |
|-------------------|-------------------------------|---------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------|------------------------|------------------------------------|----------------|--|
| Project Name:     | Area A                        | parce               | CIA 1                            |                                                     | Project Num                                           | nber: 157                              | 0298n                  | n-5                                |                |  |
| Piezometer Nun    | nber: +50                     | ZABAY               | T-SA                             | 10-027-                                             | Date:                                                 | 7-19-1                                 | 6                      | 1050                               |                |  |
| Piezometer Dian   | meter (in):                   |                     |                                  |                                                     | One Well V                                            | olume (gal)                            | :                      | 0.56                               |                |  |
| Depth to Produc   | ct (ft): N                    | A                   |                                  |                                                     | QED Contro                                            | QED Controller Settings:               |                        |                                    |                |  |
| Depth to Water    | (ft): 10.35                   | 5 TDC               |                                  |                                                     | Flow Rate (mL/min) 300                                |                                        |                        |                                    |                |  |
| Product Thickne   | ess (ft): 🔥                   | A                   |                                  |                                                     | Length of time Purged (min) 29                        |                                        |                        |                                    |                |  |
| Depth to Botton   | n (ft): 24                    | 32 T                | DC                               |                                                     |                                                       |                                        |                        |                                    |                |  |
|                   | ning per har alt              | 10.00               |                                  | PURC                                                | GING RECO                                             | RD                                     |                        |                                    |                |  |
| Time              | Volume<br>Purged<br>(gallons) | DTW<br>(feet)       | Temp<br>(°C)                     | pH<br>(s.u.)<br>± 0.1                               | Specific<br>Conductance<br>(ms/cm)<br>± 3%            | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10    | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments       |  |
| 1(38              | 3.00                          | 10.45               | 18.20                            | 6.26                                                | 0.326                                                 | 0.87                                   | 27.5                   | 1117 AU                            | HIGH TEARD     |  |
| 1143              | 3.40                          | 10.45               | 18.57                            | 6.24                                                | 0.329                                                 | 0.50                                   | 29.0                   | 929 AU                             | med yellow/100 |  |
| 1148              | 3.80                          | 10.45               | 18.62                            | 6.23                                                | 0.330                                                 | 0,43                                   | 29.5                   | 772 ALL                            | 0              |  |
| 1153              | 4.20                          | 10.45               | 18.85                            | 6.21                                                | 0.328                                                 | 0.41                                   | 30.2                   | 602 AL                             |                |  |
| 1158              | 4 60                          | 1044                | 18.85                            | 6.20                                                | 0.377                                                 | 0.56                                   | 31.4                   | 128NT1                             |                |  |
| 1282              | 5.00                          | 10,44               | 18.82                            | 6.20                                                | 0.217                                                 | 0.56                                   | 21.3                   | 121 NT1/                           |                |  |
| 1207              | 5.40                          | 10.44               | 18.93                            | 617                                                 | 0.322                                                 | 0.53                                   | 33.0                   | 1138 NTU                           | doudin         |  |
|                   | 0~10                          | 10.01               |                                  |                                                     |                                                       |                                        |                        | 1 0.00 110                         | g              |  |
|                   |                               |                     |                                  |                                                     |                                                       |                                        |                        |                                    |                |  |
|                   | 1                             |                     |                                  |                                                     |                                                       |                                        |                        |                                    |                |  |
|                   |                               |                     |                                  |                                                     |                                                       |                                        |                        |                                    |                |  |
|                   |                               |                     |                                  |                                                     |                                                       |                                        |                        |                                    |                |  |
|                   |                               |                     |                                  |                                                     |                                                       |                                        |                        |                                    |                |  |
| The based of them |                               | 5 4 T - 5 8         | MON                              | TOPIN                                               | CSAMPLE                                               | RECORD                                 |                        | of the state of the second         |                |  |
| Samul             | - ID                          | Time C              | allastad                         | Daman                                               | ater/Order                                            | Cont                                   |                        | In                                 | 0 11 + 10      |  |
| Sample            |                               | Time C              | onected                          | Paran                                               | leter/Order                                           | Conta                                  |                        | Perservative                       | Collected?     |  |
|                   |                               |                     |                                  |                                                     | TCL-VOCs 3 - 40 mL VOA HCl                            |                                        |                        | 1                                  |                |  |
|                   |                               |                     |                                  |                                                     | TPH-GRO 3 - 40 mL VOA HCI                             |                                        |                        |                                    | <u>y</u>       |  |
| - 11 C            |                               |                     |                                  |                                                     | H-DRO                                                 | 2-1L                                   | Amber                  | none                               | Y              |  |
|                   |                               |                     | -                                |                                                     | L-SVUCS                                               | $\frac{2-1L}{1-250}$ m                 | Amber<br>L Dlagtio     | NaOll                              |                |  |
|                   | 07                            | 120                 |                                  |                                                     |                                                       | 1 - 250 m                              | L Flashe               | ПаОн                               | - Y            |  |
| A10-027           |                               |                     |                                  | IAL<br>M<br>(Di<br>Field                            | -Metals &<br>lercury<br>ssolved)<br><b>l Filtered</b> | 1 - 250 mL Plastic                     |                        | HNO3                               | Ŋ              |  |
|                   |                               |                     | He:<br>Ch<br>(Di<br><b>Field</b> | xavalent<br>romium<br>ssolved)<br><b>1 Filtered</b> | 1 - 250 m                                             | L Plastic                              | None                   | У                                  |                |  |
|                   |                               |                     | M                                | atrix Spi                                           | ke                                                    |                                        |                        |                                    | N              |  |
|                   |                               |                     | I                                | Duplicate                                           | <br>?                                                 |                                        |                        |                                    | V              |  |
| Sampled E         | By:                           | ₽                   | Commen                           | ts: De                                              | 1: 1050-<br>p: 1138-                                  | 1138                                   |                        |                                    | /              |  |
|                   | Casing Volu                   | <u>ume:</u> 1" I.D. | = 0.041 gal                      | /ft - 2" I.D.<br>ft x _0                            | = 0.163  gal/ft - 4                                   | <b>I.D.</b> = 0.653                    | gal/ft - <b>6" I</b> . | .D. = 1.47 gal/ft                  |                |  |

| L<br>Ter        | ow Flow<br>nporary I          | Sampl<br>Piezom     | ing<br>eters |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR<br>Earth Res                        | M G<br>ource Engi   | roup In<br>neers and Const         | nC.        |  |
|-----------------|-------------------------------|---------------------|--------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|------------------------------------|------------|--|
| Project Name:   | Avea A                        | Parc                | el ALO       | 1                          | Project Number: 150 298m-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                     |                                    |            |  |
| Piezometer Nur  | nber:                         | A10-0               | 29- 12       | -                          | Date: 7-19-16 1445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                     |                                    |            |  |
| Piezometer Dia  | meter (in):                   |                     |              |                            | One Well Volume (gal): 0.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                     |                                    |            |  |
| Depth to Produc | ct (ft): N                    | E                   |              |                            | QED Controller Settings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                     |                                    |            |  |
| Depth to Water  | (ft): 6.                      | 15 11               | 00           |                            | Flow Rate (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mL/min)                                | 300                 | 1                                  |            |  |
| Product Thickne | ess (ft): NA                  |                     |              |                            | Length of tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne Purged (                            | (min)               | 19                                 |            |  |
| Depth to Botton | n (ft): 7                     | 05 -                | tuc          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
| CARS & LASS BL  |                               | istull.             |              | PURG                       | ING RECOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                      |                     |                                    |            |  |
| Time            | Volume<br>Purged<br>(gallons) | DTW<br>(feet)       | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1      | Specific<br>Conductance<br>(ms/cm)<br>± 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10 | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments   |  |
| 1509            | 1.75                          | 7.43                | 22.77        | 6.36                       | 0.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.35                                   | -137,1              | 48.8                               |            |  |
| 1504            | 1,15                          | 7.42                | 22.73        | 6.34                       | 0.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.36                                   | -117.5              | 33.6                               |            |  |
| 1519            | 1.55                          | 7.42                | 22.58        | 6.31                       | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.36                                   | -112.7              | 23.2                               |            |  |
| 1522            | 1,80                          | 7.42                | 22.76        | 6.29                       | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37                                   | -160.8              | 15.5                               |            |  |
| 1525            | 2.05                          | 7.41                | 23.10        | 6.29                       | 0.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.36                                   | -169.3              | 13.8                               |            |  |
| 1528            | 2.30                          | 7.41                | 23.03        | 6-28                       | 0.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37                                   | -177.7              | 12.2                               |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     | ·                                  |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 |                               |                     |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    |            |  |
|                 | ale the Robert                |                     | MON          | ITORIN                     | G SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECORD                                 |                     |                                    |            |  |
| Sample          | e ID                          | Time C              | ollected     | Param                      | eter/Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conta                                  | ainer               | Perservative                       | Collected? |  |
|                 |                               |                     |              | TC                         | L-VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 - 40 m                               | L VOA               | HC1                                | V          |  |
|                 |                               |                     |              | TP                         | H-GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 - 40 m                               | L VOA               | HC1                                |            |  |
|                 |                               |                     |              | TP                         | H-DRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 - 1 L                                | Amber               | none                               |            |  |
|                 |                               |                     |              | TCL                        | -SVOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-1L                                   | Amber               | none                               | ~          |  |
|                 |                               |                     |              | C                          | yanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 - 250 m                              | L Plastic           | NaOH                               | <u>(</u>   |  |
| A10-029-        | -92                           | 15                  | 30           | TAL-<br>M<br>(Dis<br>Field | -Metals &<br>fercury<br>ssolved)<br>I Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - 250 mL Plastic                     |                     | HNO3                               | У          |  |
| F               |                               |                     |              |                            | xavalent<br>romium<br>ssolved)<br>I <b>Filtered</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 - 250 m                              | L Plastic           | None                               | X          |  |
|                 |                               |                     | Ma           | trix Spil                  | ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                     |                                    | N          |  |
|                 |                               |                     | Ε            | uplicate                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                     |                                    | 1          |  |
| Sampled H       | By:                           | P                   | Commen       | ts: D<br>Pi                | el: 1445<br>urged: 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1509<br>9-1528                        | 3                   |                                    | ,          |  |
|                 | Casing Volu                   | <u>ıme:</u> 1" I.D. | = 0.041 gal/ | ft - 2" I.D.               | = 0.163  gal/ft - 4<br>0  gal/ft = 0.163  gal/ft = 0.163 | <b>" I.D.</b> = 0.653                  | 8 gal/ft - 6" I.    | <b>D.</b> = 1.47 gal/ft            |            |  |

| Low Flow Sampling<br>Temporary Piezometers |                                       |                     |              |                            |                                                     | AR<br>Earth Rese                       | M G<br>ource Engin       | roup In<br>neers and Const         | IC.        |  |
|--------------------------------------------|---------------------------------------|---------------------|--------------|----------------------------|-----------------------------------------------------|----------------------------------------|--------------------------|------------------------------------|------------|--|
| Project Name:                              | Area A P                              | ascel               | AIO          |                            | Project Num                                         | 1ber: 150.                             | 298m-                    | -3                                 |            |  |
| Piezometer Nur                             | nber: Alo-                            | 034-                | PZ           |                            | Date: 7-                                            | 19-16                                  |                          | 815                                |            |  |
| Piezometer Dian                            | meter (in):                           |                     |              |                            | One Well Volume (gal): 0.5%                         |                                        |                          |                                    |            |  |
| Depth to Produc                            | ct (ft): NA                           |                     |              |                            | QED Controller Settings:                            |                                        |                          |                                    |            |  |
| Depth to Water                             | (ft): 30T                             | be 1                | 3.00 -       | TOC                        | Flow Rate (mL/min) 300 ml/min                       |                                        |                          |                                    |            |  |
| Product Thickne                            | ess (ft): No                          | ł                   |              |                            | Length of tin                                       | me Purged (                            | min) 🔶                   | 2                                  |            |  |
| Depth to Botton                            | n (ft): 27                            | .52 4               | DC           |                            |                                                     |                                        |                          | £                                  |            |  |
|                                            |                                       | 32.018              |              | PURG                       | ING RECOI                                           | RD                                     |                          |                                    |            |  |
| Time                                       | Volume<br>Purged<br>(gallons)         | DTW<br>(feet)       | Temp<br>(°C) | pH<br>(s.u.)<br>± 0.1      | Specific<br>Conductance<br>(ms/cm)<br>± 3%          | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10      | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments   |  |
| 0852                                       | 2.00                                  | 13.07               | 18.63        | 6.00                       | 0.566                                               | 0.43                                   | -89.2                    | 60.0                               |            |  |
| 857                                        | 2.40                                  | 13.07               | 18.50        | 5.97                       | 0.556                                               | 0.49:                                  | 121.8                    | 78.3                               |            |  |
| 902                                        | 2.80                                  | 13.07               | 18.58        | 5.94                       | 0.541                                               | 0.46                                   | -141.0                   | 68.4                               |            |  |
| 907                                        | 3,20                                  | 13.07               | 18:70        | 5.91                       | 0.522                                               | 0.45                                   | -107.9                   | 34.8                               |            |  |
| 910                                        | 3.45                                  | 13.06               | 18.75        | 5.91                       | 0,519                                               | 6.37                                   | -137.3                   | 28.4                               |            |  |
| 913                                        | 3.70                                  | 13.00               | 18.77        | 5.90                       | 0.517                                               | 0.36                                   | -150.9                   | 23.3                               |            |  |
| 916                                        | 3 95                                  | 13.06               | 18.73        | 5,90                       | 0.612                                               | 0.36                                   | -185.L                   | 21,8                               |            |  |
| 919                                        | 4.20                                  | 13.05               | 18.73        | 5.90                       | 0.512                                               | 0.39                                   | -165.7                   | 19.7                               |            |  |
|                                            | 1.00                                  |                     | 10 5         | 0.1-                       |                                                     |                                        |                          |                                    |            |  |
|                                            | · · · · · · · · · · · · · · · · · · · |                     |              |                            |                                                     |                                        |                          |                                    |            |  |
|                                            |                                       |                     |              |                            |                                                     |                                        |                          |                                    |            |  |
|                                            |                                       |                     |              |                            |                                                     |                                        |                          |                                    |            |  |
|                                            |                                       |                     |              |                            |                                                     |                                        |                          |                                    |            |  |
|                                            |                                       | S Hedistry          | MON          | ITORIN                     | G SAMPLE                                            | RECORD                                 |                          |                                    |            |  |
| Sample                                     | e ID                                  | Time C              | ollected     | Param                      | eter/Order                                          | Cont                                   | ainer                    | Perservative                       | Collected? |  |
| <u>_</u>                                   |                                       |                     |              | TC                         | L-VOCs                                              | 3 - 40 m                               | L VOA                    | HC1                                |            |  |
|                                            |                                       |                     |              | TP                         | H-GRO                                               | 3 - 40  m                              | LVOA                     | HC1                                |            |  |
|                                            |                                       |                     |              | TP                         | TPH-GRO 3 - 40 mL VOA HCI                           |                                        |                          |                                    | 7.         |  |
|                                            |                                       |                     |              | TCL                        | -SVOCs                                              | 2-1L                                   | Amber                    | none                               | hi         |  |
|                                            |                                       | A 0.                | 4            | С                          | yanide                                              | 1 - 250 m                              | L Plastic                | NaOH                               | Å          |  |
| A10-034-                                   | p2                                    | 92                  | <u>)</u>     | TAL-<br>M<br>(Dia<br>Field | Metals &<br>ercury<br>ssolved)<br>I <b>Filtered</b> | 1 - 250 mL Plastic                     |                          | HNO3                               | 3          |  |
|                                            | H<br>C<br>(1<br>Fie                   |                     |              |                            |                                                     | 1 - 250 m                              | L Plastic                | None                               | y          |  |
|                                            |                                       |                     | Ma           | trix Spil                  | ke/msp                                              |                                        |                          |                                    | V          |  |
|                                            |                                       |                     | I            | Duplicate                  |                                                     |                                        |                          |                                    | N          |  |
| Sampled H                                  | зу: <u></u>                           | 9                   | Commen       | ts: Bee<br>Pure            | =: 815 -<br>ed: 852-                                | 852<br>919                             |                          |                                    |            |  |
|                                            | Casing Volu                           | <u>ıme:</u> 1" I.D. | = 0.041 gal/ | ft - 2" LD.                | = 0.163 gal/ft - 4                                  | <b>I.D.</b> = 0.653<br>(gal)           | 8 gal/ft - <b>6" I</b> . | <b>D.</b> = 1.47 gal/ft            |            |  |

|                 | Low Flo                                 | ow Sai        | npling              | dI                    |                                            | ARI<br>Earth Rese                      | M GI                 | roup In<br>neers and Cons          | nC.<br>ultants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-----------------|-----------------------------------------|---------------|---------------------|-----------------------|--------------------------------------------|----------------------------------------|----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Froject Na      | ame: Ale                                | A Pa          | viced AL            | 0                     | Project Num                                | nber: \5                               | 0298m                | 1-5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Well Num        | iber: S6                                | :06-P         | DMOO                | 1                     | Date:                                      | 7-20-                                  | (b                   | 1417                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Well Dian       | neter (in):                             | 2             |                     |                       | One Well Volume (gal): NA                  |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Total Dep       | th (ft):                                | 14.11         | TOC                 |                       | QED Controller Settings:                   |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Depth to V      | Water (ft)                              | 8.21          | TOC                 |                       | Flow Rate (1                               | mL/min)                                | 300                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Condition       | of Casing /                             | Pad: 🤘        | bood                |                       | Length of tin                              | me Purged (                            | min)                 | 5                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 | 15. Etc. 44.9                           |               |                     | W                     | ELL PURGI                                  | NG RECO                                | RD                   | and some                           | a the first state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Time            | Volume<br>Purged<br>(gallons)           | DTW<br>(feet) | Temp<br>(°C)        | pH<br>(s.u.)<br>± 0.1 | Specific<br>Conductance<br>(ms/cm)<br>± 3% | Dissolved<br>Oxygen<br>(mg/L)<br>± 0.3 | ORP<br>(mV)<br>± 10  | Turbidity<br>(NTU)<br>± 10% or < 5 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1422            | 0.40                                    | 8.21          | 21-25               | 10.64                 | 0.569                                      | 3.13                                   | -77.9                | 16.8                               | Cleppy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 14:27           | 0.90                                    | 8.21          | 20.74               | 10.65                 | 0.587                                      | 2.92                                   | 76.4                 | 7.83                               | - Not H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1430            | 1.05                                    | 8.21          | 20.65               | 10.69                 | 0.582                                      | 2.97                                   | -73.7                | 5.00                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1433            | 1.30                                    | 8.21          | 20.56               | 10.79                 | 0.586                                      | 3.14                                   | -72.9                | 3.53                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 14.39           | 1.57                                    | 8.20          | 20.55               | 10.77                 | 0.591                                      | 3.19                                   | - 72.4               | 2.26                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 104             |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 | ·                                       |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     |                       |                                            | -                                      |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 52. A. A. A. A. | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Control 1     | and share           | MONI                  | TORING SA                                  | MPLE RE                                | CORD                 | S. 18. 75 S. 14                    | A REAL PROPERTY OF THE REAL PR |  |  |
| Samr            | le ID                                   | Time          | Collected           | Daram                 | eter/Order                                 | Contr                                  | niner                | Dorsorvativo                       | Callastad2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Samp            |                                         | 1 mie C       | Jonecieu            | Talall                | VOCa                                       | 2 40 m                                 |                      | reiservative                       | Collected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                 |                                         |               |                     |                       | L-VUUS                                     | VOCs 3-40 mL VOA HCl                   |                      |                                    | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                 |                                         |               |                     |                       |                                            | -GRO 3 - 40 mL VOA HCI                 |                      |                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                         |               |                     |                       | -SVOCs                                     | 2 - 1 L .<br>2- 1 L .                  | Amber                | none                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                 |                                         |               |                     | TAL-                  | Metals &                                   | 2-11/1                                 |                      | none                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5606-6          | ismoul                                  | 140           | 10                  | Mercu                 | ry (Total)                                 | 1 - 250 m                              | L Plastic            | HNO3                               | $\mathcal{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 |                                         |               |                     | Hex<br>Desi<br>Chr    | avalent                                    | 1 - 250 m                              | L Plastic            | None                               | Dissolved<br>Field filtered Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 |                                         |               |                     | Су                    | anide                                      | 1 - 250 m                              | L Plastic            | NaOH                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                 |                                         |               |                     | TAL-<br>Mercury       | Metals &<br>(Dissolved)                    | 1 - 250 m                              | L Plastic            | HNO3                               | y (field filtered<br>Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 |                                         |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 |                                         |               |                     | Matrix                | Spike                                      |                                        |                      |                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                 |                                         |               |                     | Dupli                 | cate                                       |                                        | E311. 1.1.1          |                                    | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| S               | Sampled By:                             |               |                     |                       |                                            |                                        |                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                 | <u>(</u>                                | Casing Volu   | <u>ume:</u> 1" I.D. | = 0.041 gal/f         | ft - 2" I.D. = 0.16                        | 3 gal/ft - <b>4" I.I</b>               | <b>D.</b> = 0.653 ga | l/ft - 6" I.D. = 1.4               | 7 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                 |                                         |               |                     |                       | ft xg                                      | al/ft =                                | _(gal)               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

### TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name Area A Parcel A10 Phase II

Date 7-18-16

WeatherSunny, 90sCalibrated byL. Perrin

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 1.413                  | 79 F                | 1.432                              | 79 F                      |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | -                                  |                           |
| pH (4)                                                           | 4.00                   |                     | 4.15                               |                           |
| pH(10)                                                           | 10.00                  |                     | -                                  |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 223.6 <sup>¥</sup>                 |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 101.1% <sup>¥</sup>    |                     | 112.0% <sup>¥</sup>                |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | _                      |                     | -                                  |                           |
| Barometric<br>Pressure mm<br>Hg                                  | 765.56                 |                     | 777.24                             |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | $0.76^{\text{¥}}$                  |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | $1.75^{\text{¥}}$                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 9.95                   |                     | $10.74^{\text{¥}}$                 |                           |

<sup>¥</sup>Turbidity and ORP are outside of the post-calibration acceptance criteria. DO was recorded as %. Values displayed on field purge logs may be inaccurate.

### TABLE 1 MULTIPARAMETER CALIBRATION LOG

\_\_\_\_\_

Project Name Area A Parcel A10 Phase II

Date 7-19-16

Weather Sunny, 80s

Instrument VSI 556 MDS

Calibrated by L. Perrin

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 1.413                  | 83 F                | 1.406                              | 87 F                      |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.07                               |                           |
| pH (4)                                                           | 4.00                   |                     | 4.30                               |                           |
| pH(10)                                                           | 10.00                  |                     | 9.74                               |                           |
| ORP<br>Zobel Solution                                            | 240.0                  |                     | 230.9                              |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 101.1% <sup>¥</sup>    |                     | 106.1% <sup>¥</sup>                |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | -                      |                     | -                                  |                           |
| Barometric<br>Pressure mm<br>Hg                                  | 773.21                 |                     | 775.48                             |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | $0.69^{2}$                         |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | 1.36 <sup>¥</sup>                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.02                  |                     | 11.10 <sup>¥</sup>                 |                           |

<sup>¥</sup>Turbidity and ORP are outside of the post-calibration acceptance criteria. DO was recorded as %. Values displayed on field purge logs may be inaccurate.

### TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name Area A Parcel A10 Phase II

Date 7-20-16

WeatherSunny, 90sCalibrated byL. Perrin

Serial Number 018952

Instrument YSI 556 MPS

| Parameters                                                       | Morning<br>Calibration | Morning Temperature | End of Day<br>Calibration<br>Check | End of Day<br>Temperature |
|------------------------------------------------------------------|------------------------|---------------------|------------------------------------|---------------------------|
| Specific<br>Conductance<br>Standard #1                           | 1.413                  | 75 F                | 1.423                              | 85 F                      |
| Specific<br>Conductance<br>Standard #2                           | -                      |                     | -                                  |                           |
| pH (7)                                                           | 7.00                   |                     | 7.00                               |                           |
| pH (4)                                                           | 4.00                   |                     | 3.96                               |                           |
| pH(10)                                                           | 10.00                  |                     | 10.16                              |                           |
| ORP<br>Zobel Solution                                            | 240.1                  |                     | 224.1 <sup>¥</sup>                 |                           |
| Dissolved<br>Oxygen 100%<br>water saturated<br>air mg/L          | 8.75                   |                     | 9.32 <sup>¥</sup>                  |                           |
| Dissolved<br>Oxygen Zero<br>Dissolved<br>Oxygen<br>Solution mg/L | -                      |                     | -                                  |                           |
| Barometric<br>Pressure mm<br>Hg                                  | 766.83                 |                     | 766.32                             |                           |
| Turbidity #1<br>(0 NTU)                                          | 0.00                   |                     | $1.04^{\text{¥}}$                  |                           |
| Turbidity #2<br>(1 NTU)                                          | 1.00                   |                     | 2.01 <sup>¥</sup>                  |                           |
| Turbidity #3<br>(10 NTU)                                         | 10.00                  |                     | 11.10 <sup>¥</sup>                 |                           |

<sup>¥</sup>Turbidity, DO, and ORP are outside of the post-calibration acceptance criteria. Values displayed on field purge logs may be inaccurate.

"

## "

"

# **APPENDIX H**

"

| Drum Identification Number  | Designation | Activity/Phase      | Parcel | Contents    | <b>Open Date</b> |
|-----------------------------|-------------|---------------------|--------|-------------|------------------|
| 572-Soil-7/6/16-A10         | Non-haz.    | Parcel A10 Phase II | A10    | Soil        | 7/6/2016         |
| 573-Liners-7/6/16-A10       | Non-haz.    | Parcel A10 Phase II | A10    | Liners      | 7/6/2016         |
| 574-PPE-7/6/16-A10          | Non-haz.    | Parcel A10 Phase II | A10    | PPE         | 7/6/2016         |
| 575-Decon Water-7/6/16-A10  | Non-haz.    | Parcel A10 Phase II | A10    | Decon Water | 7/6/2016         |
| 576-Nitric Acid- 7/6/16-A10 | Non-haz.    | Parcel A10 Phase II | A10    | Nitric Acid | 7/6/2016         |
| 577-Soil-7/8/16-A10         | Non-haz.    | Parcel A10 Phase II | A10    | Soil        | 7/8/2016         |
| 579-Soil-7/14/17-A10        | Non-haz.    | Parcel A10 Phase II | A10    | Soil        | 7/14/2017        |
| 580-Purge Water-7/18/16-A10 | Non-haz.    | Parcel A10 Phase II | A10    | Purge Water | 7/18/2016        |
| 581-PPE-7/19/16-A10         | Non-haz.    | Parcel A10 Phase II | A10    | PPE         | 7/19/2016        |

Parcel A10 - IDW Drum Log

# **APPENDIX I**

## QA/QC Tracking Log

| <u>Blank:</u>                      | Date:    | Sample IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                  | <u>Trip Blank:</u>                       | Date:                               | Sample IDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                     |
|------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                    |          | 1) A10-033-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  | Trip Blank 2                             | 7/8/2016                            | 1) A10-031-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
|                                    |          | 2) A10-033-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 2) A10-021-SB-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
| Taia                               |          | 3) A10-001-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 3) A10-021-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
| Blank 2                            | 7/6/2016 | 4) A10-001-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 4) A10-021-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
|                                    |          | 5) A10-002-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 5) A10-019-SB-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
|                                    |          | 6) A10-002-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 6) A10-019-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
|                                    |          | 7) A10-002-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duplicate 2:                                                                            | A10-033-SB-4                                                     | Trin Blank                               |                                     | 7) A10-019-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate:                                                                              | A10-019-SB-4                                                        |
|                                    |          | 8) A10-006-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                                                   | 7/6/2016                                                         |                                          |                                     | 8) A10-022-SB-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date:                                                                                   | 7/11/2016                                                           |
|                                    |          | 9) A10-006-SB-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS/MSD:                                                                                 | A10-006-SB-7                                                     |                                          |                                     | 9) A10-022-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MS/MSD:                                                                                 | A10-021-SB-4                                                        |
|                                    |          | 10) A10-005-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                                                   | 7/7/2016                                                         |                                          |                                     | 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                                                                   | 7/11/2016                                                           |
|                                    |          | 11) A10-005-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Field Blank:                                                                            |                                                                  |                                          | 7/11/2016                           | 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Blank:                                                                            |                                                                     |
|                                    |          | 12) A10-003-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                                                   | 7/7/2016                                                         |                                          |                                     | 12) A10-015-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date:                                                                                   | 7/11/2016                                                           |
| Trip                               |          | 13) A10-003-SB-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eq. Blank:                                                                              |                                                                  |                                          |                                     | 13) A10-015-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eq. Blank:                                                                              |                                                                     |
| Blank 1                            | 7/7/2016 | 14) A10-004-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                                                   | 7/7/2016                                                         |                                          |                                     | 14) A10-013-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date:                                                                                   | 7/11/2016                                                           |
|                                    |          | 15) A10-004-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                  |                                          |                                     | 15) A10-013-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
|                                    |          | 16) A10-004-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                                                                  |                                          |                                     | 16) A10-028-SB-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |                                                                     |
|                                    |          | 17) A10-032-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                  | Trip Blank 2                             |                                     | 17) A10-028-SB-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
|                                    |          | 18) A10-032-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                  |                                          |                                     | 18) A10-028-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                                                                     |
|                                    |          | 19) A10-025-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                  |                                          |                                     | 19) A10-010-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
|                                    |          | 20) A10-025-SB-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         |                                                                  |                                          |                                     | 20) A10-010-SB-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                                     |
| 1                                  | l        | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                       |                                                                  |                                          | l                                   | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                       |                                                                     |
| Trip                               |          | 1) A10-025-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                       |                                                                  | Trip Blank 2                             | 7/11/2016                           | 1) A10-010-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                       |                                                                     |
| Blank 1                            | 7/7/2016 | 2) A10-024-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     | 2) A10-011-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
|                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                                  |                                          |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                                                                     |
|                                    |          | 3) A10-024-SB-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                       |                                                                  |                                          |                                     | 3) A10-011-SB-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                       |                                                                     |
|                                    |          | 3) A10-024-SB-5<br>4) A10-027-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                  |                                          |                                     | 3) A10-011-SB-7<br>4) A10-011-SB-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                       |                                                                     |
|                                    |          | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                       |                                                                  |                                          |                                     | 3)         A10-011-SB-7           4)         A10-011-SB-10           5)         A10-029-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                     |
|                                    |          | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-10</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                       |                                                                  | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                     |
|                                    |          | 3)         A10-024-SB-5           4)         A10-027-SB-1           5)         A10-027-SB-4           6)         A10-027-SB-10           7)         A10-026-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duplicate:                                                                              | A10-008-SB-4                                                     | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>                                                                                    | A10-011-SB-7                                                        |
|                                    |          | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-10</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Duplicate:<br>Date:                                                                     | A10-008-SB-4<br>7/8/2016                                         | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Duplicate:<br>Date:                                                                     | A10-011-SB-7<br>7/12/2016                                           |
| Trip                               |          | 3)       A10-024-SB-5         4)       A10-027-SB-1         5)       A10-027-SB-4         6)       A10-027-SB-10         7)       A10-026-SB-1         8)       A10-026-SB-5         9)       A10-023-SB-1                                                                                                                                                                                                                                                                                                                                                                                                                                 | Duplicate:<br>Date:<br>MS/MSD:                                                          | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4                         | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> <li>A10-012-SB-1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                              | Duplicate:<br>Date:<br>MS/MSD:                                                          | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4                           |
| Trip<br>Blank 1                    |          | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-10</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duplicate:<br>Date:<br>MS/MSD:<br>Date:                                                 | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016             | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> <li>A10-012-SB-1</li> <li>A10-012-SB-4</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                        | Duplicate:<br>Date:<br>MS/MSD:<br>Date:                                                 | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016              |
| Trip<br>Blank 1                    |          | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-10</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> <li>A10-008-SB-1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                          | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:                                 | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016             | Trip Blank                               | 7/12/2016                           | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> <li>A10-012-SB-1</li> <li>A10-012-SB-4</li> <li>A10-018-SB-1</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                  | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:                                 | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016              |
| Trip<br>Blank 1                    | 7/8/2016 | 3)       A10-024-SB-5         4)       A10-027-SB-1         5)       A10-027-SB-4         6)       A10-027-SB-10         7)       A10-026-SB-1         8)       A10-026-SB-5         9)       A10-023-SB-1         10)       A10-023-SB-4         11)       A10-008-SB-1         12)       A10-008-SB-4                                                                                                                                                                                                                                                                                                                                    | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:                        | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016             | Trip Blank<br>Trip Blank                 | 7/12/2016<br>7/14/2016              | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> <li>A10-012-SB-1</li> <li>A10-012-SB-4</li> <li>A10-018-SB-1</li> <li>A10-018-SB-5</li> </ol>                                                                                                                                                                                                                                                                                                                                                            | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:                        | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1                    | 7/8/2016 | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-10</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> <li>A10-008-SB-1</li> <li>A10-008-SB-4</li> <li>A10-008-SB-10</li> </ol>                                                                                                                                                                                                                                                                                                                                                                             | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:          | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016             | Trip Blank<br>Trip Blank                 | 7/12/2016<br>7/14/2016              | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-4         11)       A10-012-SB-4         12)       A10-018-SB-5         13)       A10-018-SB-10                                                                                                                                                                                                                                                            | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:          | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1                    | 7/8/2016 | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-4</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> <li>A10-008-SB-1</li> <li>A10-008-SB-4</li> <li>A10-008-SB-10</li> <li>A10-007-SB-1</li> </ol>                                                                                                                                                                                                                                                                                                                                                        | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank                 | 7/12/2016<br>7/14/2016              | <ol> <li>A10-011-SB-7</li> <li>A10-011-SB-10</li> <li>A10-029-SB-1</li> <li>A10-029-SB-4</li> <li>A10-030-SB-1</li> <li>A10-030-SB-7</li> <li>A10-012-SB-1</li> <li>A10-012-SB-4</li> <li>A10-018-SB-1</li> <li>A10-018-SB-5</li> <li>A10-018-SB-10</li> <li>A10-014-SB-2</li> </ol>                                                                                                                                                                                                                                                                                                               | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1                    | 7/8/2016 | 3)       A10-024-SB-5         4)       A10-027-SB-1         5)       A10-027-SB-4         6)       A10-027-SB-10         7)       A10-026-SB-1         8)       A10-026-SB-5         9)       A10-023-SB-1         10)       A10-023-SB-4         11)       A10-008-SB-1         12)       A10-008-SB-4         13)       A10-008-SB-10         14)       A10-007-SB-1         15)       A10-007-SB-4                                                                                                                                                                                                                                      | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank                 | 7/12/2016<br>7/14/2016              | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-4         11)       A10-012-SB-4         12)       A10-018-SB-5         13)       A10-018-SB-10         14)       A10-014-SB-2         15)       A10-014-SB-5                                                                                                                                                                                              | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1                    | 7/8/2016 | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-4</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> <li>A10-008-SB-1</li> <li>A10-008-SB-4</li> <li>A10-008-SB-10</li> <li>A10-007-SB-1</li> <li>A10-007-SB-4</li> <li>A10-007-SB-4</li> <li>A10-002-SB-1.5</li> </ol>                                                                                                                                                                                                                                                                                    | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank                 | 7/12/2016                           | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-4         11)       A10-012-SB-4         12)       A10-018-SB-1         12)       A10-018-SB-5         13)       A10-018-SB-10         14)       A10-014-SB-2         15)       A10-014-SB-5         16)       A10-009A-SB-1                                                                                                                               | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1                    | 7/8/2016 | <ol> <li>A10-024-SB-5</li> <li>A10-027-SB-1</li> <li>A10-027-SB-4</li> <li>A10-027-SB-4</li> <li>A10-026-SB-1</li> <li>A10-026-SB-5</li> <li>A10-023-SB-1</li> <li>A10-023-SB-4</li> <li>A10-008-SB-1</li> <li>A10-008-SB-10</li> <li>A10-008-SB-10</li> <li>A10-007-SB-1</li> <li>A10-007-SB-4</li> <li>A10-007-SB-4</li> <li>A10-020-SB-1.5</li> <li>A10-020-SB-7</li> </ol>                                                                                                                                                                                                                                                             | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank<br>Trip Blank 1 | 7/12/2016<br>7/14/2016<br>7/21/2016 | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-4         11)       A10-012-SB-4         11)       A10-018-SB-1         12)       A10-018-SB-5         13)       A10-018-SB-10         14)       A10-014-SB-2         15)       A10-014-SB-5         16)       A10-009A-SB-1         17)       A10-009-SB-1.5                                                                                              | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1<br>Trip            | 7/8/2016 | 3)       A10-024-SB-5         4)       A10-027-SB-1         5)       A10-027-SB-10         6)       A10-027-SB-10         7)       A10-026-SB-1         8)       A10-026-SB-5         9)       A10-023-SB-1         10)       A10-023-SB-1         11)       A10-008-SB-1         12)       A10-008-SB-1         13)       A10-008-SB-10         14)       A10-007-SB-1         15)       A10-007-SB-1         16)       A10-020-SB-1.5         17)       A10-020-SB-7         18)       A10-020-SB-10                                                                                                                                     | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank<br>Trip Blank 1 | 7/12/2016<br>7/14/2016<br>7/21/2016 | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-1         11)       A10-012-SB-1         12)       A10-018-SB-1         12)       A10-018-SB-10         14)       A10-014-SB-2         15)       A10-014-SB-5         16)       A10-009-SB-1.5         18)       A10-009-SB-5                                                                                                                              | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |
| Trip<br>Blank 1<br>Trip<br>Blank 2 | 7/8/2016 | 3)         A10-024-SB-5           4)         A10-027-SB-1           5)         A10-027-SB-4           6)         A10-027-SB-10           7)         A10-026-SB-1           8)         A10-026-SB-5           9)         A10-023-SB-1           10)         A10-023-SB-1           11)         A10-003-SB-1           12)         A10-008-SB-1           13)         A10-008-SB-10           14)         A10-007-SB-1           15)         A10-007-SB-1           15)         A10-007-SB-1           16)         A10-020-SB-1.5           17)         A10-020-SB-10           18)         A10-020-SB-10           19)         A10-031-SB-1 | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-008-SB-4<br>7/8/2016<br>A10-007-SB-4<br>7/8/2016<br>7/8/2016 | Trip Blank<br>Trip Blank<br>Trip Blank 1 | 7/12/2016<br>7/14/2016<br>7/21/2016 | 3)       A10-011-SB-7         4)       A10-011-SB-10         5)       A10-029-SB-1         6)       A10-029-SB-4         7)       A10-030-SB-1         8)       A10-030-SB-7         9)       A10-012-SB-1         10)       A10-012-SB-4         11)       A10-012-SB-4         11)       A10-012-SB-4         12)       A10-018-SB-1         12)       A10-018-SB-10         14)       A10-018-SB-10         14)       A10-014-SB-2         15)       A10-014-SB-5         16)       A10-009-SB-1         17)       A10-009-SB-1.5         18)       A10-009-SB-5         19)       A10-016-SB-1 | Duplicate:<br>Date:<br>MS/MSD:<br>Date:<br>Field Blank:<br>Date:<br>Eq. Blank:<br>Date: | A10-011-SB-7<br>7/12/2016<br>A10-029-SB-4<br>7/12/2016<br>7/12/2016 |

## QA/QC Tracking Log

| Trip Blank:   | Date:     | Sample IDs      |              |              | Date: | Sample IDs |              |
|---------------|-----------|-----------------|--------------|--------------|-------|------------|--------------|
| Tria Diaula 1 | 7/21/2010 | 1) A10-017-SB-1 |              |              | 1     | )          |              |
| т пр віалк т  | //21/2016 | 2) A10-017-SB-4 |              |              | 2     | )          |              |
|               |           | 3)              |              |              | 3     | )          |              |
|               |           | 4)              |              |              | 4     | )          |              |
|               |           | 5)              | 1            |              | 5     | )          |              |
|               |           | 6)              | 1            |              | 6     | )          |              |
|               |           | 7)              | Duplicate:   | A10-017-SB-1 | 7     | )          | Duplicate:   |
|               |           | 8)              | Date:        | 7/21/2016    | 8     | )          | Date:        |
|               |           | 9)              | MS/MSD:      | A10-017-SB-4 | 9     | )          | MS/MSD:      |
|               |           | 10)             | Date:        | 7/21/2016    | 1     | 0)         | Date:        |
|               |           | 11)             | Field Blank: |              | 1     | 1)         | Field Blank: |
|               |           | 12)             | Date:        | 7/21/2016    | 1     | 2)         | Date:        |
|               |           | 13)             | Eq. Blank:   |              | 1     | 3)         | Eq. Blank:   |
|               |           | 14)             | Date:        | 7/21/2016    | 1     | 4)         | Date:        |
|               |           | 15)             | Notes:       |              | 1     | 5)         |              |
|               |           | 16)             | 1            |              | 1     | 6)         |              |
|               |           | 17)             |              |              | 1     | 7)         |              |
|               |           | 18)             | 1            |              | 1     | 8)         |              |
|               |           | 19)             |              |              | 1     | 9)         |              |
|               |           | 20)             | 1            |              | 2     | )<br>0)    |              |
|               |           |                 |              |              | • •   |            |              |
| Trin Blank    |           | 1) A10-002-PZ   |              |              | 1     | )          |              |
| пр ылк        | 7/19/2016 | 2) A10-024-PZ   | Ţ            |              | 2     | )          |              |
| Trip Blank 2  | //18/2010 | 3) A10-025-PZ   | Ţ            |              | 3     | )          |              |
| пр вык 2      |           | 4) A10-020-PZ   | Ţ            |              | 4     | )          |              |
|               |           | 5) A10-034-PZ   |              |              | 5     | )          |              |
| Trip Black 1  | 7/10/2016 | 6) A10-027-PZ   | Ţ            |              | 6     | )          |              |
| пр вык т      | //19/2010 | 7) A10-029-PZ   | Duplicate:   | A10-027-PZ   | 7     | )          | Duplicate:   |
|               |           | 8) A10-021-PZ   | Date:        | 7/19/2016    | 8     | )          | Date:        |
|               |           | 9) A10-015-PZ   | MS/MSD:      | A10-034-PZ   | 9     | )          | MS/MSD:      |
| Trin Blank 1  | 7/20/2016 | 10) A10-010-PZ  | Date:        | 7/19/2016    | 1     | 0)         | Date:        |
|               | 772072010 | 11) SG06-PDM001 | Field Blank: |              | 1     | 1)         | Field Blank: |
|               |           | 12) A10-018-PZ  | Date:        | 7/19/2016    | 1     | 2)         | Date:        |
|               |           | 13)             | Eq. Blank:   |              | 1     | 3)         | Eq. Blank:   |
|               |           | 14)             | Date:        |              | 1     | 4)         | Date:        |
|               |           | 15)             | 1            |              | 1     | 5)         | ļ            |
|               |           | 16)             | 1            |              | 1     | 6)         | ļ            |
|               |           | 17)             | 1            |              | 1     | 7)         | ļ            |
|               |           | 18)             | 1            |              | 1     | 8)         |              |
|               |           | 19)             | 1            |              | 1     | 9)         | ļ            |
|               |           | 20)             |              |              | 2     | 0)         |              |

# **APPENDIX J**

| Parameter                    | Parameter<br>Group | Matrix | Unit  | Number of<br>Validated<br>Results | Detections | Number of<br>Rejected<br>Results | Number of<br>Non-rejected<br>Results | Completeness |
|------------------------------|--------------------|--------|-------|-----------------------------------|------------|----------------------------------|--------------------------------------|--------------|
| Cyanide                      | CN                 | Soil   | mg/kg | 44                                | 23         | 0                                | 44                                   | 100.00%      |
| Aluminum                     | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Antimony                     | Metal              | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| Arsenic                      | Metal              | Soil   | mg/kg | 47                                | 40         | 0                                | 47                                   | 100.00%      |
| Barium                       | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Beryllium                    | Metal              | Soil   | mg/kg | 44                                | 43         | 0                                | 44                                   | 100.00%      |
| Cadmium                      | Metal              | Soil   | mg/kg | 44                                | 12         | 0                                | 44                                   | 100.00%      |
| Chromium                     | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Chromium VI                  | Metal              | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Cobalt                       | Metal              | Soil   | mg/kg | 44                                | 43         | 0                                | 44                                   | 100.00%      |
| Copper                       | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Iron                         | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Lead                         | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Manganese                    | Metal              | Soil   | mø/kø | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Mercury                      | Metal              | Soil   | mg/kg | 44                                | 36         | 0                                | 44                                   | 100.00%      |
| Nickel                       | Metal              | Soil   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
| Salanium                     | Metal              | Soil   | mg/kg | 44                                | 5          | 0                                | 44                                   | 100.00%      |
| Silver                       | Motal              | Soil   | mg/kg | 44                                | 5          | 0                                | 44                                   | 100.00%      |
| Thellium                     | Metal              | Soil   | mg/kg | 44                                | 7          | 0                                | 44                                   | 100.00%      |
| Vanadium                     | Metal              | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
|                              | Metal              | Soll   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
|                              | DCD                | Soll   | mg/kg | 44                                | 44         | 0                                | 44                                   | 100.00%      |
|                              | PCB                | 5011   | mg/kg | 22                                | 0          | 0                                | 22                                   | 100.00%      |
| Aroclor 1221                 | PCB                | Soil   | mg/kg | 22                                | 0          | 0                                | 22                                   | 100.00%      |
| Aroclor 1232                 | PCB                | Soil   | mg/kg | 22                                | 0          | 0                                | 22                                   | 100.00%      |
| Aroclor 1242                 | PCB                | Soil   | mg/kg | 22                                | 1          | 0                                | 22                                   | 100.00%      |
| Aroclor 1248                 | PCB                | Soil   | mg/kg | 22                                | 2          | 0                                | 22                                   | 100.00%      |
| Aroclor 1254                 | PCB                | Soil   | mg/kg | 22                                | 2          | 0                                | 22                                   | 100.00%      |
| Aroclor 1260                 | PCB                | Soil   | mg/kg | 22                                | 2          | 0                                | 22                                   | 100.00%      |
| Aroclor 1262                 | PCB                | Soil   | mg/kg | 22                                | 0          | 0                                | 22                                   | 100.00%      |
| Aroclor 1268                 | PCB                | Soil   | mg/kg | 22                                | 2          | 0                                | 22                                   | 100.00%      |
| PCBs (total)                 | PCB                | Soil   | mg/kg | 22                                | 5          | 0                                | 22                                   | 100.00%      |
| 1,1-Biphenyl                 | SVOC               | Soil   | mg/kg | 44                                | 4          | 0                                | 44                                   | 100.00%      |
| 1,2,4,5-Tetrachlorobenzene   | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 2,3,4,6-Tetrachlorophenol    | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| 2,4,5-Trichlorophenol        | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| 2,4,6-Trichlorophenol        | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| 2,4-Dichlorophenol           | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| 2,4-Dimethylphenol           | SVOC               | Soil   | mg/kg | 44                                | 1          | 1                                | 43                                   | 97.73%       |
| 2,4-Dinitrophenol            | SVOC               | Soil   | mg/kg | 44                                | 0          | 11                               | 33                                   | 75.00%       |
| 2,4-Dinitrotoluene           | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 2,6-Dinitrotoluene           | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 2-Chloronaphthalene          | SVOC               | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| 2-Chlorophenol               | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| 2-Methylnaphthalene          | SVOC               | Soil   | mg/kg | 44                                | 22         | 0                                | 44                                   | 100.00%      |
| 2-Methylphenol               | SVOC               | Soil   | mg/kg | 44                                | 1          | 1                                | 43                                   | 97.73%       |
| 2-Nitroaniline               | SVOC               | Soil   | mo/ko | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 3&4-Methylphenol(m&n Cresol) | SVOC               | Soil   | mg/kg | 44                                | 1          | 1                                | 43                                   | 97 73%       |
| 3 3'-Dichlorobenzidine       | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 43                                   | 100.00%      |
| A-Chloroaniline              | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 4 Nitroaniline               | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| A consultan                  | SVOC               | Soil   | mg/kg | 44                                | 19         | 0                                | 44                                   | 100.00%      |
| A consubthylana              | SVOC               | Soll   | mg/kg | 44                                | 20         | 0                                | 44                                   | 100.00%      |
|                              | SVUC               | 5011   | mg/Kg | 44                                | 20         | 0                                | 44                                   | 100.00%      |
| Acetopnenone                 | SVUC               | 5011   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Anthracene                   | SVOC               | Soil   | mg/kg | 44                                | 23         | 0                                | 44                                   | 100.00%      |
| Benz[a]anthracene            | SVOC               | Soil   | mg/kg | 44                                | 26         | 0                                | 44                                   | 100.00%      |
| Benzaldehyde                 | SVOC               | Soil   | mg/kg | 44                                | 6          | 1                                | 43                                   | 97.73%       |
| Benzo[a]pyrene               | SVOC               | Soil   | mg/kg | 44                                | 24         | 0                                | 44                                   | 100.00%      |
| Benzo[b]fluoranthene         | SVOC               | Soil   | mg/kg | 44                                | 34         | 0                                | 44                                   | 100.00%      |

| Parameter                             | Parameter<br>Group | Matrix | Unit  | Number of<br>Validated<br>Results | Detections | Number of<br>Rejected<br>Results | Number of<br>Non-rejected<br>Results | Completeness |
|---------------------------------------|--------------------|--------|-------|-----------------------------------|------------|----------------------------------|--------------------------------------|--------------|
| Benzo[g,h,i]perylene                  | SVOC               | Soil   | mg/kg | 44                                | 20         | 0                                | 44                                   | 100.00%      |
| Benzo[k]fluoranthene                  | SVOC               | Soil   | mg/kg | 44                                | 21         | 0                                | 44                                   | 100.00%      |
| bis(2-chloroethoxy)methane            | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| bis(2-Chloroethyl)ether               | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| bis(2-Chloroisopropyl)ether           | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| bis(2-Ethylhexyl)phthalate            | SVOC               | Soil   | mg/kg | 44                                | 8          | 0                                | 44                                   | 100.00%      |
| Caprolactam                           | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Carbazole                             | SVOC               | Soil   | mg/kg | 44                                | 9          | 0                                | 44                                   | 100.00%      |
| Chrysene                              | SVOC               | Soil   | mg/kg | 44                                | 27         | 0                                | 44                                   | 100.00%      |
| Dibenz[a,h]anthracene                 | SVOC               | Soil   | mg/kg | 44                                | 17         | 0                                | 44                                   | 100.00%      |
| Diethylphthalate                      | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Di-n-butylphthalate                   | SVOC               | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| Di-n-ocytlphthalate                   | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Fluoranthene                          | SVOC               | Soil   | mg/kg | 44                                | 36         | 0                                | 44                                   | 100.00%      |
| Fluorene                              | SVOC               | Soil   | mg/kg | 44                                | 19         | 0                                | 44                                   | 100.00%      |
| Hexachlorobenzene                     | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Hexachlorobutadiene                   | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Hexachlorocyclopentadiene             | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Hexachloroethane                      | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Indeno[1,2,3-c,d]pyrene               | SVOC               | Soil   | mg/kg | 44                                | 19         | 0                                | 44                                   | 100.00%      |
| Isophorone                            | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Naphthalene                           | SVOC               | Soil   | mg/kg | 44                                | 14         | 0                                | 44                                   | 100.00%      |
| Nitrobenzene                          | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| N-Nitroso-di-n-propylamine            | SVOC               | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| N-Nitrosodiphenylamine                | SVOC               | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| Pentachlorophenol                     | SVOC               | Soil   | mg/kg | 44                                | 0          | 1                                | 43                                   | 97.73%       |
| Phenanthrene                          | SVOC               | Soil   | mg/kg | 44                                | 31         | 0                                | 44                                   | 100.00%      |
| Phenol                                | SVOC               | Soil   | mg/kg | 44                                | 1          | 1                                | 43                                   | 97.73%       |
| Pyrene                                | SVOC               | Soil   | mg/kg | 44                                | 33         | 0                                | 44                                   | 100.00%      |
| Diesel Range Organics                 | TPH                | Soil   | mg/kg | 45                                | 42         | 0                                | 45                                   | 100.00%      |
| Gasoline Range Organics               | TPH                | Soil   | mg/kg | 44                                | 3          | 0                                | 44                                   | 100.00%      |
| 1,1,1-Trichloroethane                 | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,1,2,2-Tetrachloroethane             | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,1,2-Trichloroethane                 | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,1-Dichloroethane                    | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,1-Dichloroethene                    | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2,3-Trichlorobenzene                | VOC                | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| 1,2,4-Trichlorobenzene                | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dibromo-3-chloropropane           | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dibromoethane                     | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dichlorobenzene                   | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dichloroethane                    | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dichloroethene (Total)            | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,2-Dichloropropane                   | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,3-Dichlorobenzene                   | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 1,4-Dichlorobenzene                   | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 2-Butanone (MEK)                      | VOC                | Soil   | mg/kg | 44                                | 1          | 0                                | 44                                   | 100.00%      |
| 2-Hexanone                            | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| 4-Methyl-2-pentanone (MIBK)           | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Acetone                               | VOC                | Soil   | mg/kg | 44                                | 15         | 0                                | 44                                   | 100.00%      |
| Benzene                               | VOC                | Soil   | mg/kg | 44                                | 2          | 0                                | 44                                   | 100.00%      |
| Bromodichloromethane                  | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Bromotorm                             | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Bromomethane                          | VOC                | Soil   | mg/kg | 44                                | 0          | 8                                | 36                                   | 81.82%       |
| Carbon disulfide                      | VOC                | Soil   | mg/kg | 44                                | 6          | 0                                | 44                                   | 100.00%      |
| Carbon tetrachloride                  | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Chlorobenzene                         | VOC                | Soil   | mg/kg | 44                                | 0          | 0                                | 44                                   | 100.00%      |

| Parameter                      | Parameter<br>Group | Matrix  | Unit         | Number of<br>Validated<br>Results | Detections | Number of<br>Rejected<br>Results | Number of<br>Non-rejected<br>Results | Completeness |
|--------------------------------|--------------------|---------|--------------|-----------------------------------|------------|----------------------------------|--------------------------------------|--------------|
| Chloroethane                   | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Chloroform                     | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Chloromethane                  | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| cis-1,2-Dichloroethene         | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| cis-1,3-Dichloropropene        | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Cyclohexane                    | VOC                | Soil    | mg/kg        | 44                                | 2          | 0                                | 44                                   | 100.00%      |
| Dibromochloromethane           | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Dichlorodifluoromethane        | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Ethylbenzene                   | VOC                | Soil    | mg/kg        | 44                                | 3          | 0                                | 44                                   | 100.00%      |
| Isopropylbenzene               | VOC                | Soil    | mg/kg        | 44                                | 3          | 0                                | 44                                   | 100.00%      |
| Methyl Acetate                 | VOC                | Soil    | mg/kg        | 44                                | 0          | 38                               | 6                                    | 13.64%       |
| Methyl tert-butyl ether (MTBE) | VOC                | Soil    | mg/kg        | 44                                | 2          | 0                                | 44                                   | 100.00%      |
| Methylene Chloride             | VOC                | Soil    | mg/kg        | 44                                | 12         | 0                                | 44                                   | 100.00%      |
| Styrene                        | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Tetrachloroethene              | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Toluene                        | VOC                | Soil    | mg/kg        | 44                                | 4          | 0                                | 44                                   | 100.00%      |
| trans-1,2-Dichloroethene       | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| trans-1,3-Dichloropropene      | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Trichloroethene                | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Trichlorofluoromethane         | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Vinyl chloride                 | VOC                | Soil    | mg/kg        | 44                                | 0          | 0                                | 44                                   | 100.00%      |
| Xylenes                        | VOC                | Soil    | mg/kg        | 44                                | 3          | 0                                | 44                                   | 100.00%      |
| 1.4-Dioxane                    | VOC/SVOC           | Soil    | mg/kg        | 44                                | 0          | 44                               | 0                                    | 0.00%        |
| Cvanide                        | CN                 | Water   | ug/L         | 8                                 | 2          | 0                                | 8                                    | 100.00%      |
| Aluminum                       | Metal              | Water   | ug/L         | 8                                 | 8          | 0                                | 8                                    | 100.00%      |
| Antimony                       | Metal              | Water   | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Arsenic                        | Metal              | Water   | ug/L         | 8                                 | 3          | 0                                | 8                                    | 100.00%      |
| Barium                         | Metal              | Water   | ug/L         | 8                                 | 8          | 0                                | 8                                    | 100.00%      |
| Bervllium                      | Metal              | Water   | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Cadmium                        | Metal              | Water   | ug/L         | 8                                 | 4          | 0                                | 8                                    | 100.00%      |
| Chromium                       | Metal              | Water   | ug/L         | 8                                 | 6          | 0                                | 8                                    | 100.00%      |
| Chromium VI                    | Metal              | Water   | ng/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Cobalt                         | Metal              | Water   | ng/L         | 8                                 | 7          | 0                                | 8                                    | 100.00%      |
| Copper                         | Metal              | Water   | ng/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Iron                           | Metal              | Water   | ng/L         | 8                                 | 8          | 0                                | 8                                    | 100.00%      |
| Lead                           | Metal              | Water   | ng/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Manganese                      | Metal              | Water   | ng/L         | 8                                 | 7          | 0                                | 8                                    | 100.00%      |
| Mercury                        | Metal              | Water   | ug/L<br>ug/I | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Nickel                         | Metal              | Water   | ug/L<br>ug/I | 8                                 | 7          | 0                                | 8                                    | 100.00%      |
| Selenium                       | Metal              | Water   | ug/L<br>ug/I | 8                                 | 4          | 0                                | 8                                    | 100.00%      |
| Silver                         | Metal              | Water   | ug/L<br>ug/I | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Thallium                       | Metal              | Water   | ug/L<br>ug/I | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Vanadium                       | Metal              | Water   | ug/L<br>ug/I | 8                                 | 8          | 0                                | 8                                    | 100.00%      |
| Zinc                           | Metal              | Water   | ug/L<br>ug/I | 8                                 | 6          | 0                                | 8                                    | 100.00%      |
| 1 1-Binbenyl                   | SVOC               | Water   | ug/L<br>ug/I | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| 1.2.4.5-Tetrachlorobenzene     | SVOC               | Water   | ug/L<br>ug/I | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2 3 4 6-Tetrachlorophenol      | SVOC               | Water   | ug/L<br>ug/I | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2.4.5-Trichlorophenol          | SVOC               | Water   | ug/L<br>ug/I | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2.4.6-Trichlorophenol          | SVOC               | Water   | ug/L<br>ug/I | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2 4-Dichlorophenol             | SVOC               | Water   | 110/I        | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2 4-Dimethylphenol             | SVOC               | Water   | 110/I        | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2 4-Dinitrophenol              | SVOC               | Water   | 110/L        | 8                                 | 0          | 0                                | <u>8</u>                             | 100.00%      |
| 2.4 Dinitrotoluono             | SVOC               | Water   | ug/L         | Q                                 | 0          | 0                                | 0                                    | 100.00%      |
| 2.6 Dinitrotoluono             | SVOC               | Water   | ug/L         | 0                                 | 0          | 0                                | 0                                    | 100.00%      |
| 2 Chloronaphthalana            | SVOC               | Water   | ug/L         | 0                                 | 0          | 0                                | 0                                    | 100.00%      |
| 2 Chlorophenol                 | SVOC               | Water   | ug/L         | 0                                 | 0          | 0                                | 0                                    | 100.00%      |
| 2 Methylaaphthalana            | SVOC               | Water   | ug/L         | 0                                 | 1          | 0                                | 0                                    | 100.00%      |
| 2 Methylphenol                 | SVOC               | Water   | ug/L         | 0<br>0                            | 0          | 0                                | 0<br>0                               | 100.00%      |
| 2-meanyiphenoi                 | 5,00               | vv alci | ug/L         | 0                                 | U          | 0                                | 0                                    | 100.0070     |

| Parameter                    | Parameter<br>Group | Matrix | Unit         | Number of<br>Validated<br>Results | Detections | Number of<br>Rejected<br>Results | Number of<br>Non-rejected<br>Results | Completeness |
|------------------------------|--------------------|--------|--------------|-----------------------------------|------------|----------------------------------|--------------------------------------|--------------|
| 2-Nitroaniline               | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 3&4-Methylphenol(m&p Cresol) | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 3,3'-Dichlorobenzidine       | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 4-Chloroaniline              | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 4-Nitroaniline               | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Acenaphthene                 | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Acenaphthylene               | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Acetophenone                 | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Anthracene                   | SVOC               | Water  | ug/L         | 8                                 | 4          | 0                                | 8                                    | 100.00%      |
| Benz[a]anthracene            | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Benzaldehyde                 | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Benzo[a]pyrene               | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Benzo[b]fluoranthene         | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Benzo[g,h,i]perylene         | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Benzo[k]fluoranthene         | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| bis(2-chloroethoxy)methane   | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| bis(2-Chloroethyl)ether      | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| bis(2-Chloroisopropyl)ether  | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| bis(2-Ethylhexyl)phthalate   | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Caprolactam                  | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Carbazole                    | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Chrysene                     | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Dibenz[a,h]anthracene        | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Diethylphthalate             | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Di-n-butylphthalate          | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Di-n-ocytlphthalate          | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Fluoranthene                 | SVOC               | Water  | ug/L         | 8                                 | 3          | 0                                | 8                                    | 100.00%      |
| Fluorene                     | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Hexachlorobenzene            | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Hexachlorobutadiene          | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Hexachlorocyclopentadiene    | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Hexachloroethane             | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Indeno[1,2,3-c,d]pyrene      | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Isophorone                   | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Naphthalene                  | SVOC               | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Nitrobenzene                 | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| N-Nitroso-di-n-propylamine   | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| N-Nitrosodiphenylamine       | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Pentachlorophenol            | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Phenanthrene                 | SVOC               | Water  | ug/L         | 8                                 | 3          | 0                                | 8                                    | 100.00%      |
| Phenol                       | SVOC               | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Pyrene                       | SVOC               | water  | ug/L         | 8                                 | 2          | 0                                | 8                                    | 100.00%      |
| Diesel Range Organics        |                    | Water  | ug/L         | 8                                 | 6          | 0                                | 8                                    | 100.00%      |
| Gasoline Range Organics      | 1PH<br>VOC         | Water  | ug/L         | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| 1,1,1-1 Tichloroethane       | VOC                | Water  | ug/L         | 8                                 | 0          | 0                                | <u>ð</u>                             | 100.00%      |
| 1,1,2,2-1 etrachioroethane   | VOC                | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 1,1,2-Trichloroothane        | VOC                | Water  | ug/L         | 8<br>0                            | 0          | 0                                | <u> </u>                             | 100.00%      |
| 1,1,2-1 fichloroothana       | VOC                | Water  | ug/L         | 8<br>0                            | 2          | 0                                | <u> </u>                             | 100.00%      |
| 1,1-Dichloroethane           | VOC                | Water  | ug/L         | 0                                 | 1          | 0                                | 0                                    | 100.00%      |
| 1,1-Dichlorobenzene          | VOC                | Water  | ug/L         | 0<br>0                            | 0          | 0                                | 0                                    | 100.00%      |
| 1.2.4 Trichlorobenzene       | VOC                | Water  | ug/L         | 0<br>0                            | 0          | 0                                | 0                                    | 100.00%      |
| 1.2 Dibromo 3 chloropropono  | VOC                | Water  | ug/L         | Q                                 | 0          | 0                                | 0                                    | 100.00%      |
| 1.2 Dibromoethana            | VOC                | Water  | ug/L         | 0                                 | 0          | 0                                | 0                                    | 100.00%      |
| 1.2 Dichlorohonzono          | VOC                | Water  | ug/L         | 0                                 | 1          | 0                                | 0                                    | 100.00%      |
| 1.2-Dichloroethane           | VOC                | Water  | ug/L         | Q Q                               | 0          | 0                                | 0<br>Q                               | 100.00%      |
| 1.2-Dichloroethene (Total)   | VOC                | Water  | ug/L<br>ug/I | 8                                 | 5          | 0                                | 0<br>&                               | 100.00%      |
| 1,2-Dichloropropane          | VOC                | Water  | ug/L         | 8                                 | 0          | 0                                | 8                                    | 100.00%      |

| Parameter                      | Parameter<br>Group | Matrix | Unit | Number of<br>Validated<br>Results | Detections | Number of<br>Rejected<br>Results | Number of<br>Non-rejected<br>Results | Completeness |
|--------------------------------|--------------------|--------|------|-----------------------------------|------------|----------------------------------|--------------------------------------|--------------|
| 1,3-Dichlorobenzene            | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 1,4-Dichlorobenzene            | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2-Butanone (MEK)               | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 2-Hexanone                     | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 4-Methyl-2-pentanone (MIBK)    | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Acetone                        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Benzene                        | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Bromodichloromethane           | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Bromoform                      | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Bromomethane                   | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Carbon disulfide               | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Carbon tetrachloride           | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Chlorobenzene                  | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Chloroethane                   | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Chloroform                     | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Chloromethane                  | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| cis-1,2-Dichloroethene         | VOC                | Water  | ug/L | 8                                 | 5          | 0                                | 8                                    | 100.00%      |
| cis-1,3-Dichloropropene        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Cyclohexane                    | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Dibromochloromethane           | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Dichlorodifluoromethane        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Ethylbenzene                   | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Isopropylbenzene               | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Methyl Acetate                 | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Methyl tert-butyl ether (MTBE) | VOC                | Water  | ug/L | 8                                 | 1          | 0                                | 8                                    | 100.00%      |
| Methylene Chloride             | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Styrene                        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Tetrachloroethene              | VOC                | Water  | ug/L | 8                                 | 5          | 0                                | 8                                    | 100.00%      |
| Toluene                        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| trans-1,2-Dichloroethene       | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| trans-1,3-Dichloropropene      | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Trichloroethene                | VOC                | Water  | ug/L | 8                                 | 5          | 0                                | 8                                    | 100.00%      |
| Trichlorofluoromethane         | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| Vinyl chloride                 | VOC                | Water  | ug/L | 8                                 | 3          | 0                                | 8                                    | 100.00%      |
| Xylenes                        | VOC                | Water  | ug/L | 8                                 | 0          | 0                                | 8                                    | 100.00%      |
| 1,4-Dioxane                    | VOC/SVOC           | Water  | ug/L | 8                                 | 4          | 0                                | 8                                    | 100.00%      |

Data validation has been completed for a representative 50% of all samples