

ARM Group LLC

Engineers and Scientists

September 1, 2020

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

> Re: PORI Lagoon Characterization Report Area B: Parcel B22 Tradepoint Atlantic Sparrows Point, MD 21219

Dear Ms. Brown,

ARM Group LLC (ARM), on behalf of EnviroAnalytics Group, LLC (EAG), has prepared this Palm Oil Recovery, Inc. (PORI) Lagoon Characterization Report for soil and groundwater investigation activities completed within the PORI Lagoon area in Parcel B22 (the Site) on the Tradepoint Atlantic (TPA) property located in Sparrows Point, Maryland. The location of the PORI Lagoon within the larger TPA property is indicated on **Figure 1**.

Parcel B22 Phase II Investigation

Following the completion of the Phase II Investigation activities on Parcel B22 in June 2016, a Phase II Investigation Preliminary Report (Revision 0), dated July 15, 2016, was submitted to the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) (collectively, the Agencies). This preliminary report was later superseded by the Phase II Investigation Report (Revision 1) dated August 8, 2019.

The investigation identified elevated concentrations of naphthalene and benzo[a]pyrene in the subsurface soil samples collected from soil boring B22-119-SB, which was installed at a location adjacent to the PORI Lagoon in the northern section of Parcel B22. The highest concentrations of these organic constituents were in samples collected in the interval from 9 to 10 feet below ground surface (bgs). At 10 feet bgs, naphthalene was detected at a concentration of 2,040 mg/kg and benzo[a]pyrene was detected at a concentration of 84.9 mg/kg. In the overlying sample collected at 9 feet bgs, the naphthalene and benzo[a]pyrene concentrations were significantly lower (with concentrations of 32.8 mg/kg and 0.26 mg/kg, respectively). A black and viscous product was observed in soil boring B22-119-SB within the soil core from 9 to 10 feet bgs, corresponding to the elevated analytical results.

The PORI Lagoon had also been targeted by soil borings B22-120-SB, B22-121-SB, and B22-174-SB, which were located to the southeast of B22-119-SB. None of these additional soil borings had elevated naphthalene or benzo[a]pyrene detections. It should be noted that soil boring B22-119-SB was located in the suspected downgradient groundwater flow direction from the lagoon.

A temporary groundwater piezometer was installed at B22-119-SB to determine the presence or absence and potential mobility of non-aqueous phase liquid (NAPL) in groundwater. There was no measurable light or dense NAPL present in the screening piezometer (B22-119-PZ) during the 0-hour, 48-hour, or 30-day gauging events. The screening piezometer was later abandoned on October 11, 2016.

After reviewing the data presented in the Phase II Investigation Preliminary Report, the Agencies determined that additional characterization would be needed in the vicinity of the PORI Lagoon to verify that the elevated organic detections were isolated in nature and to determine what, if any, remedial response actions could ultimately be required. Three subsequent rounds of investigation have been completed in the vicinity of the PORI Lagoon, each of which is described below in further detail.

Initial Characterization Investigation (Soil, Test Pits, and Groundwater)

A Work Plan for the Characterization of Naphthalene and Benzo[a]pyrene Impacts at the PORI Lagoon was submitted to the Agencies on April 19, 2018. Following review of the Work Plan, the proposed sampling approach was approved via email on April 30, 2018. A total of 12 soil borings, two test pit locations, and four groundwater sample locations were utilized to collect samples in the vicinity of the lagoon.

The 12 soil borings were completed from May 7 to 9, 2018. At each boring location, soil samples were collected from the intervals of 4 to 5, 9 to 10, and 14 to 15 feet bgs (subject to minor field adjustment) using a Geoprobe[®] direct push rig. The samples were biased to target intervals with evidence of contamination based on field screening observations including odors, staining, elevated photoionization detector (PID) readings, etc. Temporary piezometers were also installed at four of the soil boring locations (B22-119-SB, B22-119I-SB, B22-119J-SB, and B22-119K-SB) to further characterize groundwater impacts downgradient from the PORI Lagoon. Soil boring observation logs and piezometer construction logs for each location are provided in **Attachment 1**. On May 31 and June 1, 2018, the four piezometers that were present at that time (B22-119-PZ, B22-119I-PZ, B22-119J-PZ, and B22-119K-PZ) were purged to facilitate sample collection. The groundwater purge logs are included as **Attachment 2**.

Two test pits (B22 TP 1 and B22 TP 2) were completed on June 5, 2018 approximately 20 feet to the southeast and approximately 45 feet to the east, respectively, from B22-119-SB. The eastern test pit targeted the outflow pipe that runs from the PORI Lagoon to the north toward the Tin

Mill Canal. A soil sample was collected from each test pit along the sidewall above the water table, at approximately 12 feet bgs relative to the surrounding ground surface at the top of the PORI Lagoon. A photograph log with representative photos from the test pitting is provided in **Attachment 3**. As shown in the photograph log, a length of sheet piling was observed at the northwestern edge of the PORI Lagoon.

Soil samples collected from the continuous core soil borings and test pits, and groundwater samples collected from temporary groundwater locations were submitted to Pace Analytical Services, Inc. (PACE) and analyzed for polynuclear aromatic hydrocarbons (PAHs) via USEPA Method 8270 SIM, volatile organic compounds (VOCs) via USEPA Method 8260, total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Method 8015, and Oil & Grease via USEPA Method 9071. The laboratory reports are included as electronic attachments.

Table 1 shows that seven out of 12 soil borings (B22-119-SB, B22-119B-SB, B22-119E-SB, B22-119G-SB, B22-119H-SB, B22-119I-SB) had concentrations of naphthalene and/or benzo[a]pyrene detected in one or more soil samples above their respective Project Action Limits (PALs). Several other PAHs were identified above their respective PALs in sample B22-119H-SB-11 only. Oil & Grease exceeded its PAL of 6,200 mg/kg in sample B22-119B-SB-15 with a detected concentration of 35,800 mg/kg. The soil boring PAL exceedance locations and results are shown on **Figure 2**. During the original Phase II Investigation in 2016, there were elevated concentrations of naphthalene and benzo[a]pyrene in sample B22-119-SB-10 (corresponding with observations of NAPL). B22-119-SB was re-installed during this supplemental investigation, and NAPL was again observed in the soil core (7 to 10 feet bgs). NAPL was not observed in any other borings although odors were noted at several locations. The soil borings with the highest naphthalene and benzo[a]pyrene concentrations identified during this supplemental phase of investigation (B22-119E-SB and B22-119H-SB) were the two borings completed closest to the original boring B22-119-SB.

Two additional soil samples were collected from a depth of approximately 12 feet bgs (measured relative to the surrounding ground surface at the top of the PORI Lagoon) from the two test pit locations (B22 TP 1 and B22 TP 2). The results from these test pit soil samples are provided on **Table 2**. These test pit samples had naphthalene detections of 0.31 mg/kg and 0.26 mg/kg and benzo[a]pyrene detections of 0.62 mg/kg and 0.71 mg/kg, respectively. These detections were below the PALs for naphthalene and benzo[a]pyrene; however, TPH-DRO and Oil & Grease were both detected above the PAL of 6,200 mg/kg. The test pit PAL exceedance locations and results are shown on **Figure 3**.

The results from the groundwater sampling event utilizing the first four piezometers installed at the PORI Lagoon (B22-119-PZ, B22-119I-PZ, B22-119J-PZ, and B22-119K-PZ) are provided on **Table 3**. A groundwater sample was not successfully collected from B22-119K-PZ due to

Δ	P	M	G	*	0	11	12	I	I	C
Π	IX I	IVI	U	1	0	u	ρ	L	L	C

3

observations of NAPL and heavy silt within the piezometer (as indicated on the purge log). The groundwater sample collected from B22-119-PZ, corresponding to the soil boring with observed NAPL and the highest concentrations of naphthalene and benzo[a]pyrene during the original Phase II Investigation, had aqueous PAL exceedances including TPH/Oil & Grease, various PAHs including naphthalene (2,550 μ g/L) and benzo[a]pyrene (57.3 μ g/L), and benzene (859 μ g/L). The groundwater PAL exceedance locations and results are shown on **Figure 4**.

Secondary Characterization Investigation (Groundwater)

Following review of the initial characterization findings, and as described in the PORI Lagoon Interim Submittal Comment Response Letter dated January 14, 2020, MDE requested additional groundwater sampling to determine the extent of SVOCs, Oil & Grease, TPH-DRO/GRO, benzene, and NAPL contamination in the vicinity of the PORI Lagoon.

The MDE selected three locations to provide additional groundwater coverage, including a groundwater sample from NAPL screening piezometer B22-119N-PZ (which was installed as part of a related investigation discussed in the NAPL Delineation Investigation section below), and two new piezometers at locations as close as possible to the eastern and western sides of the PORI Lagoon, which were later designated as B22-119R-PZ and B22-119S-PZ. The two new piezometers were installed at the requested locations on May 21, 2020. A slight sheen was observed in the soil from approximately 11 to 12 feet bgs at B22-119S-PZ. On May 27, 2020, the sampling scope was expanded to include a resample of B22-119-PZ, as well as sampling B22-119M-PZ and B22-119Q-PZ. Soil boring observation and piezometer construction logs for each piezometer are provided in **Attachment 1**. The six groundwater samples were collected from the designated locations on May 27 and 28, 2020. The groundwater purge logs are included as **Attachment 2**. Samples were submitted to PACE to be analyzed for VOCs, PAHs, TPH-DRO/GRO, and Oil & Grease via the same methods listed above. The laboratory reports are included as electronic attachments.

The results from the supplemental groundwater sampling event utilizing the six designated piezometers are provided on **Table 3** (along with the results from the groundwater samples collected in 2018). The only VOC that was detected above the PAL during the May 2020 groundwater sampling event was benzene with exceedances at B22-119-PZ (with a concentration of 835 μ g/L) and B22-119S-PZ (with a concentration of 50.5 μ g/L). The highest concentration of naphthalene that was detected in groundwater during the May 2020 sampling event was 886 μ g/L in B22-119-PZ. This concentration is significantly lower than the original groundwater sample at B22-119-PZ collected on May 31, 2018 (2,550 μ g/L). The next highest naphthalene concentration that was detected in groundwater during the May 2020 event was at B22-119S-PZ (120 μ g/L). TPH-DRO was detected above its PAL (47 μ g/L) in all six groundwater samples collected in May 2020, with the highest detection of 19,700 μ g/L in B22-119-PZ. Oil & Grease and TPH-GRO were detected above their PALs (47 μ g/L) in five samples and two samples,

respectively. The groundwater PAL exceedance locations and results from both investigation phases (2018 and 2020) are shown on **Figure 4**.

Tertiary Characterization Investigation (Test Pits)

A number of test pits were completed to further characterize the sediments in the bottom of the PORI Lagoon. These test pits were completed using an excavator at six locations (B22-TP-1 through B22-TP-6) on June 17, 2020. Three excavator buckets of soil were removed from each test pit. Material from each test pit was screened with a PID and soil samples were collected for analysis at three distinct 1-foot depth intervals (0 to 1 foot, 2 to 3 feet, and 4 to 5 feet). A sample could not be collected at a depth of 5 feet from B22-TP-4 due to equipment refusal. A photograph log with representative photos from the test pitting is included as **Attachment 3**. All PID readings collected from each test pit interval were below 10 ppm; the PID results are provided on **Table 4**. Soil samples collected from the test pits were submitted to PACE to be analyzed for VOCs, TPH-DRO/GRO, and Oil & Grease (via the same methods listed above), and were submitted to Alpha Analytical to be analyzed for PAHs via USEPA Method 8270 SIM. The laboratory reports are included as electronic attachments.

The analytical soil results from the supplemental test pit samples are provided on **Table 2** (along with the results from the test pits completed in 2018). Each test pit sample collected on June 17, 2020 had an exceedance of TPH-DRO and/or Oil & Grease. Several elevated concentrations were identified among the test pit samples above the PAL of 6,200 mg/kg. The highest detected concentrations of TPH-DRO and Oil & Grease among all the test pit samples were 46,900 mg/kg and 198,000 mg/kg, respectively, both detected at B22-TP-4-3. A visible sheen was also observed in the excavator bucket (on the water) by the ARM field personnel providing oversight during the completion of B22-TP-4. Despite the elevated concentrations of TPH-DRO and Oil & Grease, the concentrations of VOCs and PAHs detected in the test pit soil samples were comparatively low. There were five PAL exceedances of benzo[a]pyrene among the test pits samples, with a maximum detected concentration of only 11 mg/kg in B22-TP-4-3. The test pit PAL exceedance locations and results from both investigation phases (2018 and 2020) are shown on **Figure 3**.

Vapor Intrusion Assessment

A

R

Μ

G

r

Groundwater data from both sample collection events (2018 and 2020) were screened to determine whether the individual sample results exceeded the USEPA Vapor Intrusion (VI) Screening Levels (set to a Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the online Vapor Intrusion Screening Level (VISL) Calculator (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls). The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site.

u

0

р

L

L

С

5

Two aqueous results exceeded the individual VI TCR or THQ criteria specified by the VISL Calculator during both the 2018 and 2020 groundwater sampling events. Each exceedance was identified at B22-119-PZ. In 2018, the maximum naphthalene and benzene detections of 2,550 μ g/L and 859 μ g/L, respectively, at B22-119-PZ exceeded the corresponding TCR VISLs of 200 μ g/L and 69 μ g/L. Similarly, in May 2020 the maximum naphthalene and benzene detections of 886 μ g/L and 835 μ g/L, respectively, exceeded the same VISLs.

Following the initial screening, a cumulative VI risk assessment was also performed for each individual sample location, with the results separated by cancer risk versus non-cancer hazard. All compounds with detections were included in the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. One location (B22-119-PZ) exceeded a cumulative VI cancer risk of 1E-5 during both sampling events, due to the elevated detections of naphthalene and benzene at this sample location. There were no exceedances of the acceptable VI non-cancer hazard identified during the cumulative evaluation. The results of the cumulative VI comparisons are provided in **Table 5**.

The presence and absence of groundwater impacts in the vicinity of the PORI Lagoon have been adequately described. Groundwater is not used on the TPA property (and is not proposed to be utilized). Location B22-119-PZ exhibited concentrations of benzene and naphthalene which could present a potential VI risk if a structure were to be proposed in this area. The groundwater impacts at B22-119-PZ have been adequately delineated, and the elevated VI risk does not appear to be widespread beyond this isolated location. It should be noted that a groundwater sample was not collected from B22-119K-PZ due to the presence of NAPL at this location, but groundwater samples were collected to the north and south (at locations B22-119N-PZ and B22-119M-PZ, respectively) and neither location exhibited an elevated VI risk. The NAPL impacts at B22-119K-PZ have also been adequately delineated as described in the following section.

NAPL Delineation Investigation

R

Μ

G

r

0

A

As described above, four piezometers (B22-119-PZ, B22-119I-PZ, B22-119J-PZ, and B22-119K-PZ) were installed in May 2018 during the initial phase of the PORI Lagoon characterization investigation. Approximately 48-hours after its installation, B22-119K-PZ (screened from 4.5 to 24.5 feet bgs) had accumulated 0.14 feet of NAPL in the piezometer screen. As a result of the measurable NAPL detection, and to further delineate the extent of NAPL in groundwater, six additional piezometers (B22-119L-PZ, B22-119M-PZ, B22-119N-PZ, B22-119O-PZ, B22-119P-PZ, and B22-119Q-PZ) were installed on October 12, 2018. None of the six additional delineation piezometers had measurable NAPL during the 0-hour, 48-hour, or 30-day gauging events. The locations of the piezometers are shown on **Figure 5a/b**. The dates of gauging activities, as well as NAPL thickness measurements and water level measurements, have been included in **Table 6**. This table also includes the installation date of each piezometer,

u

р

L

L

С

as well as relevant construction details (total depths, screen intervals, etc.). Soil boring observation and piezometer construction logs were completed for all delineation piezometers installed around B22-119-PZ and are provided in **Attachment 1**.

Following conclusion of the required gauging events, a NAPL Delineation Completion Report and Permanent Well Installation Work Plan was submitted to the Agencies dated December 4, 2019. The Delineation Completion Report requested the abandonment of the NAPL delineation network and recommended a future monitoring and recovery program for the NAPL identified at B22-119K-PZ via the installation of a permanent 2-inch diameter groundwater well. At the time that the Delineation Completion Report was submitted to the Agencies, B22-119K-PZ was the only temporary piezometer that had any detections of NAPL.

During the expansion of the groundwater investigation in May 2020, two additional temporary piezometers were installed as B22-119R-PZ and B22-119S-PZ, and a total of six supplemental groundwater samples were collected (B22-119-PZ, B22-119M-PZ, B22-119N-PZ, B22-119Q-PZ, B22-119R-PZ and B22-119S-PZ). During the groundwater sampling, an oil-water interface probe was used to gauge all six temporary piezometers. The oil-water interface probe made no indication that NAPL was encountered. During the initial groundwater purge, the field personnel developed each temporary piezometer. This was completed using dedicated tubing to remove any settled sediment at the bottom of the piezometer prior to initiating a purging record to monitor parameter stabilization. During this temporary piezometer development, a viscous milky-colored product appearing to be a dense NAPL was observed in the purge water at B22-119M-PZ and B22-119-Q-PZ. The two piezometers are located south and southwest of the temporary piezometer where NAPL was originally detected (B22-119K-PZ); however, the product did not appear to be the same type of NAPL based on its color, lack of odors, lack of reactivity to the oil-water interface probe, and density.

The field personnel removed as much of the unknown product from the two temporary piezometers prior to initiating the groundwater sampling. Based on the gauging measurements, approximately 2.6 feet of the milky-colored product was present in B22-119M-PZ, and approximately 3.1 feet of the product was present in B22-119Q-PZ during the development. No other temporary piezometer had any observations of NAPL during the May 2020 groundwater sampling activities. Based on the analytical results returned for locations B22-119M-PZ and B22-119-Q-PZ, the milky-colored product does not appear to represent a significant continuing source of PAHs or VOCs which could present a potential VI concern. The product appears to be relatively benign.

It should also be noted that approximately two weeks after concluding the May 2020 groundwater sampling, the piezometers were abandoned (as discussed in the following section). On the abandonment date approximately 0.17 feet of NAPL was detected with the oil-water interface probe in B22-119K-PZ, which was already known to be impacted. Additionally, a

small amount of NAPL (0.02 feet) was identified with the interface probe in B22-119M-PZ immediately prior to abandonment. The NAPL detected on this date appeared to be the same as the NAPL in B22-119K-PZ. The new NAPL detection is located directly between the PORI Lagoon and the known impacts at B22-119K-PZ. Based on the recent piezometer development and sampling, it is suspected that the groundwater purging allowed the small amount of NAPL to mobilize into the casing of B22-119M-PZ.

Piezometer Abandonments

The piezometers in the vicinity of the PORI Lagoon were properly abandoned on June 8, 2020, by a licensed driller and in accordance with Maryland abandonment standards as stated in COMAR 26.04.04.34 through 36. B22-119I-PZ was previously found to be destroyed on September 3, 2019, and therefore was unable to be abandoned. Each piezometer was abandoned using standard methods (i.e., PVC pulled and borehole filled with grout from the bottom up using a tremie pipe). Abandonment forms are included as **Attachment 4**.

Summary & Recommendations

A

R

Μ

G

r

0

Naphthalene and other PAHs were detected at elevated levels in the soil samples collected from B22-119-SB and the immediately surrounding borings B22-119E-SB and B22-119H-SB. NAPL was observed at B22-119-SB within the soil core from 9 to 10 feet bgs during the original Phase II Investigation in 2016 (corresponding to the elevated analytical results) and from 7 to 10 feet bgs during the supplemental investigation in 2018 (without soil samples collected from the corresponding soil interval). The test pit samples collected from the PORI Lagoon sediments contained elevated TPH-DRO and Oil & Grease within the lagoon footprint. One soil boring sample (B22-119B-SB-15) collected at the northeastern perimeter of the lagoon contained an elevated concentration of Oil & Grease comparable to the test pit sediment results. Although the sediments in the PORI Lagoon are impacted with TPH-DRO and Oil & Grease, the concentrations of VOCs and PAHs in the test pit samples were low, indicating the sediments are not likely to present a VI concern.

Soil boring B22-119-SB to the north of the PORI lagoon was the only soil boring with significant NAPL contamination observed in the core. One other boring (B22-119S-SB) had a slight sheen observed in the soil. The piezometers installed at both of these locations did not accumulate NAPL; however, the most significant dissolved contamination in groundwater was observed at these two locations. B22-119-PZ exhibited the highest groundwater concentrations of numerous organic contaminants. It should be noted that B22-119K-PZ was not sampled due to the presence of NAPL, which has since been delineated. An unknown milky-colored product was observed at locations B22-119M-PZ and B22-119Q-PZ during groundwater purging but did not appear to be the same type of NAPL that was identified at B22-119K-PZ. The unknown product appears to be benign based on the groundwater results obtained at these two locations.

u

р

L

L

С

Location B22-119-PZ exhibited concentrations of benzene and naphthalene which could present a potential VI risk if a structure were to be proposed in this area. The groundwater impacts at B22-119-PZ have been adequately delineated, and the elevated VI risk does not appear to be widespread beyond this isolated location. A groundwater sample was not collected from B22-119K-PZ (containing NAPL), but groundwater samples were collected to the north and south (at locations B22-119N-PZ and B22-119M-PZ, respectively) and neither location exhibited an elevated VI risk.

The recommended remedy for the PORI Lagoon is to cap the sediments in place using a lowpermeability cap to provide a protective barrier for future exposures. This remedy is proposed contingent on no building or occupied structure being built above the PORI Lagoon area. If an occupied structure is proposed above the PORI Lagoon, additional remedial actions may be considered. The migration of NAPL appears to be limited, and a NAPL recovery well shall be installed at the former location of B22-119K-PZ. Based on the limited accumulation of NAPL, a passive recovery method such as an absorbent down-well sock will be used.

If you have questions regarding any information covered in this document, please feel free to contact ARM Group LLC at (410) 290-7775.

Respectfully Submitted, ARM Group LLC

Leandra Klumac

Leandra Glumac Project Geologist

A

R

Μ

G

r

0

E. Mugh

Eric S. Magdar, P.G. Vice President

L

р

u

L

С

FIGURES

TABLES

Descenter	T.L. M.	DAI	B22-119-SB-1	B22-119-SB-9	B22-119-SB-10*	B22-119-SB-5*	B22-119-SB-15*	B22-119A-SB-5*	B22-119A-SB-9*	B22-119B-SB-5*	B22-119B-SB-9.5*	B22-119B-SB-15*	B22-119C-SB-5*
Parameter	Units	PAL	5/19/2016	5/19/2016	5/19/2016	5/8/2018	5/8/2018	5/7/2018	5/7/2018	5/7/2018	5/7/2018	5/7/2018	5/7/2018
Volatile Organic Compounds	•					•							•
2-Butanone (MEK)	mg/kg	190,000	0.011 U	0.0061 J	N/A	0.0097 U	0.0098 U	0.013	0.0096 U	0.012 U	0.012 U	0.0098 U	0.011 U
Acetone	mg/kg	670,000	0.011 U	0.023 J	N/A	0.0097 U	0.02	0.33	0.072	0.039	0.049	0.23	0.038
Benzene	mg/kg	5.1	0.0056 U	3.9 J	N/A	0.0049 U	0.14	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Carbon disulfide	mg/kg	3,500	0.0056 U	0.007 U	N/A	0.0049 U	0.0053	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Ethylbenzene	mg/kg	25	0.0056 U	0.096 J	N/A	0.0049 U	0.0049 U	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Isopropylbenzene	mg/kg	9,900	0.0056 U	0.018	N/A	0.0049 U	0.0049 U	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Methyl Acetate	mg/kg	1,200,000	0.056 U	0.07 U	N/A	0.049 U	0.049 U	0.073	0.023 J	0.0025 J	0.23	0.079	0.012 J
Methyl tert-butyl ether (MTBE)	mg/kg	210	0.0056 U	0.007 U	N/A	0.0049 U	0.0049 U	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Styrene	mg/kg	35,000	0.0056 U	0.032 J	N/A	0.0049 U	0.0049 U	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0049 U	0.0056 U
Toluene	mg/kg	47,000	0.0056 U	1.4 J	N/A	0.0049 U	0.0062	0.0056 U	0.0048 U	0.0059 U	0.0062 U	0.0016 J	0.0056 U
Xylenes	mg/kg	2,800	0.017 U	0.75 J	N/A	0.015 U	0.0078 J	0.017 U	0.014 U	0.018 U	0.019 U	0.015 U	0.017 U
Semi-Volatile Organic Comounds^					- 								
1,1-Biphenyl	mg/kg	200	0.07 U	0.18 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	mg/kg	16,000	0.07 U	0.96	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Methylnaphthalene	mg/kg	3,000	0.072 U	1.7	N/A	0.067	0.79	0.15	0.013	0.36	0.013	2.7	0.086
2-Methylphenol	mg/kg	41,000	0.07 U	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	0.14 U	1.4 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acenaphthene	mg/kg	45,000	0.072 U	0.38 J	N/A	0.012	0.89	0.024	0.0031 J	0.053	0.00095 J	2.1	0.018
Acenaphthylene	mg/kg	45,000	0.011 J	0.72 J	N/A	0.019	0.14	0.035	0.035	0.092	0.0039 J	0.31	0.054
Anthracene	mg/kg	230,000	0.025 J	0.42 J	N/A	0.07	1.3	0.2	0.034	0.78	0.011	3.1	0.13
Benz[a]anthracene	mg/kg	21	0.2	0.35 J	N/A	0.28	2.9	0.86	0.28	8.2	0.14	3.2	0.84
Benzaldehyde	mg/kg	120,000	0.07 R	0.099 R	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo[a]pyrene	mg/kg	2.1	0.16	0.26 J	84.9	0.26	2.7	0.84	0.28	6.9	0.17	1.7	0.8
Benzo[b]fluoranthene	mg/kg	21	0.4	0.57 J	N/A	0.55	4.3	1.1	0.43	12.8	0.28	2.6	1.3
Benzo[g,h,i]perylene	mg/kg		0.058 J	0.082 J	N/A	0.087	0.54	0.43	0.14	1.2	0.098	0.63	0.28
Benzo[k]fluoranthene	mg/kg	210	0.33	0.47 J	N/A	0.43	3.3	0.41	0.12	3.1	0.095	2.1	0.34
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.028 B	0.099 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbazole	mg/kg		0.07 U	1.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chrysene	mg/kg	2,100	0.21	0.27 J	N/A	0.26	2.2	0.66	0.21	6.4	0.12	2.7	0.64
Dibenz[a,h]anthracene	mg/kg	2.1	0.018 J	0.03 J	N/A	0.039	0.24	0.2	0.06	0.94	0.04	0.21	0.15
Diethylphthalate	mg/kg	660,000	0.07 U	0.099 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluoranthene	mg/kg	30,000	0.27	1.5 J	N/A	0.45	5.9	1.1	0.33	9.2	0.097	9.5	1.1
Fluorene	mg/kg	30,000	0.072 U	1.2	N/A	0.0091	1.3	0.031	0.0051 J	0.078	0.0017 J	4.2	0.017
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.049 J	0.086 J	N/A	0.091	0.59	0.46	0.15	3.2	0.1	0.68	0.34
Naphthalene	mg/kg	8.6	0.072 U	32.8	2,040	0.064	2.8	0.084	0.018	0.23	0.026	0.48	0.082
Phenanthrene	mg/kg		0.046 J	2.5	N/A	0.31	6.5	0.93	0.12	4.9	0.081	13.8	0.45
Phenol	mg/kg	250,000	0.07 U	1.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pyrene	mg/kg	23,000	0.25	1 J	N/A	0.45	4.7	0.93	0.29	7.7	0.091	7.3	0.96
TPH/Oil and Grease													
Diesel Range Organics	mg/kg	6,200	20.5 J	124 J	N/A	71	287	46.9	32.1	498	22.2	4,090	75.5
Gasoline Range Organics	mg/kg	6,200	13 U	11.1 J	N/A	10 U	11 U	10.6 U	10.2 U	18.3 U	9.8 U	10.8 U	12.2 U
Oil and Grease	mg/kg	6,200	N/A	N/A	N/A	302	1,200	224	186	644	218	35,800	242

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

Doromator	Unita	DAI	B22-119C-SB-9.5*	B22-119D-SB-5*	B22-119D-SB-9*	B22-119E-SB-5*	B22-119E-SB-10*	B22-119E-SB-15*	B22-119F-SB-5*	B22-119F-SB-10*	B22-119F-SB-15*	B22-119G-SB-5*	B22-119G-SB-10*
Parameter	Units	PAL	5/7/2018	5/7/2018	5/7/2018	5/7/2018	5/7/2018	5/7/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018
Volatile Organic Compounds													
2-Butanone (MEK)	mg/kg	190,000	0.01 U	0.012 U	0.0088 U	0.011 U	0.0094 U	0.0091 U	0.011 U	0.0092 U	0.0093 U	0.0086 U	0.0097 U
Acetone	mg/kg	670,000	0.06	0.15	0.067	0.11	0.051	0.051	0.059	0.0092 U	0.012	0.056	0.19
Benzene	mg/kg	5.1	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.14	0.43	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0049 U
Carbon disulfide	mg/kg	3,500	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.0063	0.0022 J	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0044 J
Ethylbenzene	mg/kg	25	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.007	0.014	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0049 U
Isopropylbenzene	mg/kg	9,900	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.0019 J	0.002 J	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0049 U
Methyl Acetate	mg/kg	1,200,000	0.12	0.019 J	0.038 J	0.053 U	0.021 J	0.21	0.0084 J	0.046 U	0.046 U	0.013 J	0.049 U
Methyl tert-butyl ether (MTBE)	mg/kg	210	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.0047 U	0.0045 U	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0013 J
Styrene	mg/kg	35,000	0.0052 U	0.006 U	0.0044 U	0.0053 U	0.0013 J	0.002 J	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0049 U
Toluene	mg/kg	47,000	0.0052 U	0.002 J	0.0044 U	0.0053 U	0.041	0.13	0.0054 U	0.0046 U	0.0046 U	0.0043 U	0.0049 U
Xylenes	mg/kg	2,800	0.016 U	0.018 U	0.013 U	0.016 U	0.067	0.12	0.016 U	0.014 U	0.014 U	0.013 U	0.015 U
Semi-Volatile Organic Comounds^		•											•
1,1-Biphenyl	mg/kg	200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	mg/kg	16,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Methylnaphthalene	mg/kg	3,000	0.036	0.028	0.031	0.034	5.3	13.7	0.066	0.8	0.0035 J	0.028	0.12
2-Methylphenol	mg/kg	41,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acenaphthene	mg/kg	45,000	0.019	0.003 J	0.022	0.013	1.1	3.4	0.073	3.7	0.0014 J	0.31	0.25
Acenaphthylene	mg/kg	45,000	0.013	0.0082	0.022	0.053	2.6	5.7	0.054	0.55	0.0086 U	0.092	0.027
Anthracene	mg/kg	230,000	0.067	0.024	0.11	0.13	6.4	7.6	0.4	9.9	0.001 J	1.5	0.21
Benz[a]anthracene	mg/kg	21	0.2	0.091	0.41	0.45	9.7	8.7	1.3	13.4	0.0027 J	10.3	0.48
Benzaldehyde	mg/kg	120,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo[a]pyrene	mg/kg	2.1	0.17	0.079	0.34	0.36	8.6	7.7	1.3	10.3	0.0011 J	6.9	0.48
Benzo[b]fluoranthene	mg/kg	21	0.35	0.19	0.68	0.85	11.5	10.7	2.3	18.3	0.0014 J	10	0.83
Benzo[g,h,i]perylene	mg/kg		0.056	0.034	0.11	0.097	1.6	1.2	0.48	2	0.0086 U	2.8	0.15
Benzo[k]fluoranthene	mg/kg	210	0.25	0.14	0.5	0.63	3.5	3.4	1.8	16	0.0086 U	4.2	0.65
bis(2-Ethylhexyl)phthalate	mg/kg	160	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbazole	mg/kg		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chrysene	mg/kg	2,100	0.16	0.09	0.3	0.35	6.2	5.2	0.99	7.9	0.0012 J	7.6	0.45
Dibenz[a,h]anthracene	mg/kg	2.1	0.028	0.015	0.054	0.057	1.1	0.69	0.2	0.89	0.0086 U	1.4	0.065
Diethylphthalate	mg/kg	660,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluoranthene	mg/kg	30,000	0.35	0.18	0.67	0.74	24.9	25.7	3	23.4	0.0047 J	17	0.78
Fluorene	mg/kg	30,000	0.026	0.0032 J	0.028	0.021	8.5	15.5	0.064	5.3	0.0017 J	0.1	0.24
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.064	0.036	0.13	0.13	2.5	1.6	0.53	2.2	0.0086 U	3.4	0.16
Naphthalene	mg/kg	8.6	0.055	0.043	0.039	0.047	36.3	131	0.15	1.3	0.013	0.025	0.43
Phenanthrene	mg/kg		0.32	0.1	0.44	0.47	33.1	42.9	1.4	29.6	0.0052 J	8.9	1.2
Phenol	mg/kg	250,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pyrene	mg/kg	23,000	0.27	0.16	0.53	0.69	14	14.8	2.5	17.8	0.0036 J	12.9	0.72
TPH/Oil and Grease													
Diesel Range Organics	mg/kg	6,200	49.3	59.2	37.6	229	395	246	177	370	8.7	38.4	275
Gasoline Range Organics	mg/kg	6,200	14.2 U	9.9 U	15.7 U	11.5 U	11.5 U	12 U	22.9 U	10.8 U	10.3 U	14 U	11.4 U
Oil and Grease	mg/kg	6,200	253	130	230 J	847	1,790	1,710	1,150	2,840	207 J	316	2,540

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

Parameter	Unite	DAI	B22-119G-SB-15*	B22-119H-SB-5*	B22-119H-SB-11*	B22-119H-SB-14*	B22-119I-SB-5*	B22-119I-SB-10*	B22-119I-SB-15*	B22-119J-SB-5*	B22-119J-SB-10*	B22-119K-SB-5*	B22-119K-SB-9*
Parameter	Units	PAL	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/8/2018	5/9/2018	5/9/2018	5/9/2018	5/9/2018
Volatile Organic Compounds													
2-Butanone (MEK)	mg/kg	190,000	0.009 U	0.01 U	0.013 U	0.0095 U	0.0094 U	0.0089 U	0.011 U	0.0096 U	0.01 U	0.011 U	0.0076 U
Acetone	mg/kg	670,000	0.031	0.018	0.047	0.0095 U	0.022	0.011	0.011	0.015	0.025	0.023	0.0076 U
Benzene	mg/kg	5.1	0.0045 U	0.0052 U	0.0063 J	0.004 J	0.0047 U	0.0044 U	0.0029 J	0.0048 U	0.005 U	0.0057 U	0.0038 U
Carbon disulfide	mg/kg	3,500	0.0053	0.0052 U	0.0065 J	0.0056	0.008	0.0027 J	0.013	0.0048 U	0.005 U	0.0057 U	0.0038 U
Ethylbenzene	mg/kg	25	0.0045 U	0.0052 U	0.0031 J	0.0048 U	0.0047 U	0.0044 U	0.0053 U	0.0048 U	0.005 U	0.0057 U	0.0038 U
Isopropylbenzene	mg/kg	9,900	0.0045 U	0.0052 U	0.0065 U	0.0048 U	0.0047 U	0.0044 U	0.0053 U	0.0048 U	0.005 U	0.0057 U	0.0038 U
Methyl Acetate	mg/kg	1,200,000	0.0014 J	0.0016 J	0.021 J	0.048 U	0.0034 J	0.044 U	0.053 U	0.048 U	0.05 U	0.057 U	0.038 U
Methyl tert-butyl ether (MTBE)	mg/kg	210	0.0045 U	0.0052 U	0.0065 U	0.0048 U	0.0047 U	0.0044 U	0.0053 U	0.0048 U	0.005 U	0.0057 U	0.0038 U
Styrene	mg/kg	35,000	0.0045 U	0.0052 U	0.0065 U	0.0048 U	0.0047 U	0.0044 U	0.0053 U	0.0048 U	0.005 U	0.0057 U	0.0038 U
Toluene	mg/kg	47,000	0.0045 U	0.0052 U	0.0065 U	0.0016 J	0.0015 J	0.0044 U	0.0023 J	0.0048 U	0.005 U	0.0057 U	0.0038 U
Xylenes	mg/kg	2,800	0.014 U	0.016 U	0.019 U	0.0067 J	0.0081 J	0.013 U	0.0086 J	0.014 U	0.015 U	0.017 U	0.011 U
Semi-Volatile Organic Comounds^									- 				-
1,1-Biphenyl	mg/kg	200	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	mg/kg	16,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Methylnaphthalene	mg/kg	3,000	0.02	0.096	12.3	0.28	5.3	0.0084 J	0.16	0.026	0.023	0.022	0.044
2-Methylphenol	mg/kg	41,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acenaphthene	mg/kg	45,000	0.035	0.0098	63.1	0.5	7.3	0.013	0.17	0.0031 J	0.0019 J	0.005 J	0.0065 J
Acenaphthylene	mg/kg	45,000	0.011	0.018	1.1 J	0.048 J	0.63	0.0017 J	0.031	0.0058 J	0.0047 J	0.017	0.019
Anthracene	mg/kg	230,000	0.048	0.087	232	1.5	6.7	0.016	0.3	0.023	0.019	0.058	0.049
Benz[a]anthracene	mg/kg	21	0.25	0.37	305	3.1	7.9	0.03	0.51	0.082	0.071	0.37	0.2
Benzaldehyde	mg/kg	120,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo[a]pyrene	mg/kg	2.1	0.26	0.34	252	2.7	7	0.026	0.48	0.077	0.054	0.35	0.18
Benzo[b]fluoranthene	mg/kg	21	0.45	0.71	409	4.5	12.3	0.046	0.84	0.19	0.16	0.71	0.37
Benzo[g,h,i]perylene	mg/kg		0.083	0.081	54	0.74	1.6	0.0098	0.12	0.025	0.019	0.094	0.042
Benzo[k]fluoranthene	mg/kg	210	0.35	0.56	109	3.5	9.7	0.036	0.66	0.15	0.12	0.55	0.29
bis(2-Ethylhexyl)phthalate	mg/kg	160	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbazole	mg/kg		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chrysene	mg/kg	2,100	0.23	0.31	230	2.2	5.5	0.023	0.39	0.099	0.083	0.32	0.14
Dibenz[a,h]anthracene	mg/kg	2.1	0.033	0.043	26.1	0.3	0.63	0.0029 J	0.05	0.011	0.0076	0.043	0.019
Diethylphthalate	mg/kg	660,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluoranthene	mg/kg	30,000	0.56	0.49	1,490	5.1	20.6	0.059	0.96	0.15	0.14	0.57	0.25
Fluorene	mg/kg	30,000	0.032	0.0072	140	0.78	9.6	0.01	0.37	0.0035 J	0.0019 J	0.0036 J	0.0082
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.084	0.094	61.4	0.77	1.7	0.0091	0.13	0.026	0.02	0.11	0.046
Naphthalene	mg/kg	8.6	0.033	0.076	47.1	1.1	6.2	0.058	0.82	0.027	0.026	0.034	0.06
Phenanthrene	mg/kg		0.31	0.33	1,890	5	34.8	0.054	1.6	0.1	0.088	0.23	0.18
Phenol	mg/kg	250,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pyrene	mg/kg	23,000	0.51	0.41	1,090	4	13.8	0.048	0.74	0.14	0.12	0.48	0.24
TPH/Oil and Grease													
Diesel Range Organics	mg/kg	6,200	5.3 J	64.5	3,120	276	247	25.2	95.7	44.1	120	78.6	60.4
Gasoline Range Organics	mg/kg	6,200	9.2 U	12.7 U	14.4 U	11.4 U	10.8 U	9.9 U	11.8 U	10.5 U	12 U	11.6 U	10.1 U
Oil and Grease	mg/kg	6,200	284	205	5,930	1,600	446	380	1,370	198	370	308	279

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

Doromotor	Unita	DAI	B22-119K-SB-15*	B22-120-SB-1*	B22-120-SB-8*	B22-121-SB-1*	B22-121-SB-9*	B22-121-SB-10*	B22-174-SB-1*	B22-174-SB-4*
Farameter	Units	FAL	5/9/2018	5/19/2016	5/19/2016	5/19/2016	5/19/2016	5/19/2016	6/3/2016	6/3/2016
Volatile Organic Compounds										
2-Butanone (MEK)	mg/kg	190,000	0.009 U	0.011 U	0.011 U	0.0097 U	0.0056 J	N/A	0.013 U	0.011 U
Acetone	mg/kg	670,000	0.016	0.011 U	0.011 U	0.0097 U	0.022	N/A	0.013 J	0.0063 J
Benzene	mg/kg	5.1	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Carbon disulfide	mg/kg	3,500	0.006	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Ethylbenzene	mg/kg	25	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Isopropylbenzene	mg/kg	9,900	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Methyl Acetate	mg/kg	1,200,000	0.045 U	0.053 U	0.056 U	0.049 U	0.061 U	N/A	0.065 U	0.053 U
Methyl tert-butyl ether (MTBE)	mg/kg	210	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Styrene	mg/kg	35,000	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Toluene	mg/kg	47,000	0.0045 U	0.0053 U	0.0056 U	0.0049 U	0.0061 U	N/A	0.0065 U	0.0053 U
Xylenes	mg/kg	2,800	0.014 U	0.016 U	0.017 U	0.015 U	0.018 U	N/A	0.019 U	0.016 U
Semi-Volatile Organic Comounds^										
1,1-Biphenyl	mg/kg	200	N/A	0.055 J	0.023 J	0.017 J	0.025 J	N/A	0.16	0.019 J
2,4-Dimethylphenol	mg/kg	16,000	N/A	0.07 U	0.08 U	0.07 U	0.081 U	N/A	0.076 U	0.082 U
2-Methylnaphthalene	mg/kg	3,000	0.021	0.069 J	0.081 U	0.11	0.061 J	N/A	0.024 J	0.081 U
2-Methylphenol	mg/kg	41,000	N/A	0.07 U	0.08 U	0.07 U	0.081 U	N/A	0.076 U	0.082 U
3&4-Methylphenol(m&p Cresol)	mg/kg	41,000	N/A	0.14 U	0.16 U	0.14 U	0.057 J	N/A	0.15 U	0.16 U
Acenaphthene	mg/kg	45,000	0.017	0.015 J	0.11	0.027	0.1	N/A	0.077 U	0.0082 J
Acenaphthylene	mg/kg	45,000	0.0049 J	0.58	0.026 J	0.052	0.054 J	N/A	0.02 J	0.031 J
Anthracene	mg/kg	230,000	0.031	0.21	0.68	0.13	0.21	N/A	0.051 J	0.058 J
Benz[a]anthracene	mg/kg	21	0.087	0.51	1.5	0.52	0.43	N/A	0.52	0.44
Benzaldehyde	mg/kg	120,000	N/A	0.017 J	0.08 U	0.021 J	0.023 J	N/A	0.017 J	0.082 U
Benzo[a]pyrene	mg/kg	2.1	0.091	0.57	1.3	0.47	0.39	0.9	0.57	0.52
Benzo[b]fluoranthene	mg/kg	21	0.17	1.3	2.8	1.1	0.86	N/A	1.2	1.1
Benzo[g,h,i]perylene	mg/kg		0.021	0.36	0.42	0.16	0.15	N/A	0.38	0.27
Benzo[k]fluoranthene	mg/kg	210	0.13	1.1	2.3	0.92	0.71	N/A	0.93	0.96
bis(2-Ethylhexyl)phthalate	mg/kg	160	N/A	0.038 J	0.08 U	0.018 J	0.081 U	N/A	0.062 J	0.082 U
Carbazole	mg/kg		N/A	0.032 J	0.26	0.04 J	0.11	N/A	0.076 U	0.082 U
Chrysene	mg/kg	2,100	0.097	0.47	1.2	0.48	0.38	N/A	0.44	0.44
Dibenz[a,h]anthracene	mg/kg	2.1	0.0069 J	0.091	0.16	0.073	0.048 J	N/A	0.12	0.089
Diethylphthalate	mg/kg	660,000	N/A	0.17	0.08 U	0.07 U	0.081 U	N/A	0.076 U	0.082 U
Fluoranthene	mg/kg	30,000	0.18	0.8	3.2	1	1.3	N/A	0.52	0.38
Fluorene	mg/kg	30,000	0.025	0.038 J	0.15	0.036	0.12	N/A	0.077 U	0.01 J
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.019	0.28	0.42	0.17	0.14	N/A	0.33	0.25
Naphthalene	mg/kg	8.6	0.038	0.2	0.031 J	0.092	0.11	N/A	0.022 J	0.033 J
Phenanthrene	mg/kg		0.15	0.44	1.9	0.62	0.8	N/A	0.14	0.16
Phenol	mg/kg	250,000	N/A	0.019 J	0.08 U	0.07 U	0.081 U	N/A	0.076 U	0.082 U
Pyrene	mg/kg	23,000	0.16	0.66	2.7	0.85	0.94	N/A	0.5	0.34
TPH/Oil and Grease										
Diesel Range Organics	mg/kg	6,200	113	151	124	105	557	N/A	149	257
Gasoline Range Organics	mg/kg	6,200	9.4 U	10.8 U	11.1 U	10.7 U	7.8 J	N/A	11.2 U	11.2 U
Oil and Grease	mg/kg	6,200	1,430	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

Table 2 - Parcel B22 PORI Lagoon Characterization Summary of Organics Detected in Soil (Test Pits)

Demonster	Linita	DAI	B22 Test Pit 1-12*	B22 Test Pit 2-12*	B22-TP-1-1*	B22-TP-1-3*	B22-TP-1-5*	B22-TP-2-1*	B22-TP-2-3*	B22-TP-2-5*	B22-TP-3-1*
Parameter	Units	PAL	6/5/2018	6/5/2018	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020
Volatile Organic Compounds									-		
1,2,4-Trichlorobenzene	mg/kg	110	0.0077 U	0.0066 U	0.31 U	0.077 J	0.37 U	0.33 U	0.32 U	0.46 U	0.0098 U
1,2-Dichlorobenzene	mg/kg	9,300	0.0077 U	0.0066 U	0.31 U	0.15 J	0.37 U	0.15 J	0.086 J	0.46 U	0.0098 U
1,4-Dichlorobenzene	mg/kg	11	0.0077 U	0.031	0.26 J	0.71	0.17 J	1.4	0.93	0.51	0.0093 J
2-Butanone (MEK)	mg/kg	190,000	0.015 U	0.02	0.63 U	0.18 J	0.75 U	0.32 J	0.63 U	0.92 U	0.02 U
Acetone	mg/kg	670,000	0.06	0.08	0.63 U	0.18 J	0.27 J	0.32 J	0.22 J	0.33 J	0.02 U
Carbon disulfide	mg/kg	3,500	0.0077 U	0.024	0.18 J	0.37	0.17 J	0.24 J	0.32	0.14 J	0.0098 U
Chloromethane	mg/kg	460	0.0077 U	0.0066 U	0.31 U	0.24 U	0.37 U	0.33 U	0.32 U	0.46 U	0.0091 J
Ethylbenzene	mg/kg	25	0.0077 U	0.0066 U	0.31 U	0.24 U	0.37 U	0.33 U	0.32 U	0.46 U	0.0098 U
Isopropylbenzene	mg/kg	9,900	0.0077 U	0.0066 U	0.31 U	0.24 U	0.37 U	0.33 U	0.32 U	0.46 U	0.0098 U
Methyl Acetate	mg/kg	1,200,000	0.077 U	0.066 U	1.3 J	0.42 J	0.16 J	0.8 J	0.26 J	0.33 J	0.098 U
Toluene	mg/kg	47,000	0.0077 U	0.0066 U	0.31 U	0.24 U	0.37 U	0.33 U	0.32 U	0.46 U	0.0098 U
Xylenes	mg/kg	2,800	0.023 U	0.02 U	0.94 U	0.72 U	1.1 U	1 U	0.95 U	1.4 U	0.029 U
Semi-Volatile Organic Compounds^											
2-Methylnaphthalene	mg/kg	3,000	0.13 J	0.24 J	0.046 J	0.25 J	0.039 J	0.49 U	0.075	1.8 U	2.4 U
Acenaphthene	mg/kg	45,000	0.068 J	0.82	0.14	0.54 J	0.22	0.59	0.35	0.69 J	2.4
Acenaphthylene	mg/kg	45,000	0.13 J	0.25 J	0.14	0.32 J	0.061 J	0.13 J	0.15	1.8 U	0.3 J
Anthracene	mg/kg	230,000	0.15 J	0.48	0.18	0.39 J	0.13	0.36 J	0.49	0.84 J	2.9
Benz[a]anthracene	mg/kg	21	0.68	0.84	0.63	0.63 J	0.37	0.49	1	1.5 J	4.2
Benzo[a]pyrene	mg/kg	2.1	0.62	0.71	0.64	2.2	0.35	2.2	1	1.2 J	3.2
Benzo[b]fluoranthene	mg/kg	21	0.92	1.3	0.9	2.8	0.66	2.5	0.8	2	4.7
Benzo[g,h,i]perylene	mg/kg		0.32 J	0.5	0.5	0.66 J	0.32	0.34 J	0.58	0.64 J	2.2 J
Benzo[k]fluoranthene	mg/kg	210	0.35 J	1.2	0.16	0.18 J	0.17	0.14 J	0.84	0.4 J	1.3 J
Chrysene	mg/kg	2,100	0.88	1.2	1.1	1.3	0.82	1.2	1.9	5.8	8.1
Dibenz[a,h]anthracene	mg/kg	2.1	0.45 U	0.43 U	0.13	0.69 U	0.097 J	0.49 U	0.16	1.8 U	2.4 U
Fluoranthene	mg/kg	30,000	1.4	3.6	1.6	1.8	1.1	1.5	4.2	3.7	11
Fluorene	mg/kg	30,000	0.14 J	0.35 J	0.047 J	0.28 J	0.057 J	0.53	0.52	0.93 J	3.6
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.27 J	0.28 J	0.44	0.44 J	0.3	0.21 J	0.62	0.6 J	1.8 J
Naphthalene	mg/kg	8.6	0.31 J	0.26 J	0.11	0.18 J	0.069 J	0.49 U	0.12	1.8 U	2.4 U
Phenanthrene	mg/kg		0.55	0.83	0.27	0.52 J	0.22	0.2 J	0.51	3	12
Pyrene	mg/kg	23,000	1.3	4.1	1.4	2.2	1.4	1.6	3.1	3.6	11
TPH/Oil and Grease											
Diesel Range Organics	mg/kg	6,200	14,800	23,700	6,380	27,600	4,940	29,600	18,400	8,300	18,800
Gasoline Range Organics	mg/kg	6,200	14.8 U	14.7 U	13.1 U	10.2 U	15.7 U	15.1 U	8.9 J	19.9 U	18.4 U
Oil and Grease	mg/kg	6,200	32,100	44,100	41,700	77,900	40,500	116,000	103,000	38,600	113,000

Detections in bold

Values in red indicate an exceedance of the Projet Action Limit (PAL)

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. J: The positive result reported for this analyte is a quantitative estimate.

* indicates non-validated data

^ PAH compounds were analyzed via SIM

Table 2 - Parcel B22 PORI Lagoon Characterization Summary of Organics Detected in Soil (Test Pits)

Parameter	I Inite	DAI	B22-TP-3-3*	B22-TP-3-5*	B22-TP-4-1*	B22-TP-4-3*	B22-TP-5-1*	B22-TP-5-3*	B22-TP-5-5*	B22-TP-6-1*	B22-TP-6-3*	B22-TP-6-5*
Parameter	Units	PAL	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020	6/17/2020
Volatile Organic Compounds												
1,2,4-Trichlorobenzene	mg/kg	110	0.42 U	0.46 U	0.41 U	0.089 J	0.35 U	0.41 U	0.51 U	0.45 U	0.77 U	0.0048 U
1,2-Dichlorobenzene	mg/kg	9,300	0.42 U	0.46 U	0.41 U	0.33 U	0.35 U	0.41 U	0.51 U	0.45 U	0.77 U	0.0048 U
1,4-Dichlorobenzene	mg/kg	11	0.42 U	0.16 J	0.41 U	0.13 J	0.35 U	0.41 U	0.51 U	0.45 U	0.77 U	0.0048 U
2-Butanone (MEK)	mg/kg	190,000	0.85 U	0.92 U	0.83 U	0.67 U	0.095 J	0.82 U	0.42 J	0.9 U	1.5 U	0.0021 J
Acetone	mg/kg	670,000	0.85 U	0.92 U	0.52 J	0.67 U	0.34 J	0.38 J	0.6 J	0.43 J	0.7 J	0.0096 U
Carbon disulfide	mg/kg	3,500	1	0.46 U	0.41 U	0.14 J	0.35 U	0.41 U	0.31 J	0.45 U	0.77 U	0.002 J
Chloromethane	mg/kg	460	0.42 U	0.46 U	0.41 U	0.33 U	0.35 U	0.41 U	0.51 U	0.45 U	0.77 U	0.0048 U
Ethylbenzene	mg/kg	25	0.42 U	0.46 U	0.41 U	0.33 U	0.35 U	0.41 U	0.51 U	0.45 U	0.77 U	0.0013 J
Isopropylbenzene	mg/kg	9,900	0.42 U	0.46 U	0.41 U	0.091 J	0.35 U	0.41 U	0.34 J	0.45 U	0.77 U	0.0053
Methyl Acetate	mg/kg	1,200,000	0.24 J	0.11 J	3.4 J	0.71 J	2.2 J	2.3 J	0.88 J	0.97 J	1.1 J	0.048 U
Toluene	mg/kg	47,000	0.42 U	0.46 U	0.41 U	0.33 U	0.073 J	0.41 U	0.51 U	0.45 U	0.77 U	0.0048 U
Xylenes	mg/kg	2,800	1.3 U	1.4 U	1.2 U	1 U	1.1 U	1.2 U	1.5 U	1.3 U	2.3 U	0.0047 J
Semi-Volatile Organic Compounds^												
2-Methylnaphthalene	mg/kg	3,000	0.13	0.038 J	1.7	6.4	0.73	0.86	1.8	0.16	0.58	0.44
Acenaphthene	mg/kg	45,000	0.41	0.24	5.5	9.9	0.38 J	0.14	5.8	0.18	3.4	6.2
Acenaphthylene	mg/kg	45,000	0.051	0.05 J	0.69	4.8	0.56 U	0.1	6.2	0.062 J	0.14 J	0.32
Anthracene	mg/kg	230,000	0.81	0.2	2.8	9.3	0.22 J	0.1	3.8	0.068	0.43	2.9
Benz[a]anthracene	mg/kg	21	1.6	0.36	2.2	10	0.32 J	0.22	4.5	0.15	0.57	1.5
Benzo[a]pyrene	mg/kg	2.1	1.3	0.31	2	11	0.38 J	0.22	4.9	0.19	0.53	1
Benzo[b]fluoranthene	mg/kg	21	1.6	0.42	2	11	0.4 J	0.24	5	0.17	0.7	0.94
Benzo[g,h,i]perylene	mg/kg		0.57	0.17	1.1	5.7	0.28 J	0.16	3.4	0.096	0.33 J	0.37
Benzo[k]fluoranthene	mg/kg	210	0.49	0.087 J	1.1	4.1	0.1 J	0.063	2	0.037 J	0.16 J	0.36
Chrysene	mg/kg	2,100	1.6	1	1.8	9.3	0.72	0.26	4.1	0.36	0.94	1.2
Dibenz[a,h]anthracene	mg/kg	2.1	0.22	0.11 U	0.11	1.5	0.56 U	0.04 J	0.87 J	0.064 U	0.11 J	0.11 J
Fluoranthene	mg/kg	30,000	3.6	0.8	5.1	25	0.6	0.36	9.6	0.18	1.2	5.2
Fluorene	mg/kg	30,000	0.38	0.14	3.6	10	0.43 J	0.18	5.6	0.08	0.26 J	3.7
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.71	0.15	1	6.1	0.19 J	0.14	2.4	0.07	0.24 J	0.39
Naphthalene	mg/kg	8.6	0.16	0.028 J	0.62	3.2	0.4 J	0.37	1.3 J	0.26	0.53	1
Phenanthrene	mg/kg		3.6	0.5	10	31	1.3	0.59	18	0.17	0.73	11
Pyrene	mg/kg	23,000	2.8	0.89	4.1	19	1.3	0.42	8.2	0.57	2	4.1
TPH/Oil and Grease												
Diesel Range Organics	mg/kg	6,200	18,800	5,500	17,200	46,900	18,400	9,220	26,800	7,070	5,470	1,030
Gasoline Range Organics	mg/kg	6,200	17.9 U	19.8 U	17.4 U	14 U	10.4 J	17.1 U	20.8 U	19.2 U	32.6 U	13.2
Oil and Grease	mg/kg	6,200	119,000	63,200	92,100	198,000	170,000	61,600	163,000	97,400	91,900	8,720

Detections in bold

Values in red indicate an exceedance of the Projet Action Limit (PAL)

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. J: The positive result reported for this analyte is a quantitative estimate.

* indicates non-validated data

^ PAH compounds were analyzed via SIM

Table 3 - Parcel B22 PORI Lagoon CharacterizationSummary of Organics Detected in Groundwater

Deremator	Linita	DAI	B22-119-PZ*	B22-119-PZ*	B22-119I-PZ*	B22-119I-PZ*	B22-119J-PZ*	B22-119M-PZ*	B22-119N-PZ*	B22-119Q-PZ*	B22-119R-PZ*	B22-119S-PZ*
Parameter	Units	PAL	5/31/2018	5/28/2020	5/31/2018	6/1/2018	5/31/2018	5/27/2020	5/27/2020	5/28/2020	5/27/2020	5/27/2020
Volatile Organic Compounds												
Acetone	μg/L	14,000	58.3	37.4 J	58.3	18.9	6.9 J	6.3 J	10 U	10 U	10 U	8.2 J
Benzene	μg/L	5	859	835	1 U	1 U	1 U	0.75 J	1.6	3.2	0.63 J	50.5
Bromomethane	μg/L	7.5	5 U	5 U	1 U	1 U	1 U	1 U	1.1 B	1 U	1 U	1 U
Carbon disulfide	μg/L	810	5 U	5 U	1 U	1 U	1 U	1 U	1 U	1.5	1 U	1 U
Chloromethane	μg/L	190	5 U	5 U	1 U	2	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	μg/L	700	5 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.64 J
Methyl tert-butyl ether (MTBE)	μg/L	14	5 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	0.61 J	1 U
Toluene	μg/L	1,000	124	79.4	0.36 J	1 U	1 U	0.34 J	0.63 J	0.8 J	0.32 J	9.7
Xylenes	μg/L	10,000	49.3	24.6	3 U	3 U	3 U	3 U	3 U	3 U	3 U	4.4
Semi-Volatile Organic Compounds^												
1,1-Biphenyl	μg/L	0.83	24.4 J	N/A	N/A	1 U	0.98 U	N/A	N/A	N/A	N/A	N/A
1,4-Dioxane	μg/L	0.46	0.87	0.69	N/A	0.1 U	0.098 U	0.18	0.1 U	0.21	3	0.1 U
2,4-Dimethylphenol	μg/L	360	673	N/A	N/A	1 U	0.98 U	N/A	N/A	N/A	N/A	N/A
2-Methylnaphthalene	μg/L	36	75.6	31.3	N/A	0.074 J	0.098 U	5.2	2	0.27	1.6	3.7
2-Methylphenol	μg/L	930	1,820	N/A	N/A	1 U	0.98 U	N/A	N/A	N/A	N/A	N/A
3&4-Methylphenol(m&p Cresol)	μg/L	930	1,260	N/A	N/A	2 U	2 U	N/A	N/A	N/A	N/A	N/A
Acenaphthene	μg/L	530	29.7	36.6	N/A	0.49	0.098 U	8	0.99	0.19	1.8	2.9
Acenaphthylene	μg/L	530	38.4	4.9	N/A	0.1 U	0.098 U	0.3	0.61	0.069 J	0.081 J	0.68
Anthracene	μg/L	1,800	72.7	18.9	N/A	0.19	0.066 J	2.7	1.8	0.096 J	0.46	2
Benz[a]anthracene	d	0.03	65.8	4.4	N/A	0.14	0.098 U	0.3	4.2	0.21	0.11	2
Benzo[a]pyrene	μg/L	0.2	57.3	3	N/A	0.12	0.098 U	0.037 J	3.8	0.2	0.038 J	1.7
Benzo[b]fluoranthene	μg/L	0.25	77.9	5.4	N/A	0.19	0.098 U	0.07 J	6.5	0.44	0.057 J	1.8
Benzo[g,h,i]perylene	μg/L		18.7	1.3	N/A	0.06 J	0.098 U	0.095 U	1.9	0.13	0.095 U	0.78
Benzo[k]fluoranthene	μg/L	2.5	27.7	4.4	N/A	0.07 J	0.098 U	0.095 U	5.6	0.36	0.095 U	0.69
bis(2-Ethylhexyl)phthalate	μg/L	6	98 U	N/A	N/A	0.32 J	0.98 U	N/A	N/A	N/A	N/A	N/A
Caprolactam	μg/L	9,900	245 U	N/A	N/A	0.4 J	2.5 U	N/A	N/A	N/A	N/A	N/A
Carbazole	μg/L		208	N/A	N/A	1.8	0.98 U	N/A	N/A	N/A	N/A	N/A
Chrysene	μg/L	25	63.8	3.6	N/A	0.13	0.098 U	0.15	4.4	0.23	0.07 J	1.6
Dibenz[a,h]anthracene	μg/L	0.025	6.5	0.43 J	N/A	0.1 U	0.098 U	0.095 U	0.82	0.043 J	0.095 U	0.27
Fluoranthene	μg/L	800	181	20.1	N/A	0.52	0.098 U	5.8	7.7	0.42	0.53	5.7
Fluorene	μg/L	290	96.6	41.9	N/A	0.43	0.098 U	8.8	1.7	0.22	1.9	4.8
Indeno[1,2,3-c,d]pyrene	μg/L	0.25	20.5	1.3	N/A	0.051 J	0.098 U	0.095 U	2	0.11	0.095 U	0.83
Naphthalene	μg/L	0.12	2,550	886	N/A	0.15	0.041 J	39	1.1	6.2	5.2	120
Phenanthrene	μg/L		537	73.6	N/A	0.87	0.098 U	18.8	7.4	0.47	1.9	8.7
Phenol	μg/L	5,800	437	N/A	N/A	1 U	0.98 U	N/A	N/A	N/A	N/A	N/A
Pyrene	μg/L	120	126	13.8	N/A	0.39	0.098 U	3.7	6.2	0.42	0.33	3.7
TPH/Oil and Grease												
Diesel Range Organics	μg/L	47	17,200	19,700	N/A	363	282	1,700	12,000	2,770	1,600	1,900
Gasoline Range Organics	μg/L	47	2,460	1,470	200 U	129 J						
Oil and Grease	μg/L	47	1,700 J	1,300 J	N/A	4,750 U	4,770 U	9,000	4,750 U	1,200 J	2,100 J	1,600 J

Detections in bold

Values in red indicate an exceedance of the Project Action Limit (PAL)

* indicates non-validated data

^ PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample.

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.B: This analyte was not detected substantially above the level of the associated method blank or field blank.J: The positive result reported for this analyte is a quantitative estimate.

Test Pit Location	ID	Depth (ft. bgs)	PID Reading (ppm)
B22 TP 1-12	B22 TP 1-12	12*	NA
B22 TP 2-12	B22 TP 2-12	12*	NA
	B22-TP-1-1	1	0.0
B22-TP-1	B22-TP-1-3	3	0.2
	B22-TP-1-5	5	0.0
	B22-TP-2-1	1	0.0
B22-TP-2	B22-TP-2-3	3	3.7
	B22-TP-2-5	5	1.8
	B22-TP-3-1	1	0.5
B22-TP-3	B22-TP-3-3	3	0.0
	B22-TP-3-5	5	8.3
	B22-TP-4-1	1	0.0
B22-TP-4	B22-TP-4-3	3	0.0
	B22-TP-4-5	5	NA
	B22-TP-5-1	1	0.6
B22-TP-5	B22-TP-5-3	3	0.0
	B22-TP-5-5	5	0.0
	B22-TP-6-1	1	1.2
B22-TP-6	B22-TP-6-3	3	0.0
	B22-TP-6-5	5	0.0

Table 4 - Parcel B22 PORI Lagoon CharacterizationSummary of PID Detections (Test Pits)

bgs: below ground surface

ppm: parts per million

NA: PID readings are not available

*Measured in reference to the surrounding ground surface at the top of the PORI Lagoon (Remaining sample depths are in reference to the top of the PORI Lagoon sediments.)

Table 5 - Parcel B22 PORI Lagoon Characterization Cumulative Vapor Intrusion Criteria Comparison

				B22-119	I-PZ*	B22-119	I-PZ*	B22-119.	J-PZ*	B22-119N	∕I-PZ*	B22-1191	N-PZ*
				5/31/2	018	6/1/20	18	5/31/20	018	5/27/2	020	5/27/2	020
Parameter	Туре	Organ Systems	VI Screening Criteria	Conc. (ug/L)	Risk/ Hazard								
Cancer Risk			-										
Naphthalene	SVOC		200	NA	-	0.15	7.5E-09	0.041 J	2.1E-09	39	2.0E-06	1.1	5.5E-08
Benzene	VOC		69	1 U	0	1 U	0	1 U	0	0.75 J	1.1E-07	1.6	2.3E-07
Ethylbenzene	VOC		150	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0
Methyl tert-butyl ether	VOC		20,000	1 U	0	1 U	0	1 U	0	1 U	0	1 U	0
Cu	umulative V	/apor Intrusio	on Cancer Risk		0		8E-09		2E-09		2E-06		3E-07
Non-Cancer Hazard				-		-		-		-		-	
1,1-Biphenyl	SVOC	Urinary	140	NA	-	1 U	0	0.98 U	0	NA	-	NA	-
Cumulativ	ve Vapor In	trusion Non-O	Cancer Hazard		-		0		0		-		-
				-									
				B22-119	-PZ*	B22-119	-PZ*	B22-1190	Q-PZ*	B22-119I	R-PZ*	B22-119	S-PZ*
				5/28/20	020	5/31/2	018	5/28/20)20	5/27/20	020	5/27/2	020
Parameter	Туре	Organ Systems	VI Screening Criteria	Conc. (ug/L)	Risk/ Hazard								
Cancer Risk													
Naphthalene	SVOC		200	886	4.4E-05	2,550	1.3E-04	6.2	3.1E-07	5.2	2.6E-07	120	6.0E-06
Benzene	VOC		69	835	1.2E-04	859	1.2E-04	3.2	4.6E-07	0.63 J	9.1E-08	50.5	7.3E-06
Ethylbenzene	VOC		150	5 U	0	5 U	0	1 U	0	1 U	0	0.64 J	4.3E-08
Methyl tert-butyl ether	VOC		20,000	5 U	0	5 U	0	1 U	0	0.61 J	3.1E-10	1 U	0
Cu	umulative V	/apor Intrusio	on Cancer Risk		2E-04		3E-04		8E-07		4E-07		1E-05
Non-Cancer Hazard													
1,1-Biphenyl	SVOC	Urinary	140	NA	-	24.4 J	0.17	NA	-	NA	-	NA	-

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria:

TCR>1E-05 THI>1

Conc. = Concentration

NA = Not Analyzed

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

J: The positive result reported for this analyte is a quantitative estimate.

Cumulative Vapor Intrusion Non-Cancer Hazard

0

Table 6 - Parcel B22 PORI Lagoon Characterization NAPL Gauging Activities

				G	D.		5/19/2016			5/20/2016			5/23/2016	
Sample ID	Install Date	Abandon Date	Depth (ft. bgs)	Screen Interval (ft. bgs)	Riser Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	-	11.82	-	-	11.23	-	-	10.93	-
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	NA	NA	NA	NA	NA	NA	NA	NA	NA

			W-11 T-4-1	C	D		6/2/2016			7/22/2016			10/11/2016	
Sample ID	Install Date	Abandon Date	Depth (ft. bgs)	Screen Interval (ft. bgs)	Kiser Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	-	11.15	-	-	11.31	-	Abandoned		
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	NA	NA	NA	NA	NA	NA	NA	NA	NA
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	NA	NA	NA	NA	NA	NA	NA	NA	NA

NA = Not Applicable NM = Not Measured **SHADED** = NAPL Detection bgs = below ground surface

^ indicates piezometer was missing or destroyed

Table 6 - Parcel B22 PORI Lagoon Characterization NAPL Gauging Activities

				G	D.		5/8/2018			5/9/2018		5/10/2018			
Sample ID	Install Date	Abandon Date	Depth (ft. bgs)	Screen Interval (ft. bgs)	Riser Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	Abandoned									
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	-	17.11	-	NM	NM	NM	-	11.62	-	
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	-	27.37	-	NM	NM	NM	-	14.18	-	
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	NA	NA	NA	-	14.13	-	NM	NM	NM	
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	NA	NA	NA	-	26.95	-	NM	NM	NM	
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	

			XX 11 75 + 1	G	D.		5/11/2018			8/24/2018		10/12/2018			
Sample ID	Install Date	Abandon Date	Depth (ft. bgs)	Screen Interval (ft. bgs)	Kiser Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	Abandoned									
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	NM	NM	NM	-	11.70	-	NM	NM	NM	
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	NM	NM	NM	-	8.51	-	NM	NM	NM	
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	-	14.16	-	-	16.43	-	NM	NM	NM	
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	14.33	14.47	0.14	15.30	15.32	0.02	NM	NM	NM	
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	NA	NA	NA	NA	NA	NA	-	15.76	-	
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	NA	NA	NA	NA	NA	NA	-	14.91	-	
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	NA	NA	NA	NA	NA	NA	-	15.64	-	
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	NA	NA	NA	NA	NA	NA	-	15.84	-	
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	NA	NA	NA	NA	NA	NA	-	15.79	-	
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	NA	NA	NA	NA	NA	NA	-	19.48	-	
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	

NA = Not Applicable NM = Not Measured **SHADED** = NAPL Detection bgs = below ground surface

^ indicates piezometer was missing or destroyed

Table 6 - Parcel B22 PORI Lagoon Characterization NAPL Gauging Activities

				G	D.		10/15/2018			11/14/2018		9/3/2019			
Sample ID	Install Date	Abandon Date	Well Total Depth (ft. bgs)	Screen Interval (ft. bgs)	Riser Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	Abandoned									
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	NM	NM	NM	NM	NM	NM	-	12.27	-	
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	NM	NM	NM	NM	NM	NM	Destroyed			
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	NM	NM	NM	NM	NM	NM	-	14.89	-	
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	NM	NM	NM	NM	NM	NM	trace	15.09	trace	
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	-	15.88	-	-	15.21	-	-	15.34	-	
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	-	15.03	-	-	14.55	-	-	14.86	-	
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	-	15.40	-	-	14.61	-	-	14.68	-	
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	-	15.73	-	-	14.83	-	-	12.25	-	
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	-	14.63	-	-	13.79	-	-	11.16	-	
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	-	17.17	-	-	16.12	-	-	13.83	-	
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	NA	NA	NA	NA	NA	NA	NA	NA	NA	

				G	D.		5/21/2020			5/26/2020			6/8/2020	
Sample ID	Install Date	Abandon Date	Depth (ft. bgs)	Interval (ft. bgs)	Stick-Up (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)	Depth to NAPL (ft. TOC)	Depth to Water (ft. TOC)	NAPL Thickness (ft.)
B22-119-PZ	5/19/2016	10/11/2016	22	7-22	2.63	Abandoned								
B22-119-PZ	5/8/2018	6/8/2020	20	5-20	2.86	NM	NM	NM	NM	NM	NM	-	11.33	Abandoned
B22-119I-PZ	5/8/2018	^ 9/3/2019	24	5-24	3.13	Destroyed								
B22-119J-PZ	5/9/2018	6/8/2020	16	5-16	4.13	NM	NM	NM	NM	NM	NM	-	13.87	Abandoned
B22-119K-PZ	5/9/2018	6/8/2020	24.5	4.5-24.5	5.45	NM	NM	NM	NM	NM	NM	13.10	13.27	Abandoned
B22-119L-PZ	10/12/2018	6/8/2020	17	7-17	4.83	NM	NM	NM	NM	NM	NM	-	14.20	Abandoned
B22-119M-PZ	10/12/2018	6/8/2020	18	8-18	5.05	NM	NM	NM	NM	NM	NM	13.72	13.74	Abandoned
B22-119N-PZ	10/12/2018	6/8/2020	20	10-20	5.05	NM	NM	NM	NM	NM	NM	-	13.50	Abandoned
B22-119O-PZ	10/12/2018	6/8/2020	20	10-20	2.69	NM	NM	NM	NM	NM	NM	-	11.22	Abandoned
B22-119P-PZ	10/12/2018	6/8/2020	20	10-20	1.00	NM	NM	NM	NM	NM	NM	-	10.22	Abandoned
B22-119Q-PZ	10/12/2018	6/8/2020	19	9-19	3.86	NM	NM	NM	NM	NM	NM	-	12.75	Abandoned
B22-119R-PZ	5/21/2020	6/8/2020	19	9-19	4.22	-	13.67	-	-	13.03	-	-	12.99	Abandoned
B22-119S-PZ	5/21/2020	6/8/2020	20	10-20	2.83	-	19.50	-	-	11.51	-	-	11.52	Abandoned

NA = Not Applicable NM = Not Measured **SHADED** = NAPL Detection bgs = below ground surface

^ indicates piezometer was missing or destroyed

ATTACHMENT 1

	4	AR En	M Group	LLC	Client : EnviroAnalytics Group ARM Project No. : 150300M-20-10 Project Description : Sparrows Point - Parcel B22 Site Location : Sparrows Point, MD ARM Representative : M. Kedenburg, G.I.T. Checked by : M. Replogle, E.I.T. Drilling Company : Allied Drilling Co.				Boring Installation Date ometer Installation Date ng/Riser/Screen Type shole Diameter r/Screen Diameter hing (US ft)	: 5/8/18 : 5/8/18 : PVC : 2.25" : 1" : 571288.15		
Bo	oring	ID: B	22-119-SB	of 1)	Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Ryan Sites : Geoprobe 7822D	т	East 0-Hr 48-H	ing (US ft) DTW Ir DTW	: 1461171.37 : 17.11' TOC : 11.62' TOC d at 0 or 48 bours		
			(page -					NO L				
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION S							
-0 - - -	60	- 0.7 0.5		(0-5') SAI dense, da cohesion	ND with GRAVEL, me ark brown to black, no	edium to plasticity, no	sw		Bentonite seal	Trace SLAG COBBLES throughout		
-		1.3	B22-119-SB-5									
5	90	- 42.5 180.9 237.6 18.5 - 10.2 27.8 1.4 1.5 - - - -	B22-119-SB-15	(5-20') CI brown to plasticity, 15' bgs	AY with SAND and G bluish gray, firm, med cohesive, slightly mo	GRAVEL, pale lium iist to wet at	CL	_	Sand Pack	Wood at 5.5' bgs Oil throughout from 7-10' bgs, with prominent oil at 8' bgs and 9' bgs SLAG GRAVEL lens at 7.5' bgs Wet at 15' bgs		
_		-								Trace NAPL at 19' bgs		
20-		<u> </u>	l	End of bo	ring		I					
Boring to TOC: To DTW: D bgs: Bel AMSL: A	erminat op of P\ epth to ow grou \bove r	ed at 20' /C casing water und surfac nean sea	bgs due to water a l ce level	nd piezomet	er installation	Riser Stick Riser: 0 - 5 Screen: 5 Sand Pack Bentonite	kup: 2.86' 5' bgs - 20' bgs [ł k: 3 - 20' bg Seal: 0 - 3	Slot Size gs [Grain ' bgs [Gra	: 0.010"] Size: WG #2] ain Size: 3/8" chips]			

		ARN	A Group] ineers and Scient	ists	Client ARM Project No. Project Description Site Location ARM Representative Checked by	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T. : M. Replogle, E.I.T.	Date : 5/7/18 Weather : Sunny 60s Northing (US ft) : 571315.97 Easting (US ft) : 1461258.41		
B	oring	ID: B	22-119A-S (page 1 of	B 1)	Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	Eastir	ng (US ft)	: 1461258.41
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DES	CRIPTION		USCS	REMARKS
0-		-		(0-9.5') light to	SAND with GRAVEL dark brown, slightly r	., medium to coarse, dense, noist, no plasticity, no cohesi	ion		
_		-							
-	60	0.3							
-		0.0							BRICK at 4' bgs
5-		0.6	B22-119A-SB-5					SW	
-		-							
-		-							
-	40	-	B22 1104 SB 0						
-		0.2							
10-				(9.5-10 (10-12.	') CONCRETE 5') GRAVEL with SAI	ND, black to pale brown, wet			
_	100	-		no plas	ticity, no cohesion			GW	Wet at 10.5' bgs
-		-							
-				End of	boring				
-									
15—									
Boring t	erminated	d at 12.5'	bgs due to refusal.						

M	4	ARN Engi	Group I	LLC ists	Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T.	Date Weath	ner	: 5/7/18 : Sunny 60s
В	oring	ID: B	22-119B-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	Northi Eastir	ng (US ft) ng (US ft)	: 571290.82 : 1461273.18
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		USCS	REMARKS
0		-		(0-10.5 slightly cohesio	') SAND with GRAVE moist, light brown to on	L, medium to coarse, dense, black, no plasticity, no	,		
_	60	5.1							
_		4.2 0.6	B22-119B-SB-5						
5-		-						SW	
_	40	-							
-	40	2.2							BRICK at 8' bgs
10-		0.0	B22-119B-SB-9.5						
_		-		(10.5-1 wet, no	3') GRAVEL with SAN plasticity, no cohesic	ND, dense, dark gray to black n	k,		Wet at 10.5' bgs
-	80	-						GW	
-		-		(13-15' to blacl) CLAY with SAND ar <, wet, low plasticity, c	nd GRAVEL, firm, bluish gray cohesive	/	CL	Odor from 11-15' bgs
15—		1.3	B22-119B-SB-15					-	
				⊢na of	boring				
Boring t	erminated	at 12.5'	bgs due to refusal						

	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T.	Date Weather	r	: 5/7/18 : Sunny 60s
В	oring	ID: B	22-119C-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	Northing Easting	g (US ft) (US ft)	: 571318.83 : 1461230.72
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		USCS	REMARKS
0		-		(0-9.4') pale ye cohesio	SAND with GRAVEL llow to black, slightly on	, medium to coarse, dense, moist, no plasticity, no			
-	60	0.0							
-		0.1							
-		0.0	B22-119C-SB-5					SW	
5-		-							
-		-							
-	60	3.1							
-		0.4							BRICK COBBLES throughout
-		2.5	B22-119C-SB-9.5					<u> </u>	Wet at 9.5' bas
10-		2.0		(9.4-9.8 cohesiv	5') CLAY, tan to dark /e ') SAND with CRAV/E	brown, wet, low plasticity,		02	Werar 9.5 bys
-		-		pale ye	llow to black, wet, no	plasticity, no cohesion		SW	
_		-		(40.45)					
_	100	-		gray to	pale brown, wet, no p	and SAND, very firm, bluish blasticity, no cohesion			Slight odor from 12-15' bas
		-						CL	
		0.0							
15—			1	End of	boring		I		
Boring t	erminate	d at 15' bị	gs due to water						

M	A	ARN	Group I	LLC ists	Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T.	Date Weatl	ner	: 5/7/18 : Sunny 60s
В	oring	ID: B	22-119D-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	North Eastir	ing (US ft) ng (US ft)	: 571307.43 : 1461205.37
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		nscs	REMARKS
0		-		(0-12') brown t plasticit clay ler	SAND with GRAVEL, to bluish gray, slightly ty, no cohesion, with t nses at 8.5' bgs	medium to fine, dense, dark moist then wet at 9.5' bgs, r hin light brown to pale browr	10 1		
-	60	0.4							
_		1.2							
5-		0.8	B22-119D-SB-5						
5-		-							throughout
-		-						SW	
-	60	4.1							
-		5.2	B22-119D-SB-9						
-		0.0							Wet at 9.5' bgs
10-		-							
-		-							
-	80	-		(12-13' brown,) GRAVEL with SANE wet, no plasticity, no), very dense, pale gray to liç cohesion	ght	GW	
-		-		(13-15' thin pal) WOOD, possible tel e green clay lens at 1	ephone pole remnants, with 3.5' bgs			
-		-						NA	
15—				End of	boring				
Deniment									
Boring t	erminated	ual 15 b(ys due lo Water						

T	A	ARN	Group I	LLC ists	Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G I T	Date Weat	her	: 5/7/18 : Sunny 60s
В	oring	ID: B	22-119E-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	North Eastir	ing (US ft) ng (US ft)	: 571306.32 : 1461172.57
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		NSCS	REMARKS
0		-		(0-7.5') to sligh cohesic	SAND with GRAVEL tly moist, light brown on	, medium to coarse, dense, to pale yellow, no plasticity, l	dry no		
-	60	0.2							Firebrick COBBLES at 2.5' bgs
-		5.6						sw	
5-		0.9	B22-119E-SB-5						
-		-							
_	50	0.9		(7 5-15		nd GRAVEL very firm nale			Napthalene-like odor 7.5-15' bgs
_		0.3	B22-119E-SB-10	cohesiv	grading to dark bluish e	gray, moist, medium plastic	ity,		N
10-		0.6							No water encountered
_		-							
-		-							
-	40	-							
-		-	B22-119E-SB-15						
15—				End of	boring			I	
Boring t	erminated	d at 15' bị	gs due to maximum	ı depth.					
	ARM Group LL Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T.	Date Weat	her	: 5/8/18 : Sunny 60s
-------------	--	-------------------	-------------------------	---------------------------------	---	---	----------------	---------------------------	---
B	Boring	ID: B	22-119F-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	North Easti	ing (US ft) ng (US ft)	: 571224.68 : 1461166.47
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		nscs	REMARKS
0-		- 0.0		(0-10.5 to bluis wet at 8	') CLAY with SAND a h green grading to bla B' bgs, low plasticity, o	nd GRAVEL, firm, pale brow ack at 8.5' bgs, slightly moist cohesive	′n ∷to		
-	70	0.0							
-		0.1	B22-119F-SB-5						
5		-						CL	
-	80	0.3 0.1							
-		0.0							Naphthalene-like odor from 8-10' bgs
10-		0.0	B22-119F-SB-10						COBBLES at 7.5' bgs
-		-		(10.5-1 mediun	5') CLAY with SAND, n plasticity, cohesive	firm, black to bluish gray, w	et,		
-	80	-						CL	Potroloum like oder et 12' ber
-		0.0							
15—		0.0	B22-119F-SB-15	End of	boring				
Deriver		1 - 4 4 5 1 1							
	.eminate(Jai 15 D	ys uue to water						

		ARN	Group	ists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T. : M. Replogle, E.I.T. : Allied Drilling Co.	Date Weath Northi Eastin	ner ng (US ft) g (US ft)	: 5/8/18 : Sunny 60s : 571251.07 : 1461161.13
В	oring	ID: B	22-119G-S (page 1 of	в 1)	Driller Drilling Equipment	: Ryan Sites : Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	CRIPTION		nscs	REMARKS
0		- 0.0		(0-2') S brown t cohesid	AND with GRAVEL, r to blackish red, slightl on	nedium to coarse, loose, dar y moist, no plasticity, no	rk	SW	
-	80	0.0		(2-15') brown wet at	CLAY with SAND and grading to pale gray fi 7.5' bgs, medium plas	GRAVEL, firm, very pale om 8-15' bgs, slightly moist ticity, cohesive	to		
_		0.0		-					CONCRETE at 4' bos
5		0.0	B22-119G-SB-5						
5		-							
		0.6							
	80	1.3							Wet at 7.5' bgs
-		0.0						CL	
-		0.0	B22-119G-SB-10						
10-		-		-					Odor from 7.5-15' bgs
-		-							
	90	-							
		-							
-		-	B22-119G-SB-15	-					
15-				End of	boring				
Boring t	erminated	d at 15' b	gs due to water						

M	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics Group : 150300M-20-10 : Sparrows Point - Parcel B22 : Sparrows Point, MD : M. Kedenburg, G.I.T.	Date Weath	ner	: 5/8/18 : Sunny 70s
В	oring	ID: B	22-119H-S (page 1 of	B 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : Allied Drilling Co. : Ryan Sites : Geoprobe 7822DT	Northi Eastir	ing (US ft) ng (US ft)	: 571276.07 : 1461171.61
		(W	kal						
Depth (ft.)	% Recovery	PID Reading (PF	Sample No/Inter		DESC	CRIPTION		nscs	REMARKS
0-		-		(0-5') S brown,	AND with GRAVEL, r slightly moist, no plas	nedium to fine, firm, dark sticity, no cohesion			
-		-							
-	60	1.4						SW	
_		0.1							
-		0.1	B22-119H-SB-5						
		0.2		(5-14') greenis cohesiv	CLAY with SAND and h blue to pale brown, /e	d GRAVEL, very firm, pale slightly moist, low plasticity,			
_		0.4							
_	90	1.6							
-		4.1							
10-		0.6						CL	
-		-	B22-119H-SB-11						Odor at 11' bgs
-		-							
-	100	-							
-		-	B22-119H-SB-14	(14 15)	CRAVEL with SANE) danse, dark brown, wet n			Wet at 14' bgs
15-		-		plastici	ty, no cohesion	, dense, dark blown, wel, n	5	GW	
				End of	boring				
Boring t	erminate	d at 15' bị	gs due to water						

hith		$\frac{\mathbf{AR}}{\mathbf{Er}}$	A Group	ntists	Client : EnviroAnalytics Group ARM Project No. : 150300M-20-10 Project Description : Sparrows Point - Parcel I Site Location : Sparrows Point, MD ARM Representative : M. Kedenburg, G.I.T. Checked by : M. Replogle, E.I.T. Drilling Company : Allied Drilling Co.			Soil B Piezo 2 Casin Boreh Riser/ Northi Eastir	oring Installation Date meter Installation Date g/Riser/Screen Type lole Diameter Screen Diameter ing (US ft)	: 5/8/18 : 5/8/18 : PVC : 2.25" : 1" : 571240.63 : 1461111.01	
Bo	oring	ID: B	22-119I-SE (page 1	8/PZ of 1)	Driller : Ryan Sites Drilling Equipment : Geoprobe 7822DT			0-Hr [48-Hr No LN	DTW DTW IAPL or DNAPL detected	: 27.37' TOC : 14.18' TOC I at 0 or 48 hours	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTIC	DN	nscs	Π		REMARKS	
-0 	80	- 0.5 4.4 5.6		(0-4') SAI slightly m yellow, no	ND with GRAVEL, me oist, loose, light brow o plasticity, no cohesio	dium to fine, n to pale on	sw		Bentonite seal	BRICK fragments from 1-4' bgs	
5-		7.9 3.7	B22-119I-SB-5	(4-25') Cl dark gree moist, me	AY with SAND and G nish gray to black, ve edium plasticity, cohes	GRAVEL, ry firm, sive				Odor at 5' bgs	
-	100	2.4 1.6 0.2									
10-		0.4 -	B22-119I-SB-10					_ X	-Sand Pack		
-	70	-									
- 15-		-	B22-119I-SB-15				CL		+ 1" PVC Screen		
-	100	- -									
20—		-									
-	100	-									
25—				End of bo	pring						
Boring to TOC: To DTW: D bgs: Bel AMSL: A	ring terminated at 25' bgs due to water and piezometer installation C: Top of PVC casing W: Depth to water s: Below ground surface ISL: Above mean sea level Riser Stickup: 3.13' Riser: 0 - 4' bgs Screen: 4 - 24' bgs [Slot Size: 0.010"] Sand Pack: 3 - 24' bgs [Grain Size: WG #2] Bentonite Seal: 0 - 3' bgs [Grain Size: 3/8" chips]										

The second se	A	$\frac{\mathbf{AR}}{\mathbf{Er}}$	AM Group	LLC	Client : EnviroAnalyt ARM Project No. : 150300M-20 Project Description : Sparrows Po Site Location : Sparrows Po ARM Representative : S. Kabis Checked by : M. Replogle, Drilling Company : Allied Drilling	ics Group -10 int - Parcel B2 int, MD E.I.T.	Soil Boring Installation Date : 5/9/18 Piezometer Installation Date : 5/9/18 22 Casing/Riser/Screen Type : PVC Borehole Diameter : 2.25" Riser/Screen Diameter : 1" Northing (US ft) : 571366.76 Fasting (US ft) : 1461244.93
Boi	ring	ID: B	22-119K-SI (page 1	3/PZ of 1)	Driller : Ryan Sites Drilling Equipment : Geoprobe 78	22DT	0-Hr DTW : 26.95' TOC 48-Hr DTW : 14.46' TOC No LNAPL or DNAPL detected at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs	REMARKS
0 - -	80	- 0.8 1.4 0.4		(0-7') SL/ black, dry	AG SAND and GRAVEL, loose, , no plasticity, no cohesion	04//04	Bentonite seal
5		0.6 0.1 0.6	B22-119K-SB-5			SW/GW	
-	100	0.7 1.1	B22-119K-SB-9	(8-9') SL/ dry, no pl	AG GRAVEL and SILT, hard, tan, asticity, cohesive	GW/ML	₩et at 9' bgs
10		-		wet, no p	AG SAND and GRAVEL, black, lasticity, no cohesion	SW/GW	Sand Pack
-	70	1.7 0.6	B22-110K-SB-15	(12-25') (bgs, firm, plasticity,	CLAY with GRAVEL from 20-21' dry to wet at 20' bgs, gray, high cohesive		
15—		-					
-	60	-				CL	
20							
-	100						
25—			1	End of Bo	pring		
Boring to TOC: To DTW: Do bgs: Bel AMSL: A	erminat op of P\ epth to ow grou Above n	ed at 24. /C casing water und surfa nean sea	5' bgs due to water 3 ce I level	and piezom	eter installation Riser Riser Scree Sand Bento	Stickup: 5.45' 0 - 4.5' bgs n: 4.5 -24.5' b Pack: 2 - 24.5 nite Seal: 0 - 2	ogs [Slot Size: 0.010"] 5' bgs [Grain Size: WG #2] 2' bgs [Grain Size: 3/8" chips]

Bo	ring	AR En	M Group gineers and Scie 22-119L-SI	LLC ntists B/PZ	Client: EnviroAnalytics GroupSoil BARM Project No.: 150300M-20-10PiezouProject Description: Sparrows Point - Parcel B22CasingSite Location: Sparrows Point, MDBorehARM Representative: M. Kedenburg, G.I.T.Riser/Checked by: M. Replogle, E.I.T.NorthiDrilling Company: Allied Drilling Co.EastirDriller: Lou Davis0-Hr IDrilling Equipment: Geoprobe 7822DT48-Hr				oring Installation Date meter Installation Date g/Riser/Screen Type ole Diameter Screen Diameter ng (US ft) g (US ft) DTW DTW	: 10/12/18 : 10/12/18 : PVC : 2.25" : 1" : 571366.76 : 1461269.93 : 15.76' TOC : 15.88' TOC
			(page 1	of 1)			, , , , , , , , , , , , , , , , , , ,	No LN	APL or DNAPL detected	l at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTIO	N	nscs	Π		REMARKS
0 - -	70	- 0.2 0.1	No Samples Collected	(0-4') Nor GRAVEL brown, dr	n-native SAND with so , medium dense to de y, no plasticity, no coh	ome SLAG nse, grayish nesion	sw		Bentonite seal	
5-		0.0		(4-12') C(SAND, m brown, dr	DNCRETE and BRICk edium dense, yellow a y, no plasticity, no col	K GRAVEL with and red with nesion				
-	50	-								
-		0.2					NA		— Sand Pack	
10		-						<u> </u>		
-	70	0.3		(12-12.6') SILT, loo plasticity, (12.6-13.4	SLAG GRAVEL with se, very dark gray, we no cohesion 4') CLAY with some S	SAND and t, no	GW/SW CL		1" PVC Screen	Wet at 12' bgs
- 15—		0.0		greenish very mois (13.4-14') SILT, loo	gray, gray, and very d t, low plasticity, cohes SLAG GRAVEL with se, very dark gray, we	lark gray, sive SAND and st, no	GW/SW			
	0	-		plasticity, (14-15') C gray, gray low plasti	no cohesion CLAY with some SANE , and very dark gray, city, cohesive	D, greenish very moist,	CL			
Boring te TOC: To DTW: Do bgs: Bele AMSL: A	erminate op of PV epth to ow grou Above n	ed at 16' /C casing water ind surfac	bgs due to water a ce level	L End of Bo	oring er installation	Riser Sticl Riser: 0 - Screen: 7 Sand Pac Bentonite	kup: 4.83' 7' bgs - 17' bgs [{ k: 3 - 17' bg Seal: 0 - 3	Glot Size: (gs [Grain S bgs [Grain S	J 0.010"] Size: WG #2] n Size: 3/8" chips]	L

ARM Group LLC Engineers and Scientists					Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics G : 150300M-20-10 : Sparrows Point - : Sparrows Point, N : L. Perrin	Group Parcel B22 MD	Soil Boring Installation Date Piezometer Installation Date Casing/Riser/Screen Type Borehole Diameter Riser/Screen Diameter	10/12/18 10/12/18 PVC 2.25" 1"
Вог	ring	ID: B2	22-119M-S (page 1	B/PZ of 1)	Drilling Company : Allied Drilling Co. Easting (US ft) Driller : Lou Davis 0-Hr DTW Drilling Equipment : Geoprobe 7822DT 48-Hr DTW No LNAPL or DNAPL det				: 5/1341.76 : 1461244.93 : 14.91' TOC : 15.03' TOC at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTIO	N	nscs	Π	REMARKS
0 — - - -	80	- 45.1 5.2 1.0	No Samples Collected	(0-10') SA medium o pale gray no cohes	AND with GRAVEL, cc lense, dark brown to p , slightly moist to dry, ion	parse to fine, pale brown to no plasticity,		Bentonite seal	
5	60	4.0 - - 20.5 1.6 3.6					SW		Wet at 9' bgs
10— - - 15—	80	- 0.4 0.6 1.5 5.8		(10-12') S pale gray (12-20') C gray to bl cohesive	AND, medium, dense , wet, no plasticity, no CLAY with GRAVEL, s uish gray, wet, low pla	e, black to cohesion oft, pale asticity,	SP		
- - 20-	50	- 1.1 0.5 0.3					CL		
Boring te TOC: To DTW: Do bgs: Bele AMSL: A	erminate op of PV epth to ow grou Above n	ed at 20' /C casing water und surfac nean sea	bgs due to water a ce level	End of Bo	er installation	Riser Stick Riser: 0 - 8 Screen: 8 Sand Pack Bentonite	kup: 5.05' 3' bgs - 18' bgs [S k: 5 - 20' bg Seal: 0 - 5'	ilot Size: 0.010"] Is [Grain Size: WG #2] bgs [Grain Size: 3/8" chips]	

	-	AR En	M Group	ntists	Client : EnviroAnalytics Group ARM Project No. : 150300M-20-10 Project Description : Sparrows Point - Parcel B22 Site Location : Sparrows Point, MD ARM Representative : M. Kedenburg, G.I.T. Checked by : M. Replogle, E.I.T. Drilling Company : Allied Drilling Co.			Soil Boring Piezometer Casing/Ris Borehole D Riser/Scree Northing (L	Installation Date r Installation Date er/Screen Type Diameter en Diameter JS ft)	: 10/12/18 : 10/12/18 : PVC : 2.25" : 1" : 571391.76
Bo	ring	ID: B2	22-119N-S (page 1	B/PZ of 1)	Drilling Company Driller Drilling Equipment	: Allied Drilling Co. : Lou Davis : Geoprobe 7822D	Т	Easting (US 0-Hr DTW 48-Hr DTW No LNAPL	S ft) / or DNAPL detected	: 1461244.93 : 15.64' TOC : 15.40' TOC at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTIO	N	NSCS	Π		REMARKS
0 — - - -	74	- 0.0 0.1 0.2	No Samples Collected	(0-8') Nor GRAVEL dense, br plasticity,	n-native SAND with trac , fine to coarse, mediur own to grayish brown, no cohesion	ce BRICK n dense to dry, no	sw		Bentonite seal	
5	60	0.1 - 0.0		(8-13') CI	AY, soft to firm, green	ish gray				
- 10		0.0		with heav plasticity,	y black staining, moist, cohesive	, low	CL	s	Sand Pack	
-	62	11.7 0.0 0.1		(13-13.2') white, dry (13.2-14') with heav	BRICK GRAVEL, mec , no plasticity, no cohe CLAY, soft to firm, gre y black staining, moist,	dium dense, sion eenish gray , low	NA CL	1	" PVC Screen	Wet at 14' bgs
- 15	56	-		plasticity, (14-18') (GRAVEL no plastic	cohesive CLAYEY SAND with tra , medium dense, pale b ity, no cohesion	ce BRICK prown, wet,	SC			
- - 20—		0.2		(18-20') C plasticity,	CLAY, soft, gray, very n cohesive	noist, low	CL			
Boring to TOC: To DTW: D bgs: Bel AMSL: A	erminat op of P\ epth to ow grou Above n	ed at 20' l /C casing water und surfac nean sea	bgs due to water a l ce level	nd piezomet	er installation	Riser Stick Riser: 0 - 1 Screen: 10 Sand Pack Bentonite 5	:up: 5.05' 10' bgs 1 - 20' bgs 1: 8 - 20' b Seal: 0 - 8	[Slot Size: 0.01 gs [Grain Size: ' bgs [Grain Siz	0"] WG #2] æ: 3/8" chips]	

	4	AR En	M Group	ntists	Client ARM Project No. Project Description Site Location ARM Representative	: EnviroAnalytics C : 150300M-20-10 : Sparrows Point - : Sparrows Point, I : M. Kedenburg, G	Group Parcel B22 MD I.T.	Soil Bor Piezome 2 Casing/I Borehole Riser/So	ing Installation Date eter Installation Date Riser/Screen Type e Diameter creen Diameter	: 10/12/18 : 10/12/18 : PVC : 2.25" : 1"
Во	ring	ID: B2	22-119O-S (page 1	B/PZ of 1)	Drilling Company : Allied Drilling Co. I Driller : Lou Davis (Drilling Equipment : Geoprobe 7822DT			Northing Easting 0-Hr DT 48-Hr D No LNA	g (US ft) (US ft) W TW PL or DNAPL detected	: 5/1366.76 : 1461219.93 : 15.84' TOC : 15.73' TOC at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTIC	DN	USCS	Π		REMARKS
0 - -	40	- - 1.2	No Samples Collected	(0-8') SAI medium o moist, no	ND with GRAVEL, me lense, dark brown to p plasticity, no cohesio	dium to fine, oale gray, n	CM/CM		– Bentonite seal	
5		2.1 - 1.3					Sw/Gw		−1" PVC Riser	
-	80	0.4 1.6 59.2		(8-8.5') B (8.5-13.5 fine, med	RICK) SAND with GRAVEI ium dense, dark brow	_, medium to n to pale	NA			
10— - -		-		gray, moi	st, no plasticity, no co	nesion	sw		– Sand Pack	
- - 15—	50	4.2 2.5		(13.5-15. dense, bl plasticity,	5') GRAVEL with SAN ack to dark brown, we no cohesion	ID, medium, t, no	GP	.	-1" PVC Screen	Wet at 13.5' bgs
-	80	- 0.3 0.2		(15.5-20') wet, low () CLAY, soft, dark blui plasticity, cohesive	sh gray,	CL			
- 20-		0.1 0.3		End of bc	pring					
Boring te TOC: To DTW: D bgs: Bel AMSL: A	erminate op of PV epth to ow grou Above n	ed at 20' /C casing water und surfac nean sea	bgs due to water a l ce level	nd piezomet	er installation	Riser Sticl Riser: 0 - Screen: 10 Sand Pacl Bentonite	kup: 2.69' 10' bgs 0 - 20' bgs k: 8 - 20' bg Seal: 0 - 8'	[Slot Size: 0 gs [Grain Siz ˈbgs [Grain	.010"] ze: WG #2] Size: 3/8" chips]	

			M Group		Client : EnviroAnalytics Group ARM Project No. : 20010222 Project Description : Sparrows Point - Parcel B22 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T. Drilling Company : GSI Driller : D. Marchese			Soil Bo Piezor Casing Boreho Riser/S Northin Easting	oring Installation Date neter Installation Date J/Riser/Screen Type ble Diameter Screen Diameter ng (US ft) g (US ft)	: 5/21/20 : 5/21/20 : PVC : 2.25" : 1" : 571203.88 : 1461171.48
BO	ring	ID: B2	(page 1	3/PZ of 1)	Driller : D. Marchese Drilling Equipment : Geoprobe 7822DT			0-Hr D 48-Hr No LN	TW DTW APL or DNAPL detected	: 13.67' TOC : 13.03' TOC I at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	nscs		Π		REMARKS
0		- 1.2		(0-0.6') N SAND, lo plasticity,	on-native SILT with very fine ose, very pale brown, dry, no no cohesion	ML			- 1" PVC Riser	
-	78	26.9 8.5	No Samples Collected	vellow an plasticity, gravel at	d reddish yellow, dry, no no cohesion, with trace concrete 4' bgs	SW-SC	;		-Bentonite Seal	
5-		4.0 0.2								
-		0.8		(6.2-12') (gravish bi	CLAY, very firm to hard, moist,					
_	94	0.0		plasticity,	cohesive					
_		0.0 0.0				CL	-			
10-		0.0							— Sand Pack	
_		0.0		(12-13 1')						Wet at 12' bgs
_	100	0.0 0.0		no plastic	ity, no cohesion	GC/SW	/			
15		1.9		SAND, sc brown, ve	off to firm, black and yellowish ory moist, low plasticity, cohesive	CL/GW	'		1" PVC Screen	
-		0.0		(15.2-17.2 and SILT	2') FILL GRAVEL with some SAND , medium dense, red yellow and at no plasticity no cohesion	GW				
_	86	0.0		(17.2-20')	CLAY with trace SAND. verv		-			
_		0.0		firm, pale plasticity,	green and black, moist, low cohesive	CL				
20-		0.0							Collapsed Soil	
				End of Bo	pring					
Boring to Piezome TOC: To DTW: Do bgs: Bel	erminat eter inst op of P\ epth to ow grou	ed at 20' alled to 1 /C casing water und surfac	bgs due to water a 9' bgs I	nd piezomet	er installation Riser Stic Riser: 0 - Screen: 9 Sand Pac Bentonite	kup: 4.22' ag 9' bgs - 19' bgs [Sl k: 7 - 19' bgs Seal: 0 - 7' l	gs lot Siz s [Gra bgs [0	ze: 0.0 ain Size Grain S	10"] s: WG #2] ize: bentonite chips]	

	A	AR En	M Group	ntists	Client : EnviroAnalytics Group ARM Project No. : 20010222 Project Description : Sparrows Point - Parcel B22 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T.			oring Installation Date meter Installation Date g/Riser/Screen Type ole Diameter Screen Diameter	: 05/21/2020 : 05/21/2020 : PVC : 2.25" : 1"
Bo	ring	ID: B	22-119S-SI (page 1	B/PZ	Drilling Company : GSI Driller : D. Marchese Drilling Equipment : Geoprobe 7822DT			ing (US ft) ng (US ft) DTW DTW IAPL or DNAPL detected	: 5/12/5.08 : 1461265.19 : 19.50' TOC : 11.51' TOC ! at 0 or 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	SOS	Π		REMARKS
0— - -	48	- 3.2 0.0	No Samples Collected	(0-1.5') F GRAVEL brown, dr	ILL/CONCRETE, SAND and sized, with SILT, loose, very pa y, no plasticity, no cohesion	le SW/GW		1" PVC Riser	
- 5		0.3		(1.5-7.4') SLAG/BF brown to no plastic	Non-native SAND with SILT and RICK GRAVEL, medium dense, dark brown with light gray, dry, bity, no cohesion	d SW-SM/ GW			
-	60	3.4 13.4 1.2		(7.4-8.5') GRAVEL brown, m (8.5-9.6') medium o	SILT with SAND and SLAG/BR , medium dense to dense, dark oist, no plasticity, no cohesion SILTY SAND with GRAVEL, dense, dark brown with yellow, plasticity, no cohesion	ICK ML SM/GW	<u>.</u>	· · ·	Wet at 9.5' bgs
- 10	74	6.6 1.5 2.4		(9.6-10') yellow an cohesion (11.3-12') coarse, b no plastic	FILL GRAVEL and cobbles, loos d brown, wet, no plasticity, no FILL/SLAG GRAVEL, fine to rown and yellow and black, wet, sity, no cohesion	se, GW		— Sand Pack	light amount of sheen and strong odor from 11.3-12' bgs
- - 15—		3.9 32.0 -		(12-20') (soft to ve reddish y cohesive	CLAY with trace intermittent sand ry firm, pale green, black and ellow, moist, low plasticity, , moderate odor	d,		-1" PVC Screen	
-	40	- 23.0				CL			
20-		2.7		End of Bo	pring				
Boring te TOC: To DTW: Do bgs: Bel	erminat op of P\ epth to ow grou	ed at 20' /C casing water und surfac	bgs due to water a	nd piezomet	er installation Rise Rise Scre San Ben	er Stickup: 2.83' ag: rr: 0 - 10' bgs sen: 10 - 20' bgs [S d Pack: 8 - 20' bgs tonite Seal: 0 - 8' b	s lot Size: 0 [Grain Siz gs [Grain \$.010"] e: WG #2] Size: bentonite chips]	

ATTACHMENT 2

L Ten	ow Flow S nporary F	Sampli Piezom	ng eters		ARM Group Inc. Earth Resource Engineers and Consultants						
Project Name: -	822 Pori	Lasto	on G	S	Project Num	ber: 150	300m	-20	10		
Piezometer Nun	nber: B22-	119-P	2		Date:	513111	8				
Piezometer Diar	meter (in):				One Well Vo	olume (gal):					
Depth to Produc	rt (ft): NP	۲			QED Contro	oller Settings	s:				
Depth to Water	(ft): [\.	51			Flow Rate (1	mL/min)	227	1			
Product Thickne	ess (ft): N/	7			Length of tir	me Purged (min) 3	0/2	D		
Depth to Botton	n (ft): Ə	.97									
Shirk Section 1		an water	and Status	PURG	ING RECOR		WY I ST IN	nvaso 🖓	IN RECT		
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) $\pm 3\%$	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turb (N7 ± 10%	oidity FU) or < 5	Comments	
948	0.0	14.03	18.6	8.89	2.430	2.10	-174.8				
9.53	0.3	14.03	19.8	9.57	2.297	1.07	-233.6			clear	
95B	0.6	14.03	19-0	9.84	2.456	0.83	-261.1				
1003	0.9	14.03	19-1	9.92	2.481	0.76	-268.8			Cloudy	
1008	1.20	14,03	19.0	10.01	2.512	0.72	-276.9			F	
								(, A	Aoudro gray when Sampling	
			MON	ITORIN	G SAMPLE	RECORD					
Sample	e ID	Time C	ollected	Param	neter/Order	Conta	ainer	Perser	vative	Collected?	
Sampr				TC	L-VOCs	3 - 40 m	L VOA	Н	Cl	V	
				TP	H-GRO	3 - 40 m	L VOA	H	Cl	Ý	
				TP	H-DRO	2 - 1 L .	Amber	no	ne	$\overline{\mathbf{v}}$	
				TCI	L-SVOCs	2-1L	Amber	no	ne	Ý	
	or			Oil	& Grease	2 - 1 L .	Amber	H	C1	ý ý	
,,,0	X- X			Tota	l Cyanide	1 - 250 m	L Plastic	Na	OH	2	
B73- (,		101	5	TAL M (Di Field	-Metals & lercury ssolved) l Filtered	1 - 250 m	L Plastic	HN	103	\sim	
				He: Ch (Di Fiel d	xavalent romium ssolved) l Filtered	1 - 250 m	L Plastic	No	one	λ	
			M	atrix Spi	ke					У	
			Ι	Duplicate	2					N	
Sampled I	Ву:((L	Commen P	uvoje	urged is	and the wante	ine divi	ng ict	san ill-	rplug could	
	Casing Vol	<u>ume:</u> 1" I.D.	= 0.041 gal	/ft-2"I.D. ftx0/	= 0.163 gal/ft - 4 04) gal/ft = 0	4" I.D. = 0.653	3 gal/ft - 6" I .	$D_{1} = 1.47$	7 gal/ft		

L. Ten			ARI Earth Reso	M G1	roup In neers and Consu	1C • Iltants			
Project Name:	BZZ POr	i Lage	ion G	w	Project Num	iber: \	5030	om-20-	D
Piezometer Num	nber: B22	-1194	-PZ		Date:	51:	31/18	- 6/11	8 (sampled)
Piezometer Diar	neter (in):)				One Well V	olume (gal):			
Depth to Product (ft): NA					QED Contro	oller Setting	s:		
Depth to Water	(ft):	8.63			Flow Rate (r	mL/min)	15	59	
Product Thickne	ess (ft): NA	t			Length of tir	me Purged (min) L	10/20	
Depth to Bottom	n (ft):	27.24	1					/	
			0/21.00%	PURG	ING RECOR	RD			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments
1256	0,0	18.53	20.2	10.22	1.210	3.31	-69.9		-
1301	0.28	20.50	21.6	10.30	1.254	1.26	-108.1		
1306	0.50	21.52	22.0	10.27	1.329	0.96	-13411		
1311	0.67	22.09	23.0	10.20	1.374	0.84	-141.3		
1316	0.84	22.98	23.3	10.17	1.398	0.75	-150.2		
	S								
			MON	ITORIN	IG SAMPLE	RECORD			
Sample	e ID	Time C	ollected	Param	neter/Order	Cont	ainer	Perservative	Collected?
				TC	L-VOCs	3 - 40 m	L VOA	HCl	Y
			~	TP	H-GRO	3 - 40 m	L VOA	HC1	$\overline{\mathbf{v}}$
÷			(gu	TP	H-DRO	2 - 1 L	Amber	none	ý
	1/	1	120000	TCI	L-SVOCs	2-1L	Amber	none	<u>'</u> Y
	RV	KEini	0	Oil	& Grease	2 - 1 L	Amber	HCl	Y
, a	T	13	~ ~	Tota	Cyanide	1 - 250 m	L Plastic	NaOH	N
822 (61-18) TA			TAL M (Di Fiel d	-Metals & lercury ssolved) l Filtered	1 - 250 m	L Plastic	HNO3	N	
				xavalent romium ssolved) 1 Filtered	1 - 250 m	L Plastic	None	2	
Matrix Sp					ke				1 N
Duplicate									R Y
Sampled I	Ву:	ß	Commer	its:					
`	Casing Vol	lume: 1" I.D	. = 0.041 gal	/ft - 2" I.D. ø∖_ft xØo	.=0.163 gal/ft - 4 % (1/gal/ft =)	4" I.D. = 0.65	3 gal/ft - 6" I	.D. = 1.47 gal/ft	

I	Low Flow		Earth Resource Engineers and Consultants							
Project Name:	BZZ Por	Lago	on Gr	W I	Project Number: 150300m-20-10					
Well Number:	B22-0	119J	-92		Date: 5/31/18					
Well Diameter (in): 2				One Well Vo	olume (gal):				
Depth to Produc	t (ft): N	A			QED Contro	ller Settings				
Depth to Water	(ft): 13.	59			Flow Rate (r	nL/min)	22	-7		
Product Thickne	ess (ft):	VA			Length of tir	ne Purged (min) (25	115	
Depth to Botton	n (ft): [C	1.82			Gondition	Pad/Cover			L 3	3
	AL			PURGI	NG RECORI					Service and the service
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turl (N ± 10%	oidity TU) 5 or < 5	Comments
1407	0.0	13.59	21.3	10.95	0.733	6.75	-16.6			
1412	6-3	13.59	21.8	11.17	0.706	5.21.	-7.0			
14.7	Oilo	13.57	21.9	11.12	0-718	4.96	-4.5			_
1472	0.9	13.55	22-1	11.20	0.724	4.94	-2.9)	
		1								
N										
1										
		1								
			MO	NITORING	SAMPLE R	RECORD				
Sampl	e ID	Time C	Collected	Parame	eter/Order	Cont	ainer	Perse	rvative	Collected?
Cumpi				TCL	-VOCs	3 - 40 m	L VOA	H	ICl	Y
				TPH	I-GRO	3 - 40 m	L VOA	H	ICl	ý
				TPH	I-DRO	2 - 1 L	Amber	n	one	N.
		1		TCL	-SVOCs	2-1L	Amber	n	one	ý
	02			Oil &	c Grease	2-1L	Amber	H	HC1	4
0	5-4			TAL-	Metals & rv (total)	1 - 250 m	L Plastic	H	NO3	N
N.	ι.	110	15	Total	Cyanide	1 - 250 m	L Plastic	N	aOH	N
- 22		19	P	TAL-	Metals &	1				
Bo				Mercury	(Dissolved)	1 - 250 m	L Plastic	H	NO3	
		1		Field	Filtered					,
		1		II	at Chaomium					
		Hexavale (Dic	an Chiomann Malved)	1 - 250 m	J Plastic	n	one			
1	Field	Filtered	1 - 250 11	11/1 103010	1	one				
	rield	1' HUUL CU			<u> </u>					
			PCB	2-1L	Amber		one	\sim		
	ce									
			Ic	Duplicate					DATE: NO. OF CO.	
	p 1	10	Comme	nts:						
Sampled By:							×			
	Centers	/olumo, 1997	D = 0.041	nal/A - 7" I D	= 0 163 gal/ft - 4	" I.D. = 0.653	gal/ft - 6" 1.1	$D_{1} = 1.4^{\circ}$	7 gal/ft	
	Casing	June: 1		ft x O	OU(gal/ft = 0)	- 70 (gal)		-		and the second second

L Ten		ARM Group Inc. Earth Resource Engineers and Consultants									
Project Name:	1322 por	ilaer	ion 6	10	Project Number: 1503000-20-10						
Piezometer Nun	nber: B2-	2-119	K-P	2	Date: 5 (31/18						
Piezometer Diameter (in):				One Well V	olume (gal):	-		1			
Depth to Produc	ct (ft): +	ace	s		QED Contro	oller Settings	3:				
Depth to Water	(ft): 13	.77	DC		Flow Rate (1	mL/min)					
Product Thickne	ess (ft): 7	Traci	2		Length of tin	me Purged (min)				
Depth to Botton	n (ft): 3	0.03	TUC								
AND SERVICE		Sn 8 16		PURC	JING RECO	RD		And South and			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) $\pm 10\%$ or < 5	Comments		
			peli	w	CNOt	san	nples				
A	femp	ed	to	Sau	nple	per	N.KI	NZ			
NUMBER OF STREET, STRE			MON	TODA	CEAMDLE	DECODD					
Gameral	- 110	Time	MON	Dener	G SAMI LE	Cent	in an	D	C. 11. 4. 19		
Sample	em	Time C	onected	Falan		2 40 m		Perservative	Collected?		
					L-VUCS	3 - 40 m		HCI	<u> </u>		
					H DPO	3 - 40 m	Amber	HCI	<u> </u>		
	(a)			TCI	-SVOCs	2 - 1L	Amber	none			
	gr			Oil	& Grease	2 - 1 L	Amber	HCl			
0	H			Tota	l Cyanide	1 - 250 m	L Plastic	NaOH	Λ)		
B22-11	B22-LIGTT TAL M (D) Field				-Metals & lercury ssolved) l Filtered	1 - 250 m	L Plastic	HNO3	2		
	He Cr (D Fiel				xavalent romium ssolved) I Filtered	1 - 250 m	L Plastic	None	٨J		
Matrix Spi				ke				A.)			
Duplicate					2				Ň		
Sampled By: UP Comments: A Here					sjed tu	to pure	e> w tue to	ould not heavy s	clear sitt/NAPL		
	Casing Volu	<u>ime:</u> 1" I.D	. = 0.041 gal	/ft-2" I.D.]1 ft x 0	= 0.163 gal/ft - 4 M' gal/ft = 0	4" I.D. = 0.653),(67 (gal)	8 gal/ft - 6" I .	D . = 1.47 gal/ft			

Ι		ARM Group Inc. Earth Resource Engineers and Consultants								
Project Name:	PORI				Project Number:					
Well Number:	322-110 -	P2			Date 5/18/2070					
Well Diameter ((in):]	di dia			One Well Volume (gal):					
Depth to Produc	et (ft): non0				QED Contro	ller Setting	s;			
Depth to Water	(ft): 11,41				Flow Rate (1	nL/min) 3	00			
Product Thickness (ft):					Length of tin	me Purged (min)			
Depth to Bottom (ft): 22.4%				Condition o	f Pad/Cover	:	1			
PURG					NG RECORI	D	36778 BC			
	Volume			рH	Specific	Dissolved	ORP	Turbidity		
Time	Purged	DTW	Temp	(s.u.)	Conductance	Oxygen	(mV)	(NTU)	Comments	
	(gallons)	(feet)	(°C)	± 0.1	(ms/cm) + 3%	(mg/L) ± 0.3	±10	$\pm 10\%$ or < 5		
		1570	115	812	2 001	280	-215-2	112		
1110	1.2	11 22	20 7	8.57	1 000	1.18	-75-2	V 78.11		
114	10	16.SL	27 1	8.92	1 0116	1 84	- G/ 4	651.7		
		17	12 7	910	2 684	1/01	- 78.9	35704		
11-50	11/	1716	12.8	GILI	2.1007	1.00	-7491	48.9		
1135	1.0	160L	22 11	14/	1726	110	- 36.	214		
1140	1,5	17.0	26.9	9.20	1236	1143	-518 6	-27.4		
1145	1.8	11.6	12. 5	1000	2 1/01	127	- 278 /1	111-1		
1150	2,1	2600	22,1	10.03	21/20	120	-22- (1	12 0		
1155	2,1	21 xx 1	22.1	10113	6.952	1.50	-32,4	1213		
			_							
									1	
Service Services			MO	NITORING	SAMPLE	LECORD		Com Contraction	a 11 - 10	
Sampl	e ID	Time C	Collected	Parame	eter/Order	Cont	ainer	Perservative	Collected?	
		1200	1	TCL	-VOCs	3 - 40 m	L VOA	HCl		
				TPH	I-GRO	3 - 40 m	LVOA	HCl		
				TPH	I-DRO	2 - 1 L	Amber	none		
				TCL	SVOCs	2-1L.	Amber	none		
		1			Oil & Grease 2-1 L Amber HCl					
				IAL-	-Metals & 1 - 250 mL Plastic HNO3					
				Hevavala	ny (ioial)					
				/t	otal)	1 - 250 m	L Plastic	none		
				Total	Cyanide	1 - 250 m	L Plastic	NaOH		
ſ				TAL-	Metals &					
		1		Mercurv	(Dissolved)	1 - 250 m	nL Plastic	HNO3		
		1		Field	Filtered					
		1				1				
		Hexavaler	nt Chromium	1 050	T DI					
1			(Dis	solved)	1 - 250 m	IL Plastic	none			
Field					rutered					
				F	РСВ	2 - 1 L	Amber	None		
]	Matrix Spik	e					
			li anti anti	Duplicate						
	1		Comme	nts:						
Sampled	By: AMA			1 1						
-			pH r	int stabili	7PM	NID 0.670		$1/7 \approx 1/6$		
	Casing V	<u>olume:</u> 1" 1	.D. = 0.041	gai/it - 2" I.D. ft x	= 0.163 gal/ft - 4 gal/ft =	(gal)	gant - 0" 1.1	•. − 1.47 gal/π		

]		ARM Group Inc. Earth Resource Engineers and Consultants								
Project Name: 5	PORI				Project Number:					
Well Number:	Well Number: 322- 11914-P7									
Well Diameter	(in): 1			One Well V	olume (gal):	:				
Depth to Produ	ct (ft):				QED Contro	oller Setting	S:			
Depth to Water	Depth to Water (ft): 14,72						D D			
Product Thickn			Length of tin	me Purged (min)					
Depth to Bottor		Condition of	f Pad/Cover	:	1					
PURG					NG RECORI	D	121213			
	Valuma	1			Specific	Dissolved	ORP	Turbidity		
Time	Purged (gallons)	DTW (feet)	Temp (°C)	(s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	(mV) ± 10	(NTU) ± 10% or < 5	Comments	
1755		17.71	12.3	9.46	1.8/0/0	6,40	- 39.4	45.2		
1300	1.25	19.61	22.1	9 -2	1,885	5.42	-47.9	63.4		
1305	15	, N	21.2	9.43	1.7/2	4,03	- 24,3	11.4		
1310	,75	.23	21.5	9.58	2.823	2.80	-1101	× 42,1		
1316	2	.45	22.1	9,53	2,911	2,51	-120.2	18,2		
1320	.25	19.54	216	4,64	3,014	2.04	- 130,2	27.7		
		11								
					_				_	
									1	
REAL PROPERTY AND		1	мо	NITORINO	SAMPLER	ECORD	Solo 8 Title	Constant In	and the second second	
Samul	a ID	Time	Collected	Doromo	tar/Ordar	Contr	iner	Porcorvativa	Collected?	
Sampi	ein	T une C	oncered		VOCa	3 - 40 m		HCI	Conceleu:	
		1329	~	TPH	LGRO	3 - 40 m	L VOA	HC1		
				TPH	L-DRO	2 - 1 L	Amber	none		
				TCL	SVOCs	2-1 L	Amber	none		
				Oil &	Grease	2-1L	Amber	HCl		
		1		TAL-I	TAL-Metals & 1 - 250 mL Plastic HNO3					
				Mercu	Mercury (total) 1 - 250 mL Plastic HNO3					
				Hexavaler (te	nt Chromium otal)	1 - 250 m	L Plastic	none		
		Ind x	To	Total	Cyanide	1 - 250 m	L Plastic	NaOH		
		0	B	TAL-I	Metals &					
		22	10	Mercury	(Dissolved)	1 - 250 m	L Plastic	HNO3		
			8'Di	Field	Filtered					
	"ac	Heyayaler	t Chromium							
		(Dis	solved)	$1 - 250 \mathrm{m}$	L Plastic	none				
				Field	Filtered	1 200 11		none		
				. 1						
				<u> </u>	CB	2-1L.	Amber	None		
			N	Durlingto	e					
			Comment	Duplicate			-			
Samulad	By LIMAL		no rogi	Hered 4D	NAPL 100	traceon	probe			
Sampled	by. Mill		milky p	roduct	040	ital au	AD ALIN	samt collor	Led	
	Casing V	olume: 1" I	$\mathbf{D} = 0.041$	al/ft 2 2" t n -	U/1 // = 0.163.gal/ft - 4%	$\frac{1}{10} = 0.652$	nu "	L = 1.47 cal/ft		
	Casing V	in the second second	L, v.v-ig	ft x	gal/ft =	(gal)		Emilte		

]		ARM Group Inc. Earth Resource Engineers and Consultants									
Project Name:	DRI				Project Number:						
Well Number:			Date: 05/27/101.0								
Well Diameter	Well Diameter (in):						One Well Volume (gal):				
Depth to Produc	ct (ft): non 0				QED Contro	oller Setting	s:				
Depth to Water	(ft): 13.21				Flow Rate (1	mL/min) 3	50				
Product Thickn			Length of tin	me Purged (min)						
Depth to Botton		Condition of	f Pad/Cover	:	1						
PURG					NG RECORI	D					
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ±10	Turbidity (NTU) ± 10% or < 5	Comments		
1420	1	74	19.4	10,92	1.131	3,29	-224.	210.2			
1435	1.4	1711	20.6	10.92	1,191	2.40	- 248, -	32.4			
14.0	1.8		19.8	10.95	1.233	2,19	- 256	324.8			
1445	2.2		19.9	10.94	1.241	2,04	-261.4	15.3			
			,								
						_					
ALC: A DESCRIPTION	S You WALL	23138	МО	NITORING	SAMPLE R	ECORD		Marine State			
Sampl	e ID	Time C	Collected	Parame	ter/Order	Conta	ainer	Perservative	Collected?		
		11	5	TCL	-VOCs	3 - 40 m	L VOA	HC1			
		145	0	TPH	I-GRO	3 - 40 m	L VOA	HC1			
				TPH	I-DRO	2 - 1 L .	Amber	none			
				TCL-	SVOCs	2-1L	Amber	none			
				Oil &	Grease	2-1L	Amber	HC1			
				TAL-1	Metals &	1 - 250 m	L Plastic	HNO3			
				Mercu	ry (total)			million			
				Hexavaler	t Chromium	1 - 250 m	L Plastic	none			
				Total	(vanide	1 - 250 m	I Plastic	NaOH			
				TAT	Metals &	1 - 230 III					
				Mercury	(Dissolved)	1 - 250 m	L Plastic	HNO3			
				Field	Filtered						
				- I ICIU							
		Hexavaler	nt Chromium								
			(Dis	solved)	1 - 250 m	L Plastic	none				
	Field	Filtered									
H					СВ	2-1L	Amber	None			
Matrix Spike											
Duplicate											
Sampled I	ву:ДМ(Commer	nts:							
	Casing V	olume: 1" I.	$D_{.} = 0.041$ §	gal/ft - 2" I.D. = ft x	= 0.163 gal/ft - 4' gal/ft =	' I.D. = 0.653 (gal)	gal/ft - 6" I.D	. = 1.47 gal/ft			

]	Low Flow Perman	v Samp ent We	ling lls		ARM Group Inc. Earth Resource Engineers and Consultants					
Project Name:	PORI				Project Number:					
Well Number:	Well Number: 22-1190-P2									
Well Diameter		One Well V	olume (gal):							
Depth to Produ	Depth to Product (ft):						5:			
Depth to Water		Flow Rate (1	mL/min) V	50 104	yest possil	\sim				
Product Thickn		Length of tin	me Purged (min)	,					
Depth to Botton		Condition of	f Pad/Cover	:	/					
	PURGI	NG RECORI	D	(c) is a						
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) $\pm 3\%$	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments	
6910	1.5	18.48	11.2	11.48	1.193	4,20	-21,9	259		
0915	1.75	19.02	22.0	11.43	1,236	4.72	-66.1	112		
0920	2	19.54	2018	11.74	1,762	5,36	-115,5	164		
0925	2,25	20.08	22.7	11,79	1.566	5.83	-1511	298.1		
0930	5	20.62	23,3	11.29	1,571	5.71	-1221-	- 68.9		
0135	75.	21.11	23,6	11.85	1,565	5179	-Illord	32.4		
						1				
(*										
Contraction States		20. A. A.	МО	NITORING	SAMPLE R	ECORD		的基本的	A SHE SHE	
Sampl	le ID	Time C	collected	Parame	eter/Order	Conta	ainer	Perservative	Collected?	
		1	r	TCL	-VOCs	3 - 40 m	L VOA	HCl		
		094)	TPE	I-GRO	3 - 40 m	L VOA	HCl		
				TPH	I-DRO	2 - 1 L	Amber	none		
				TCL-	SVOCs	2-1L	Amber	none		
		1		Oil &	Grease	2-1L	Amber	HCl		
		1		TAL-I	Metals & 1 - 250 mL Plastic HNO3					
				Mercu	ry (total)					
				Hexavaler (+	atal)	1 - 250 m	L Plastic	none		
		1		Total	Cvanide	1 - 250 m	I Plastic	NaOH		
		1		TAL-I	Metals &	1 - 250 m	E i iustie	Huon		
				Mercury	(Dissolved)	1 - 250 m	L Plastic	HNO3		
				Field	Filtered	1 2001		intos		
		end								
		MB	22.02	Hexavaler	nt Chromium					
				(D1s	solved)	1 - 250 m	L Plastic	none		
		unchayal	slow	Field	Filtered					
		Access le		P P	РСВ	2 - 1 L	Amber	None		
Matrix Spike										
			Duplicate							
And the second design of the s			And in case of the local division of the loc	and the second second	And in case of the local division of the loc					
			Commer	its:	IN NAD 1	no troca	on prot	l		
Sampled	ву: Дм()		Commer f() r@g, milky r	nts: Sillrod Li	10 NAPLY	no trace	on prok	e Vienne	Non M	
Sampled	By: LMA	olume: 1" I	Commer $f(t) r \theta(t)$ milky p $\mathbf{p}_{t} = 0 0 1$	nts: Silred L Droduct	0 NAPL 1 00 1	$\frac{n(1)}{100} + \frac{1}{100} + \frac$	on profe	S <u>VISCOUS</u> = 1.47 gal/ft	Hran M	

Ι		ARM Group Inc. Earth Resource Engineers and Consultants								
Project Name: 7	ORI				Project Number:					
Well Number:	R22-119	R-PZ			Date: 05/27/2020					
Well Diameter (in):				One Well Volume (gal):					
Depth to Produc	t (ft): pond				QED Controller Settings:					
Depth to Water (ft): 12,04					Flow Rate (r	nL/min)40	Ó			
Product Thickness (ft): -					Length of tir	ne Purged (min)			
Depth to Botton	n (ft): 23	22			Condition of	f Pad/Cover	:	1		
		J.	to 1	PURGI	NG RECORI)	and Parks	Section In 1515	3 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1	
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) $\pm 3\%$	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments	
1015	1.5	13.04	19.2	9.54 9.79	0.821	5.38	846.0	264 769 158		
1025	2.3		18.8	1011	0,816	2.02	-125.6	28.9		
1030	2.4		10.4	10139	0,834	100	10010	567		
1035	311		P.Y	10156	0,649		121-1	771	_	
1040	3.5		18.6	10, 57	0,057	1 ide	194	0.03		
1045	3.7		18,0	10,41	0.0107	1.01	- 2011 5	12.2		
1050	43		14.8	1(), 94	0,000	100	204,8	007		
1055	4,7		18.0	10.75	0.010	1,30	-21110	8.77		
			ļ							
							STILLING - C	THE REPORT OF		
Distant and	52 ⁶ 3) / 2	2 - EM	MO	NITORING	S SAMPLE F	RECORD			0.11 10	
Sampl	le ID	Time (Collected	Parame	eter/Order	Cont	ainer	Perservative	Collected?	
		1100		TCL	-VOCs	3 - 40 m	IL VOA	HCI		
				TPH	I-GRO	3 - 40 m		HCI		
				TPH	I-DRO	2-1L	Amber	none		
				TCL	SVOCs	2-1L	Amber	none UC1		
1					Actala &	2-1L	AIIIDEI	IICI		
				Morei	wetais &	1 - 250 n	nL Plastic	HNO3		
				Hexavale (1	nt Chromium total)	1 - 250 n	nL Plastic	none		
1		1		Total	Cyanide	1 - 250 n	nL Plastic	NaOH		
TAL- Mercury Field					Metals & (Dissolved) Filtered	1 - 250 n	nL Plastic	HNO3		
Hexavale (Di Field					nt Chromium ssolved) Filtered	1 - 250 r	nL Plastic	none		
					PCB	2 - 1 T	Amber	None		
				Matrix Spil	ce					
				Duplicate						
			Comme	nts:						
Sampled	ву: <u>М</u> С									
	Casing	Volume: 1"	I.D. = 0.041	gal/ft - 2" I.D.	= 0.163 gal/ft - 4 gal/ft =	" I.D. = 0.653 (gal)	8 gal/ft - 6" I.I	D. = 1.47 gal/ft		

Ι		ARM Group Inc. Earth Resource Engineers and Consultants								
Project Name: D	ORI				Project Number:					
Well Number: P	12-1195-	P7-		HE AND A	Date: 05/22/1020					
Well Diameter ((in): \				One Well Volume (gal):					
Depth to Produc	t (ft): point				QED Contro	ller Settings	3:			
Depth to Water	(ft): \\.\04				Flow Rate (r	nL/min) 4(0			
Product Thickne	ess (ft):				Length of tir	ne Purged (min)			
Depth to Botton	n (ft): 72, 19	1			Condition of	f Pad/Cover		/		
Lopes -	CT EELE	0		PURG	NG RECORI)				
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments	
1125	15	1.7	21.0	7.32	1.028	2.62	-204.	164		
1140	2	7/	120	7.29	0.023	2.03	-1911	7 122		
1145	2.5		21.8	7,28	0,981	1.80	- 189.0	78.2		
1150	2		21.7	7.25	0.961	1,69	-182.1	~ 44, 1		
1155	3,5		21.3	7.23	0.933	1.60	- 1860 J	10.17		
_										
N LANS TOTAL			MO	NITORIN	G SAMPLE F	RECORD			and the second second	
Sampl	e ID	Time (Collected	Param	eter/Order	Cont	ainer	Perservative	Collected?	
		1200		TCI	-VOCs	3 - 40 m	L VOA	HCl		
1		100		TPI	H-GRO	3 - 40 m	L VOA	HC1		
				TPI	H-DRO	2 - 1 L	Amber	none		
				TCL	-SVOCs	2-1L.	Amber	none		
				Oil &	k Grease	2-1L.	Amber	HCI		
				TAL-	Metals &	1 - 250 m	L Plastic	HNO3		
				Mercu	ury (total)					
				nexavale 6	total)	1 - 250 m	L Plastic	none		
				Total	Cyanide	1 - 250 m	L Plastic	NaOH		
		1		TAL-	Metals &	1				
				Mercurv	(Dissolved)	1 - 250 m	nL Plastic	HNO3		
		1		Field	Filtered					
Hexavale (Di Field					ent Chromium ssolved) I Filtered	1 - 250 n	nL Plastic	none		
					DCB	2_1T	Amher	None		
		1		Matrix Spil	(CD)	<u> </u>	2 MILOU	110110		
			1	Duplicate						
			Comme	nts:						
Sampled	By: LMG			} .						
· · · · · · · · ·			moth	ball	onor					
	Casing	Volume: 1"	I.D. = 0.041	gal/ft - 2" I.D. ft_x	. = 0.163 gal/ft - 4 gal/ft =	" I.D. = 0.653 (gal)	gal/ft - 6" I.I). = 1.47 gal/ft		

ATTACHMENT 3

060518-1: View of the PORI Lagoon facing south.

060518-2: View of the ground surface at the PORI Lagoon.

060518-3: View of the sheet piling at the northern end of the PORI Lagoon.

060518-4: View of the sheet piling at the northern end of the PORI Lagoon.

060518-5: View of excavated material from test pitting activities at the PORI Lagoon.

060518-6: View of excavated material from test pitting activities at the PORI Lagoon.

061720-1: View of excavated material from test pitting activities at the PORI Lagoon.

061720-2: View of excavated material from test pitting activities at the PORI Lagoon. Sheet piling is visible to the left side of the image.

061720-3: View of excavated material from test pitting activities at the PORI Lagoon. Sheet piling is visible in the background.

061720-4: View of excavated material from test pitting activities at the PORI Lagoon.

061720-5: View of excavated material from test pitting activities at B22-TP-2.

061720-6: View of excavated material from test pitting activities at B22-TP-6. Sheet piling is visible in the background.

ATTACHMENT 4

Well/Piezometer Abandonment Form

Well/Piezometer ID: B22-119-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20'	Depth to Water (TOC): 11.33'
Measured: 22.44'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Engineers and Scientists 9175 Guilford Road - Suite 310 Columbia, Maryland 21046 (410) 290-7775 FAX: (410) 290-7775

Well/Piezometer Abandonment Form

Well/Piezometer ID: B22-119I-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 9/3/19

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: NA

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 24'	Depth to Water (TOC): NA
Measured: NA	Depth to NAPL (TOC): NA

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any): Destroyed and unable to properly abandon

ARM Group LLC Engineers and Scientists 9175 Guilford Road - Suite 310 Columbia, Maryland 21046

(410) 290-7775 FAX: (410) 290-7775

Well/Piezometer Abandonment Form

Well/Piezometer ID: B22-119J-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 19'	Depth to Water (TOC): 13.87'
Measured: 18.93'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Engineers and Scientists 9175 Guilford Road - Suite 310 Columbia, Maryland 21046 (410) 290-7775 FAX: (410) 290-7775
Well/Piezometer ID: B22-119K-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 24.5'	Depth to Water (TOC): 13.27'
Measured: 28.87'	Depth to NAPL (TOC): 13.10'

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119L-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 17'	Depth to Water (TOC): 14.20'
Measured: 21.51'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119M-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 18'	Depth to Water (TOC): 13.74'
Measured: 22.13'	Depth to NAPL (TOC): 13.72'

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119N-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20'	Depth to Water (TOC): 13.50'
Measured: 22.95'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119O-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 22'	Depth to Water (TOC): 11.22'
Measured: 17.94'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119P-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20'	Depth to Water (TOC): 10.22'
Measured: 12.66'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any): Blockage observed during gauging activities at approximately 10' TOC

ARM Group LLC

Well/Piezometer ID: B22-119Q-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 19'	Depth to Water (TOC): 12.75'
Measured: 21.71'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119R-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 19'	Depth to Water (TOC): 12.99'
Measured: 18.27'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B22-119S-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: B22

Abandonment Date: 6/8/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Heron oil-water probe/Geoprobe/Grout machine (95% Portland/5% Bentonite)

ARM Representative(s): L. Perrin

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20'	Depth to Water (TOC): 11.52'
Measured: 22.36'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B22-119 PORI Lagoon**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC