Analysis of Potential Non-Road Source RACM Measures for the Metropolitan Washington Region's Severe Area SIP

May 2003

DRAFT Potential Non-Road RACM Measures for the Metropolitan Washington Region				
Identifier	Measure Name	Definition	RACM	Reason
A1	Agricultural equipment use restrictions	Mandatory restrictions on use of agricultural equipment during Code Red Ozone Action Days	No	Would not deliver benefits by May 2004
A2	Agricultural equipment retrofits	Require agricultural equipment to be retrofitted with emissions controls	No	Would not deliver benefits by May 2004
A3	Require low-NOx fuel for agricultural equipment	Require agricultural equipment to use low-NOx fuel during ozone season	No	No creditable emission reductions
A4	Low-emissions agricultural equipment	Require sale of low-emissions agricultural equipment in region	No	Would not deliver benefits by May 2004
C1	Construction equipment use restrictions	Restrict use of construction equipment during expected ozone exceedance days	No	Not economically feasible
C2	Construction retrofits	Require construction equipment operating on state and local contracts to be retrofitted with particulate fitlers and/or oxidation catalysts	No	Not economically feasible
C3	Require low-NOx fuel for construction equipment	Require construction equipment operating on state of local contracts to use low- NOx fuel during ozone season	No	No creditable emission reductions
C4	Idling restrictions for construction equipment	Limit idling by construction equipment	No	Would not deliver benefits by May 2004
C5	Low-emissions construction equipment	Require sale of low-emissions construction equipment in region	No	Would not deliver benefits by May 2004
C6	Preference for low-emissions construction equipment	In bids for government construction contracts, award extra points to bidders using low-emission construction equipment	No	Not economically feasible
G1	Episodic restrictions on lawn & garden equipment	Restrict use of lawn and garden equipment during expected ozone exceedance days	No	Would not deliver benefits by May 2004
G2	Lawn & garden equipment retrofits	Require commercial gas-powered lawn & garden equipment to be retrofitted with emissions controls or low emission engines	No	Would not deliver benefits by May 2004
G3	Require low-NOx fuel for lawn & garden equipment	Require lawn & garden equipment to use low-NOx fuel during ozone season	No	No creditable emission reductions
G4	Idling restrictions for lawn & garden equipment	Limit idling by commercial lawn & garden equipment	No	No creditable emission reductions
G5	Low emissions lawn & garden equipment	Adopt EPA lawn & garden equipment rules before they become effective in 2007	No	Would not deliver benefits by May 2004
G6	Preference for low-emissions lawn & garden equipment	In bids for government contracts, award extra points to bidders using low- emission lawn & garden equipment	Possible	
G7	"Cash for Clunkers" lawn & garden program	Offer \$75 for owners to turn in old, 2 and 4-stroke lawn & garden equipment and purchase electric or push mower	No	Not economically feasible
11	Episodic restrictions on use of industrial equipment	Moratorium on use of industrial equipment during Code Red Ozone Action Days	No	Would not deliver benefits by May 2004
12	Industrial equipment retrofits	Require industrial equipment to be retrofitted with emissions controls	No	Would not deliver benefits by May 2004
13	Require low-NOx fuel for industrial equipment	Require industrial equipment to use low-NOx fuel during ozone season	No	No creditable emission reductions

DRAFT Potential Non-Road RACM Measures for the Metropolitan Washington Region				
Identifier	Measure Name	Definition	RACM	Reason
14	Idling restrictions for industrial equipment	Limit idling by industrial equipment	No	No creditable emission reductions
15	Low-emissions industrial equipment	Require sale of low-emissions industrial equipment in region	No	Would not deliver benefits by May 2004
16	Industrial equipment replacement	Subsidize replacement of fossil-fuel fired industrial equipment with electric industrial equipment	No	Would not deliver benefits by May 2004
17	Preference for low-emissions industrial equipment	In bids for government contracts, award extra points to bidders using low- emission industrial equipment	No	Not economically feasible
M1	"Cash for Clunkers" outboard motor program	Offer small cash reward for owners to turn in old, high-emission outboard motors	No	Not economically feasible
M2	Idling restrictions for recreational marine equipment	Limit idling by recreational marine equipment during ozone season	No	Would not deliver benefits by May 2004
МЗ	Recreational marine equipment use restrictions	Moratorium on use of recreational marine equipment on Code Red Ozone Action Days	No	Would not deliver benefits by May 2004
M4	Require low-NOx fuel for recreational marine equipment	Require diesel-fired recreational marine equipment to use low-NOx fuel during ozone season	No	No creditable emission reductions
M5	Graduated registration fees for recreational boats	Levee additional registration fee for registration of boats with old, high-emission engines	No	Would not deliver benefits by May 2004
R1	Episodic restrictions on recreational equipment use	Restrict use of recreational equipment during expected ozone exceedance days	No	Would not deliver benefits by May 2004
R2	"Cash for Clunkers" recreational equipment program	Offer small cash reward for owners to turn in old, high-emission recreational equipment	No	Not economically feasible
R3	Require low-NOx fuel for recreational equipment	Require recreational equipment to use low-NOx fuel during ozone season	No	No creditable emission reductions
R4	Recreational equipment retrofits	Require recreational equipment to be retrofitted with particulate fitlers and/or oxidation catalysts	No	No creditable emission reductions
S1	Subsidize electric airport ground service equipment (GSE)	Subsidize, through direct contributions or tax breaks, installation of electric ground service equipment and/or charging stations at regional airports	No	Would not deliver benefits by May 2004
S2	Require low-NOx fuel for airport GSE	Require airport GSE to use low-NOx fuel during ozone season	No	No creditable emission reductions
S3	Airport GSE retrofits	Subsidize the retrofit of airport GSE with emissions control equipment	No	Would not deliver benefits by May 2004
S4	Reduce idling by airport GSE	Develop voluntary program to encourage operators to limit idling of airport GSE	Possible	
S5	Control aircraft auxiliary power units	Seek voluntary agreement to reduce use of aircraft APUs through use of gate- provided services or other strategies	No	Not economically feasible
T1	Light commercial equipment use restrictions	Restrict use of light commercial equipment during expected ozone exceedance days	No	Would not deliver benefits by May 2004
T2	Light commercial equipment retrofits	Require light commercial equipment to be retrofitted with emissions controls	No	Would not deliver benefits by May 2004
Т3	Require low-NOx fuel for light commercial equipment	Require light commercial equipment to use low-NOx fuel during ozone season, if applicable	No	No creditable emission reductions

DRAFT Potential Non-Road RACM Measures for the Metropolitan Washington Region				
Identifier	Measure Name	Definition	RACM	Reason
T4	Idling restrictions for light commercial equipment	Limit idling by light commercial equipment	No	No creditable emission reductions
T5	Low-emissions light commercial equipment	Require sale of low-emissions light commercial equipment in region	No	Would not deliver benefits by May 2004
T6	Preference for low-emission light commercial equipment	In bids for government contracts, award extra points to bidders using low- emission light commercial equipment	No	Not economically feasible
X1	EPA Tier II Emissions Standards for Large SI Engines	Adopt EPA Tier II standards before they become effective in 2007	No	Would not deliver benefits by May 2004
X2	Biodiesel for Off-Road Equipment	Require all off-road diesel equipment to burn biodiesel during ozone season	No	Not technologically feasible

Explanation of "Identifier" Field		
Abbreviation	Explanation	
A	Agricultural Equipment	
С	Construction Equipment	
G	Lawn & Garden Equipment	
I	Industrial Equipment	
М	Recreational Marine Equipment	
R	Personal Recreational Equipment	
S	Airport Service Equipment	
Т	Light Commerical Equipment	
Х	Other/Multiple Categories	

Measure A1: Agricultural equipment use restrictions

Description:

Measure Number:	A1
Measure Name:	Agricultural equipment use restrictions
RACM Determination:	No
Reason:	Would not deliver benefits by May 2004

Criterion Summary

Year of First Benefits	2005+
Enforceable	No
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Issues

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

during Code Red Ozone Action Days

Mandatory restrictions on use of agricultural equipment

• No registry of farmers or operators of agricultural equipment exists, such that they could be provided with Ozone Action Day notices in a timely manner. Affected operators may not use email and may be unwilling to check call in numbers daily.

• Enforcement of this measure would be difficult and costly due to the wide geographical area to be patrolled. A daily visit by an inspector would not ensure that equipment was not being operated before or after the visit.

• Because states do not have the personnel to enforce this rule, they would need to rely on local enforcement or hire additional staff. This could not be accomplished until at least FY 05.

Compliance with this measure could reduce crop yields, especially in the case of multi-day exceedance episodes

Summary Analysis

This measure could not deliver benefits by May 2004. Enforcement of this measure would also be prohibitively difficult, as there is no registry of affected equipment operators nor is there an effective method for ensuring they comply with the rule. Therefore the measure is not a RACM.

Measure A2: Agricultural equipment retrofits

Measure Number: Measure Name:	A2 Agricultural equip	oment retrofits	Description: Require agricultural equipment to be retrofitted with emissions controls		
RACM Determination:	No				
Reason:	Would not delive	r benefits by May 2004			
Criterion Summary		Issues			
Year of First Benefits	2005+	· This meas	ure would require state regulation. All three states require		
Enforceable	N/A	well over 12	months to develop, pass, and require compliance with		
Economically Feasible	Yes	regulation.			
Technologically Feasible	N/A	 An extended 	ed compliance period might be required because of the		
Adverse Impacts Yes		need for far	need for farmer education, assistance with retrofit selection, and		

Estimated Cost	N/A
Estimated Reductions	N/A

No

procurement and installation of the equipment.

· Enforcement of this measure would be difficult, as agricultural equipment are not registered with the state

· Many farmers would be unable to afford the cost of retrofits, and states do not have the funds to pay for the equipment

· The District would be unaffected by this measure, as no agricultural equipment operates there.

Summary Analysis

Intensive or Costly Effort

This measure could not be implemented fast enough to deliver benefits by May 2004. Additionally, enforcement is practically impossible and the measure could impose a severe economic hardship on some farmers.

Measure A3: Require low-NOx fuel for agricultural equipment

Measure Number: Measure Name:	A3 Require low-NOx fuel for agricultural equipment	Description: Require agricultural equipment to use low-NOx fuel during ozone season
RACM Determination: Reason:	No No creditable emission reductions	

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

· There is no agricultural equipment operating in the District.

· This measure could be implemented by 2004 on a voluntary basis only.

· Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

- Because of budget situations, farmers would likely not receive subsidies towards the higher cost of the low-NOx fuel

• Many farmers live on the edge of the nonattainment area and would be incentivized to drive to the next county to get cheaper fuel that is not low-NOx

• Any increase in VOC due to the effect of PuriNOx would have to be offset by additional VOC control measures in order for the region to continue to demonstrate Rate of Progress.

Assumptions

· Evaluate regional fleet of agricultural equipment to determine whether this measure would reduce emissions

- · Measure will have 80% compliance rate
- From 2005 controlled non-road inventory in severe area SIP, emissions from MD diesel-fired agricultural equipment will be:
- · 7.96 tons NOx
- · 2.05 tons VOC
- · As in SIP, assume no growth in agricutural emissions from 2004-2005

· Ozone season lasts 153 days

- · From 2002 Transportation Energy Data Book⁴, Table 2.4
- · Agriculture industry used 479.2 trillion BTU of diesel in 2000 = 3,454,938,717 gallons
- · Agricultural diesel usage decreases by ~3.3% annually

• From EPA NONROAD model², in 1997 MD and VA portions of Washington MSA had 0.113% of the nation's harvested cropland, as follows:

- · Frederick: 134,181 acres
- · Montgomery: 45,878 acres
- Prince George's: 24,211 acres
- · Calvert: 15,721 acres
- · Charles: 22,184 acres
- · Loudoun: 69,572 acres
- Fairfax: 1,675 acres
- · Prince William: 12,565 acres
- Stafford: 6,939 acres
- · US Total: 295,406,519 acres
- · Assume region uses 0.113% of nation's diesel agricultural fuel
- From EPA "Nonroad Engine and Vehicle Emission Study"⁵, in the mid-Atlantic area:
- \cdot 40% of agricultural activity occurs in the summer
- · 6% of agricultural activity occurs in the winter
- \cdot Therefore 54% of activity occurs in shoulder months
- Therefore 67% of agricultural activity occurs during ozone season (3 summer months + 2 shoulder months)

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is 1.8 tpd NOx : 1 tpd VOC

- \cdot For diesel vehicles, VOC = HC * 1.053
- From regional NONROAD model data² (Total Pieces) and EPA Non-Road Engine Study⁵ (all other data):

					Loaded HP-			Exhaust		
SCC	HP Cat	HP	Hours	Load %	Hrs	Total Pieces	NOx g/hp-hr	VOC g/hp-hr	Tons/yr NOx	Tons/yr VOC
2270005015	0-100	98	448	70%	N/A	2,519	11.21	2.23	13.94	2.77
2270005020	100-175	132	129.5	70%	N/A	381	11.50	1.26	0.63	0.07
2270005025	0-100	74	97.5	58%	4,185	6	7.78	2.23	0.22	0.06
2270005035	0-100	92	87	50%	4,002	38	7.78	2.23	1.30	0.37
2270005040	0-100	7	238.5	78%	1,302	-	8.00	1.2	-	-
2270005045	0-100	79	95.5	55%	4,149	77	11.50	0.9	4.05	0.32
2270005050	0-100	35	715	48%	12,012	8	7.78	2.23	0.82	0.24
2270005055	0-100	57	344.5	51%	10,015	34	11.12	1.82	4.17	0.68
	SCC 2270005015 2270005020 2270005025 2270005035 2270005040 2270005045 2270005050	SCC HP Cat 2270005015 0-100 2270005020 100-175 2270005025 0-100 2270005035 0-100 2270005040 0-100 2270005045 0-100 2270005045 0-100 2270005045 0-100 2270005050 0-100 2270005055 0-100	SCC HP Cat HP 2270005015 0-100 98 2270005020 100-175 132 2270005025 0-100 74 2270005035 0-100 92 2270005040 0-100 7 2270005045 0-100 79 2270005050 0-100 35 2270005055 0-100 57	SCC HP Cat HP Hours 2270005015 0-100 98 448 2270005020 100-175 132 129.5 2270005025 0-100 74 97.5 2270005035 0-100 92 87 2270005040 0-100 7 238.5 2270005045 0-100 79 95.5 2270005050 0-100 35 715 2270005055 0-100 57 344.5	SCC HP Cat HP Hours Load % 2270005015 0-100 98 448 70% 2270005020 100-175 132 129.5 70% 2270005025 0-100 74 97.5 58% 2270005035 0-100 74 238.5 78% 2270005040 0-100 7 238.5 55% 2270005050 0-100 79 95.5 55% 2270005050 0-100 35 715 48% 2270005055 0-100 57 344.5 51%	SCC HP Cat HP Hours Load % Hrs 2270005015 0-100 98 448 70% N/A 2270005020 100-175 132 129.5 70% N/A 2270005025 0-100 74 97.5 58% 4,185 2270005035 0-100 72 28.7 50% 4,002 2270005040 0-100 7 238.5 78% 1,302 2270005045 0-100 79 95.5 55% 4,149 2270005050 0-100 35 715 48% 12,012 2270005055 0-100 57 344.5 51% 10,015	SCC HP Cat HP Hours Load % Hrs Total Pieces 2270005015 0-100 98 448 70% N/A 2,519 2270005020 100-175 132 129.5 70% N/A 381 2270005025 0-100 74 97.5 58% 4,185 6 2270005035 0-100 74 97.5 50% 4,002 38 2270005040 0-100 7 238.5 78% 1,302 - 2270005045 0-100 79 95.5 55% 4,149 77 2270005045 0-100 35 715 48% 12,012 8 2270005055 0-100 57 344.5 51% 10,015 34	SCC HP Cat HP Hours Load % Hrs Total Pieces NOx g/np-nr 2270005015 0-100 98 448 70% N/A 2,519 11.21 2270005020 100-175 132 129.5 70% N/A 381 11.50 2270005025 0-100 74 97.5 58% 4,185 6 7.78 2270005035 0-100 92 87 50% 4,002 38 7.78 2270005040 0-100 7 238.5 78% 1,302 - 8.00 2270005045 0-100 79 95.5 55% 4,149 777 11.50 2270005045 0-100 79 95.5 55% 4,149 777 11.50 2270005050 0-100 35 715 48% 12,012 8 7.78 2270005055 0-100 57 344.5 51% 10,015 34 11.12	SCC HP Cat HP Hours Load % Hrs Total Pieces NOx g/hp-hr VOC g/hp-hr 2270005015 0-100 98 448 70% N/A 2,519 11.21 2.23 2270005020 100-175 132 129.5 70% N/A 381 11.50 1.26 2270005025 0-100 74 97.5 58% 4,185 6 7.78 2.23 2270005035 0-100 74 97.5 58% 4,002 38 7.78 2.23 2270005045 0-100 7 238.5 78% 1,302 - 8.00 1.2 2270005045 0-100 7 238.5 55% 4,149 77 11.50 0.9 2270005045 0-100 79 95.5 55% 4,149 77 11.50 0.9 2270005050 0-100 35 715 48% 12,012 8 7.78 2.23 2270005055	SCC HP Cat HP Hours Load % Hrs Total Pieces NOx g/hp-hr VOC g/hp-hr Tons/yr NOx 2270005015 0-100 98 448 70% N/A 2,519 11.21 2.23 13.94 2270005020 100-175 132 129.5 70% N/A 381 11.50 1.26 0.63 2270005025 0-100 74 97.5 58% 4,185 6 7.78 2.23 0.22 2270005035 0-100 74 97.5 58% 4,185 6 7.78 2.23 0.22 2270005035 0-100 74 97.5 55% 4,002 38 7.78 2.23 1.30 2270005040 0-100 7 238.5 78% 1,302 - 8.00 1.2 - 2270005045 0-100 79 95.5 55% 4,149 77 11.50 0.9 4.05 2270005050 0-100 35

* Emission rates for agricultural tractors and combines are in g/hr

· From above table and EPA Draft Report on PuriNOx⁶:

Non-Road Engine HP		HC	VOC		Тру
	NOX Reduction	Increase	Increase	TPy NOX	100
0-100	19.3%	99.4%	104.7%	98%	98%
100-175	17.0%	80.1%	84.3%	2%	2%
175-300	18.8%	72.8%	76.7%	0%	0%
300+	20.2%	30.0%	31.6%	0%	0%

Emission Reductions

Daily Reductions (NOx) = 7.96 tpd * (98% emissions * 19.3% reduction + 2% emissions * 17% reduction) * 80% compliance Daily Reductions (NOx) = 1.23 tpd NOx Annual Reductions (NOx) = 1.23 tpd * 153 days per ozone season Annual Reductions (NOx) = 187 tpy NOx Daily Increase (VOC) = 2.05 tpd * (98% emissions * 104.7% increase + 2% emissions * 84.3% increase) * 80% compliance Daily Increase (VOC) = 1.71 tpd VOC Annual Increase (VOC) = 1.71 tpd * 153 days per ozone season Annual Increase (VOC) = 262 tpy VOC Net Decrease (NOx-VOC) = 1.23 tpd NOx - (1.71 tpd VOC * 1.8 tpd NOx per VOC) -1.86 tpd NOx Net Decrease (NOx-VOC) = Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure A4: Low-emissions agricultural equipment

Measure Number: Measure Name:	A4 Low-emission	s agricultural equipment	Description: Require sale of low-emissions agricultural equipment in region		
RACM Determination:	No				
Reason:	Would not de	liver benefits by May 2004			
Criterion Summary		Issues			
Year of First Benefits	2005+	· This measu	· This measure would require state regulation. All three states require		
Enforceable	Yes	well over 12	months to develop, pass, and require compliance with a		
Economically Feasible	N/A	regulation.			
Technologically Feasible	N/A	 Because th 	ere are no regional standards for low-emissions		
Adverse Impacts	N/A	agricultural e	equipment, rule development would be extensive and time		
Intensive or Costly Effort	No	permit manu	facturers to develop new products or select retrofits.		
Estimated Cost	N/A				
Estimated Reductions	N/A				

Summary Analysis

This measure could not be implemented fast enough to deliver benefits by May 2004.

Measure C1: Construction equipment use restrictions

Measure Number: Measure Name:	C1 Construction equipment use restrictions	Description: Restrict use of construction equipment during expected ozone exceedance days
RACM Determination: Reason:	No Not economically feasible	

Criterion Summary

Issues

Year of First Benefits	2004+	This is an episodic measure
Enforceable	Yes	\cdot This measure would require state regulation. All three states require
Economically Feasible	No	well over 12 months to develop, pass, and require compliance with a
Technologically Feasible	Yes	regulation.
Adverse Impacts	N/A	· Construction occasionally stops for other weather-related reasons,
Intensive or Costly Effort	No	such as severe thunderstorms
		· By 2004, this measure could only be implemented voluntarily on
Estimated Cost (\$/ton NOx)	\$ 177,496	state contracts
Estimated Reductions (tpd NOx)	10.9	

Assumptions

Measure will have 80% compliance rate

· From 2005 controlled non-road inventory in severe area SIP, emissions from construction equipment will be:

- · 65.5 tons NOx
- · 12.34 tons VOC

· As in non-road inventory, use employment as proxy for growth in construction

· From regional cooperative forecasts, employment will grow 1.3% from 2004-2005

• The cost of this regulation would be the cost, if applicable, of paying contractors for each day they did not work. Assume 50% of contractors are paid for weather-related stoppages, while the other 50% assume weather risks

· Region averaged 6.3 Code Red Ozone Action Days per year from 2000-2002

· From EPA NONROAD model², dollars spent on construction in Washington region in 1997:

- · Northern Virginia = \$3,364,219,000
- Southern Maryland = \$2,383,910,000
- District of Columbia = \$672,873,000
- Total = \$6,421,002,000
- · BLS Producer Price Index for New Construction³ was:
 - · 1997 year end: 134.6
 - · 2002 year end (preliminary): 138.8
- \cdot Use straight line extrapolation to project a value for 2004: 140.5

• From Census Bureau C30 Report "Construction Dollars Put in Place" state and local construction in 2001 comprised 21% of total construction in 2001 (\$177,527,000 out of \$842,539,000)

· Assume this translates to 21% of regional construction emissions and fuel usage

Emission Reductions

 Daily Reductions (NOx) = 65.5 tpd * 80% compliance * 21% state and local / 1.013 adjustment to 2004

 Daily Reductions (NOx) =
 10.9 tpd NOx

 Daily Reductions (VOC) =
 12.34 tpd * 80% compliance * 21% state and local / 1.018 adjustment to 2004

 Daily Reductions (VOC) =
 2.0 tpd VOC

Cost Effectiveness

```
2005 Regional Construction $= $6,421,002,000 * (140.5/134.6) inflation
2005 Regional Construction $= $ 6,702,457,511
Daily State& Local Constr $ = $6,702,457,511* 21% state & local / 365 days per year
Daily State& Local Constr $ = $
                                      3,856,208
    Daily Weather Payment = $3,856,208 * 50% of contracts pay for weather-related stoppages
    Daily Weather Payment = $
                                      1,928,104
         Annual Expenditure= $1,928,104 per day * 6.3 Code Red Ozone Action Days
         Annual Expenditure= $
                                    12,147,057
  Cost-effectiveness ($/ton) = $12,147,057 / (tons per day * 6.3 Code Red Ozone Action Days)
  Cost-effectiveness (NOx) = $
                                        177,496
  Cost-effectiveness (VOC) = $
                                        946,790
```

Summary Analysis

This measure is not economically feasible because it exceeds the cost-effectiveness threshold. Therefore it is not a RACM.

Measure C2: Construction retrofits

C2
Construction retrofits
No
110
Not economically feasible

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	No
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

	~	~		~	~
I	э	э	u	c	э.

Contractors would include cost of retrofits in contract bid price

Description:

and/or oxidation catalysts

Almost every retrofit requires use of ultra-low sulfur diesel fuel (ULSD)

 \cdot ARTBA representatives have expressed concern about lubrication problems that can result from using ULSD in older equipment engines

Require construction equipment operating on state and local contracts to be retrofitted with particulate fitlers

Estimated Cost (\$/ton VOC)	\$	66,426
Estimated Reductions (VOC)	0.90	

Assumptions

· From 2005 controlled non-road inventory in severe area SIP, emissions from diesel construction equipment will be:

10.34 tons VOC

· As in non-road inventory, use employment as proxy for growth in construction

· From regional cooperative forecasts, employment will grow 1.3% from 2004-2005

• From Census Bureau C30 Report "Construction Dollars Put in Place" state and local construction in 2001 comprised 21% of total construction in 2001 (\$177,527,000 out of \$842,539,000)

· Assume this translates to 21% of regional construction emissions and fuel usage

· Measure will have 80% compliance rate

· From EPA Voluntary Diesel Retrofit Program verification list, installation of oxidation catalysts will reduce HC emissions by 50%.

· For diesel vehicles, VOC = HC * 1.053

- · Therefore catalysts will reduce VOC emissions by 52.7%
- · From EPA NONROAD model (v 2.2.0):
 - · Population of construction equipment grows at approximately 2.2% per annum
 - · In 1998, District of Columbia had 3,854 pieces of diesel construction equipment
 - . In 1998, the Maryland portion of the Washington nonattainment area had 13,683 pieces of diesel construction equipment
 - . In 1998, the Virginia portion of the Washington nonattainment area had 19,311 pieces of diesel construction equipment

· Oxidation catalyst costs \$2500 per piece of equipment

· ULSD costs \$0.15 per gallon more than regular low-sulfur diesel

- · Retrofits average 6 year lifespan
- · From 2002 Transportation Energy Data Book⁴, Table 2.8
- Construction industry used 2,589,383,000 gallons of diesel in 2000
- \cdot Construction diesel usage increases by ~3.6% annually
- · From EPA NONROAD model², Washington MSA has approximately 4.7% of nation's diesel-fired construction equipment.
- \cdot Assume region uses 4.7% of nation's diesel construction fuel

Emission Reductions

Total VOC Reduced = 10.34 tons * 21% state & local * 52.7% reduction * 80% compliance / 1.013 adjust to 2004 Total VOC Reduced = 0.90 tpd VOC

Cost Effectiveness

```
Total Equipment in 2004 = (3,854 District + 13,683 MD + 19,311 VA) * (1.022)^6

Total Equipment in 2004 = 41,987 pieces of equipment

Total Cost to Retrofit = 41,987 pieces equipment * $2,500 per piece

Total Cost to Retrofit = $ 104,968,576

Increased Fuel Costs = $0.15 per gallon * 2,589,383,000 gallons nationally in 2000 * (1.036^4) increase by 2004* 4.7% used

locally * 21% state & local contracts

Increased Fuel Costs = $ 4,416,149

Annual Expenditure= ($104,968,576 / 6 year lifespan) + $4,416,149

Annual Expenditure= $ 21,910,912 / (0.90 tpd * 365 days per year)

Cost-effectiveness ($/ton) = $21,910,912 / (0.90 tpd * 365 days per year)

Cost-effectiveness (VOC) = $ 66,426
```

Summary Analysis

This measure is not economically feasible because it exceeds the cost effectiveness threshold. Therefore it is not a RACM.

Measure C3: Require low-NOx fuel for construction equipment

Measure Number: Measure Name:	C3 Require low-NOx fuel for construction equipment	Description: Require construction equipment operating on state of local contracts to use low-NOx fuel during ozone season
RACM Determination: Reason:	No No creditable emission reductions	

Criterion Summary

Issues

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

Assumptions

· Measure will have 80% compliance rate

- · From 2005 controlled non-road inventory in severe area SIP, emissions from diesel construction equipment will be:
- · 65.20 tons NOx
- · 10.34 tons VOC
- · As in non-road inventory, use employment as proxy for growth in construction
- · From regional cooperative forecasts, employment will grow 1.3% from 2004-2005
- · From Census Bureau¹, state and local construction comprised 21% of total construction spending in 2001
- · Ozone season lasts 153 days
- · From 2002 Transportation Energy Data Book⁴, Table 2.8
- \cdot Construction industry used 2,589,383,000 gallons of diesel in 2000
- \cdot Construction diesel usage increases by ~3.6% annually
- · From Lubrizol, cost premium for PuriNOx is approximately \$0.10 per gallon, assuming 25 million gallons of annual usage
- From EPA NONROAD model², Washington MSA has approximately 4.7% of nation's diesel-fired construction equipment.
- Assume region uses 4.7% of nation's diesel construction fuel
- From EPA "Nonroad Engine and Vehicle Emission Study"⁵, in the mid-Atlantic area:

Currently, PuriNOx is the only low-NOx additive verified by EPA to produce reductions PuriNOx is not currently blended in the area. Lubrizol will install a blender if demand exceeds 25 million gallons

 PuriNOX is not currently blended in the area. Lubrizol will install a blender if demand exceeds 25 million ga per year. Otherwise, the fuel would be trucked from NYC at an additional \$0.10 per gallon

• If existing contracts cannot be altered to mandate use of PuriNOx, benefits in 2005 would drop sharply over this estimate. However, higher benefits would occur in future years as the percentage of participating contracts increases

• State-wide use of low-NOx fuel would require regulation and could not be implemented by May 2004. However, state and local governments could require use.

· 38% of construction activity occurs in the summer

· 15% of construction activity occurs in the winter

Therefore 54% of construction activity occurs during ozone season (3 summer months + 2 shoulder months)

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is: • 1.8 tpd NOx : 1 tpd VOC

 \cdot For diesel vehicles, VOC = HC * 1.053

• From regional NONROAD model data² (Total Pieces) and EPA Non-Road Engine Study⁵ (all other data):

-			-								
						Loaded HP-			Exhaust		
Description	SCC	HP Cat	HP	Hours	Load %	Hrs	Total Pieces	NOx g/hp-hr	VOC g/hp-hr	Tons NOx	Tons VOC
Pavers	2270002003	0-100	91	690	62%	38,930	562	10.3	0.6	248.40	14.47
Plate Compactors	2270002009	0-100	8	448	43%	1,541	186	9.3	0.8	2.94	0.25
Rollers	2270002015	0-100	99	614.5	56%	34,068	1,975	9.3	0.8	689.76	59.33
Scrapers*	2270002018	300+	311	845.5	72%	N/A	556	5.7	0.7	2.95	0.36
Paving Equipment	2270002021	0-100	99	535	53%	28,071	711	11.1	1.01	244.21	22.22
Signal Boards/Light Plants	2270002027	0-100	6	713	82%	3,508	1,199	8	1.2	37.09	5.56
Trenchers*	2270002030	0-100	60	530.5	75%	N/A	1,401	10.02	1.54	8.21	1.26
Bore.Drill Rigs*	2270002033	175-300	209	405.5	75%	N/A	410	11.01	1.41	2.02	0.26
Excavators*	2270002036	100-175	143	752	57%	N/A	2,416	10.73	0.7	21.49	1.40
Concrete/Industrial Saws*	2270002039	0-100	56	501.5	73%	N/A	52	11.01	1.41	0.32	0.04
Cement & Mortar Mixers	2270002042	0-100	11	231	56%	1,423	112	11.01	1.01	1.93	0.18
Cranes*	2270002045	175-300	194	721.5	43%	N/A	1,693	10.3	1.26	13.87	1.70
Graders*	2270002048	100-175	172	714	61%	N/A	1,500	9.6	1.54	11.33	1.82
Off-Highway Trucks*	2270002051	300+	489	1510	51%	N/A	322	9.6	0.84	5.15	0.45
Crushing/Proc. Equipment*	2270002054	100-175	127	878.5	78%	N/A	178	11.01	1.41	1.90	0.24
Rought Terrain Forklifts*	2270002057	0-100	93	592.5	60%	N/A	1,991	8	1.58	10.40	2.05
Rubber Tire Loaders*	2270002060	100-175	158	757	54%	N/A	3,724	10.3	0.84	32.01	2.61
Rubber Tire Dozers*	2270002063	300+	356	840.5	59%	N/A	85	9.6	0.84	0.76	0.07
Tractors/Loaders/Backhoes*	2270002066	0-100	77	987.5	55%	N/A	5,893	10.1	1.4	64.79	8.98
Crawler Tractors*	2270002069	100-175	157	861	50%	N/A	3,623	10.3	1.26	35.42	4.33
Skid Steer Loaders*	2270002072	0-100	42	691.5	55%	N/A	7,365	9.6	2.1	53.89	11.79
Off-Highway Tractors*	2270002075	175-300	214	885	65%	N/A	538	11.91	2.46	6.25	1.29
Dumpers/Tenders*	2270002078	0-100	23	435.5	38%	N/A	10	9.6	0.84	0.05	0.00
Other Construction Equipment*	2270002081	100-175	161	562	62%	N/A	236	11.01	1.41	1.61	0.21

* Emission rates are in g/hr

· From above table and EPA Draft Report on PuriNOx⁶:

Non-Road Engine HP	NOx Reduction	HC Increase	VOC Increase	% Annual NOx	% Annual VOC
0-100	19.3%	99.4%	104.7%	91%	90%
100-175	17.0%	80.1%	84.3%	7%	8%
175-300	18.8%	72.8%	76.7%	1%	2%
300+	20.2%	30.0%	31.6%	1%	1%

Emission Reductions

Daily Reductions (NOx) = (65.20 tpd * 21% state and local contracts * (91% emissions * 19.3% reduction + 7% emissions * 17% reduction + 1% emissions * 18.8% reduction + 1% emissions * 20.2% reduction) * 80% compliance) / 1.013 adjustment to 2004 Daily Reductions (NOx) = 2.07 tpd NOx

Annual Reductions (NOx) = 2.07 tpd * 153 days per ozone season

Annual Reductions (NOx) = 317 tpy NOx

Daily Increase (VOC) = (10.34 tpd * 21% state and local contracts * (90% emissions * 104.7% increase + 8% emissions * 84.3% increase + 2% emissions * 76.7% increase + 1% emissions * 31.6% increase) * 80% compliance) / 1.013 adjustment to 2004

Daily Increase (VOC) = 1.75 tpd VOC

```
Annual Increase (VOC) = 1.75 tpd * 153 days per ozone season
Annual Increase (VOC) = 268 tpy VOC
```

Net Decrease (NOx-VOC) = 2.07 tpd NOx - (1.75 tpd VOC * 1.8 tpd NOx per VOC)

Net Decrease (NOx-VOC) = -1.08 tpd NOx

Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure C4: Idling restrictions for construction equipment

Measure Number:	C4	Description:
Measure Name:	Idling restrictions for construction equipment	Limit idling by construction equipment
RACM Determination: Reason:	No Would not deliver benefits by May 2004	

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	N/A
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Issues

- According to EPA OTAQ, no studies have been completed on idling emissions from nonroad vehicles. Therefore estimates of benefits are very uncertain.

Construction equipment idling is more prevalent in winter months
 Current idling restrictions for motor vehicles are poorly enforced
 because personnel are not available to observe vehicles. Realistically,
 this rule cannot be enforced by random observation alone.

• Idle timers can be installed to automatically shut equipment off after a specified period of idle time. Timers cost approx \$100.

• With approximately 41,000 pieces of regional construction equipment, this measure would have a \$4.1 million capital cost.

• FY 04 budgets in the region are already complete. This measure could not be budgeted until FY 05 (July 2004), after the beginning of the 2004 ozone season.

• A state regulation would be needed to require equipment operators to install the timers. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

• Therefore this measure could not be implemented in an enforceable manner in time to deliver benefits in 2004.

Summary Analysis

The benefits of this measure are unclear. The only method of implementation ensuring a reasonable level of compliance is through installation of idle timers. This would require a state regulation, which could not deliver benefits by May 2004. Therefore, this measure is not a RACM.

Measure C5: Low-emissions construction equipment

Measure Number: Measure Name:	C5 Low-emissions constructio	on equipment	Description: Require sale of low-emissions construction equipment in region		
RACM Determination:	No				
Reason:	Would not deliver benefits	Would not deliver benefits by May 2004			
Criterion Summary		Issues			
Year of First Benefits	2005+	This measure would require state regulation. All three sta			
Enforceable	Yes	 well over 12 months to develop, pass, and require compliance w regulation. Because there are no regional standards for low-emissions construction equipment, rule development would be time consurt. 			
Economically Feasible	N/A				
Technologically Feasible	N/A				
Adverse Impacts	N/A				
Intensive or Costly Effort	No	The standard compliance period might also have to be extended to permit manufacturers to develop new products or select retrofits.			
Estimated Cost	N/A	7			
Estimated Reductions	N/A				

Summary Analysis

This measure could not deliver benefits by May 2004.

Measure C6: Preference for low-emissions construction equipment

C6
Preference for low-emissions construction equipment
No
Not economically feasible

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	\$	40,777
Estimated Reductions	0.01	

Assumptions

· From 2005 draft non-road inventory emissions from construction equipment are:

- · 65.5 tons NOx
- · 12.3 tons VOC

 \cdot As in non-road inventory, use employment as proxy for growth in construction

· From regional cooperative forecasts, employment will grow 1.3% from 2004-2005

• From Census Bureau C30 Report "Construction Dollars Put in Place" state and local construction in 2001 comprised 21% of total construction in 2001 (\$177,527,000 out of \$842,539,000)

Assume 10% of new contracts will be awarded to low-emission vendors (optimistic compared to experiences in other areas of the country)

· New contracts will comprise 10% of total construction

- · From EPA Voluntary Diesel Retrofit Program verification list, installation of retrofits will reduce HC emissions by at least 50%.
- \cdot For diesel vehicles, VOC = HC * 1.053
- · Assume "low-emission" vendors will reduce VOC emissions by 52.7%

 \cdot Incremental cost of low-emission contracts will be zero

· Monitoring program will be required @ \$200,000 per year

Emission Reductions

Total Reductions (VOC) =	12.3 tpd * 21% of construction eligible * 10% awarded to low-emission * 10% is new construction *
	52.7% VOC reduction / 1.013 adjustment to 2004
Tatal Daduatiana (1100)	

Total Reductions (VOC) = 0.01 tpd NOx

Cost Effectiveness

Annual Expenditure= \$ 200,000

Cost-effectiveness (\$/ton) = \$200,000 / (tpd * 365 days) Cost-effectiveness (VOC) = \$ 40,777

Issues

This measure would require an MOU with state and local governments in the nonattainment area

 ARTBA representatives expressed concern that contract preferences would advantage larger companies, who could more easily afford to install retrofits

Benefits from this program will increase as old contracts expire.
Benefits could eventually reach 2 tpd VOC

Description:

In bids for government construction contracts, award extra points to bidders using low-emission construction equipment

Summary Analysis

This measure is not economically feasible because it exceeds the cost effectiveness threshold. Therefore it is not a RACM.

Measure G1: Episodic restrictions on lawn & garden equipment

Measure Number: Measure Name:	G1 Episodic restrictions on lawn & garden equipment
RACM Determination:	No
Reason:	Would not deliver benefits by May 2004

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No

Estimated Cost (\$/ton VOC)	N/A
Estimated Reductions (VOC)	N/A

Issues

· This is an episodic measure

Description:

 \cdot The region has averaged 6.3 Code Red Ozone Action days per year in the past three years.

Restrict use of lawn and garden equipment during

expected ozone exceedance days

 Many lawn and garden workers are low-income, and many are selfemployed. Preventing these workers from earning money for over one week during the summer months would have significant impacts on the workers and their families.

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

Summary Analysis

This measure would not deliver benefits by May 2004, and would have substantial adverse impacts on workers in the lawn and garden industries. Therefore it is not a RACM.

Measure G2: Lawn & garden equipment retrofits

Measure Number: Measure Name:	G2 Lawn & garden equipment retrofits	Description: Require commercial gas-powered lawn & garden equipment to be retrofitted with emissions controls or
RACM Determination: Reason:	No Would not deliver benefits by May 2004	iow emission engines

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No
Estimated Cost (\$/ton VOC)	N/A

N/A

Issues

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

• An extended compliance period might be required because of the need for farmer education, assistance with retrofit selection, and procurement and installation of the equipment.

 \cdot Enforcement of this measure would be difficult, as lawn & garden equipment are not registered with the state

· Many owners would be unable to afford the cost of retrofits.

 \cdot As FY 04 budgets are complete, states could not fund this measure until FY 05, beginning July 2004.

Summary Analysis

Estimated Reductions (VOC)

This measure could not be implemented in time to deliver benefits in May 2004. Additionally, enforcement is practically impossible and the measure could impose a severe economic hardship on residents or owners of commercial lawn and garden services. Therefore it is not a RACM.

Measure G3: Require low-NOx fuel for lawn & garden equipment

Description:

during ozone season

Measure Number: Measure Name:	G3 Require low-NOx fuel for lawn & garden equipment
RACM Determination:	No
Reason:	No creditable emission reductions

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost (\$/ton NOx)	N/A
Estimated Reductions (NOx)	0.06

Net Benefit (NOx-VOC)	0
Net Estimated Cost (\$/ton)	N/A

Issues

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

Require lawn & garden equipment to use low-NOx fuel

• This measure could be implemented by 2004 on a voluntary basis only by state and local governments.

Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

Because of budget situations, operators would not receive subsidies towards the higher cost of the low-NOx fuel

 People who live on the edge of the nonattainment area and would be incentivized to drive to the next county to get cheaper fuel that is not low-NOx

Assumptions

- · Evaluate regional fleet of lawn and garden equipment to determine whether this measure would reduce emissions
- · Measure will have 80% compliance rate
- · From 2005 controlled non-road inventory in severe area SIP, emissions from regional diesel lawn & garden equipment will be:
 - · 0.37 tons NOx
 - · 0.06 tons VOC
- · As in non-road inventory, use employment as proxy for growth in lawn & garden equipment
- From regional cooperative forecasts, employment will grow 1.3% from 2004-2005
- · All lawn & garden equipment is 100 hp or less
- · From EPA draft report on PuriNOx, for nonroad equipment 0-100 HP emissions levels:
 - · NOx decreases 19.3%
 - VOC increases 99.4%
- · For diesel vehicles, VOC = HC * 1.053
- Therefore VOC increases 104.7%

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is:

· 1.8 tpd NOx : 1 tpd VOC

Emission Reductions

Daily Reductions (NOx) = 0.37 tpd * 19.3% reduction * 80% compliance / 1.013 adjustment to 2004 Daily Reductions (NOx) = 0.06 tpd NOx

Daily Increase (VOC) = 0.06 tpd * 104.7% increase * 80% compliance / 1.013 adjustment to 2004 Daily Increase (VOC) = 0.05 tpd VOC Net Decrease (NOx-VOC) = 0.06 tpd NOx - (0.05 tpd VOC * 1.8 tpd NOx per VOC) Net Decrease (NOx-VOC) = -0.03 tpd NOx

Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure G4: Idling restrictions for lawn & garden equipment

Description:

Limit idling by commercial lawn & garden equipment

• Lawn and garden equipment is not left in idle for safety reasons. Also, operators are cost-incentivized to minimize gasoline consumption. Therefore, estimated benefits from this measure are

· Enforcement of this measure would be nearly impossible.

G4 Idling restrictions for lawn & garden equipment
No No creditable emission reductions

Criterion Summary

zero.

Year of First Benefits	N/A
Enforceable	No
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Reductions (VOC) 0	Estimated Cost (\$/ton VOC)	N/A
	Estimated Reductions (VOC)	0

Summary Analysis

This measure would not reduce emissions. Therefore it is not a RACM.

Measure G5: Low emissions lawn & garden equipment

Measure Number: Measure Name:	G5 Low emissions lawn & garder	n equipment	Description: Adopt EPA lawn & garden equipment rules before they become effective in 2007
RACM Determination:	No		
Reason:	Would not deliver benefits by	deliver benefits by May 2004	
Criterion Summary		Issues	
Year of First Benefits	2005+	 This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with regulation. Because there are no regional standards for low-emissions agricultural equipment, rule development would be extensive and t consuming. The compliance period would also have to be extensiv permit manufacturers to develop new products or select retrofits. 	
Enforceable	Yes		
Economically Feasible	N/A		
Technologically Feasible	N/A		
Adverse Impacts	No		
Intensive or Costly Effort	No		
Estimated Cost (\$/ton VOC)	N/A		
Estimated Reductions (VOC)	N/A		
Technologically Feasible Adverse Impacts Intensive or Costly Effort Estimated Cost (\$/ton VOC) Estimated Reductions (VOC)	N/A No No N/A N/A	agricultural equipment, rule development would be extensive and tir consuming. The compliance period would also have to be extensive permit manufacturers to develop new products or select retrofits.	

Summary Analysis

This measure could not deliver benefits by May 2004. Therefore it is not a RACM.

Measure G6: Preference for low-emissions lawn & garden equipment

Measure Number: Measure Name: G6 Preference for low-emissions lawn & garden equipment

Possible

RACM Determination: Reason:

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	No
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Issues	

Description:

In bids for government contracts, award extra points to bidders using low-emission lawn & garden equipment

 \cdot This measure would requires an MOU with state and local governments in the nonattainment area

 \cdot Contract preferences could advantage larger companies, which could more easily afford capital investments

Assumptions

· From 2005 draft non-road inventory emissions from commercial lawn & garden equipment are:

7,238

· 26.29 tons VOC

Estimated Cost (\$/ton VOC)

Estimated Reductions (VOC)

- · 0.95 tons NOx
- \cdot As in non-road inventory, use employment as proxy for growth in lawn & garden

\$

0.13

- From regional cooperative forecasts, employment will grow 1.3% from 2004-2005
- · State & local government use or contracts accounts for 10% of all use of this equipment
- \cdot Of all contracts put out to bid, 10% will be awarded to low-emission vendors
- · Low-emission vendors will reduce VOC emissions by 100% through use of electric equipment or hand-powered equipment
- · Incremental cost of low-emission contracts will be zero
- · Monitoring program will be required @ \$200,000 per year
- · Equipment operates April October = 214 days per year
- · Assume contracts turn over at rate of 50% per year

Emission Reductions

Total Reductions (VOC) = 26.29 tpd * 10% local govts * 50% contract turnover * 10% low-emission * 100% VOC reduction / 1.013 employment growth Total Reductions (VOC) = 0.13 tpd VOC

Cost Effectiveness

Annual Expenditure= \$ 200,000 Cost-effectiveness (\$/ton) = \$200,000 / (0.13 tpd * 214 days)

Cost-effectiveness (VOC) = \$ 7,238

Summary Analysis

When the considered as a group, the benefits from the possible control measures do not meet the 8.8 tpd NOx or 34.0 tpd VOC threshold necessary for RACM. Therefore this measure is not a RACM.

Measure G7: "Cash for Clunkers" lawn & garden program

Measure Number: Measure Name:	G7 "Cash for Clunkers" lawn & garden program	Description: Offer \$75 for owners to turn in old, 2 and 4-stroke lawn & garden equipment and purchase electric or push
RACM Determination: Reason:	No Not economically feasible	mower

Issues

Criterion Summary

Year of First Benefits	2004+
Enforceable	Yes
Economically Feasible	No
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

\cdot No program of this type has been demonstrated in the northeast on a large scale
 MDE sponsored a small demonstration program of this type in the 1990s
Participation rates are extremely difficult to estimate
 Montgomery County sponsored a multi-day program in 2003.
 Counties or states might be able to fund this program in 2004 if startup costs were minimized and low participation was expected. As FY 04 budgets are complete, a large scale program could not be funded until FY 05 (July 2004).

Assumptions

Estimated Cost (\$/ton VOC)

Estimated Reductions (VOC)

Only residential users will participate in the measure, because electric and push mowers do not fulfill the needs of most commercial lawn care services

- · From EPA NONROAD model, there were approximately 782,000 residential mowers in the Washington region in 1997.
- \cdot Measure would have 0.5% participation rate, or approximately 3,900 mowers

\$

45,806

0.02

- · From 2005 controlled non-road inventory in severe area SIP, emissions from residential lawnmowers or lawn tractors will be:
 - · 4.74 tons VOC
 - · 0.08 tons NOx

Program costs would be \$75 per mower, plus an outreach/recruitment/monitoring program at \$200,000 per year

- · Assume 100% emission reduction for each mower turned in
- \cdot As in nonroad inventory, use employment as proxy for growth in lawn & garden
- · From regional cooperative forecasts, employment will grow 1.3% from 2004-2004
- · Ozone season lasts 153 days
- · Assume 0.5% participation results in 0.5% reduction in emissions
- New mowers have 10 year useful life
- · Mowers operate April October = 214 days per year

Emission Reductions

Daily Reductions (NOx) = 0.08 tpd * 0.5% reduction / 1.013 adjustment to 2004 Daily Reductions (NOx) = 0.001 tpd NOx

Daily Reductions (VOC) = 4.74 tpd * 0.5% reduction / 1.013 adjustment to 2004 Daily Reductions (VOC) = 0.02 tpd VOC

Cost Effectiveness

Annual Expenditure= ((\$75 per mower * 782,334 mowers * 0.5% participation)/10 year lifespan) + \$200,000 Annual Expenditure= \$ 229,338 Cost-effectiveness (\$/ton) = \$229,338 / (tons per day * 214 days per year) Cost-effectiveness (NOx) = \$ 1,550,861 Cost-effectiveness (VOC) = \$ 45,806

Summary Analysis

This measure is not economically feasible because it exceeds the cost-effectiveness threshold. Therefore it is not a RACM.

Measure I1: Episodic restrictions on use of industrial equipment

Criterion Summary	Issues	
RACM Determination: Reason:	No Would not deliver benefits by May 2004	
Measure Number: Measure Name:	I1 Episodic restrictions on use of industrial equipment	<u>Description:</u> Moratorium on use of industrial equipment during Code Red Ozone Action Days

Year of First Benefits	2005+
Enforceable	No
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Issues

· This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

· Use of industrial equipment is vital to the operation of thousands of area businesses. Shutting these businesses down for 6 days of the summer could have serious financial impacts on the businesses.

· This equipment is not registered with the state, and there is no way to enforce this measure except by random inspections of local businesses. This is an extremely ineffective and time-intensive mechanism.

· Many operators of this equipment are low income, and this measure would put them out of work on Ozone Action Days.

Summary Analysis

This measure would not deliver benefits by May 2004, is unenforceable from a practical viewpoint, and would adversely affect the operators of the affected equipment. Therefore it is not a RACM.

Measure I2: Industrial equipment retrofits

Measure Number: Measure Name: RACM Determination:	I2 Industrial equip No	oment retrofits	Description: Require industrial equipment to be retrofitted with emissions controls	
Reason:	Would not deliv	ot deliver benefits by May 2004		
Criterion Summary		Issues		
Year of First Benefits	2005+	This measure would require state regulation. All three states require		
Enforceable	No	well over 12	2 months to develop, pass, and require compliance with a	
Economically Feasible	N/A	regulation.		
Technologically Feasible	Yes	An extend	ed compliance period might be required because of the	
Adverse Impacts	Yes	need for ow	ner education, assistance with retrofit selection, and	
Intensive or Costly Effort	No	procuremen	it and installation of the equipment.	
		Enforceme	ent of this measure would be difficult, as industrial	
Estimated Cost	N/A	equipment is not registered with the state		
Estimated Reductions	N/A	 Many own states do no 	 Many owners would be unable to afford the cost of retrofits, and states do not have the funds to pay for the equipment 	

Summary Analysis

This measure could not be implemented in time to deliver benefits in May 2004. Additionally, enforcement is practically impossible and the measure could impose a severe economic hardship on residents or owners of commercial lawn and garden services. Therefore it is not a RACM.

Measure I3: Require low-NOx fuel for industrial equipment

Measure Number: Measure Name:	I3 Require low-NOx fuel for industrial equipment	Description: Require industrial equipment to use low-NOx fuel during ozone season
RACM Determination: Reason:	No No creditable emission reductions	

Criterion Summary

Issues

Year of First Benefits	N/A
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	N/A
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

· This measure could be implemented by 2004 on a voluntary basis only.

 \cdot Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

 \cdot Because of budget situations, states are unable to subsidize higher cost of the low-NOx fuel

• People who live on the edge of the nonattainment area and would be incentivized to drive to the next county to get cheaper fuel that is not low-NOx

Assumptions

- · Evaluate regional fleet of industrial equipment to determine whether this measure would reduce emissions
- Measure will have 80% compliance rate
- · From 2005 controlled non-road inventory in severe area SIP, emissions from regional diesel industrial equipment will be:
- 1.77 tons NOx
- · 0.26 tons VOC
- · As in non-road inventory, use employment as proxy for growth in industrial equipment
- · From regional cooperative forecasts, employment will grow 1.3% from 2004-2005

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is:

- 1.8 tpd NOx : 1 tpd VOC
- · In 2001, non-construction off-highway diesel fuel consumed in region was:
- District of Columbia: 0

· Maryland: 2,709,000 gallons

· Virginia: 12,762,000 gallons

· After construction, agricultural equipment is primary consumer of off-highway diesel fuel (60% of non-construction use)

· Allocate fuel usgae based on % of farmland located in Washington region of MD/VA

· Maryland: 17% of farmland located in Washington nonattainment area

· Virginia: 3.7% of farmland located in Washington nonattainment area

· Industrial diesel equipment comprises approximately 13% of non-construction offroad diesel emissions in Washington area

· Assume industrial diesel equipment comprises approximately 13% of non-construction offroad diesel consumption in Washington area

Emission Reductions

							E	Exhaust		
Description	SCC	HP Cat		HP	Hours	Total Pieces	NOx g/hr	VOC g/hr To	ons NOx	Tons VOC
Aerial Lifts	2270003010	0-100		43	536	145	14	1.57	1.20	0.13
Forklifts	2270003020	0-100		83	1633	444	14	1.57	11.19	1.25
Sweepers/Scrubbers	2270003030	0-100		97	1250.5	146	14	1.57	2.82	0.32
Other General Indust Equip	2270003040	100-175		107	830	291	14	1.57	3.73	0.42
Other Material Handling Equip	2270003050	100-175		111	414.5	22	2 14	1.57	0.14	0.02
· From above table and EPA Draft F	Report on PuriNOx ⁶	:								
Non-Road Engine HP			VOC	%	Annual	% Annual				
	NOx Reduction	HC Increase	Increase	NC	Эx	VOC	_			
0-100	19.3%	99.4%	104.7%	80	%	80%	_			
100-175	17.0%	80.1%	84.3%	20	%	20%				

Emission Reductions

Daily Reductions (NOx) = (1.77 tpd * (80% emissions * 19.3% reduction + 20% emissions * 17% reduction) * 80% compliance) / 1.013 adjust to 2004Daily Reductions (NOx) = 0.26 tpd NOx

Daily Increase (VOC) = (0.26 tpd * (80% emissions * 104.7% increase + 20% emissions * 84.3% increase) * 80% compliance) / 1.013 adjust to 2004Daily Increase (VOC) = 0.21 tpd VOC

Net Decrease (NOx-VOC) = 0.26 tpd NOx - (0.21 tpd VOC * 1.8 tpd NOx per VOC) Net Decrease (NOx-VOC) = -0.11 tpd NOx equivalent

Therefore this measure increases emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure I4: Idling restrictions for industrial equipment

Measure Number:	14	Description:					
Measure Name:	Idling restrictions for industrial equipment Limit idling by industrial equipment						
RACM Determination:	No						
Reason:	No creditable emission reductions						
Criterion Summary		Issues					
Year of First Benefits	N/A	Industrial equipment is rarely left in idle for safety reasons. Also,					
Enforceable	No	owners are cost-incentivized to minimize gasoline consumption.					
Economically Feasible	N/A	i herefore, estimated benefits from this measure are zero.					
Technologically Feasible	Yes						
Adverse Impacts	No	 Enforcement of this measure would be nearly impossible. 					
Intensive or Costly Effort	No						
Estimated Cost	N/A						
Estimated Reductions	N/A						

Summary Analysis

This measure would not reduce emissions. Therefore it is not a RACM.

Measure I5: Low-emissions industrial equipment

Measure Number: Measure Name:	15 Low-emission	is industrial equipment	Description: Require sale of low-emissions industrial equipment in region		
RACM Determination:	No				
Reason:	Would not de	liver benefits by May 2004			
Criterion Summary		Issues			
Year of First Benefits	2005+	· Because the	ere are no regional standards for low-emissions industrial		
Enforceable	Yes	equipment, r	ule development would be extensive and time		
Economically Feasible	N/A	consuming.	he compliance period would also have to be extensive to		
Technologically Feasible	Yes	could not be	accomplished by 2004.		
Adverse Impacts	N/A				
Intensive or Costly Effort	No				
Estimated Cost	N/A				
Estimated Reductions	N/A				
		•			

Summary Analysis

This measure could not deliver benefits by May 2004. Therefore it is not a RACM.

Measure I6: Industrial equipment replacement

Measure Number:	16		Description:
Measure Name:	Industrial equipmer	nt replacement	Subsidize replacement of fossil-fuel fired industrial equipment with electric industrial equipment
RACM Determination:	No		
Reason:	Would not deliver b	enefits by May 2004	1
Criterion Summary		Issues	
Criterion Summary Year of First Benefits	2005+	· Due to bu	udget crises, state and local governments do not have funds
Criterion Summary Year of First Benefits Enforceable	2005+ Yes	Issues · Due to bu to undertak	udget crises, state and local governments do not have funds ke a project of this scale at this time.
Criterion Summary Year of First Benefits Enforceable Economically Feasible	2005+ Yes N/A	· Due to bu to undertak · Electric en	udget crises, state and local governments do not have funds ke a project of this scale at this time. quipment may not meet the same specifications of perform

• It would take a significant investment of time to identify feasible replacements for equipment used by individual businesses, and then convince those businesses to replace their familiar, reliable equipment

 Because of the need for charging equipment, electric equipment usually requires a much higher capital investment than conventionally fueled equipment

• As the budgets for FY04 (July 1 2003 - June 30 2004) are already complete, this measure could first be funded in FY 05, beginning in July 2004. Because of the time required to recruit participants, select low emissions equipment, secure funding and take delivery of the equipment, this program could not deliver benefits by the end of the 2004 ozone season.

Summary Analysis

Adverse Impacts

Estimated Cost

Intensive or Costly Effort

Estimated Reductions

This measure would not deliver benefits by 2004. Therefore it is not a RACM.

No

No

N/A

N/A

Measure 17: Preference for low-emissions industrial equipment

Measure Number: Measure Name:	I7 Preference for low-emissions industrial equipment
RACM Determination:	No
Reason:	Not economically feasible

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	No
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	\$	138,587
Estimated Reductions	0.00	04

Assumptions

· From 2005 draft non-road inventory emissions from industrial equipment are:

- · 3.20 tpd NOx
- · 1.53 tpd VOC

· Local government use or contracts account for 5% of all use of this equipment

- \cdot As in non-road inventory, use employment as proxy for growth in industrial equipment
- From regional cooperative forecasts, employment will grow 1.3% from 2004-2005
- \cdot Of all contracts put out to bid, 10% will be awarded to low-emission vendors
- \cdot Low-emission vendors will reduce VOC emissions by 50%
- · For diesel vehicles, VOC = HC * 1.053
- · Assume "low-emission" vendors will reduce VOC emissions by 52.7%
- \cdot Incremental cost of low-emission contracts will be zero
- · Monitoring program will be required @ \$200,000 per year
- · Equipment will operate 355 days per year

. This analysis overestimates benefits and underestimates cost by assuming that all contracts are awarded annually

Emission Reductions

Total VOC Reduced = 1.53 tpd * 5% eligible * 10% awarded * 52.7% reduction / 1.013 adjustment to 2004 Total VOC Reduced = 0.004 tpd VOC

Cost Effectiveness

Annual Expenditure= \$ 200,000

Cost-effectiveness (\$/ton) = \$200,000 / (tpd * 355 days)

Cost-effectiveness (VOC) = \$ 138,587

Summary Analysis

Issues

This measure requires commitments from state and local governments in the nonattainment area

Contract preferences could advantage larger companies, which could more easily afford capital investments

Contractors could reduce emissions by using low-NOx, retrofitted or electric equipment

Description:

In bids for government contracts, award extra points to bidders using low-emission industrial equipment This measure is not economically feasible because it exceeds the cost effectiveness threshold. Therefore it is not a RACM.

Measure M1: "Cash for Clunkers" outboard motor program

Measure Number:	M1
Measure Name:	"Cash for Clunkers" outboard motor program
RACM Determination:	No
Reason:	Not economically feasible

2004+

Yes

No

Yes

No

No

\$

Criterion Summary

Year of First Benefits

Economically Feasible

Adverse Impacts

Technologically Feasible

Intensive or Costly Effort

Estimated Cost (\$/ton HC+NOx)

Estimated Reductions (HC+NOx)

Enforceable

	Issues

 From non-road inventory, vast majority of personal watercraft NOx and VOC emissions in the region come from 2-stroke spark ignition outboard motors

Offer small cash reward for owners to turn in old, high-

Description:

emission outboard motors

 \cdot Most recent rule controlling emissions from gasoline spark ignition marine engines is 61 FR 52088, published October 4, 1996.

• Counties or states might be able to fund this program in 2004 if startup costs were minimized and low participation was expected. As FY 04 budgets are complete, a large scale program could not be funded until FY 05 (July 2004).

Assumption	۱S

· From 2005 non-road inventory, all outboard emissions come from 2-stroke motors.

77,853

0.13

- · 2005 regional emission due to outboard motors will be:
 - · 11.61 tons VOC
 - · 0.12 tons NOx

· As in non-road inventory, use population as proxy for growth in industrial equipment

· From regional cooperative forecasts, population will grow 1.2% from 2004-2005

· From NONROAD model, population of outboard motors is:

- · 75% < 10 hp
- · 25% > 100 hp
- · 15,648 in Washington region
- · Program would encourage trade-ins of MY 1997 and older engines
- · Assume these engines meet MY 1998 standards for <6 hp motors: 278 g/kW-hr HC+NOx
- · MY 2004 standards for motors < 6 hp will be 130 g/kW-hr HC+NOx
- 6 HP ~= 4.3 kW
- · Motors have 10 year useful life
- · Assume 25% of life is left at trade-in
- · Motors operate 35 hours per year
- · Motors operate 1 day per week during ozone season = 22 days per year
- · Assume 1% response rate on trade-in offer
- · From Wisconsin DNR study, program must offer at least \$520 to incentivize trade-in
- · Cost would be \$520 per motor plus outreach/recruitment/monitoring program at \$200,000 per year

Emission Reductions for One Motor

Net NOx+HC Reduced = (278 g/kW-hr - 130 g/kW-hr) * 4.3 kW * 35 hours per year / (907,185 grams per ton * 22 operating days per year)

Net NOx+HC Reduced = 0.0011 tons per engine-day

Cost Effectiveness for One Motor

Annual Expenditure= \$520 * 1 motor / 2.5 years remaining life Annual Expenditure= \$208

Cost-effectiveness (\$/ton) = \$208 / (0.001 * 22 days)

Cost-effectiveness (VOC) = \$ 9,455

Emission Reductions for Entire Program

 Total Motors Traded In =
 15,648 2-stroke outboard motors * 75% under 10 hp * 1% return rate

 Total Motors Traded In =
 117 motors

 Net NOx+HC Reduced =
 117 motors * 0.0011 tons per motor-day

 Net NOx+HC Reduced =
 0.13 tons per day

Cost Effectiveness for Entire Program

Annual Expenditure= (\$520 * 117 motors / 2.5 years remaining life) + \$200,000 monitoring program Annual Expenditure= \$224,336 Cost-effectiveness (\$/ton) = \$224,336 / (tons per day * 22 days) Cost-effectiveness (NOX+HC) = \$77,853

Summary Analysis

This measure is not economically feasible because it exceeds the cost effectiveness threshold.

Measure M2: Idling restrictions for recreational marine equipment

Measure Number: Measure Name:	M2 Idling restrictions for recreational marine equipment
RACM Determination:	No
Reason:	Would not deliver benefits by May 2004

Criterion Summary

Year of First Benefits	2005+
Enforceable	N/A
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost (\$/ton VOC)	N/A
Estimated Reductions (VOC)	N/A

Issues

• All three states require well over 12 months to develop, pass, and require compliance with a regulation. This measure would require regulation, and therefore cannot deliver benefits by 2004.

Limit idling by recreational marine equipment during

Description:

ozone season

- According to EPA OTAQ, no studies have been completed on idling emissions from nonroad vehicles. Therefore estimates of benefits are very uncertain.

• In-person enforcement would be time-consuming and costly. Neither the personnel nor a coordination mechanism are available.

Summary Analysis

This measure could not deliver benefits by May 2004 and is therefore not a RACM.

Measure M3: Recreational marine equipment use restrictions

Measure Number:	M3		Description:		
Measure Name:	Recreational marine equip restrictions	ment use	Moratorium on use of recreational marine equipment on Code Red Ozone Action Days		
RACM Determination:	No				
Reason:	Would not deliver benefits	by May 2004			
Criterion Summary		Issues			
Year of First Benefits	2005+	This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.			
Enforceable	Yes				
Economically Feasible	N/A				
Technologically Feasible	Yes	 This measure was proposed in the early 1990s and was not 			
Adverse Impacts	N/A	implemented due to public outcry			
Intensive or Costly Effort	No	 This is an episodic measure that would be effective only on C Red Ozone Action Days. 			
Estimated Cost	N/A				
Estimated Reductions	N/A				

Summary Analysis

This measure could not deliver benefits by May 2004. Therefore it is not a RACM.

Measure M4: Require low-NOx fuel for recreational marine equipment

RACM Determination:NoReason:No creditable emission reductions	Measure Number: Measure Name:	Description: reational Require diesel-fired recreational marine equipment to use low-NOx fuel during ozone season
	RACM Determination: Reason:	tions

Criterion Summary

Issues

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

· This measure could be implemented by 2004 on a voluntary basis only.

 \cdot Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

Because of budget situations, operators would not receive subsidies towards the higher cost of the low-NOx fuel

 \cdot People who live on the edge of the nonattainment area and would be incentivized to go to the next county to get cheaper fuel that is not low-NOx

Emission Reductions

- · Evaluate regional fleet of recreational marine equipment to determine whether this measure would reduce emissions
- · From 2005 controlled non-road inventory in severe area SIP, emissions from regional diesel-fired pleasure craft will be:
- · 0.11 tons NOx
- · 0.02 tons VOC
- · As in non-road inventory, use population growth as proxy for growth in pleasure craft emissions
- · From regional cooperative forecasts, population will grow 1.2% from 2004-2005

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is:

· 1.8 tpd NOx : 1 tpd VOC

Emission Reductions

						E>	khaust		
Description	SCC	HP Cat	HP	Gallons Tot	al Pieces	NOx g/gal	VOC g/gal To	ns NOx	Tons VOC
Inboard/Sterndrive	2282020005	175-300	250	651	335	172.49	24.39	41.47	5.86
Outboard	2282020010	N/A	N/A	651	-	172.49	24.39	-	-
Sailboat Auxiliary Outboard	2282020025	N/A	N/A	33.5	-	163.29	122.45	-	-

• From above table and EPA Draft Report on PuriNOx⁶:

Non-Road Engine HP	VOC	% Annual	% Annual		
	NOx Reduction	HC Increase	Increase	NOx	VOC
0-100	19.3%	99.4%	104.7%	0%	0%
100-175	17.0%	80.1%	84.3%	0%	0%
175-300	18.8%	72.8%	76.7%	100%	100%

Emission Reductions

Daily Reductions (NOx) = (0.11 tpd * 18.8% reduction * 80% compliance) / 1.012 adjust to 2004 Daily Reductions (NOx) = 0.02 tpd NOx

Daily Increase (VOC) = (0.02 tpd * 76.7% increase * 80% compliance) / 1.012 adjust to 2004 Daily Increase (VOC) = 0.01 tpd VOC

Net Decrease (NOx-VOC) = 0.02 tpd NOx - (0.01 tpd VOC * 1.8 tpd NOx per VOC) Net Decrease (NOx-VOC) = -0.005 tpd NOx

Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure M5: Graduated registration fees for recreational boats

M5 Graduated registra	ation fees for	Description: Levee additional registration fee for registration of boats with old high-emission angines			
No Would not deliver	benefits by May 20)04			
	Issues				
enefits 2005+		· All three states require well over 12 months to develop, pass, and			
Yes	require compliance with a regulation. This measure would r				
Yes	regulatio	on, and therefore cannot deliver benefits by 2004.			
Yes	 Virginia has rolled back its car tax, and many other personal 				
N/A	proposals have been defeated in the last 12 months.				
No	This measure could adversely affect fisherman and tour-boat				
	operator	s			
N/A					
N/A					
	M5 Graduated registra recreational boats No Would not deliver 2005+ Yes Yes Yes N/A No N/A N/A	M5 Graduated registration fees for recreational boats No Would not deliver benefits by May 20 Issues 2005+ · All thre required Yes · Virginia N/A · · This m operator N/A			

Summary Analysis

This measure could not deliver benefits by May 2004. Therefore it is not a RACM.

Measure R1: Episodic restrictions on recreational equipment use

Measure Number: Measure Name:	R1 Episodic restrictions on recreational equipment use
RACM Determination:	No
Reason:	Would not deliver benefits by May 2004

Description:

Restrict use of recreational equipment during expected ozone exceedance days

Criterion Summary		Issues	
Year of First Benefits	2005+	· This measure would require state regulation. All three states require	
Enforceable	No	well over 12 months to develop, pass, and require compliance with a	
Economically Feasible	N/A	regulation.	
Technologically Feasible	Yes	· This is an episodic measure that would be effective only on Code	
Adverse Impacts	No	Red Ozone Action Days.	
Intensive or Costly Effort	No	The region averaged 6.3 Code Red Ozone Action Days per year from 2000-2002	
Estimated Cost	N/A	Enforcement of this measure would be nearly impossible because of	
Estimated Reductions	N/A	the wide geographic area to be patrolled.	

Summary Analysis

This measure would not deliver benefits by May 2004 and is unenforceable from a practical standpoint. Therefore this measure is not a RACM.

Measure R2: "Cash for Clunkers" recreational equipment program

Description:

Measure Number:	R2
Measure Name:	"Cash for Clunkers" recreational equipment program
RACM Determination:	No
Reason:	Not economically feasible

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	No
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

le	CUDE	

• As there is no documentation of a program of this type ever being implemented, it would be extremely difficult to gauge public response rates.

Offer small cash reward for owners to turn in old, high-

 As new standards will be phased in during 2007-8, encouraging purchase of new vehicles now will delay benefits from standards

emission recreational equipment

Assumptions

Estimated Cost

Estimated Reductions

• From EPA NONROAD model (v. 2.2.0), 105,555 2-stroke off-road motorcycles or ATVs were operational in the Metropolitan Washington region in 1998

- · Of the 2-stroke recreational vehicles in the US, approximately 45% are off-road motorcycles and 55% are ATVs
- · Assume 45% = 47,500 of these vehicles are 2-stroke ATVs

\$

N/A

22,293

• 2-stroke ATVs tend to be used for small children or beginners, while 4-stroke ATVs are purchased for adults or more experienced riders. Since the different engines types cater to different market segments, it is not practical to encourage consumers to purchase one type over the other

· For 2-stroke ATVs and off-road motorcycles, EPA estimates emissions over vehicle lifetime to deteriorate by:

· 20% for VOC (53.9 g/mi to 64.7 g/mi)

· 0% for NOx (0.15 g/mi)

· For 4-stroke ATVs and off-road motorcycles, EPA estimates emissions over vehicle lifetime to deteriorate by:

- · 15% for VOC (2.4 g/mi to 2.76 g/mi)
- · 0% for NOx (0.41 g/mi)
- · From NONROAD model, EPA estimates annual ATV usage at 1,570 miles per year
- · From NONROAD model, EPA estimates average ATV lifetime at 13 years
- · In 2001, average retail cost of an ATV was \$5,123
- · Assume 10% (\$500) payment would be required to incentivize owners to scrap 4-stroke ATV instead of reselling

• Because 2-stroke ATVs are outgrown rather than worn out, assume 50% (\$2,500) payment would be required to incentivize owners to scrap instead of reselling

- · Assume ATVs operate 9 months per year
- · Many ATVs are used for agricultural purposes. These vehicles will operate 7 days/week.
- · Non-agricultural ATVs operate 1-2 days per week
- · Assume average ATV operates 5 days per week
- \cdot Off-road motorcycles have an average lifespan of 8 years
- · Off-road motorcycles travel 6,210 miles during lifetime
- · In 2001, average cost of an off-road motorcycle was \$2,123
- · Assume 10% (\$210) payment will be required to incentivize owners to scrap 4-stroke off-road motorcycle instead of reselling

Emission Reductions for One Vehicle

For One 2-Stroke ATV

Trading in one end-of-life ATV for one new ATV would yield the following annual emission benefits:

Tons Reduced (VOC) = ((64.7 g/mi old - 53.9 g/mi new) * 1,570 miles per year) / 907,185 grams per ton Tons Reduced (VOC) = 0.019 tons per year

For One 4-Stroke ATV

· Trading in one end-of-life ATV for one new ATV would yield the following annual emission benefits:

Tons Reduced (VOC) = ((2.76 g/mi old - 2.4 g/mi new) * 1,570 miles per year) / 907,185 grams per ton Tons Reduced (VOC) = 0.001 tons per year

For One 2-Stroke Off-Road Motorcycle

· Trading in one end-of-life motorcycle for one new motorcycle would yield the following annual emission benefits:

Tons Reduced (VOC) = ((64.7 g/mi old - 53.9 g/mi new) * 6,210 miles per life) / (907,185 grams per ton * 8 year life)Tons Reduced (VOC) = 0.009 tons per year

For One 4-Stroke Off-Road Motorcycle

· Trading in one end-of-life off-road motorcycle for one new motorcycle would yield the following annual emission benefits:

Tons Reduced (VOC) = ((2.76 g/mi old - 2.4 g/mi new) * 6,210 miles per life) / (907,185 grams per ton * 8 year life) Tons Reduced (VOC) = 0.0003 tons per year

Cost Effectiveness for One Vehicle

For One 2-Stroke ATV

Annual Expenditure= \$ 2,500 Cost-effectiveness (\$/ton) = \$1,000 / (tons per year * 6 years lifespan left) Cost-effectiveness (VOC) = \$ 22,293

For One 4-Stroke ATV

Annual Expenditure= \$ 500 Cost-effectiveness (\$/ton) = \$500 / (tons per year * 2 years lifespan left) Cost-effectiveness (VOC) = \$ 401,267

For One 2-Stroke Off-Road Motorcycle

Annual Expenditure= \$ 210 Cost-effectiveness (\$/ton) = \$210 / (tons per year * 1 year lifespan left) Cost-effectiveness (VOC) = \$ 22,724

For One 4-Stroke Off-Road Motorcycle

Annual Expenditure= \$ 210 Cost-effectiveness (\$/ton) = \$210 / (tons per year * 1 year lifespan left) Cost-effectiveness (VOC) = \$ 681,728

• On a vehicle-by-vehicle basis, a cash for clunkers program would not be cost effective for any of the four vehicle types. A full program would include administrative fees as well, decreasing the cost effectiveness.

Summary Analysis

This measure is not economically feasible because it does not meet the cost-effectiveness threshold.

Measure R3: Require low-NOx fuel for recreational equipment

Description:

during ozone season

Measure Number: Measure Name:	R3 Require low-NOx fuel for recreational equipment
RACM Determination:	No
Reason:	No creditable emission reductions

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Issues

• Because Virginia is a Dillon rule state, this measure requires statelevel regulation. Virginia requires at least 2 years to implement and require compliance with a new regulation, so this regulation could not deliver benefits in Virginia by 2004.

Require recreational equipment to use low-NOx fuel

• It is unlikely that Maryland or the District would be able to require compliance with this regulation by 2004

Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

 \cdot Because of budget situations, operators would not receive subsidies towards the higher cost of the low-NOx fuel

• People who live on the edge of the nonattainment area and would be incentivized to drive to the next county to get cheaper fuel that is not low-NOx

Assumptions

· Evaluate regional fleet of recreational equipment to determine whether this measure would reduce emissions

· Measure will have 80% compliance rate

· From 2005 controlled non-road inventory in severe area SIP, regional emissions from diesel recreational equipment will be:

0 tons NOx

· 0 tons VOC

Summary Analysis

As this sector has no emissions, this control measure would produce no benefits. Therefore this measure is not a RACM.

Measure R4: Recreational equipment retrofits

Measure Number: R4			Description:	
Measure Name:	ure Name: Recreational equipment retrofits // Determination: No		Require recreational equipment to be retrofitted with particulate fitlers and/or oxidation catalysts	
RACM Determination:				
Reason:	No creditable	emission reductions		
Criterion Summary		Issues		
Year of First Benefits	2004	· From an	alysis of Measure R3, there will be no diesel-fired	
Enforceable	Yes	recreational equipment in the Washington region in 2005. B		
Economically Feasible	Yes	have no benefit.		
Technologically Feasible	Yes			
Adverse Impacts	No			
Intensive or Costly Effort	No			
Estimated Cost	N/A			
Estimated Reductions	0			
		-		

Summary Analysis

As this sector has no emissions, this control measure would produce no benefits. Therefore this measure is not a RACM.

Measure S1: Subsidize electric airport ground service equipment (GSE)

Issues

S1	De
Subsidize electric airport ground service equipment (GSE)	Su ins
No	ch
Would not deliver benefits by May 2004	
	S1 Subsidize electric airport ground service equipment (GSE) No Would not deliver benefits by May 2004

Criterion Summary

Year of First Benefits	2005+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Description:

Subsidize, through direct contributions or tax breaks, installation of electric ground service equipment and/or charging stations at regional airports

· Electric ground service equipment requires a large capital	
investment for charging equipment.	

• A handful of US airports have installed electric GSE with substantial support from a grant program administered by FAA.

• Airlines and GSE operators have been loathe to use electric GSE equipment without significant direct financial support. Given the current bankruptcies in the airline industry, this reticence will likely continue.

• Charging stations cost approximately \$40,000 each. At a minimum, 2 stations would be needed at Reagan National and 3 stations at Dulles. This would result in \$160,000 expenditure.

• All GSE would also need to be replaced. There are approximately 420 GSE in the region, and they would cost \$30,000 each. With chargin stations, this totals \$12.8 million in expenditures.

 \cdot States would need to allocate funds for this in annual budgets. As budgets for FY 04 (July 1 2003 - June 30 2004) are complete, this measure could not be funded until FY 05 (July 2004).

Summary Analysis

This measure would not deliver benefits by May 2004. Therefore it is not a RACM.

Measure S2: Require low-NOx fuel for airport GSE

Description:

season

Measure Number:	S2
Measure Name:	Require low-NOx fuel for airport GSE
RACM Determination:	No
Reason:	No creditable emission reductions

Criterion Summary

Year of First Benefits	2004+
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

Issues

 \cdot The only commercial airports in the Washington nonattainment area are Washington Reagan National and Dulles

Require airport GSE to use low-NOx fuel during ozone

 \cdot Because air travel is interstate commerce, this measure cannot be implemented by regulation. The states must sign an MOU with the airlines or GSE operators.

 \cdot Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

• Because of budget situations, state and local governments cannot afford to subsidize the increased fuel cost. Given the current problems with airline cost structure, airlines will likely be extremely unwilling to pay \$0.15 more per gallon for low-NOx diesel fuel.

• GSE manufacturers have not guaranteed that PuriNOx will not void equipment warranties. Until this guarantee is made, it is extremely unlikely that any owners or operators would agree to use the fuel.

Assumptions

- · Evaluate regional fleet of GSE to determine whether this measure would reduce emissions
- · Measure will have 80% compliance rate

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2005 will be:

- · NOx: 0.59 tpd DCA, 1.99 tpd IAD
- · VOC: 0.18 tpd DCA, 0.48 tpd IAD

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2002 will be:

- · NOx: 0.44 tpd DCA, 1.02 tpd IAD
- · VOC: 0.04 tpd DCA, 0.20 tpd IAD
- · From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2004 will be:
 - · NOx: 0.54 tpd DCA, 1.67 tpd IAD = 2.21
 - · VOC: 0.13 tpd DCA, 0.39 tpd IAD = 0.52
- Dulles mobile lounges are diesel fired. They contribute 0.48 tpd NOx in 2005 and 0.32 tpd in 2002, or 0.43 tpd in 2004
- \cdot Mobile lounges contribute 0.02 tpd NOx in 2005 and 0.015 tpd in 2002, or 0.018 tpd in 2004
- · Remaining GSE are both gasoline and diesel fired. Assume 80% diesel, 20% gasoline.
- · As in non-road inventory, use employment as proxy for growth in airport GSE
- · From regional cooperative forecasts, employment will grow 1.8% from 2004-2005
- · From EPA draft report on PuriNOx, for nonroad equipment 0-100 HP emissions levels:
 - NOx decreases 19.3%
 - · VOC increases 99.4%
- · For diesel vehicles, VOC = HC * 1.053

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is:

1.8 tpd NOx : 1 tpd VOC

Emission Reductions

Total Diesel GSE (NOx) = Total Diesel GSE (NOx) =	(2.21 tpd - 0.4 1.85	3 tpd mobile lo	ounges) * 8	30%	+ 0.43 tpd mo	bile lounges	
Total Diesel GSE (VOC) = Total Diesel GSE (VOC) =	(0.52 tpd - 0.0 0.42	18 tpd mobile	lounges) *	80%	6 + 0.018 tpd ւ	mobile lounges	5
Description	SCC	HP Cat		HP	Tpd NOx	Tpd VOC	_
Mobile Lounge	N/A	0-100		78	0.48	0.02	-
Aircraft Support Equipment	2270008005	100-175		157	1.31	0.20	
Non-Road Engine HP	NOx Reduction	HC Increase	VOC Increase		% Annual NOx	% Annual VOC	
0-100	19.3%	99.4%	104.7%		27%	9%	-
100-175	17.0%	80.1%	84.3%		73%	91%	
Daily Reductions (NOx) = (1.85 tpd * (27% emissions * 19.3% reduction + 73% emissions * 17% reduction) * 80% compliance) / 1.018 adjustment to 2004 Daily Reductions (NOx) = 0.26 tpd NOx							
Daily Increase (VOC) = (0.42 tpd * (9% emissions * 104.7% increase + 91% emissions * 84.3% increase) * 80% compliance) / 1.018 adjustment to 2004 Daily Increase (VOC) = 0.28 tpd VOC							
Net Decrease (NOx-VOC) = Net Decrease (NOx-VOC) =	= 0.26 tpd NOx = -0.256	a - (0.28 tpd VC 6 <i>tpd NOx</i>	0C * 1.8 tp	d NC	Ox per VOC)		

Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure S3: Airport GSE retrofits

Measure Number: Measure Name:	S3 Airport GSE retrof	Description: its Subsidize the retrofit of airport GSE with emissions control equipment	
RACM Determination: Reason:	No Would not deliver	benefits by May 2004	
Criterion Summary		Issues	
Year of First Benefits	2005+	• The only commercial airports in the Washington nonattainment area	
Enforceable	Yes	are Washington Reagan National and Dulles	
Economically Feasible	N/A	Because air travel is interstate commerce, this measure cannot l implemented by regulation. The states must sign an MOU with the	
Technologically Feasible	Yes		
Adverse Impacts	No	airlines or GSE operators.	
Intensive or Costly Effort	No	Given current airline bankruptcies, airlines will not agree to	
		voluntarily replace or retrofit GSE equipment unless the cost is	
Estimated Cost	N/A	subsidized.	
Estimated Reductions	N/A	 States would need to allocate funds for this in annual budgets. As 	
		budgets for FY 04 (July 1 2003 - June 30 2004) are complete, this measure could not be funded until FY 05 (July 2004).	

Summary Analysis

This measure would not deliver benefits by May 2004. Therefore it is not a RACM.

Measure S4: Reduce idling by airport GSE

Measure Number:	S4
Measure Name:	Reduce idling by airport GSE
RACM Determination:	Possible

Reason:

sible

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost (\$/ton NOx)	\$	3,155
Estimated Reductions (NOx)	0.17	

Assumptions

Measure will have 80% compliance rate

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2005 will be:

· NOx: 0.59 tpd DCA, 1.99 tpd IAD

· VOC: 0.18 tpd DCA, 0.48 tpd IAD

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2002 will be:

· NOx: 0.44 tpd DCA, 1.02 tpd IAD

· VOC: 0.04 tpd DCA, 0.20 tpd IAD

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2004 will be:

· NOx: 0.54 tpd DCA, 1.67 tpd IAD = 2.21

· VOC: 0.13 tpd DCA, 0.39 tpd IAD = 0.52

· As in non-road inventory, use employment as proxy for growth in airport GSE

· From regional cooperative forecasts, employment will grow 1.8% from 2004-2005

· From NESCAUM survey of airport GSE fleets, GSE load factors when adjusted for fuel consumption are much lower than load factors assumed in EPA modeling

· For example, load factors for baggage tugs were reduced from 55% to 2%, while load factors for belt loaders were reduced from 50% to 7%

· Assume this reduced average load factors is due to greater-than-assumed idling time

- · Assume emissions can be reduced by 10% by voluntary idling agreements
- Assume cost is a monitoring/verification program at \$200,000 per year

· Equipment operates 365 days per year

Emission Reductions

Daily Reductions (NOx) = 2.21 tpd * 10% reduction * 80% compliance / 1.018 adjustment to 2004 Daily Reductions (NOx) = 0.17 tpd NOx

Daily Increase (VOC) = 0.52 tpd * 10% reduction * 80% compliance / 1.018 adjustment to 2004 Daily Increase (VOC) = 0.04 tpd VOC

Issues

· Neither states nor MWAA has the authority to regulate airport GSE emissions. This measure would be enforceable through a voluntary MOU signed with airlines or GSE operators.

· Virtually no data is available on the idling behavior of airport GSE, so estimates of benefits from this measure are very uncertain.

· Virginia DEQ thinks it is unlikely that an MOU could become effective by May 2004

Description:

Develop voluntary program to encourage operators to limit idling of airport GSE

Cost Effectiveness

Annual Expenditure= 200,000Cost-effectiveness (100) = 200,000 / (tpd * 365 days) Cost-effectiveness (VOC) = 13,409Cost-effectiveness (NOx) = 3,155

Summary Analysis

When the considered as a group, the benefits from the possible control measures do not meet the 8.8 tpd NOx or 34.0 tpd VOC threshold necessary for RACM. Therefore this measure is not a RACM.

Measure S5: Control aircraft auxiliary power units

Measure Number: Measure Name:	S5 Control aircraft auxiliary power units	Description: Seek voluntary agreement to reduce use of aircraft APUs through use of gate-provided services or other
RACM Determination: Reason:	No Not economically feasible	strategies

Criterion Summary

Issues

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

• States do not have the authority to regulate aircraft emissions. This measure would be enforceable through a voluntary MOU.

• The Metropolitan Washington Airports Authority (MWAA) controls use of airport services. The Authority can require airplanes to use preconditioned gate air iand gate electricity instead of idling to generate power.

Estimated Cost (\$/ton NOx)	\$	27,796
Estimated Reductions (NOx)	0.250	

Assumptions

· From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2005 will be:

- · NOx: 0.59 tpd DCA, 1.99 tpd IAD
- · VOC: 0.18 tpd DCA, 0.48 tpd IAD
- · From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2002 will be:
 - · NOx: 0.44 tpd DCA, 1.02 tpd IAD
 - · VOC: 0.04 tpd DCA, 0.20 tpd IAD
- · From MWAA, daily emissions from aircraft GSE/AGE/APU/Mobile Lounges in 2004 will be:
 - · NOx: 0.54 tpd DCA, 1.67 tpd IAD
 - · VOC: 0.13 tpd DCA, 0.39 tpd IAD
- · In 2005, APUs emitted 0.04 tpd VOC and 0.43 tpd NOx
- . This is 6% of GSE/AGE/APU/Mobile Lounge VOC emissions and 17% of NOx emissions
- · Assume these percentages hold for 2004
- · Therefore APUs will emit 0.03 tpd VOC and 0.38 tpd NOx in 2040
- · Assume all APU emissions occur at gate
- · Overall compliance with measure will be 80% (EPA mandated estimate)
- · From MWAA, approximately 70% of flights currently use gate services, but this is not accounted for in the airport inventories
- · Cost of this measure is cost to MWAA of O&M for additional 30% of flights to use preconditioned air

• From EPA, "Technical Data to Support FAA's Advisory Circular on Reducing Emissions from Commercial Aviation" (Sept 1995), O&M cost for operating a 400-Hz preconditioned air system at DCA was \$1.945 million at 44 gates.

· Washington Dulles has 120 gates

· Because Dulles has 2.7 as many gates as Reagan National, assume O&M costs are 2.7 times as high

Emission Reductions

Total VOC Reductions = 0.03 tons * 80% reduction Total VOC Reductions = 0.02 tons VOC

Total NOx Reductions = 0.38 tons * 80% reduction *Total NOx Reductions* = 0.30 tons NOx

Cost Effectiveness

```
Expenditure for All Aircraft= ($1,945,000 at National + 2.7* $1,945,000 at Dulles) * (100%/70%) increased usage
Expenditure for All Aircraft= $10,280,714
Expenditure for 30% of Aircraft= $10,280,714 * 30\%
Expenditure for 30% of Aircraft= $3,084,214
Annual Expenditure= $3,084,214
Cost-effectiveness ($/ton) = $3,084,214 / (tpd * 365 days per year)
Cost-effectiveness (NOx) = $27,796
Cost-effectiveness (VOC) = $352,079
```

Estimate cost if preconditioned air were used by every aircraft instead of the current 70%

Summary Analysis

This measure is not economically feasible because it exceeds the cost effectiveness threshold. Therefore it is not a RACM.

Measure T1: Light commercial equipment use restrictions

Measure Number: Measure Name:	T1 Light commercial equipment use restrictions	Description: Restrict use of light commercial equipment during expected ozone exceedance days
RACM Determination: Reason:	No Would not deliver benefits by May 2004	
Criterion Summary	Issues	

Year of First Benefits	2005+
Enforceable	No
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	Yes
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

· This is an episodic measure

 \cdot The region has averaged 6.3 Code Red Ozone Action days per year in the past three years.

• Use of light commercial equipment is vital to the operation of thousands of area businesses. Shutting these businesses down for 6 days of the summer could have serious financial impacts on the businesses.

• This equipment is not registered with the state, and there is no way to enforce this measure except by random inspections of local businesses. This is an extremely ineffective and time-intensive mechanism.

 \cdot Many operators of this equipment are low income, and this measure would put them out of work on Ozone Action Days.

• This measure would require regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

Summary Analysis

This measure is unenforceable from a practical viewpoint, could not become effective by May 2004 and could adversely affect the operators of the affected equipment. Therefore it is not a RACM.

Measure T2: Light commercial equipment retrofits

Measure Number: Measure Name:	T2 Light commer	cial equipment retrofits	Description: Require light commercial equipment to be retrofitted with emissions controls
RACM Determination:	No		
Reason:	Would not deliver benefits by May 2004		
Criterion Summary		Issues	
Year of First Benefits	2005+	· This measu	re would require state regulation. All three states require
Enforceable	Yes	well over 12 months to develop, pass, and require compliance with	
Economically Feasible	N/A	regulation.	
Technologically Feasible	Yes	 Enforcement of this measure would be difficult, as industrial equipment are not registered with the state 	nt of this measure would be difficult, as industrial
Adverse Impacts	No		re not registered with the state
Intensive or Costly Effort	No	 Many owne states do not 	rs would be unable to afford the cost of retrofits, and have the funds to pay for the equipment
Estimated Cost	N/A		
Estimated Reductions	N/A		
		-	

Summary Analysis

This measure could not be implemented fast enough to deliver benefits in May 2004. Additionally, enforcement is practically impossible and the measure could impose a severe economic hardship on equipment owners

Measure T3: Require low-NOx fuel for light commercial equipment

Measure Number: Measure Name:	T3 Require low-NOx fuel for light commercial equipment	Description: Require light commercial equipment to use low-NOx fuel during ozone season, if applicable
RACM Determination: Reason:	No No creditable emission reductions	

Criterion Summary

Year of First Benefits	2004
Enforceable	Yes
Economically Feasible	N/A
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

Issues

• This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

• This measure could be implemented by 2004 on a voluntary basis only by state and local governments.

Only one fuel additive, PuriNOx, is certified to produce NOx reductions at this time

Because of budget situations, operators would not receive subsidies towards the higher cost of the low-NOx fuel

 People who live on the edge of the nonattainment area and would be incentivized to drive to the next county to get cheaper fuel that is not low-NOx

Assumptions

· Evaluate regional fleet of light commercial equipment to determine whether this measure would reduce emissions

· Measure will have 80% compliance rate

· From 2005 controlled non-road inventory in severe area SIP, emissions from diesel light commercial equipment will be:

· 0.63 tons NOx

0.09 tons VOC

· As in non-road inventory, use population as proxy for growth in light commercial equipment

· All light commercial equipment is less than 100 hp

· From regional cooperative forecasts, population will grow 1.2% from 2004-2005

· From EPA draft report on PuriNOx, for nonroad equipment 0-100 HP emissions levels:

NOx decreases 19.3%

· VOC increases 99.4%

 \cdot For diesel vehicles, VOC = HC * 1.053

Therefore VOC increases 104.7%

• From a comparison of the 2002 adjusted inventories in the Rate of Progress calculations, the approximate tradeoff ratio for the region for rate of progress purposes is:

· 1.8 tpd NOx : 1 tpd VOC

Emission Reductions

Daily Reductions (NOx) = (0.63 tpd * 19.3% reduction * 80% compliance) / 1.012 adjust to 2004 Daily Reductions (NOx) = 0.10 tpd NOx

Daily Increase (VOC) = (0.09 tpd * 104.7% increase * 80% compliance) / 1.012 adjust to 2004 Daily Increase (VOC) = 0.07 tpd VOC Net Decrease (NOx-VOC) = 0.10 tpd NOx - (0.07 tpd VOC * 1.8 tpd NOx per VOC) Net Decrease (NOx-VOC) = -0.038 tpd NOx

Therefore this measure would increase emissions.

Summary Analysis

This measure does not reduce net emissions. Therefore it is not a control measure.

Measure T4: Idling restrictions for light commercial equipment

Measure Number: Measure Name:	T4 Idling restrictions for light commercial equipment	Description: Limit idling by light commercial equipment
RACM Determination: Reason:	No No creditable emission reductions	

Criterion Summary

Year of First Benefits	2004+
Enforceable	No
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	0

Issues

 \cdot Industrial equipment is not left in idle for safety reasons. Also, owners are cost-incentivized to minimize gasoline consumption. Therefore, estimated benefits from this measure are zero.

 \cdot Enforcement of this measure would be nearly impossible.

 \cdot This measure would require state regulation. All three states require well over 12 months to develop, pass, and require compliance with a regulation.

Summary Analysis

This measure would not reduce emissions. Therefore it is not a RACM.

Measure T5: Low-emissions light commercial equipment

Measure Number: Measure Name:	T5 Low-emissions lig equipment	ght commercial	Description: Require sale of low-emissions light commercial equipment in region
RACM Determination:	No		
Reason:	Would not deliver benefits by May 2004		
Criterion Summary		Issues	
Year of First Benefits	2005+	· This meas	ure would require state regulation. All three states require
Enforceable	Yes	well over 12	months to develop, pass, and require compliance with a

regulation.

 Because there are no regional standards for low-emissions light commercial equipment, rule development would be time consuming.
 A long compliance period would be required to permit manufacturers to develop new products or select retrofits.

Summary Analysis

Estimated Reductions

Economically Feasible

Adverse Impacts

Estimated Cost

Technologically Feasible

Intensive or Costly Effort

This measure would not deliver benefits by May 2004. Therefore it is not a RACM.

N/A

Yes

No

No

N/A N/A

Measure T6: Preference for low-emission light commercial equipment

Description:

Т6
Preference for low-emission light commercial equipment
No
Not economically feasible

Criterion Summary

Year of First Benefits	2004	
Enforceable	Yes	
Economically Feasible	No	
Technologically Feasible	Yes	
Adverse Impacts	No	
Intensive or Costly Effort	No	
Estimated Cost	N/A	

Issues

This measure requires an MOU with state and local governments in the nonattainment area

In bids for government contracts, award extra points to

bidders using low-emission light commercial equipment

Contract preferences could advantage larger companies, which could more easily afford capital investments

Benefits from this program will increase as old contracts expire.
Benefits could eventually reach 2 tpd VOC

Contractors could reduce emissions by using low-NOx, retrofitted or electric equipment

Assumptions

· From 2005 draft non-road inventory emissions from industrial equipment are:

N/A

· 3.20 tpd NOx

Estimated Reductions

· 1.53 tpd VOC

· As in non-road inventory, use employment as proxy for growth in industrial equipment

- · From regional cooperative forecasts, employment will grow 1.3% from 2004-2005
- · Assume local government use or contracts account for 5% of all use of this equipment
- \cdot Of all contracts put out to bid, 10% will be awarded to low-emission vendors
- \cdot Low-emission vendors will reduce VOC emissions by 50%

· For diesel vehicles, VOC = HC * 1.053

- Therefore VOC emissions would be reduced by 52.7%
- \cdot Incremental cost of low-emission contracts will be zero
- Monitoring program will be required @ \$200,000 per year
- · Equipment will operate 312 days per year

. This analysis overestimates benefits and underestimates cost by assuming that all contracts are awarded annually

Emission Reductions

Total VOC Reduced = 1.53 tpd * 5% eligible * 10% awarded * 52.7% reduction / 1.013 adjustment to 2004 Total VOC Reduced = 0.004 tpd VOC

Cost Effectiveness

Annual Expenditure= \$ 200,000

Cost-effectiveness (\$/ton) = \$200,000 / (tpd * 312 days)

Cost-effectiveness (VOC) = \$ 161,069

Summary Analysis

This measure is not economically feasible because it exceeds the cost effectiveness threshold. Therefore it is not a RACM.

Measure X1: EPA Tier II Emissions Standards for Large SI Engines

Measure Number: Measure Name:	X1 EPA Tier II Emissions Standards for Large SI Engines	Description: Adopt EPA Tier II standards before they become effective in 2007	
RACM Determination:	No		
Reason:	Would not deliver benefits by May 2004		

Criterion Summary

159	sues	

regulation.

 \cdot This measure would require regulation. All three states require well over 12 months to develop, pass, and require compliance with a

Year of First Benefits	2007
Enforceable	Yes
Economically Feasible	Yes
Technologically Feasible	Yes
Adverse Impacts	No
Intensive or Costly Effort	No

Estimated Cost	N/A
Estimated Reductions	N/A

Summary Analysis

This measure would not deliver benefits by May 2004. Therefore it is not a RACM.

Measure X2: Biodiesel for Off-Road Equipment

Measure Number:	X2		Description:
Measure Name:	Biodiesel for (Off-Road Equipment	Require all off-road diesel equipment to burn biodiesel during ozone season
RACM Determination:	No		
Reason:	Not technologically feasible		
Criterion Summary		Issues	
Year of First Benefits	N/A	 EPA has not certified biodiesel to provide emission reductions for off- road vehicles. Therefore this measure is not technologically feasible. 	
Enforceable	Yes		
Economically Feasible	N/A		
Technologically Feasible	No		
Adverse Impacts	No		
Intensive or Costly Effort	No		
Estimated Cost	N/A		
Estimated Reductions	N/A		

Summary Analysis

This measure is not technologically feasible. Therefore it is not a RACM.