Appendix G-12: A Summary of the 2002 Base Case and 2009 Future Base Case CMAQ Runs

## A Summary of the 2002 Base Case and 2009 Future Base Case CMAQ Runs

March 15, 2007

Jeffrey Stehr, Charles Piety, Dale Allen, Patricia Castellanos\*

Department of Atmospheric and Oceanic Sciences \*Department of Chemical and Biomolecular Engineering University of Maryland College Park, MD

## 1. Why is this analysis important?

This is a discussion of the basic attainment run for Baltimore with no adjustments to account for any issues CMAQ has in predicting ozone changes. By this conservative measure, the Edgewood monitor has the high 2009 design value of 85 ppbv. This strongly suggests that Baltimore should be firmly in attainment of the 8-hour standard in 2009.

## 2. What questions are answered by this analysis?

Does CMAQ predict attainment of the 8-hour standard by Baltimore in 2009?

## 3. What are the key take-away messages of this analysis?

CMAQ, even with its demonstrated underprediction of ozone in response to changes in emissions, indicates that Baltimore will attain the 8-hour ozone standard in 2009.

# 4. What conclusions are reached in this analysis with respect to Maryland's attainment demonstration?

All of Maryland will attain the 8-hour ozone standard by 2009.

#### Abstract

The outputs from the Community Multiscale Air Quality (CMAQ) model were used to calculate ozone concentrations for a base year in 2002 and a future year in 2009. Multiple analyses and sensitivity tests in this SIP (see Weight of Evidence Appendices, Appendix G-9 in particular) show that CMAQ is less responsive than it should be to changes in emissions. Be that as it may, in this appendix the outputs from CMAQ were evaluated with no consideration for any correction due to its demonstrated lack of response. Even by taking the outputs straight from CMAQ, the Baltimore nonattainment area should attain the 8-hour standard for ozone in 2009, with only one monitor having a future year design value as high as 85 ppbv. All other monitors are projected to fall well below 85 ppbv. As discussed in detail in Appendix G-9, CMAQ's underprediction of change means that Baltimore area ozone is likely to be well below the 8-hour standard in 2009. Results are discussed in the context of nearby nonattainment areas. The outlook is nearly as favorable for Washington, D.C., with two monitors projected to be one ppbv higher than the standard. The Philadelphia nonattainment area would appear to have a problem at first glance, with somewhat high future ozone concentrations predicted, but the CMAQ model's underprediction of change likely means that even the highest monitor should come into attainment. As discussed in Appendix G-9, by 2012, all monitors in the Northeast are predicted by CMAQ to be nearly in attainment. Given that CMAQ underpredicts changes in ozone, in 2012, the entire Northeast and Mid-Atlantic should be well below the 8-hour standard for ozone.

#### Introduction

In support of the Maryland attainment demonstration, the Community Multiscale Air Quality model (CMAQ) version 4.5 was used to model changes in Maryland's air quality for all the regulations that are already on the books or on the way (OTB/OTW) in 2009 and another scenario modeling the impact of those regulations plus an additional number of new local measures that go beyond on the books or on the way (Beyond OTB/OTW). The modeling is all performed in a relative sense, so that only fractional changes are calculated from the model. Those changes are then applied to base year design values for 8-hour ozone to generate future year predictions of ozone concentrations. 2002 was chosen as a base year for these calculations because it had a number of different types of ozone episodes, and had 38 days in which the 8-hour ozone concentration was greater than or equal to 85 ppbv. Therefore, in a future year, relatively few ozone episodes are expected to occur that are fundamentally different from those that occurred in 2002. The representativeness of 2002 as a base year was examined and found satisfactory [Stoeckenius and Kemball-Cook, 2005]. 2002 was also a useful year to model because it is a year in which emissions inventories must be generated and submitted to EPA as part of the normal three-year cycle.

#### Methods

CMAQ version 4.5.1 was used to simulate air quality for the entire year of 2002. Version 3.6 of Mesoscale Model 5 (MM5, the Penn State/NCAR mesoscale meteorological model) was used to simulate meteorology for the entire year. Four dimensional data assimilation was used to nudge MM5 back to observations continuously, so the fields generated using this technique do not suffer from the limitations of a weather forecast, but are in essence a reanalysis of weather patterns. Evaluation of the meteorological outputs of the MM5 model showed that they did a good, though, as expected, not perfect job of reproducing the meteorological conditions in 2002 [Zhang and Zheng, 2004; Hao, 2005; He, 2005; Zhang and Zhang, 2005; NYDEC, 2007a.] For example, temperature was very well correlated with National Weather Service observations, having a correlation between model and measurements that exceeded 0.9, with most above 0.96, at nearly all stations across the entire eastern United States for the entire summer of 2002. Relative humidity performance also very good, though not as outstanding as that for temperature, with correlation coefficients between 0.8 and 0.9, and wind speeds were correlated with observations, showing correlation coefficients between 0.7 and 0.8. Precipitation patterns were generally better reproduced in May and September than in June, July and August, owing to the generally convective nature of precipitation in the summer. The simulations also captured several incidences of the low-level jet.

The emissions inventories were put together by the states and the Regional Planning Organizations (RPOs). Inventories used in these simulations were put together by MANE-VU (Mid-Atlantic Northeast Visibility Union), VISTAS (Visibility Improvement State and Tribal Association of the Southeast), CENRAP (Central Regional Air Planning Association), and Midwest RPO (Midwest Regional Planning Organization, run by LADCO, Lake Michigan Air Directors Consortium). Point source emissions for these runs were projected to future years using IPM (Integrated Planning Model) run version 2.1.9 [EPA, 2005]. Emissions inventories are generally not in a format that can be used by CMAQ, because they are annual compilations of emissions on a county-by-county basis or on an even larger scale. As such, those inventories must be processed to generate the gridded, three-dimensional hourly emissions required by CMAQ. The processing is carried out using the SMOKE (Sparse Matrix Operator Kernel Emissions) emissions processor, which allocates emissions spatially and temporally, and puts them into a format that is acceptable to CMAQ [NYDEC 2007b, 2007c].

The simulations discussed in this appendix were all performed on the innermost, 12 km grid (Figure 1). This grid is nested inside a coarser continent-wide domain of 36 km resolution that extends to the West Coast of the U.S. The purpose of this larger domain is to generate reasonable background conditions to set up the simulations in the inner 12 km domain. No control strategies were applied to the outermost domain, so the boundary conditions reaching the inner 12 km domain were held constant. The boundary conditions for the 36 km domain were obtained from a global air quality model, as discussed elsewhere. As was the case with the 36 km domain, the global simulation was run only once, and no changes were assumed in any of its parameters [NYDEC 2007d].

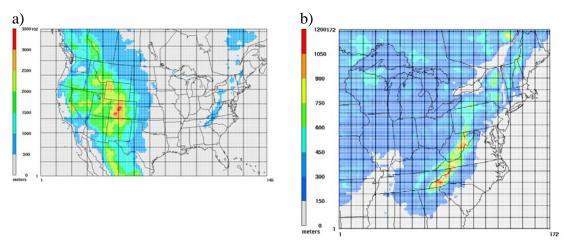



Figure 1. a) 36km and b) 12 km domains used in the CMAQ simulations run to support this SIP.

Further details of the setup of MM5, CMAQ, SMOKE, and the emissions inventories employed are available in other reports and the main body of this SIP [NYDEC, 2007a-h].

The CMAQ model's base case was evaluated against observations (see Appendix G-8, G-1, and G-9, NYDEC [2007e] and the main body of this SIP), and the performance meets EPA guidance for photochemical modeling. As noted in Appendix G-9, these performance goals have important shortcomings, such as difficulty in assessing the model's ability to capture ozone transport or respond to changes in emissions, which affect the results.

CMAQ was not used to predict absolute concentrations. Instead, relative changes between a base year and a future year were calculated from the model's output [NYDEC 2007g]. CMAQ produces numerical predictions for future year ozone levels, but these predictions suffer from errors associated with having to get every last detail of the meteorology and emissions correct. By using the relative predictions from the model, the issues instead become representativeness of the 2002 meteorology and the sensitivity of the photochemical model to changes in emissions. Using relative predictions from CMAQ eliminates or reduces many of the errors that plague forecasting efforts of all kinds. The relative (percentage or fractional) changes calculated between two CMAQ simulations (for a base year and a future year) are then multiplied by the base year design values to produce predictions of future year design values. Relative changes are calculated for high ozone days as projected in the model, following EPA guidance. For each monitor, future year modeled daily peak 8-hour ozone is checked to see if it exceeds 85 ppbv. If ten or more days in the future year feature modeled ozone in excess of 85 ppbv, then all those days are used to calculate the ratio between future and base year. If, as is quite often the case, there are not enough such days, then the threshold is lowered from 85 ppbv in 1 ppbv increments to 70 ppbv. If the threshold is lowered to 70 ppbv and ten days still do not exceed the threshold, then as few as five days are permissible. If there are still not enough days, meaning that the site is projected to be quite clean, then a future year design value is not calculated.

Future year simulations have been performed for 2009 and for 2012 and 2018 [NYDEC, 2007f], which show impressively clean conditions throughout the Northeast. By 2012, the entire Northeast falls within or below the "weight of evidence" range (83-87 ppbv), with the high monitors at 86 ppbv, and by 2018, CMAQ predicts compliance throughout the Northeast. By 2018, the highest monitor in the Northeast is below 83 ppbv (Middleport, NY, 82.8 ppbv).

#### Results

As discussed in other appendices of Chapter 11, CMAQ is an excellent tool, but it should be used with an understanding of its capabilities and shortcomings. In particular, its response to emissions changes (see Appendix G-9) suggests that modeled results should not be taken as the exact design values to be expected in 2009. These shortcomings are discussed in other appendices of Chapter 11, and will not be examined here. Instead, the results straight from CMAQ (using the relative reduction factor approach) are presented here in Table 1 for the Baltimore nonattainment area. Results from non-Baltimore monitoring locations are presented in Tables 2 and 3 for Washington, D.C. and Philadelphia, respectively to provide perspective on regional air quality.

The results from two scenarios are presented in this section: a straightforward 2009 on-the-books and on-the-way (OTB/OTW) simulation and a 2009 Beyond OTB/OTW simulation that includes the benefits from additional local measures.

| Table 1. Current and future year design values as calculated by CMAQ at monitors |
|----------------------------------------------------------------------------------|
| throughout the Baltimore nonattainment area. CMAQ predictions for 2009           |
| have been truncated to remove the decimal point.                                 |

| have been traneated to remove the decimal point. |           |             |         |             |  |
|--------------------------------------------------|-----------|-------------|---------|-------------|--|
|                                                  | Site      | 2002 Design | 2009    | 2009 Beyond |  |
| Site Name                                        | Number    | Value       | OTB/OTW | OTB/OTW     |  |
| Davidsonville<br>Anne Arundel Co., MD            | 240030014 | 98.0        | 84      | 84          |  |

| Ft. Meade<br>Anne Arundel Co., MD  | 240030019 | 97.0  | 84 | 84 |
|------------------------------------|-----------|-------|----|----|
| Padonia<br>Baltimore Co., MD       | 240051007 | 88.7  | 77 | 77 |
| Essex<br>Baltimore Co., MD         | 240053001 | 91.3  | 80 | 80 |
| South Carroll<br>Baltimore Co., MD | 240130001 | 88.7  | 75 | 75 |
| Edgewood<br>Harford Co., MD        | 240251001 | 100.3 | 85 | 85 |
| Aldino<br>Harford Co., MD          | 240290003 | 97.0  | 82 | 82 |

Table 2. Current and future year design values as calculated by CMAQ at monitors throughout the Washington, D.C. nonattainment area. CMAQ predictions for 2009 have been truncated to remove the decimal point.

| Site Name,                                          | Site<br>Number | 2002 Design<br>Value | 2009<br>OTB/OTW | 2009 Beyond<br>OTB/OTW |
|-----------------------------------------------------|----------------|----------------------|-----------------|------------------------|
| County and State<br>Takoma Park<br>Washington, D.C. | 110010025      | 88.7                 | 79              | 79                     |
| River Terrace<br>Washington, D.C.                   | 110010041      | 89                   | 82              | 82                     |
| McMillan Reservoir<br>Washington, D.C.              | 110010043      | 92.7                 | 79              | 79                     |
| Southern Maryland<br>Charles Co., MD                | 240170010      | 93                   | 76              | 75                     |
| Frederick Airport<br>Frederick Co., MD              | 240210037      | 87.3                 | 74              | 73                     |
| Rockville<br>Montgomery Co., MD                     | 240313001      | 86.7                 | 76              | 76                     |
| Greenbelt*<br>Prince George's Co., MD               | 240330002      | 94                   | 82              | 81                     |
| Prince George's Eq. Ctr.<br>Prince George's Co., MD | 240338003      | 94                   | 81              | 81                     |
| Arlington<br>Arlington Co., VA                      | 510130020      | 96.7                 | 86              | 86                     |
| Chantilly<br>Fairfax Co., VA                        | 510590005      | 87                   | 75              | 75                     |

| Mt Vernon<br>Fairfax Co., VA             | 510590018 | 96.7 | 86 | 86 |
|------------------------------------------|-----------|------|----|----|
| Lee Park<br>Fairfax Co., VA              | 510590030 | 95   | 84 | 84 |
| Annandale<br>Fairfax Co., VA             | 510591005 | 94   | 83 | 83 |
| McLean<br>Fairfax Co., VA                | 510595001 | 88   | 77 | 77 |
| Frederick<br>Frederick Co., VA           | 510690010 | 82.7 | 72 | 71 |
| Loudon<br>Loudon Co., VA                 | 511071005 | 90   | 78 | 78 |
| Prince William<br>Prince William Co., VA | 511530009 | 85   | 74 | 74 |
| Alexandria City<br>Alexandria Co., VA    | 515100009 | 90   | 80 | 80 |

\*Monitor discontinued in 2003 due to loss of permission to use location.

Table 3. Current and future year design values as calculated by CMAQ at monitors throughout the Philadelphia nonattainment area. CMAQ predictions for 2009 have been truncated to remove the decimal point.

| Site Name,                             | Site      | 2002 Design | 2009    | 2009 Beyond |
|----------------------------------------|-----------|-------------|---------|-------------|
| County and State                       | Number    | Value       | OTB/OTW | OTB/OTW     |
| Fair Hill<br>Cecil Co., MD             | 240150003 | 97.7        | 81      | 81          |
| Brandywine Creek<br>New Castle Co., DE | 100031010 | 92.7        | 81      | 81          |
| Bellefonte<br>New Castle Co., DE       | 100031013 | 90.3        | 79      | 78          |
| Killens Pond<br>Kent Co., DE           | 100010002 | 88.3        | 78      | 78          |
| Lewes<br>New Castle Co., DE            | 100051003 | 87.0        | 77      | 77          |
| Lums Pond<br>New Castle Co., DE        | 100031007 | 94.5        | 79      | 79          |
| Seaford<br>Sussex Co., DE              | 100051002 | 90.0        | 76      | 75          |

| Colliers Mills<br>Ocean Co., NJ           | 340290006 | 106.0 | 92 | 92 |
|-------------------------------------------|-----------|-------|----|----|
| Rider<br>Mercer Co., NJ                   | 340210005 | 97.0  | 86 | 86 |
| Ancora State Hospital<br>Camden Co., NJ   | 340071001 | 100.7 | 87 | 87 |
| Camden<br>Camden Co., NJ                  | 340070003 | 98.3  | 88 | 88 |
| Clarksboro<br>Gloucester Co., NJ          | 340155001 | 98.3  | 88 | 88 |
| Millville<br>Cumberland Co., NJ           | 340110007 | 95.7  | 81 | 81 |
| Nacote Creek<br>Atlantic Co., NJ          | 340010005 | 89.0  | 77 | 77 |
| Bristol<br>Bucks Co., PA                  | 420170012 | 99.0  | 88 | 88 |
| West Chester<br>Chester Co., PA           | 420290050 | 95.0  | 82 | 82 |
| New Garden<br>Chester Co., PA             | 420290100 | 94.7  | 79 | 79 |
| Chester<br>Delaware Co., PA               | 420450002 | 91.7  | 81 | 81 |
| Norristown<br>Montgomery Co., PA          | 420910013 | 92.3  | 81 | 81 |
| Elmwood<br>Philadelphia Co., PA           | 421010136 | 83.0  | 75 | 75 |
| Lab<br>Philadelphia Co., PA               | 421010004 | 71.3  | 64 | 64 |
| Roxborough<br>Philadelphia Co., PA        | 421010014 | 90.7  | 82 | 82 |
| Northeast Airport<br>Philadelphia Co., PA | 421010024 | 96.7  | 87 | 87 |

Throughout the Baltimore nonattainment area, the picture for future ozone in 2009 is quite positive, even using projections directly from the CMAQ model. The highest monitor in the region is the Edgewood monitor, which is not surprising, since its 2002 design value was also the highest in the Baltimore nonattainment area. Edgewood is in a somewhat unusual location, being right near a body of water that is not represented in the MM5 meteorological model, and consequently not represented in CMAQ. This is

a straightforward issue of model resolution; a 12 km grid cell cannot reproduce phenomena on scales smaller than that. Therefore, the things that make Edgewood an unusual monitor in reality (see Appendix G-11) are likely not well represented in CMAQ. CMAQ predicts that Edgewood will become remarkably cleaner in 2009. Regardless, as discussed in Appendix G-10 and G-9, future ozone values at all Baltimore monitors will likely be considerably lower than those presented here. In nearby Washington, D.C., the ozone picture is almost as favorable, with CMAQ predicting only two monitors in Northern Virginia at all higher than the 85 ppv standard, at 86 ppbv. Downwind of Philadelphia lies the challenging Colliers Mills monitor, which CMAQ predicts at 92 ppbv.

The Beyond OTB/OTW simulation also presented in Tables 1, 2, and 3 shows that because Federal programs like CAIR, heavy duty diesels, and Tier II vehicle standards take care of the biggest source categories, relatively little NO<sub>x</sub> remains to be addressed in the inventory. This simulation addresses the additional impacts of several local measures that have been added to the larger Federal programs. More importantly, what NO<sub>x</sub> remains is divided among many diverse categories. This is a reflection of the nature of sources throughout the Northeast, namely that the bulk of the NO<sub>x</sub> emissions come from point sources and mobile sources (off road and on road). As seen in the table below, the additional local programs net roughly one ppbv additional ozone reduction. Most of the benefits of this suite of local programs are hidden by the rounding convention used in presenting the results. These programs are likely to have benefits outside of ozone reductions, so their contribution is not to be minimized, but purely from an ozone standpoint, their contributions are smaller than those from larger, federally mandated programs. The telecommuting scenario discussed in Appendix G-14 is not included in any scenario modeled in this appendix.

The emissions changes from the OTB/OTW and Beyond OTB/OTW scenarios are given below in Tables 4a and 4b [MACTEC, 2007a]. Details of the development of these emissions inventories are given in MACTEC [2007a, b]. EGU (Electrical Generating Unit) point source inventories were projected to future years using the Integrated Planning Model (IPM) [EPA, 2005].

|                 |         |           | 2009      | 2009      |
|-----------------|---------|-----------|-----------|-----------|
| Pollutant       | Sector  | 2002      | OTB/OTW   | BOTB/OTW  |
| CO              | Area    | 1,326,796 | 1,283,959 | 1,283,959 |
|                 | NonEGU  | 295,577   | 328,546   | 328,546   |
|                 | Nonroad | 4,553,124 | 4,969,925 | 4,969,925 |
|                 |         | 6,175,497 | 6,582,430 | 6,582,430 |
| NH <sub>3</sub> | Area    | 249,795   | 294,934   | 294,934   |
|                 | NonEGU  | 3,916     | 4,301     | 4,301     |
|                 | Nonroad | 287       | 317       | 317       |
|                 |         | 253,998   | 299,552   | 299,552   |
| $NO_x$          | Area    | 265,400   | 278,038   | 265,925   |
|                 | NonEGU  | 207,048   | 210,522   | 185,658   |
|                 | Nonroad | 431,631   | 354,850   | 354,850   |

Table 4a. Summary of MANE-VU Area, Non-EGU, and Non-road Emission Inventories for 2009 by Pollutant, Sector, and Year (tons per year)

|                 |         | 904,079   | 843,410   | 806,433   |
|-----------------|---------|-----------|-----------|-----------|
| PM10            | Area    | 1,452,309 | 1,527,586 | 1,527,586 |
|                 | NonEGU  | 51,280    | 55,869    | 55,869    |
|                 | Nonroad | 40,114    | 34,453    | 34,453    |
|                 |         | 1,543,703 | 1,617,908 | 1,617,908 |
| PM2.5           | Area    | 332,521   | 340,049   | 340,049   |
|                 | NonEGU  | 33,077    | 36,497    | 36,497    |
|                 | Nonroad | 36,084    | 30,791    | 30,791    |
|                 |         | 401,682   | 407,337   | 407,337   |
| SO <sub>2</sub> | Area    | 286,921   | 304,018   | 304,018   |
|                 | NonEGU  | 264,377   | 249,658   | 249,658   |
|                 | Nonroad | 57,257    | 15,651    | 15,651    |
|                 |         | 608,555   | 569,327   | 569,327   |
| VOC             | Area    | 1,528,269 | 1,398,982 | 1,363,278 |
|                 | NonEGU  | 91,278    | 92,279    | 91,718    |
|                 | Nonroad | 572,751   | 460,922   | 460,922   |
|                 |         | 2,192,298 | 1,952,183 | 1,915,918 |

Table 4b. Summary of MANE-VU Area, Non-EGU, and Nonroad Emission Inventories for 2012 and 2018 by Pollutant, Sector, and Year (tons per year)

|                 |         | 2012      | 2012      | 2018      | 2018      |
|-----------------|---------|-----------|-----------|-----------|-----------|
| Pollutant       | Sector  | OTB/OTW   | BOTB/OTW  | OTB/OTW   | BOTB/OTW  |
| CO              | Area    | 1,260,627 | 1,260,627 | 1,211,727 | 1,211,727 |
|                 | NonEGU  | 346,090   | 346,090   | 412,723   | 412,723   |
|                 | Nonroad | 5,099,538 | 5,099,538 | 5,401,353 | 5,401,353 |
|                 |         | 6,706,255 | 6,706,255 | 7,025,803 | 7,025,803 |
| NH <sub>3</sub> | Area    | 312,419   | 312,419   | 341,746   | 341,746   |
|                 | NonEGU  | 4,448     | 4,448     | 4,986     | 4,986     |
|                 | Nonroad | 337       | 337       | 369       | 369       |
|                 |         | 317,204   | 317,204   | 347,101   | 347,101   |
| NO <sub>x</sub> | Area    | 281,659   | 261,057   | 284,535   | 263,030   |
|                 | NonEGU  | 218,137   | 184,527   | 237,802   | 199,732   |
|                 | Nonroad | 321,935   | 321,935   | 271,185   | 271,185   |
|                 |         | 821,731   | 767,519   | 793,522   | 733,947   |
| PM10            | Area    | 1,556,316 | 1,550,400 | 1,614,476 | 1,607,602 |
|                 | NonEGU  | 57,848    | 57,624    | 63,757    | 63,524    |
|                 | Nonroad | 32,445    | 32,445    | 27,059    | 27,059    |
|                 |         | 1,646,609 | 1,640,469 | 1,705,292 | 1,698,185 |
| PM2.5           | Area    | 341,875   | 336,779   | 345,419   | 339,461   |
|                 | NonEGU  | 37,625    | 37,444    | 41,220    | 41,029    |
|                 | Nonroad | 28,922    | 28,922    | 23,938    | 23,938    |
|                 |         | 408,422   | 403,145   | 410,577   | 404,428   |
| $SO_2$          | Area    | 305,339   | 202,058   | 305,437   | 190,43    |
|                 | NonEGU  | 255,596   | 253,638   | 270,433   | 268,330   |

|     | Nonroad | 8,731     | 8,731     | 8,643     | 8,643     |
|-----|---------|-----------|-----------|-----------|-----------|
|     |         | 569,666   | 464,427   | 584,513   | 467,404   |
| VOC | Area    | 1,382,803 | 1,339,851 | 1,387,882 | 1,334,039 |
|     | NonEGU  | 96,887    | 96,260    | 110,524   | 109,762   |
|     | Nonroad | 424,257   | 424,257   | 380,080   | 380,080   |
|     |         | 1,903,947 | 1,860,368 | 1,878,486 | 1,823,881 |

Controls for different sectors of the OTB/OTW scenario were implemented for each source category. Emissions from all source categories were grown using an economic and activity model as documented in [MACTEC, 2007a] except for aircraft, commercial marine, and locomotive sources. For aircraft, commercial marine and locomotive sources, throughout all the OTC except Maryland, emissions were interpolated from CAIR inventories for 2001, 2010, 2015 and 2020 to the MANE-VU years of 2009, 2012 and 2018. Maryland emissions were developed using the EGAS economic model and federal control programs. Other non-road emissions were projected using the NONROAD model, as incorporated into the new NMIM model (National Mobile Inventory Model). Mobile emissions were predicted using the MOBILE part of that model. For some categories, such as EGUs and mobile sources, the reductions come largely from big federal programs such as the NOx SIP Call. For Non-EGU point sources and area sources, the control measures are listed below. EGU controls were similar, but with the exclusion of controls that do not apply to EGUs. Federal Tier I and Tier II motor vehicle standards were used for mobile sources, and the suite of federal programs were applied to non-road sources such as railroads, airplanes, lawn and garden equipment, and airport maintenance vehicles as documented in [MACTEC, 2007a].

Non-EGU Point Source Control Measures (OTB/OTW)

NOx SIP Call Phase I (NOx Budget Trading Program) NOx SIP Call Phase II NOx RACT in 1-hour Ozone SIPs NOx OTC 2001 Model Rule for ICI Boilers 2-, 4-, 7-, and 10-year MACT Standards Combustion Turbine and RICE MACT Industrial Boiler/Process Heater MACT Refinery Enforcement Initiative Source Shutdowns

Area Source Control Measures

OTC VOC Model Rules Federal On-board Vapor Recovery New Jersey Post-2002 Area Source Controls Residential Woodstove NSPS

Implementation of controls across different sectors for the BOTB/OTW scenario varied by state and year. The impacts and timing of those controls, are detailed in MACTEC [2007a, b]. Briefly, the areas considered for controls in the BOTB/OTW scenario are:

Consumer products Portable fuel containers Adhesives and sealants application Diesel engine chip reflash Cutback and emulsified asphalt paving Asphalt production plants Cement kilns Glass furnaces Industrial, commercial, and institutional (ICI) boilers Regional fuels Electrical generating units (EGUs)

By 2012, ozone levels are greatly reduced, with the effects of CAIR and motor vehicle fleet turnover being seen. The highest design values are all 86 ppb, shared at the Colliers Mills monitor and two others in the New York City nonattainment area (Table 5). By 2018, all ozone monitors throughout the OTR are projected by CMAQ to be well into attainment, with none higher than 83 ppbv (Table 6).

| CMAQ.            |                      |             |        |        |
|------------------|----------------------|-------------|--------|--------|
|                  |                      |             | 2002   | 2012   |
|                  |                      |             | Design | Design |
| County           | Monitor              | Site Number | Value  | Value  |
| Fairfield        | Greenwich            | 90010017    | 95.7   | 83     |
| Fairfield        | Danbury              | 90011123    | 95.7   | 81     |
| Fairfield        | Stratford            | 90013007    | 98.3   | 86     |
| Fairfield        | Westport             | 90019003    | 94.0   | 81     |
| Hartford         | E. Hartford          | 90031003    | 88.0   | 72     |
| Litchfield       | Cornwall             | 90050005    | 89.0   | 72     |
| Middlesex        | Middletown           | 90070007    | 95.7   | 80     |
| New Haven        | Madison              | 90093002    | 98.3   | 83     |
| New Haven        | Hamden               | 90099005    | 93.3   | 81     |
| New London       | Groton               | 90110008    | 90.0   | 74     |
| Tolland          | Stafford             | 90131001    | 92.3   | 75     |
| Kent             | Killens Pond         | 100010002   | 88.3   | 74     |
| New Castle       | Lums Pond            | 100031007   | 94.5   | 74     |
| New Castle       | Brandywine           | 100031010   | 92.7   | 76     |
| New Castle       | Bellefonte           | 100031013   | 90.3   | 74     |
| Sussex           | Seaford              | 100051002   | 90.0   | 70     |
| Sussex           | Lewes                | 100051003   | 87.0   | 74     |
| Washington, D.C. | Takoma Park          | 110010025   | 88.7   | 73     |
| Washington, D.C. | <b>River Terrace</b> | 110010041   | 89.0   | 73     |
| Washington, D.C. | McMillan Res         | 110010043   | 92.7   | 76     |
| Aroostook        | Ashland              | 230038001   | 64.0   |        |
| Cumberland       | Cape Elizabeth       | 230052003   | 84.3   | 69     |
| Hancock          | ANP Cadillac         | 230090102   | 91.7   | 75     |
|                  |                      |             |        |        |

| Table 5. Design Values for 2002 and projected design values for 2012 as calculated | by |
|------------------------------------------------------------------------------------|----|
| CMAQ.                                                                              |    |

| Hancock                  | ANP McFarland       | 230090103              | 83.7         | 68       |
|--------------------------|---------------------|------------------------|--------------|----------|
| Hancock                  | Castine             | 230090301              | 75.0         | 62       |
| Kennebec                 | Gardiner Pray       | 230112005              | 78.0         | 63       |
| Knox                     | Port Clyde          | 230130004              | 83.7         | 68       |
| Oxford                   | North Lovell        | 230173001              | 60.7         |          |
| Penobscot                | Howland             | 230194007              | 66.7         |          |
| Penobscot                | Holden Rider        | 230194008              | 79.0         |          |
| York                     | West Buxton         | 230310038              | 75.0         | 60       |
| York                     | Kennebunkport       | 230312002              | 88.3         | 72       |
| York                     | Kittery             | 230313002              | 85.3         | 69       |
| Anne Arundel             | Davidsonville       | 240030014              | 98.0         | 78       |
| Anne Arundel             | Ft. Meade           | 240030019              | 97.0         | 78       |
| Baltimore                | Padonia             | 240051007              | 88.7         | 72       |
| Baltimore                | Essex               | 240053001              | 91.3         | 76       |
| Carroll                  | South Carroll       | 240130001              | 88.7         | 69       |
| Cecil                    | Fair Hill           | 240150003              | 97.7         | 75       |
| Charles                  | S Maryland          | 240130003              | 93.0         | 70       |
| Frederick                | Frederick Airp      | 240210037              | 87.3         | 68       |
| Harford                  | Edgewood            | 2402510037             | 100.3        | 80       |
| Harford                  | Aldino              | 240259001              | 97.0         | 76       |
| Kent                     | Millington          | 240290002              | 95.3         | 70<br>74 |
| Montgomery               | Rockville           | 24020002               | 86.7         | 74       |
| Prince Georges           | Greenbelt           | 240313001              | 94.0         | 76       |
| Prince Georges           |                     | 240338002              | 94.0<br>94.0 | 70<br>76 |
| -                        | PG Co. Eques.       | 240338003              | 85.3         | 70<br>67 |
| Washington<br>Barnstable | Hagerstown<br>Truro | 250010002              | 83.3<br>92.0 | 75       |
| Berkshire                | Adams               | 250010002              | 83.3         | 68       |
| Bristol                  | Fairhaven           |                        | 83.3<br>91.0 |          |
| Essex                    | Lawrence            | 250051002              | 91.0<br>70.0 | 73<br>58 |
| Essex                    |                     | 250090005<br>250092006 | 70.0<br>90.0 | 38<br>79 |
|                          | Lynn                |                        | 90.0<br>86.0 | 79<br>71 |
| Essex                    | Newbury             | 250094004              |              | 68       |
| Hampden                  | Agawam              | 250130003              | 83.0         |          |
| Hampden                  | Chicopee            | 250130008              | 92.0         | 75       |
| Hampshire                | Amherst             | 250150103              | 74.7         | 61<br>70 |
| Hampshire                | Ware                | 250154002              | 86.3         | 70<br>70 |
| Middlesex                | Stow                | 250171102              | 85.7         | 70<br>70 |
| Norfolk                  | Milton              | 250213003              | 91.0         | 79       |
| Suffolk                  | Boston (Long I)     | 250250041              | 88.7         | 77       |
| Suffolk                  | Boston (Harris)     | 250250042              | 73.0         | 63       |
| Worcester                | Worcester           | 250270015              | 84.0         | 67       |
| Belknap                  | Laconia             | 330012004              | 76.5         |          |
| Carroll                  | Conway              | 330031002              | 67.0         |          |
| Cheshire                 | Keene               | 330050007              | 74.3         | 60       |
| Grafton                  | Haverhill           | 330090008              | 70.3         | -        |
| Hillsborough             | Nashua              | 330111010              | 86.0         | 70       |
| Hillsborough             | Peterborough        | 330115001              | 84.0         | 69       |
|                          |                     |                        |              |          |

| Merrimack       | Concord               | 330130007 | 74.7          |          |
|-----------------|-----------------------|-----------|---------------|----------|
| Rockingham      | Rye                   | 330150012 | 83.5          | 68       |
| Rockingham      |                       | 330150013 | 80.0          | 64       |
| Rockingham      | Portsmouth            | 330150015 | 68.0          | 55       |
| Strafford       | Rochester             | 330173002 | 78.5          | 63       |
| Sullivan        | Claremont             | 330190003 | 74.3          | 00       |
| Atlantic        | Nacote Creek          | 340010005 | 89.0          | 73       |
| Bergen          | Teaneck               | 340030005 | 91.7          | 81       |
| Camden          | Camden                | 340070003 | 98.3          | 83       |
| Camden          | Ancora St. Hos        | 340071001 | 100.7         | 82       |
| Cumberland      | Millville             | 340110007 | 95.7          | 75       |
| Gloucester      | Clarksboro            | 340155001 | 98.3          | 83       |
| Hudson          | Bayonne               | 340170006 | 84.7          | 75       |
| Hunterdon       | Flemington            | 340190001 | 95.3          | 78       |
| Mercer          | Rider Univ.           | 340210005 | 97.0          | 81       |
| Middlesex       | Rutgers Univ.         | 340230011 | 96.0          | 79       |
| Monmouth        | Monmouth U.           | 340250005 | 95.7          | 80       |
| Morris          | Chester               | 340230003 | 95.7<br>95.3  | 80<br>79 |
| Ocean           | Colliers Mills        | 340273001 | 95.5<br>106.0 | 79<br>86 |
| Passaic         |                       |           | 86.7          |          |
|                 | Ramapo<br>Loudonville | 340315001 | 80.7<br>83.0  | 73       |
| Albany<br>Bronx |                       | 360010012 |               | 70<br>75 |
|                 | Botanical Gard        | 360050083 | 83.7          | 75<br>76 |
| Chautauqua      | Dunkirk               | 360130006 | 93.0          | 76<br>70 |
| Chautauqua      | Westfield             | 360130011 | 87.0          | 72       |
| Chemung         | Elmira                | 360150003 | 80.3          |          |
| Dutchess        | Millbrook             | 360270007 | 92.0          | 76       |
| Erie            | Amherst               | 360290002 | 95.7          | 80       |
| Essex           | Whiteface Sum         | 360310002 | 88.3          |          |
| Essex           | Whiteface Base        | 360310003 | 84.3          |          |
| Hamilton        | Piseco Lake           | 360410005 | 78.7          |          |
| Herkimer        | Nick's Lake           | 360430005 | 74.0          | 63       |
| Jefferson       | Perch River           | 360450002 | 91.3          | 77       |
| Madison         | C. Georgetown         | 360530006 | 79.7          |          |
| Monroe          | Rochester             | 360551004 | 83.7          | 72       |
| Niagara         | Middleport            | 360631006 | 91.7          | 79       |
| Oneida          | Camden                | 360650004 | 79.7          | 66       |
| Onondoga        | East Syracuse         | 360671015 | 82.3          | 70       |
| Orange          | Valley Central        | 360715001 | 84.7          | 68       |
| Putnam          | Mt. Ninham            | 360790005 | 91.3          | 77       |
| Queens          | Queens College        | 360810124 | 83.0          | 71       |
| Richmond        | Susan Wagner          | 360850067 | 93.0          | 80       |
| Saratoga        | Stillwater            | 360910004 | 84.7          | 69       |
| Suffolk         | Babylon               | 361030002 | 93.7          | 82       |
| Suffolk         | Riverhead             | 361030004 | 83.0          | 70       |
| Suffolk         | Holtsville            | 361030009 | 97.0          | 86       |
| Ulster          | Belleayre             | 361111005 | 81.3          |          |
|                 |                       |           |               |          |

| Wayne        | Williamson                   | 361173001              | 84.0         | 71       |
|--------------|------------------------------|------------------------|--------------|----------|
| Westchester  | White Plains                 | 361192004              | 91.3         | 82       |
| Adams        | Biglerville                  | 420010002              | 85.0         | 62<br>67 |
| Allegheny    | Lawrenceville                | 420030008              | 89.3         | 76       |
| Allegheny    | Pittsburgh                   | 420030010              | 90.7         | 70       |
| Allegheny    | South Fayette                | 420030010              | 89.3         | 75       |
| Allegheny    | Harrison Twp                 | 420030007              | 91.3         | 73       |
| Armstrong    | Kittanning                   | 420050001              | 90.7         | 74       |
| Beaver       | Hookstown                    | 420070002              | 91.3         | 72       |
| Beaver       | Brighton Twp                 | 420070002              | 89.7         | 73       |
| Beaver       | Beaver Falls                 | 420070003              | 85.0         | 68       |
| Berks        | Kutztown                     | 420110001              | 84.5         | 67       |
| Berks        | Reading                      | 420110001              | 88.7         | 07<br>71 |
| Blair        | Altoona                      | 420110009              | 83.3         | 71<br>66 |
| Bucks        | Bristol                      | 420130801              | 99.0         | 84       |
| Cambria      | Johnstown                    | 420170012              | 85.0         | 84<br>67 |
| Centre       |                              | 420210011<br>420270100 | 85.0<br>84.3 | 66       |
|              | State College                |                        | 84.5<br>84.7 | 67       |
| Centre       | Penn Nursery<br>West Chester | 420274000              |              |          |
| Chester      |                              | 420290050              | 95.0         | 77       |
| Chester      | New Garden                   | 420290100              | 94.7         | 73       |
| Clearfield   | Moshannon                    | 420334000              | 87.3         | 67       |
| Dauphin      | Harrisburg                   | 420430401              | 85.0         | 66       |
| Dauphin      | Hershey                      | 420431100              | 86.7         | 68       |
| Delaware     | Chester                      | 420450002              | 91.7         | 77       |
| Erie         | Erie                         | 420490003              | 89.0         | 73       |
| Franklin     | Methodist Hill               | 420550001              | 90.7         | 71       |
| Greene       | Holbrook                     | 420590002              | 87.7         | 70       |
| Lacakawana   | Peckville                    | 420690101              | 83.3         | 66       |
| Lacakawana   | Scranton                     | 420692006              | 82.0         | 65       |
| Lancaster    | Lancaster                    | 420710007              | 90.7         | 72       |
| Lawrence     | New Castle                   | 420730015              | 78.3         | 61       |
| Lehigh       | Allentown                    | 420770004              | 90.7         | 74       |
| Luzerene     | Nanticoke                    | 420791100              | 81.7         | 64       |
| Luzerene     | Wilkes-Barre                 | 420791101              | 83.7         | 65       |
| Lycoming     | Montoursville                | 420810100              | 82.0         | 65       |
| Lycoming     | Tiadaghton                   | 420814000              | 78.7         | 61       |
| Mercer       | Farrell                      | 420850100              | 91.3         | 73       |
| Montgomery   | Norristown                   | 420910013              | 92.3         | 77       |
| Northampton  | Freemansburg                 | 420950025              | 90.0         | 73       |
| Northampton  | Easton                       | 420958000              | 88.0         | 71       |
| Perry        | Perry County                 | 420990301              | 83.3         | 65       |
| Philadelphia | Frankford (Lab)              | 421010004              | 71.3         | 61       |
| Philadelphia | Northwest (Rox)              | 421010014              | 90.7         | 78       |
| Philadelphia | Northeast (Air)              | 421010024              | 96.7         | 82       |
| Philadelphia | Southwest (Elm)              | 421010136              | 83.0         | 71       |
| Tioga        | Tioga County                 | 421174000              | 85.0         | 68       |

| Washington     | Charleroi      | 421250005 | 86.3 | 72 |
|----------------|----------------|-----------|------|----|
| Washington     | Washington     | 421250200 | 85.3 | 68 |
| Washington     | Florence       | 421255001 | 85.7 | 67 |
| Wetsmoreland   | Murrysville    | 421290006 | 82.0 | 69 |
| Westmoreland   | Greensburg     | 421290008 | 88.0 | 73 |
| York           | York           | 421330008 | 89.0 | 71 |
| Kent           | Alton Jones    | 440030002 | 93.3 | 75 |
| Providence     | Francis School | 440071010 | 89.7 | 73 |
| Washington     | EPA Lab        | 440090007 | 93.3 | 77 |
| Bennington     | Bennington     | 500030004 | 79.7 | 66 |
| Chittenden     | Underhill      | 500070007 | 77.0 |    |
| Arlington      | Arlington Co.  | 510130020 | 96.7 | 80 |
| Caroline       | Caroline Co.   | 510330001 | 82.3 | 64 |
| Charles City   | Charles City C | 510360002 | 89.3 | 74 |
| Chesterfield   | Chesterfield C | 510410004 | 84.7 | 69 |
| Fairfax        | Fairfax Co.    | 510590005 | 87.0 | 68 |
| Fairfax        | Fairfax Co.    | 510590018 | 96.7 | 79 |
| Fairfax        | Fairfax Co.    | 510590030 | 95.0 | 77 |
| Fairfax        | Fairfax Co.    | 510591005 | 94.0 | 77 |
| Fairfax        | Fairfax Co.    | 510595001 | 88.0 | 71 |
| Fauqier        | Fauquier Co.   | 510610002 | 79.3 | 62 |
| Frederick      | Frederick Co.  | 510690010 | 82.7 | 68 |
| Hanover        | Hanover Co.    | 510850003 | 92.0 | 74 |
| Henrico        | Henrico Co.    | 510870014 | 88.3 | 72 |
| Loudon         | Loudoun Co.    | 511071005 | 90.0 | 71 |
| Madison        | Madison Co.    | 511130003 | 84.7 | 68 |
| Page           | Page Co.       | 511390004 | 79.7 | 63 |
| Prince William | Prince William | 511530009 | 85.0 | 68 |
| Roanoke        | Roanoke Co.    | 511611004 | 83.7 | 68 |
| Rockbridge     | Rockbridge Co. | 511630003 | 76.7 | 61 |
| Stafford       | Stafford Co.   | 511790001 | 86.0 | 68 |
| Wythe          | Wythe Co.      | 511970002 | 79.7 |    |
| Alexandria Cit | Alexandria     | 515100009 | 90.0 | 74 |
| Hampton City   | Hampton        | 516500004 | 88.3 | 78 |
| Suffolk City   | Suffolk - TCC  | 518000004 | 87.0 | 79 |
| Suffolk City   | Suffolk - Holl | 518000005 | 82.3 | 66 |
|                | Roosevelt-Camp | CC0040002 | 58.3 | 49 |
|                |                |           |      |    |

| Table 6. Current and Future Design Values Across the OTR for 2002, and projections by CMAQ |
|--------------------------------------------------------------------------------------------|
| for 2009 and 2018.                                                                         |

| for 2009 and 2018 |          |        |         | 1 0      | -    |
|-------------------|----------|--------|---------|----------|------|
|                   |          | 2002   |         |          |      |
|                   |          | Design | 2009    | 2009     |      |
| Description       | Site     | Value  | OTB/OTW | BOTB/OTW | 2018 |
| Greenwich         | 90010017 | 95.7   | 87.6    | 87.4     | 81.4 |
| Danbury           | 90011123 | 95.7   | 86.1    | 85.8     | 78.4 |
| Stratford         | 90013007 | 98.3   | 90.6    | 90.3     | 82.7 |

| Westport                          | 90019003            | 94.0         | 85.6          | 85.5         | 78.8         |
|-----------------------------------|---------------------|--------------|---------------|--------------|--------------|
| E. Hartford                       | 90031003            | 88.0         | 77.4          | 77.1         | 68.1         |
| Cornwall                          | 90050005            | 89.0         | 77.8          | 77.4         | 68.4         |
| Middletown                        | 90070007            | 95.7         | 85.4          | 85.0         | 76.5         |
| Madison                           | 90093002            | 98.3         | 89.3          | 89.0         | 80.7         |
| Hamden                            | 90099005            | 93.3         | 85.4          | 85.1         | 79.4         |
| Groton                            | 90110008            | 90.0         | 79.5          | 79.1         | 70.3         |
| Stafford                          | 90131001            | 92.3         | 80.5          | 80.0         | 70.3         |
| Killens Pond                      | 100010002           | 88.3         | 78.9          | 78.7         | 70.7         |
| Lums Pond                         | 100010002           | 94.5         | 80.0          | 79.7         | 69.6         |
| Brandywine                        | 100031007           | 92.7         | 81.4          | 81.1         | 73.2         |
| Bellefonte                        | 100031010           | 90.3         | 79.1          | 78.8         | 70.0         |
| Seaford                           | 100051015           | 90.3<br>90.0 | 76.1          | 75.9         | 65.9         |
| Lewes                             | 100051002           | 90.0<br>87.0 | 78.0          | 77.7         | 70.7         |
| Takoma Park                       | 110010025           | 87.0         | 78.0          | 79.3         | 69.2         |
| River Terrace                     | 110010023           | 89.0         | 79.4          | 79.0         | 68.4         |
| McMillan Res.                     | 110010041           | 92.7         | 82.5          | 82.3         | 71.3         |
| Cape Elizabeth                    | 230052003           | 92.7<br>84.3 | 73.7          | 73.6         | 66.3         |
| ANP Cadillac Mtn.                 | 230032003           | 84.3<br>91.7 | 79.9          | 79.7         | 70.3         |
| ANP Cadinac Mui.<br>ANP McFarland | 230090102           | 83.7         | 73.0          | 72.9         | 64.2         |
| Castine                           | 230090103           | 83.7<br>75.0 | 65.9          | 65.9         | 58.0         |
|                                   | 230090301 230112005 | 73.0         | 68.0          | 67.8         | 58.0<br>60.6 |
| Gardiner Pray                     | 230112003           | 78.0<br>83.7 | 73.1          | 07.8<br>72.9 | 60.6<br>64.6 |
| Port Clyde                        |                     |              | /3.1          | 12.9         |              |
| Holden Rider                      | 230194008           | 79.0         | $\mathcal{C}$ | 64.5         | 61.2         |
| West Buxton                       | 230310038           | 75.0         | 64.7          | 64.5         | 56.4         |
| Kennebunkport                     | 230312002           | 88.3         | 77.4          | 77.3         | 68.3         |
| Kittery                           | 230313002           | 85.3         | 74.3          | 74.1         | 67.1         |
| Davidsonville                     | 240030014           | 98.0         | 84.3          | 84.1         | 72.5         |
| Fort Meade                        | 240030019           | 97.0         | 84.5          | 84.3         | 72.6         |
| Padonia                           | 240051007           | 88.7         | 77.5          | 77.4         | 68.3         |
| Essex                             | 240053001           | 91.3         | 80.4          | 80.3         | 73.0         |
| South Carroll                     | 240130001           | 88.7         | 75.7          | 75.1         | 64.5         |
| Fair Hill                         | 240150003           | 97.7         | 81.5          | 81.2         | 70.3         |
| S. Md (Hughesville)               | 240170010           | 93.0         | 76.2          | 75.9         | 65.4         |
| Frederick Apt                     | 240210037           | 87.3         | 74.9          | 73.9         | 64.8         |
| Edgewood                          | 240251001           | 100.3        | 85.7          | 85.5         | 76.9         |
| Aldino                            | 240259001           | 97.0         | 82.4          | 82.1         | 72.9         |
| Millington                        | 240290002           | 95.3         | 80.2          | 79.9         | 70.8         |
| Rockville                         | 240313001           | 86.7         | 76.7          | 76.6         | 65.8         |
| Greenbelt                         | 240330002           | 94.0         | 82.2          | 82.0         | 70.9         |
| PG Equestrian Ctr                 | 240338003           | 94.0         | 81.8          | 81.6         | 70.9         |
| Hagerstown                        | 240430009           | 85.3         | 73.1          | 72.1         | 63.7         |
| Truro                             | 250010002           | 92.0         | 80.9          | 80.7         | 71.9         |
| Adams                             | 250034002           | 83.3         | 73.4          | 73.1         | 65.2         |
| Fairhaven                         | 250051002           | 91.0         | 80.3          | 79.9         | 71.2         |
| Lawrence                          | 250090005           | 70.0         | 61.8          | 61.6         | 55.7         |

| Lynn                         | 250092006              | 90.0          | 82.6                 | 82.4         | 79.6         |
|------------------------------|------------------------|---------------|----------------------|--------------|--------------|
| Newbury                      | 250094004              | 86.0          | 76.0                 | 75.9         | 68.9         |
| Agawam                       | 250130003              | 83.0          | 72.9                 | 72.5         | 62.7         |
| Chicopee                     | 250130008              | 92.0          | 80.7                 | 80.2         | 69.1         |
| Amherst                      | 250150103              | 74.7          | 65.6                 | 65.3         | 57.9         |
| Ware                         | 250154002              | 86.3          | 75.7                 | 75.3         | 65.4         |
| Stow                         | 250171102              | 85.7          | 75.0                 | 74.6         | 65.8         |
| Milton                       | 250213003              | 91.0          | 83.2                 | 82.9         | 78.3         |
| Boston (Long I)              | 250250041              | 88.7          | 80.8                 | 80.6         | 76.9         |
| Boston (Harris)              | 250250041              | 73.0          | 66.4                 | 66.3         | 64.0         |
| Worcester                    | 250250042              | 84.0          | 72.8                 | 72.5         | 64.6         |
| Laconia                      | 330012004              | 76.5          | 72.0                 | 12.5         | 57.9         |
| Keene                        | 330050007              | 70.3          | 64.6                 | 64.3         | 56.3         |
| Nashua                       | 330111010              | 86.0          | 74.9                 | 74.6         | 65.5         |
| Peterborough                 | 330115001              | 80.0<br>84.0  | 74.9                 | 73.3         | 64.7         |
| -                            | 330150012              | 84.0<br>83.5  | 72.7                 | 73.3         | 65.7         |
| Rye                          | 330150012              | 80.0          | 68.8                 | 68.6         | 60.2         |
| —<br>Portsmouth              | 330150015              | 68.0          | 59.2                 | 59.1         | 53.5         |
| Rochester                    | 330130013              | 78.5          | 67.8                 | 67.5         | 59.4         |
| Nacote Creek                 | 340010005              | 78.3<br>89.0  | 78.0                 | 77.8         | 69.3         |
| Teaneck 1000                 | 340010003              | 89.0<br>91.7  | 85.3                 | 85.1         | 80.8         |
| Camden Lab                   | 340030003              | 98.3          | 83.5<br>88.5         | 88.3         | 80.8<br>80.5 |
|                              | 340070003              | 98.5<br>100.7 | 88. <i>3</i><br>87.9 | 87.8         | 80.3<br>78.6 |
| Ancora Hospital<br>Millville | 340071001              | 95.7          | 81.3                 | 87.8<br>81.1 | 78.0         |
| Clarksboro                   |                        | 93.7<br>98.3  | 88.5                 | 88.3         | 80.3         |
|                              | 340155001              | 98.3<br>84.7  | 88.3<br>77.2         | 88.3<br>77.2 | 80.3<br>77.0 |
| Bayonne Park                 | 340170006<br>340190001 | 84.7<br>95.3  | 83.9                 | 83.6         | 77.0         |
| Flemington<br>Rider U        |                        | 93.3<br>97.0  | 85.9<br>86.4         | 85.0<br>86.2 | 75.2<br>76.8 |
|                              | 340210005              | 97.0<br>96.0  | 80.4<br>84.1         | 80.2<br>83.9 | 70.8         |
| Rutgers U                    | 340230011              |               |                      |              |              |
| Monmouth U                   | 340250005              | 95.7<br>05.2  | 84.3                 | 84.2         | 75.6         |
| Chester Bldg                 | 340273001<br>340290006 | 95.3<br>106.0 | 84.3<br>92.2         | 84.1<br>92.0 | 74.1         |
| Colliers Mills               |                        |               |                      |              | 81.3         |
| Ramapo Acc Rd                | 340315001              | 86.7          | 78.0<br>74.6         | 77.9         | 70.4         |
| Loudonville                  | 360010012              | 83.0          | 74.6                 | 73.9<br>78.6 | 67.6         |
| Botanical Gard               | 360050083              | 83.7          | 78.6                 | 78.6         | 76.3         |
| Dunkirk<br>Waatfield         | 360130006              | 93.0<br>87.0  | 81.7                 | 81.5         | 72.9         |
| Westfield                    | 360130011              | 87.0          | 76.6                 | 76.5         | 68.1         |
| Elmira                       | 360150003              | 80.3          | 01.1                 | 00.0         | 62.5         |
| Millbrook                    | 360270007              | 92.0          | 81.1                 | 80.9         | 69.6         |
| Amherst                      | 360290002              | 95.7<br>74.0  | 84.6                 | 84.6         | 79.9         |
| Nick's Lake                  | 360430005              | 74.0          | 64.7                 | 64.6         | 64.2         |
| Perch River                  | 360450002              | 91.3          | 80.3                 | 80.0         | 78.7         |
| Rochester                    | 360551004              | 83.7          | 75.2                 | 74.9         | 70.9         |
| Middleport                   | 360631006              | 91.7<br>70.7  | 82.1                 | 81.9         | 82.8         |
| Camden                       | 360650004              | 79.7          | 69.3                 | 69.1<br>72.2 | 67.8         |
| East Syracuse                | 360671015              | 82.3          | 73.7                 | 73.2         | 67.0         |

| Walley Cantral               | 260715001              | 947          | 73.7         | 73.5         | 65.0         |
|------------------------------|------------------------|--------------|--------------|--------------|--------------|
| Valley Central<br>Mt. Ninham | 360715001<br>360790005 | 84.7<br>91.3 | 82.1         | 73.3<br>81.7 | 65.0<br>73.3 |
|                              |                        | 91.5<br>83.0 | 82.1<br>74.3 | 74.2         | 75.5         |
| Queens College               | 360810124<br>360850067 | 83.0<br>93.0 | 74.3<br>84.2 | 74.2<br>84.1 | 70.8<br>78.5 |
| Susan Wagner                 |                        |              |              |              |              |
| Stillwater                   | 360910004              | 84.7         | 74.4         | 73.6         | 65.5         |
| Babylon<br>Disculses d       | 361030002              | 93.7         | 85.9<br>75 0 | 85.9         | 82.1         |
| Riverhead                    | 361030004              | 83.0         | 75.0         | 74.8         | 67.7         |
| Holtsville                   | 361030009              | 97.0         | 90.0         | 89.8         | 82.6         |
| Belleayre                    | 361111005              | 81.3         |              |              | 64.7         |
| Williamson                   | 361173001              | 84.0         | 74.7         | 74.4         | 69.8         |
| White Plains                 | 361192004              | 91.3         | 85.5         | 85.4         | 81.6         |
| Biglerville                  | 420010002              | 85.0         | 73.8         | 71.2         | 64.9         |
| Lawrenceville                | 420030008              | 89.3         | 80.4         | 80.2         | 74.2         |
| Pittsburgh                   | 420030010              | 90.7         | 81.6         | 81.5         | 75.4         |
| South Fayette                | 420030067              | 89.3         | 80.3         | 80.1         | 73.7         |
| Harrison Twp                 | 420031005              | 91.3         | 78.9         | 78.7         | 70.7         |
| Kittanning                   | 420050001              | 90.7         | 77.6         | 77.5         | 69.2         |
| Hookstown                    | 420070002              | 91.3         | 81.3         | 81.2         | 72.9         |
| Brighton Twp                 | 420070005              | 89.7         | 78.6         | 78.4         | 71.0         |
| Beaver Falls                 | 420070014              | 85.0         | 73.8         | 73.6         | 66.6         |
| Kutztown                     | 420110001              | 84.5         | 72.5         | 72.0         | 62.5         |
| Reading                      | 420110009              | 88.7         | 76.4         | 75.8         | 66.4         |
| Altoona                      | 420130801              | 83.3         | 69.7         | 69.6         | 63.2         |
| Bristol                      | 420170012              | 99.0         | 88.9         | 88.7         | 79.7         |
| Johnstown                    | 420210011              | 85.0         | 71.7         | 71.5         | 65.5         |
| State College                | 420270100              | 84.3         | 70.7         | 70.2         | 63.6         |
| Penn Nursery                 | 420274000              | 84.7         | 72.0         | 71.4         | 64.6         |
| West Chester                 | 420290050              | 95.0         | 82.8         | 82.5         | 70.5         |
| New Garden                   | 420290100              | 94.7         | 79.5         | 79.1         | 68.2         |
| Moshannon (PSU)              | 420334000              | 87.3         | 72.2         | 71.9         | 64.4         |
| Harrisburg                   | 420430401              | 85.0         | 73.3         | 71.5         | 64.1         |
| Hershey                      | 420431100              | 86.7         | 74.3         | 73.3         | 64.0         |
| Chester                      | 420450002              | 91.7         | 81.3         | 81.2         | 74.2         |
| Erie                         | 420490003              | 89.0         | 78.3         | 78.2         | 70.0         |
| Methodist Hill               | 420550001              | 90.7         | 77.0         | 76.3         | 66.7         |
| Holbrook                     | 420590002              | 87.7         | 75.3         | 75.0         | 63.7         |
| Peckville                    | 420690101              | 83.3         | 71.5         | 70.7         | 61.4         |
| Scranton                     | 420692006              | 82.0         | 70.4         | 69.6         | 60.4         |
| Lancaster                    | 420710007              | 90.7         | 77.4         | 76.5         | 68.5         |
| New Castle                   | 420730015              | 78.3         | 66.5         | 66.4         | 58.7         |
| Allentown                    | 420770004              | 90.7         | 78.9         | 78.6         | 69.1         |
| Nanticoke                    | 420791100              | 81.7         | 69.0         | 68.6         | 59.3         |
| Wilkes-Barre                 | 420791101              | 83.7         | 70.6         | 70.1         | 60.9         |
| Montoursville                | 420810100              | 82.0         | 69.8         | 69.3         | 60.8         |
| Tiadaghton                   | 420814000              | 78.7         | 65.9         | 65.5         | 57.8         |
| Farrell                      | 420850100              | 91.3         | 77.6         | 77.6         | 68.1         |
|                              |                        |              |              |              |              |

| Norristown      | 420910013 | 92.3 | 81.8 | 81.5 | 73.4 |
|-----------------|-----------|------|------|------|------|
| Freemansburg    | 420950025 | 90.0 | 78.7 | 78.3 | 68.9 |
| Easton          | 420958000 | 88.0 | 76.8 | 76.5 | 67.3 |
| Perry County    | 420990301 | 83.3 | 71.1 | 70.1 | 62.8 |
| Frankford (Lab) | 421010004 | 71.3 | 64.7 | 64.6 | 58.5 |
| Northwest (Rox) | 421010014 | 90.7 | 82.8 | 82.6 | 74.5 |
| Northeast (Air) | 421010024 | 96.7 | 87.3 | 87.1 | 79.0 |
| Southwest (Elm) | 421010136 | 83.0 | 75.3 | 75.1 | 68.2 |
| Tioga County    | 421174000 | 85.0 | 73.0 | 72.8 | 64.9 |
| Charleroi       | 421250005 | 86.3 | 76.2 | 75.9 | 68.7 |
| Washington      | 421250200 | 85.3 | 73.4 | 73.2 | 64.1 |
| Florence        | 421255001 | 85.7 | 74.4 | 74.3 | 66.8 |
| Murrysville     | 421290006 | 82.0 | 73.0 | 72.7 | 66.4 |
| Greensburg      | 421290008 | 88.0 | 77.5 | 77.3 | 69.5 |
| York            | 421330008 | 89.0 | 77.1 | 75.9 | 68.3 |
| Alton Jones     | 440030002 | 93.3 | 80.8 | 80.4 | 70.6 |
| Francis School  | 440071010 | 89.7 | 78.2 | 77.9 | 68.7 |
| EPA Lab         | 440090007 | 93.3 | 82.0 | 81.7 | 72.6 |
| Bennington      | 500030004 | 79.7 | 70.8 | 70.4 | 63.4 |
| Arlington Co.   | 510130020 | 96.7 | 86.7 | 86.6 | 75.2 |
| Caroline Co.    | 510330001 | 82.3 | 70.1 | 70.0 | 57.7 |
| Charles City    | 510360002 | 89.3 | 80.4 | 80.3 | 74.2 |
| Chesterfield    | 510410004 | 84.7 | 75.6 | 75.6 | 70.2 |
| Chantilly       | 510590005 | 87.0 | 75.8 | 75.6 | 64.5 |
| Mt. Vernon      | 510590018 | 96.7 | 86.3 | 86.2 | 74.9 |
| Lee Park        | 510590030 | 95.0 | 84.3 | 84.2 | 73.5 |
| Annandale       | 510591005 | 94.0 | 83.4 | 83.3 | 72.8 |
| McLean          | 510595001 | 88.0 | 78.0 | 77.9 | 67.9 |
| Fauquier Co.    | 510610002 | 79.3 | 67.6 | 67.4 | 58.5 |
| Frederick Co.   | 510690010 | 82.7 | 72.2 | 71.9 | 65.7 |
| Hanover Co.     | 510850003 | 92.0 | 81.5 | 81.4 | 73.9 |
| Henrico Co.     | 510870014 | 88.3 | 78.9 | 78.8 | 72.1 |
| Loudoun Co.     | 511071005 | 90.0 | 78.5 | 78.3 | 68.6 |
| Madison Co.     | 511130003 | 84.7 | 71.6 | 71.5 | 61.9 |
| Page Co.        | 511390004 | 79.7 | 67.3 | 67.1 | 59.2 |
| Prince William  | 511530009 | 85.0 | 74.5 | 74.2 | 64.7 |
| Roanoke Co.     | 511611004 | 83.7 | 73.1 | 73.0 | 63.7 |
| Rockbridge Co.  | 511630003 | 76.7 | 65.7 | 65.6 | 57.1 |
| Stafford Co.    | 511790001 | 86.0 | 75.5 | 75.3 | 62.1 |
| Wythe Co.       | 511970002 | 79.7 |      |      | 59.5 |
| Alexandria      | 515100009 | 90.0 | 80.3 | 80.2 | 69.7 |
| Hampton         | 516500004 | 88.3 | 83.0 | 82.9 | 77.2 |
| Suffolk - TCC   | 518000004 | 87.0 | 82.9 | 82.8 | 77.8 |
| Suffolk - Holl  | 518000005 | 82.3 | 72.3 | 72.1 | 65.4 |

#### Conclusions

Even by taking relative reduction factors and the resulting predictions of 8-hour ozone concentrations straight from CMAQ, with no consideration for CMAQ's tendency to underpredict future changes in ozone due to emissions changes, the Baltimore Non-Attainment Area is very close to attaining the 8-hour standard for ozone, with the high monitor in the region having a predicted 2009 design value of 85 ppbv. As discussed in detail in Appendix G-9, the Baltimore Non-Attainment Area is likely to be in compliance with the 8-hour standard, owing to CMAQ's resistance to change. Some areas for improvement in CMAQ's chemical mechanism are outlined in Appendix G-10. The picture is nearly as favorable for the Washington, D.C. Non-Attainment Area, with two monitors one ppbv higher than the standard. The Philadelphia Non-Attainment Area would appear to have a problem at first glance, but the CMAQ model's resistance to change likely overpredicts future ozone by a margin such that even the Colliers Mills monitor should come into attainment. As discussed above and in Appendix G-9, by 2012, all monitors in the Northeast are predicted by CMAQ to be nearly in attainment, if not entirely so.

#### **Future Work**

This appendix, in conjunction with Appendix G-10 and G-9, suggests the need to improve the chemical mechanism of CMAQ. In the near term, using the SAPRC99 chemical mechanism in place of the CB4 chemical mechanism that was used for these simulations would serve as a potential stopgap measure. In the longer term, one of the many implementations of WRF-CHEM (Weather Research and Forecasting model with chemistry) appears to have a more responsive chemical mechanism. The computational cost of running WRF-CHEM is substantial because both meteorology and chemistry are simulated at once, but the additional time might be worthwhile if the change in ozone in response to emissions changes could be predicted more realistically. It may be necessary to revisit some of these simulations using CMAQ with a 2005 base, with the goal of bridging a smaller gap between 2005 ozone values and 2009 future year ozone values. In this way, less of the projection would be left up to CMAQ, and more would be represented by measured changes in air quality.

### References

EPA, "Standalone Documentation for EPA Base Case 2004 (V.2.1.9) Using the Integrated Planning Model", United States Environmental Protection Agency Air and Radiation (6204J) EPA 430-R-05-011, September 2005.

Hao, W., "Meteorological Data Analysis", presentation given at the New York Dept. of Environmental Conservation, Nov. 16, 2005.

He, S., G. Kleiman, and W. Hao, "Evaluation of 2002 Annual 12km MM5 Surface Parameters for OTC Modeling", presentation given at the New York Dept. of Environmental Conservation, Nov. 16, 2005.

MACTEC, E. Sabo and D. Toothman, "Development of Emission Projections for 2009, 2012, and 2018 for NonEGU Point, Area, and Nonroad Sources in the MANE-VU Region", Final Technical Support Document, Mid-Atlantic Regional Air Management Association (MARAMA) February 28, 2007a.

MACTEC, E. Sabo and D. Toothman, "Identification and Evaluation of Candidate Control Measures Final Technical Support Document", Prepared for: Ozone Transport Commission (OTC), February 28, 2007b.

NYDEC, "Meteorological Modeling using Penn State/NCAR 5th Generation Mesoscale Model (MM5)", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007a.

NYDEC, "Processing of Biogenic Emissions for OTC / MANE-VU Modeling", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007b.

NYDEC, "Emission Processing for the Revised 2002 OTC Regional and Urban 12 km, Base Case Simulations", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007c.

NYDEC, "8hr Ozone Modeling using the SMOKE/CMAQ system", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007d.

NYDEC, "CMAQ Model Performance and Assessment, 8-Hr OTC Ozone Modeling", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007e. NYDEC, "Future Year Emissions Inventory for 8-Hr OTC Ozone Modeling", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007f.

NYDEC, "Relative reduction factor (RRF) and "Modeled Attainment Test", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007g.

NYDEC, "Projected 8-h ozone air quality over the Ozone Transport Region", Bureau of Air Quality Analysis and Research, Division of Air Resources New York State Department of Environmental Conservation, Albany, NY 12233, 2007h.

Stoeckenius, T. and S. Kemball-Cook, "Determination Of Representativeness Of 2002 Ozone Season For Ozone Transport Region SIP Modeling", Report for the Ozone Transport Commission, ENVIRON International Corporation, Novato, CA, June 3, 2005

Zhang, D. L., S. Zhang, "Numerical Experimental Analysis Data for the Year of 2002", report to the Ozone Transport Commission, 2005.

Zhang, D. L., W. Z. Zheng, "Diurnal Cycles of Surface Winds and Temperatures as Simulated by Five Boundary Layer Parameterizations", *J. Appl. Meteorol.* 43 (157-169) 2004.

# Acronyms

| CB4         | Carbon Bond IV chemical mechanism                                           |
|-------------|-----------------------------------------------------------------------------|
| CMAQ        | Community Multiscale Air Quality model                                      |
| EPA         | United States Environmental Protection Agency                               |
| EGU         | Electrical Generating Unit                                                  |
| IPM         | Integrated Planning Model                                                   |
| MANE-VU     | Mid-Atlantic NorthEast Visibility Union                                     |
| Midwest RPO | Midwest Regional Planning Organization                                      |
| MM5         | Mesoscale Model 5, the Penn State/NCAR mesoscale meteorological             |
|             | model                                                                       |
| NCAR        | National Center for Atmospheric Research                                    |
| $NO_x$      | Reactive oxides of nitrogen, the sum of only NO and NO <sub>2</sub> .       |
| OTB         | All regulations on the books                                                |
| OTW         | All regulations on the way                                                  |
| ppbv        | Parts of ozone (or any other substance) per billion parts of air, by volume |
| SAPRC99     | Statewide Air Pollution Research Center (1999) chemical mechanism           |
| SIP         | State Implementation Plan                                                   |
| SMOKE       | Sparse Matrix Operator Kernel Emissions                                     |
| VISTAS      | Visibility Improvement State and Tribal Association of the Southeast        |
| VMT         | Vehicle Miles Traveled                                                      |
| WRF-CHEM    | Weather Research and Forecasting model, with chemistry.                     |
|             |                                                                             |