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ABSTRACT 
Back trajectories have been calculated (8 per day) for the five-year period including 2000 
through 2004 using the HYSPLIT modeling system for 13 Eastern sites including 10 
rural locations near Class 1 areas subject to EPA’s Regional Haze Rule and 7 urban 
location which have annual average PM2.5 concentrations above or near the National 
Ambient Air Quality Standard (NAAQS).   The back trajectories have been clustered 
based on 3-dimensional similarity to identify the predominant meteorological pathways 
influencing each site.  Trajectories have also been associated with the nearest temporal 
value of 24-hr average concentration of PM2.5 and IMPROVE sulfate values measured at 
or near each site.  Individual trajectories and clustered probability fields are utilized in a 
variety of ways to apportion geographic contribution to meteorological transport of 
sulfate.  Results are compared with quantitative methods of apportioning state-specific 
contributions to observed sulfate and serve as an independent check on contribution 
assessments developed through these alternative techniques. 
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Appendix A:  Application of Trajectory Analysis Methods to 
Sulfate Source Attribution Studies in the Northeast U.S. 

A.1.  Introduction 
The 1999 Regional Haze Rule (RHR) contains requirements for a site-specific 

pollution apportionment as part of each mandatory Federal Class I area’s long-term 
emissions management strategy.  A variety of techniques have been explored for 
conducting such pollution apportionments, but tagged chemical transport modeling is one 
of the few techniques which provide quantitative assessments of individual state or 
regional contributions to ambient concentrations.   Given the importance of accurate 
pollution apportionment assessments, it is highly desirable to have several independent 
techniques provide confirmation of transport model results. 

Traditional trajectory analyses that associate an ambient measurement of air 
quality with the geographical region upwind prior to the observation are limited in that 
they demonstrate the relationship between ambient air quality and the integrated path 
along the length of a back trajectory.  It is difficult to distinguish the contribution of a 
specific point along a single back trajectory from the contribution of other points along 
that path.  Large numbers of back trajectories have been used in a variety of ways to try 
to “triangulate” by taking advantage of the variation in meteorology and paths that an 
ensemble of back trajectories offers.1-5 Combining results from multiple receptor sites 
offers a more robust method of triangulation and can yield very specific source regions 
associated with unique chemical signatures available with source apportionment 
techniques. These methods – which include ensemble trajectory analysis and factor 
analysis methods – all select based on chemical signatures.  That is, they identify 
geographic regions on the basis of a unique chemical characteristic, such as high levels of 
an observed pollutant or high levels of a specific combination of pollutants. 

Moody et al.,6 following methods of Dorling,7 have applied the Patterns in 
Atmospheric Transport History (PATH) clustering algorithm,  to large numbers of back 
trajectories in order to group trajectories by three-dimensional similarity.  Calculation of 
average pollution levels corresponding to the members of a cluster of back trajectories of 
similar three-dimensional structure provides a robust technique of associating air 
pollutants with typical meteorological pathways,8,9 but remains limited in its ability to 
distinguish individual points along an atmospheric pathway defined by a cluster of back 
trajectories.  The cluster methods provide a way of identifying geographic regions based 
primarily on meteorological – rather than chemical – characteristics.  The 
meteorologically selected regions can then be analyzed with respect to their chemical 
associations.  

The definition of an individual cluster of back trajectories in PATH analysis is 
dependent on a subjective choice of the “Radius of Proximity.”  This threshold defines 
the limiting difference between the three-dimensional coordinates of two back trajectories 
and determines if they are in the same cluster or different clusters.  Selection of a smaller 
radius of proximity, in effect, will split clusters into component sub-clusters.  Thus in the 
limiting case (radius of proximity = 0) the analysis reverts to a traditional trajectory 
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analysis with each trajectory representing its own cluster.  In this sense, PATH analysis 
offers a trade-off between uncertainty and fine scale structure of a trajectory analysis.  By 
defining a radius of proximity and back-trajectory length, 10,000+ back trajectories for 
each site over the 5 year period can be represented by approximately 10-20 clusters.   

Using these trajectory and cluster data bases, as well as the associated receptor-
based pollution data, we have carried out analyses using the incremental probability 
method, and two PATH-derived techniques method for attributing pollution transport to 
geographic areas.   

These qualitative methods support and enhance the conclusions derived through 
alternative methods (independent of back-trajectories) of associating emissions with 
downwind air quality impacts (i.e. the use of chemical transport models, or source 
modeling, rather than the receptor based approaches used in trajectory analysis).  Here 
we use our large database of back trajectories and corresponding air pollution 
measurements to develop multiple metrics related to Wishinski and Poirot’s “incremental 
probability”10 which is reflective of the increase in probability – relative to the everyday 
probability – of a geographic region being associated with a predominant meteorological 
pathway for sulfate transport (as opposed to a source region itself).  The results are used 
to bolster the conceptual model of visibility impairment at Class I sites presented in 
Chapter 2. 

A.2.  Trajectory Approaches 
The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) 

model11,12 was used to calculate back trajectories for 13 sites in the Northeast and Eastern 
U.S.  The locations correspond to Class I areas subject to the RHR as well as several sites 
where potential nonattainment issues with the PM2.5 NAAQS warranted analysis.  Results 
are presented primarily for three rural sites which geographically span the MANE-VU 
class I domain:  Acadia National Park, Maine, Lye Brook Wilderness Area, Vermont, and 
Brigantine Wilderness Area, New Jersey. 

Back trajectories were calculated eight times per day for starting heights of 200, 
500 and 1000m above ground level using meteorological wind fields for the five year 
period 2000-2004. NOAA ARL archives analyzed meteorological products for use with 
the HYSPLIT model including the Eta Data Assimilation System (EDAS) wind fields, 
which cover North America with an 80 km spatial resolution and are based on 3-hourly 
variational analyses.13 These back-trajectories -- and the underlying wind fields used to 
generate them -- provide the primary dataset used to explore meteorological patterns in 
the Northeast. Figure A-1 shows a single EDAS back-trajectory representing the path that 
a particle of air has traveled prior to arriving at Acadia National Park. 

The back trajectories with corresponding pollutant measurements and emissions 
data can be combined in a number of ways to yield various metrics which may help 
identify specific meteorological pathways that are more likely than others to contribute to 
sulfate transport to a specific receptor site.   
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Figure A-1.  Single HYSPLIT Calculated back-trajectory, Acadia National Park 

 
A common method of analysis requires the calculation of residence-time 

probabilities, which are a measure of the time spent in a specific grid cell relative to the 
total time spent in any grid cell.14   When calculated for all trajectories considered in an 
analysis, this defines the everyday probability as shown in Equation 1.   

 
Equation 1. Everyday Residence-time Probability 
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These residence time probabilities provide an indication of the fractional time 

spent in a specific grid cell relative to time spent anywhere in the domain by air parcels 
that eventually pass over a given receptor.  They can be calculated for any subset of 
trajectories, including all the days within a time frame, yielding the “everyday” 
probability, or a subset corresponding to days with high measured concentrations of 
pollutants at a receptor site.  Figure A-2 shows trajectories from the 10% of days with the 
highest sulfate concentrations during the 2000-2004 time period.  The plot on the left 
shows the actual trajectories while on the plot on the right shows the resulting residence-
time probability field for high sulfate days. 

Figure A-2.  Trajectories from the highest sulfate days at Acadia National Park.  The highest 10% 
sulfate trajectories (left) and corresponding residence-time probability (right) are shown. 
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When the residence-time probability field is calculated for the subset of days 
corresponding to high concentrations of pollutants (as shown in Figure A-2) the result is 
called a high-day probability as shown in Equation 2.  

 
Equation 2. High Day Residence-time Probability 
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The difference between the everyday probability (Equation 1, all days during 

2000-2004) and the high day probability (Equation 2, high pollution days during 2000-
2004) has been referred to as the incremental probability and identifies areas where the 
probability of poor air quality is greater than the average probability associated with 
typical meteorological patterns (see Equation 3). 

 
Equation 3. Incremental Probability 
IP = EPHP −  
 

When calculated in this way for each trajectory with its individual pollutant 
concentration value, a standard incremental probability analysis results and can serve as a 
basis for comparison to alternate metrics.  Figure A-3 shows the 5-year incremental 
probability field for days corresponding to the top 10 percent of observed sulfate values 
at two sites: Acadia National Park in Maine and Lye Brook Wilderness in Vermont.  
These figures are based on available 500 meter start height  HYSPLIT-EDAS back 
trajectories and monitoring data for those sites.  Incremental probabilities have been 
calculated for 7 sites in the MANE-VU region and 3 nearby sites in the VISTAS region.  
Plots for all sites (and several different percentile groupings) are presented at the end of 
this Appendix. 

Figure A-3.  Incremental Probability (Top 10% observed sulfate days)  
at Acadia, ME and Lye Brook, VT during 2000-2004. 

 

AcadiaAcadia Lye BrookLye Brook
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A.3.  Cluster-Based Approaches  
Trajectories can be used individually or grouped to create another dataset based 

on the PATH approach.6 Trajectory clusters are based on the calculated Euclidean 
distance between three-dimensional normalized coordinates of the respective trajectories.  
These clusters are formed by finding the “central” trajectory which has the greatest 
number of neighboring trajectories within a subjectively selected “radius of proximity.” 
There is a trade-off between the “resolution” of various modes of atmospheric transport 
identified by PATH and the number of clusters.  Using a narrow radius of proximity, 
more defined clusters that are easily associated with a specific class of meteorological 
transport result (e.g. fast flow from the Northwest, shallow coastal flow, etc.); however, it 
also results in a large number of clusters at each site.   

In order to better define specific meteorological pathways that might be 
associated with pollutant transport, we used a radius of proximity of 12 (this is a unit-less 
value since the coordinates have all been normalized prior to clustering) and a back-
trajectory time of 120 hours.  This typically resulted in approximately 100-200 frequency 
based clusters at each site, but relatively few clusters contain the majority of the 
trajectory population. Figure A-4 shows typical meteorological patterns among the most 
frequent clusters calculated for Brigantine Wilderness Area, New Jersey.  Results are 
plotted as a residence-time probability for each cluster (see Equation 1).  Clusters in the 
figure have been associated with specific atmospheric “modes” or meteorological 
patterns that are commonly observed at multiple sites.  The modes pictured correspond to 
Northwest Fast flow (NWF), Southwest Interior (SWI), Southwest Coastal (SWC), 
Southeast Maritime (SEM), Upper Midwest (UMW), and Northerly flow (N).  Whereas 
each cluster is unique to a specific site and the specific group of trajectories clustered, the 
modes represent patterns which are often observed year after year, and from site to site.   
In this sense, the clusters provide a means of identifying modes of transport which can be 
used for identifying pollution transport mechanisms. 

Figure A-4.  Residence-time probability for 6 frequency-based clusters observed at 
Brigantine Wilderness Area, New Jersey between 2000 and 2004.   

NWFNWF SWISWI SWCSWC

SEMSEM UMWUMW NN

 
Note: Codes reflect atmospheric “modes” or typical patterns of transport which consistently 
appear at multiple sites. 
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While these frequency-based clusters are useful, a variant method of grouping 
these trajectories was developed to redistribute trajectories into the most common modes.  
This alternate method of clustering relies on the frequency-based cluster groups described 
in the preceding paragraphs, but forms trajectory groups based on proximity rather than 
frequency.  In the first step, the frequency-based approach is used to identify the central 
trajectories that represent the most populated frequency-based clusters (approximately 10 
clusters typically contain at least 98 percent of the trajectories in the dataset using R=12 
and 120 hour back-trajectory time).   These 10 central trajectories are then used to 
develop 10 proximity-based clusters by assigning every trajectory in the dataset to its 
nearest central trajectories (calculated back to 72 hours).  The main advantage of these 
proximity-based clusters is that they more uniformly distribute the population of 
trajectories amongst the most frequently observed atmospheric modes and result in more 
defined clusters than the frequency-based approach.  Figure A-5 shows the proximity-
based clusters resulting from the frequency-based clusters shown in Figure A-1.  In this 
proximity-based approach, trajectories are more evenly distributed, as the entire 
trajectory dataset are assigned to only 10 modes. 

Each trajectory, frequency-based cluster, and proximity-based cluster was 
associated with corresponding monitoring data (or averaged monitoring data in the case 
of clusters) measured as close in time as possible to the “start” time of the back trajectory 
calculation.  Associations were made for PM2.5, sulfate ion, organic carbon, and aerosol 
extinction as PM components routinely measured as part of the IMPROVE program, 
although results are presented here only for 24-hr integrated sulfate ion mass.     

 

A.3.1.  Cluster-weighted Probability 
Everyday probabilities can be calculated for any subset of trajectories.  When 

calculated for the trajectories within a given cluster, that cluster’s everyday probability 
results.  This is essentially a normalized version of the residence-time probabilities shown 
in Figure A-4 and Figure A-5.  Everyday probabilities for clusters at 13 sites are 

Figure A-5.  Residence-time probability for 6 proximity-based clusters observed at  
Brigantine Wilderness Area, New Jersey between 2000 and 2004.   
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Note: Codes reflect atmospheric “modes” or typical patterns of transport which consistently appear at multiple sites. 
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presented at the conclusion of this appendix.  The everyday probabilities for clusters at an 
individual site and the associated average pollution information corresponding to each 
cluster is combined through a method identified here as the cluster-weighted probability 
(CWP). 

Each PATH-derived cluster’s residence-time probability is weighted by the 
average sulfate value for any measurements corresponding to a trajectory which is a 
member of that cluster.  The weighted residence-time probability is summed over all 
clusters calculated for a site (as opposed to just the highest probability for a specific 
pollutant as was the case with the incremental probability metrics).  The everyday 
probability is subtracted from the sum of cluster-weighted probabilities to identify areas 
of increased (or in the case of negative values, decreased) probability of being associated 
with a meteorological pathway for pollutant transport. Equation 5 presents the cluster-
weighted probability. 

 
Equation 5. Cluster-weighted Probability 
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Here, (C )i represents the average sulfate value for all trajectories within cluster i 

which had an associated SO4
2- measurement (roughly 25-30 percent, given 1-in-3 day 

sampling schedules).   By weighting the residence-time probability for cluster i by this 
quantity, we are implicitly assuming that similar trajectories (i.e. traversing similar source 
regions under similar meteorological conditions) will have similar resulting ambient 
concentrations at the receptor.  The quantity (C ) represents the average value for sulfate 
measurements associated with trajectories in any of the clusters and acts to normalize the 
sum of the residence-time probabilities.   

As we have examined two alternate methods for assigning trajectories to clusters 
– frequency-based clustering and proximity-based clustering – two methods for 
calculating cluster weighted probabilities exist.  The first uses the frequency-based 
clusters as the dataset, while the second uses the more distributed, proximity-based 
clusters as the dataset.  Figure A-6 shows the CWP calculated for both methods at 
Brigantine Wilderness Area, New Jersey. 

While calculated from the same underlying trajectory files and sulfate 
observations, this metric is calculated in a fundamentally different way than the 
incremental probability approach presented.  The CWP uses trajectory clusters (as 
opposed individual trajectories) to develop a weighted probability field which is then 
compared to the everyday probability.  The fact that the results are similar to those 
calculated for the IP technique provides reassurance that these approaches are reasonable 
for identifying areas that are associated with sulfate transport. 
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A.4.  Results 
Regions of transport to different sites can be determined using the trajectory (non-

clustered) technique, incremental probability.  In this method, pollution values are 
assigned to individual trajectories (as opposed to clusters) and regions associated with 
high sulfate transport are determined by looking at the difference of the high day 
trajectory probabilities from the everyday trajectory probabilities.  Figure A-7 shows the 
top 10% sulfate incremental probability at three sites, Acadia, Brigantine, and Lye Brook. 

 
In these incremental probability plots, trajectories with higher pollution 

concentrations generally follow a path from the Midwest across the Northeast region 
prior to arriving at Acadia. Transport paths from the Southeast and the Midwest are 
evident at Brigantine, and a combination of Midwest transport and transport from the 
Southeast along the industrial I-95 Corridor affect Lye Brook.   

Incremental probability can also be used to look at the regions contributing to the 
best pollution days at a site. Figure A-8 shows the 10% lowest sulfate incremental 
probability.  Best-day incremental probability shows that trajectories arriving to the sites 

Figure A-6.  Cluster-weighted Probability methods associated to sulfate transport using 
frequency based clusters on left and proximity-based clusters on the right at Brigantine 

Wilderness Area, New Jersey. 

 
Note: Areas of increased (yellow/red) or decreased (cyan/blue) 

Figure A-7.  Incremental Probability (Top 10% Sulfate) at three sites,  
Acadia, Brigantine and Lye Brook 2000-2004. 

 

AcadiaAcadia BrigantineBrigantine Lye BrookLye Brook
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on days with low sulfate levels tend to follow a path from the north in Canada or off the 
Atlantic Ocean.  This is an expected result as fewer sources are located in this region. 

 
By examining pollution levels associated with different clusters, we can gain 

insight into which atmospheric modes are associated with transport to sites in the MANE-
VU region.  Figure A-9 compares the proximity-based cluster with the highest sulfate 
value at three sites, Lye Brook Wilderness Area, Brigantine Wilderness Area, and Acadia 
National Park.   

Figure A-9 demonstrates that the clusters showing the highest pollution values 
show similar meteorological characteristics at different sites.  The three sites show that in 
the higher average pollution clusters, the air follows the path from the Midwest to the site 
in question. Lye Brook shows an east coast component contributing as an area of 
transport on the worst average sulfate days.  Using this method, we have grouped 
trajectories purely based on meteorological characteristics and can examine pollution 
levels within these groupings.  Thus agreement between this method and the incremental 
probability results shown earlier suggest that whether you select trajectories based on 
meteorology or chemistry, similar regions are identified as being associated with sulfate 
transport.  Figures at the end of this appendix show the clusters and average pollution 
values for all the sites in the region analyzed. 

Figure A-10 displays the proximity-based clusters with the lowest average sulfate 
concentrations.  They show which meteorological mode contributes to the best pollution 
days at three different sites, Acadia, Lye Brook, and Brigantine.  This provides a method 
that is comparable to Figure A-8 where incremental probability for the lowest sulfate 
trajectories is shown.  Again, the comparison is made between this clustering technique 
where trajectories are grouped solely on meteorological characteristics and the 
incremental probability technique that looks at trajectories with similar pollution 
characteristics.  

Much like the atmospheric modes that contribute to the highest sulfate levels at 
our three sites, very similar atmospheric patterns contribute to the best sulfate days across 
multiple sites in the region.  Air masses moving in from the north and off the Atlantic 
Ocean contribute to the best days at Acadia, Brigantine, and Lye Brook.  Similar modes 
affect the best days at many other sites, seen in the section following this appendix. 

Figure A-8.  Incremental Probability (Bottom 10% Sulfate) at three sites, Acadia, 
Brigantine and Lye Brook 2000-2004. 

AcadiaAcadia BrigantineBrigantine Lye BrookLye Brook
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Cluster weighted probabilities are used to combine cluster information with 

pollution information and the following CWP plots show regions with greater probability 
of sulfate transport in red/yellow and regions of decreased probability of sulfate transport 
in blue.  We have presented the CWP based on proximity-based clusters in Figure A-11, 
which shows results similar to Figure A-9 since the clusters weighted by the highest 
pollution values tend to enhance the regions they cover, consistent with a greater 
probability of contributing to sulfate transport.  However, the CWP plots in Figure A-11 
now contain information from all the clusters (and thus all the trajectories) in the dataset.   

 

Figure A-9.  Proximity based cluster with the highest associated sulfate value for three sites 
in the MANE-VU region, Acadia (sulf=3.19µµµµg/m3), Brigantine (sulf=6.79µµµµg/m3), and Lye 

Brook (sulf=4.56µµµµg/m3). 
AcadiaAcadia BrigantineBrigantine

 

Figure A-10.  Proximity based cluster with the lowest associated sulfate value for three sites 
in the MANE-VU region, Acadia (sulf=1.41µµµµg/m3), Brigantine (sulf=2.23µµµµg/m3), and Lye 

Brook (sulf=1.16µµµµg/m3). 

AcadiaAcadia BrigantineBrigantine Lye BrookLye Brook  
 

Figure A-11.  Cluster Weighted Probability at three sites, Acadia, Brigantine and Lye Brook 2000-2004. 

AcadiaAcadia BrigantineBrigantine Lye BrookLye Brook
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By averaging the various probability fields across sites, we can gain insight into 
which regions are most likely to be associated with sulfate transport to multiple sites in 
the MANE-VU region.  A region that is associated with transport to several sites in 
different locations is far more likely to be associated with large emission sources.  Figure 
A-12 show a multi-site averages of incremental probability for the top 10 percent worst 
days at five northern sites, Acadia, Lye Brook, Camp Dodge, Moosehorn, and Mohawk 
Mountain.  Figure A-13 shows the multi-site average CWP which includes all proximity-
based clusters for the same sites. 

 

Figure A-12.  Multi-site average probabilities showing areas of increased (yellow/red) or 
decreased (cyan/blue) probability of being associated with sulfate transport to Acadia, Lye 
Brook, Camp Dodge, Moosehorn, and Mohawk Mountain on the ten percent worst sulfate 

days. 

 

Figure A-13.  Multi-site average CWP showing areas of increased (yellow/red) or decreased 
(cyan/blue) probability of being associated with sulfate transport to Acadia, Lye Brook, 

Camp Dodge, Moosehorn, and Mohawk Mountain. 
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From a qualitative perspective, the two metrics (IP and CWP) are quite similar 
showing significant sulfate transport (on an annual average basis) along the Eastern 
corridor from Virginia up through Maryland and Eastern Pennsylvania.  A second area of 
influence along the Ohio River valley between Ohio, Pennsylvania and West Virginia 
seems to play a significant role as well.  

These averages can also be applied to different geographical regions as well.  
Figure A-14 shows the average IP while Figure A-15 shows the average CWP for four 
southern sites, Brigantine, Shenandoah, Dolly Sods, and Great Smokey Mountains.  The 
figure highlights specific regions of higher probability of sulfate transport affecting a 
large area along the east coast. 

Figure A-14.  Multi-site average IP showing areas of increased (yellow/red) or decreased 
(cyan/blue) probability of being associated with sulfate transport to Brigantine, 

Shenandoah, Dolly Sods, and Great Smokey Mountains. 

 

Figure A-15.  Multi-site average CWP showing areas of increased (yellow/red) or decreased 
(cyan/blue) probability of being associated with sulfate transport to Brigantine, 

Shenandoah, Dolly Sods, and Great Smokey Mountains. 
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A.5.  Conclusions 
A large database of back trajectories and corresponding air pollution 

measurements have been used with trajectory cluster analysis techniques to apportion 
observed sulfate mass concentrations as an independent check on source modeling 
results.  Clusters have been used here to develop metrics related to Wishinski and 
Poirot’s “incremental probability”10 which provides the relative increase in probability of 
a geographic region being associated with a predominant meteorological pathway 
associated with pollutant transport. 

Several techniques have identified state-specific contributions of SO2 emission 
sources to sulfate formation.  Results indicate that cluster-based trajectory techniques can 
provide a semi-quantitative check on chemical transport model results.  This analysis 
demonstrates a potentially novel way of identifying regions that play a role in pollutant 
transport (and may host source emissions as well).  Combined with meteorological 
information and source apportionment model results, the approach may yield a more 
comprehensive picture of source emissions and the circumstances under which they are 
transported to specific receptor sites. 
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