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ABSTRACT

Back trajectories have been calculated (8 per fimythe five-year period including 2000
through 2004 using the HYSPLIT modeling systemlf8iEastern sites including 10
rural locations near Class 1 areas subject to ERAonal Haze Rule and 7 urban
location which have annual average RBMoncentrations above or near the National
Ambient Air Quality Standard (NAAQS). The backj&ctories have been clustered
based on 3-dimensional similarity to identify thregiominant meteorological pathways
influencing each site. Trajectories have also lssswociated with the nearest temporal
value of 24-hr average concentration of 2Mnd IMPROVE sulfate values measured at
or near each site. Individual trajectories andtelted probability fields are utilized in a
variety of ways to apportion geographic contribntio meteorological transport of
sulfate. Results are compared with quantitativehoas of apportioning state-specific
contributions to observed sulfate and serve asdgpendent check on contribution
assessments developed through these alternativaéidees.



Appendix A: Trajectory Analysis Methods Page A-2

Appendix A: Application of Trajectory Analysis M ethodsto
Sulfate Source Attribution Sudiesin the Northeast U.S.

A.1l. Introduction

The 1999 Regional Haze Rule (RHR) contains requergmfor a site-specific
pollution apportionment as part of each mandateyefal Class | area’s long-term
emissions management strategy. A variety of tegles have been explored for
conducting such pollution apportionments, but taggeemical transport modeling is one
of the few techniques which provide quantitativeessments of individual state or
regional contributions to ambient concentratiorSiven the importance of accurate
pollution apportionment assessments, it is higleyihble to have several independent
techniques provide confirmation of transport maesuilts.

Traditional trajectory analyses that associaterabi@nt measurement of air
quality with the geographical region upwind priorthe observation are limited in that
they demonstrate the relationship between ambienquality and the integrated path
along the length of a back trajectory. It is daiffit to distinguish the contribution of a
specific point along a single back trajectory frima contribution of other points along
that path. Large numbers of back trajectories lepen used in a variety of ways to try
to “triangulate” by taking advantage of the vanatin meteorology and paths that an
ensemble of back trajectories offérsCombining results from multiple receptor sites
offers a more robust method of triangulation ana yiald very specific source regions
associated with unique chemical signatures availaitth source apportionment
techniques. These methods — which include ensetmapetory analysis and factor
analysis methods — all select based on chemicaagiges. That is, they identify
geographic regions on the basis of a unique chewrteaacteristic, such as high levels of
an observed pollutant or high levels of a speadfimbination of pollutants.

Moody et al® following methods of Dorling,have applied the Patterns in
Atmospheric Transport History (PATH) clustering@iighm, to large numbers of back
trajectories in order to group trajectories by ¢hdtmensional similarity. Calculation of
average pollution levels corresponding to the mesbega cluster of back trajectories of
similar three-dimensional structure provides a sblbechnique of associating air
pollutants with typical meteorological pathwayshut remains limited in its ability to
distinguish individual points along an atmosph@athway defined by a cluster of back
trajectories. The cluster methods provide a wageftifying geographic regions based
primarily on meteorological — rather than chemieaharacteristics. The
meteorologically selected regions can then be aedlyvith respect to their chemical
associations.

The definition of an individual cluster of backjeetories in PATH analysis is
dependent on a subjective choice of the “RadilRrokimity.” This threshold defines
the limiting difference between the three-dimenalaroordinates of two back trajectories
and determines if they are in the same clusteiffarent clusters. Selection of a smaller
radius of proximity, in effect, will split clustersto component sub-clusters. Thus in the
limiting case (radius of proximity = 0) the analyseverts to a traditional trajectory
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analysis with each trajectory representing its aWster. In this sense, PATH analysis
offers a trade-off between uncertainty and findesstructure of a trajectory analysis. By
defining a radius of proximity and back-trajecttength, 10,000+ back trajectories for
each site over the 5 year period can be represegtagproximately 10-20 clusters.

Using these trajectory and cluster data baseseliss/the associated receptor-
based pollution data, we have carried out analyses the incremental probability
method, and two PATH-derived techniques methodaftributing pollution transport to
geographic areas.

These qualitative methods support and enhanceoti@usions derived through
alternative methods (independent of back-trajees)rof associating emissions with
downwind air quality impacts (i.e. the use of cheshtransport models, gource
modeling, rather than threceptor based approaches used in trajectory analysisje He
we use our large database of back trajectoriecamdsponding air pollution
measurements to develop multiple metrics relatalighinski and Poirot’s “incremental
probability”*® which is reflective of the increase in probabilityelative to the everyday
probability — of a geographic region being asseclatith a predominant meteorological
pathway for sulfate transport (as opposed to acgowagion itself). The results are used
to bolster the conceptual model of visibility impaent at Class | sites presented in
Chapter 2.

A.2. Trajectory Approaches

The Hybrid Single Particle Lagrangian Integratedjdctory (HYSPLIT)
modef**?was used to calculate back trajectories for ¥%sit the Northeast and Eastern
U.S. The locations correspond to Class | areagsuto the RHR as well as several sites
where potential nonattainment issues with the PNIAAQS warranted analysis. Results
are presented primarily for three rural sites wigebgraphically span the MANE-VU
class | domain: Acadia National Park, Maine, Lyedk Wilderness Area, Vermont, and
Brigantine Wilderness Area, New Jersey.

Back trajectories were calculated eight times grfdr starting heights of 200,
500 and 1000m above ground level using meteoradbgiod fields for the five year
period 2000-2004. NOAA ARL archives analyzed metéagical products for use with
the HYSPLIT model including the Eta Data AssimiatiSystem (EDAS) wind fields,
which cover North America with an 80 km spatialalesion and are based on 3-hourly
variational analyse¥. These back-trajectories -- and the underlying Viields used to
generate them -- provide the primary dataset usedalore meteorological patterns in
the Northeast. Figure A-1 shows a single EDAS Waajectory representing the path that
a particle of air has traveled prior to arrivingiatadia National Park.

The back trajectories with corresponding pollutaetisurements and emissions
data can be combined in a number of ways to yiattbus metrics which may help
identify specific meteorological pathways that arare likely than others to contribute to
sulfate transport to a specific receptor site.
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Figure A-1. SingleHYSPLIT Calculated back-trajectory, Acadia National Park

A common method of analysis requires the calcutatibresidence-time
probabilities, which are a measure of the time spea specific grid cell relative to the
total time spent in any grid céff. When calculated for all trajectories considdredn
analysis, this defines theseryday probability as shown in Equation 1.

Equation 1. Everyday Residence-time Probability

%,

n, = totalendpointpassinghroughgridcelli, j

N = totalendpointpassinghroughall grid cellsfrom all trajectores

These residence time probabilities provide an ettha of the fractional time
spent in a specific grid cell relative to time spanywhere in the domain by air parcels
that eventually pass over a given receptor. Tlaeybe calculated for any subset of
trajectories, including all the days within a tifneme, yielding the “everyday”
probability, or a subset corresponding to days Witih measured concentrations of
pollutants at a receptor site. Figure A-2 showgettories from the 10% of days with the
highest sulfate concentrations during the 2000-2004 period. The plot on the left
shows the actual trajectories while on the plotr@nright shows the resulting residence-
time probability field for high sulfate days.

Figure A-2. Trajectoriesfrom the highest sulfate days at Acadia National Park. The highest 10%
sulfatetrajectories (left) and corresponding residence-time probability (right) are shown.
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When the residence-time probability field is caktatl for the subset of days
corresponding to high concentrations of pollutgassshown in Figure A-2) the result is
called ahigh-day probability as shown in Equation 2.

Equation 2. High Day Residence-time Probability
_ m/
=)

m, = totalhighdayendpointpassinghroughgrid celli, j
M = totalhighdayendpointgpassinghroughall grid cellsfrom highday trajetories

The difference between the everyday probabilityu@opn 1, all days during
2000-2004) and the high day probability (Equatiphigh pollution days during 2000-
2004) has been referred to as itheemental probability and identifies areas where the
probability of poor air quality is greater than @ineerage probability associated with
typical meteorological patterns (see Equation 3).

Equation 3. Incremental Probability
IP=HP-EP

When calculated in this way for each trajectoryhwis individual pollutant
concentration value, a standard incremental prdbabnalysis results and can serve as a
basis for comparison to alternate metrics. Figueshows the 5-year incremental
probability field for days corresponding to the ttppercent of observed sulfate values
at two sites: Acadia National Park in Maine and Byeok Wilderness in Vermont.

These figures are based on available 500 meteérhstight HYSPLIT-EDAS back
trajectories and monitoring data for those sitesremental probabilities have been
calculated for 7 sites in the MANE-VU region andéarby sites in the VISTAS region.
Plots for all sites (and several different perdergroupings) are presented at the end of
this Appendix.

Figure A-3. Incremental Probability (Top 10% observed sulfate days)
at Acadia, ME and Lye Brook, VT during 2000-2004.
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A.3. Cluster-Based Approaches

Trajectories can be used individually or groupedramate another dataset based
on the PATH approachTrajectory clusters are based on the calculatetidaan
distance between three-dimensional normalized coates of the respective trajectories.
These clusters are formed by finding the “centiiajectory which has the greatest
number of neighboring trajectories within a subjesy selected “radius of proximity.”
There is a trade-off between the “resolution” ofieas modes of atmospheric transport
identified by PATH and the number of clusters. ridsa narrow radius of proximity,
more defined clusters that are easily associatddavspecific class of meteorological
transport result (e.g. fast flow from the Northwes$tallow coastal flow, etc.); however, it
also results in a large number of clusters at sdeh

In order to better define specific meteorologicathpvays that might be
associated with pollutant transport, we used ausadf proximity of 12 (this is a unit-less
value since the coordinates have all been nornthpzier to clustering) and a back-
trajectory time of 120 hours. This typically resal in approximately 100-200 frequency
based clusters at each site, but relatively fewtehs contain the majority of the
trajectory population. Figure A-4 shows typical e@blogical patterns among the most
frequent clusters calculated for Brigantine Wildzess Area, New Jersey. Results are
plotted as a residence-time probability for eacister (see Equation 1). Clusters in the
figure have been associated with specific atmospherodes” or meteorological
patterns that are commonly observed at multipkssifThe modes pictured correspond to
Northwest Fast flow (NWF), Southwest Interior (SW8puthwest Coastal (SWC),
Southeast Maritime (SEM), Upper Midwest (UMW), aMdrtherly flow (N). Whereas
each cluster is unique to a specific site and pleeific group of trajectories clustered, the
modes represent patterns which are often obsewmadafter year, and from site to site.
In this sense, the clusters provide a means ofifgigry modes of transport which can be
used for identifying pollution transport mechanisms

Figure A-4. Residence-time probability for 6 frequency-based clustersobserved at
Brigantine Wilder ness Area, New Jer sey between 2000 and 2004.
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Note: Codes reflect atmospheric “modes” or typical patternmao$port which consistently
appear at multiple sites.
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While these frequency-based clusters are usefidriant method of grouping
these trajectories was developed to redistribajedtories into the most common modes.
This alternate method of clustering relies on tiegudiency-based cluster groups described
in the preceding paragraphs, but forms trajectooygs based on proximity rather than
frequency. In the first step, the frequency-baggaroach is used to identify the central
trajectories that represent the most populatediéecy-based clusters (approximately 10
clusters typically contain at least 98 percentheftrajectories in the dataset using R=12
and 120 hour back-trajectory time). These 10reéhtajectories are then used to
develop 10 proximity-based clusters by assignirgretrajectory in the dataset to its
nearest central trajectories (calculated back tbat#s). The main advantage of these
proximity-based clusters is that they more unifgrifistribute the population of
trajectories amongst the most frequently obsertewspheric modes and result in more
defined clusters than the frequency-based approigure A-5 shows the proximity-
based clusters resulting from the frequency-bakesders shown in Figure A-1. In this
proximity-based approach, trajectories are moralgwdistributed, as the entire
trajectory dataset are assigned to only 10 modes.

Each trajectory, frequency-based cluster, and pribxibased cluster was
associated with corresponding monitoring data yeraged monitoring data in the case
of clusters) measured as close in time as pogsililee “start” time of the back trajectory
calculation. Associations were made for RMsulfate ion, organic carbon, and aerosol
extinction as PM components routinely measuredaaisgh the IMPROVE program,
although results are presented here only for 2atbgrated sulfate ion mass.

Figure A-5. Residence-time probability for 6 proximity-based clusters observed at
Brigantine Wilderness Area, New Jer sey between 2000 and 2004.
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Note: Codes reflect atmospheric “modes” or typical patternmogport which consistently appear at multiple sites.

A.3.1. Cluster-weighted Probability

Everyday probabilities can be calculated for artyssti of trajectories. When
calculated for the trajectories within a given tdusthat cluster’s everyday probability
results. This is essentially a normalized versibthe residence-time probabilities shown
in Figure A-4 and Figure A-5. Everyday probalsigifor clusters at 13 sites are
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presented at the conclusion of this appendix. édsyday probabilities for clusters at an
individual site and the associated average potutiiormation corresponding to each
cluster is combined through a method identifiecelees the cluster-weighted probability
(CWP).

Each PATH-derived cluster’s residence-time prolighasg weighted by the
average sulfate value for any measurements comdgppto a trajectory which is a
member of that cluster. The weighted residence-pnobability is summed ovaetl
clusters calculated for a site (as opposed taleshighest probability for a specific
pollutant as was the case with the incrementalasthily metrics). The everyday
probability is subtracted from the sum of clustesighted probabilities to identify areas
of increased (or in the case of negative valuesedsed) probability of being associated
with a meteorological pathway for pollutant trandpBquation 5 presents the cluster-
weighted probability.

Equation 5. Cluster-weighted Probability
Lo _
CWP = %[Z(C)i [RP -C EEP]

i=1
L = totalnumberof clusterscalculated
(E)i = Averagepollutantconcentrabn (basednobservatiosassociateavith clusteri)

C = Averagepollutantconcentrdbn (basecbnall days)

Here, (C); represents the average sulfate value for alldrajis within cluster i
which had an associated $Omeasurement (roughly 25-30 percent, given 1-imB d
sampling schedules). By weighting the residemoe-probability for cluster i by this
guantity, we are implicitly assuming that simileajéctories (i.e. traversing similar source
regions under similar meteorological conditionsl) have similar resulting ambient

concentrations at the receptor. The quanf@y (epresents the average value for sulfate
measurements associated with trajectories in attyeoflusters and acts to normalize the
sum of the residence-time probabilities.

As we have examined two alternate methods for aggjgrajectories to clusters
— frequency-based clustering and proximity-basadteting — two methods for
calculating cluster weighted probabilities exi$he first uses the frequency-based
clusters as the dataset, while the second usesdredistributed, proximity-based
clusters as the dataset. Figure A-6 shows the C&ltilated for both methods at
Brigantine Wilderness Area, New Jersey.

While calculated from the same underlying trajegfides and sulfate
observations, this metric is calculated in a fundatally different way than the
incremental probability approach presented. ThePQMsks trajectory clusters (as
opposed individual trajectories) to develop a wegdtprobability field which is then
compared to the everyday probability. The fact tha results are similar to those
calculated for the IP technique provides reassrémat these approaches are reasonable
for identifying areas that are associated withataltransport.
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Figure A-6. Cluster-weighted Probability methods associated to sulfate transport using
frequency based clusterson left and proximity-based clusterson theright at Brigantine
Wilderness Area, New Jer sey.

Note: A.reas of increased (yéllow/red) or deéreased.(cyan/bllie)

A.4. Results

Regions of transport to different sites can berdateed using the trajectory (non-
clustered) technique, incremental probability.tHis method, pollution values are
assigned to individual trajectories (as opposedusters) and regions associated with
high sulfate transport are determined by lookinthatdifference of the high day
trajectory probabilities from the everyday trajegtprobabilities. Figure A-7 shows the
top 10% sulfate incremental probability at threessiAcadia, Brigantine, and Lye Brook.

Figure A-7. Incremental Probability (Top 10% Sulfate) at three sites,
Acadia, Brigantine and Lye Brook 2000-2004.

Brigantine

In these incremental probability plots, trajectendth higher pollution
concentrations generally follow a path from the Wit across the Northeast region
prior to arriving at Acadia. Transport paths frdme Southeast and the Midwest are
evident at Brigantine, and a combination of Midwieansport and transport from the
Southeast along the industrial I-95 Corridor afiegt Brook.

Incremental probability can also be used to loathatregions contributing to the
best pollution days at a site. Figure A-8 showslib# lowest sulfate incremental
probability. Best-day incremental probability steothat trajectories arriving to the sites
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on days with low sulfate levels tend to follow d@lp&rom the north in Canada or off the
Atlantic Ocean. This is an expected result as fesgarces are located in this region.

Figure A-8. Incremental Probability (Bottom 10% Sulfate) at three sites, Acadia,
Brigantine and Lye Brook 2000-2004.
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By examining pollution levels associated with diffiet clusters, we can gain
insight into which atmospheric modes are assochattdtransport to sites in the MANE-
VU region. Figure A-9 compares the proximity-baskdster with the highest sulfate
value at three sites, Lye Brook Wilderness Areagdrtine Wilderness Area, and Acadia
National Park.

Figure A-9 demonstrates that the clusters showiadghighest pollution values
show similar meteorological characteristics atedéht sites. The three sites show that in
the higher average pollution clusters, the airofe# the path from the Midwest to the site
in question. Lye Brook shows an east coast comgamatiributing as an area of
transport on the worst average sulfate days. Usisgnethod, we have grouped
trajectories purely based on meteorological charestics and can examine pollution
levels within these groupings. Thus agreement éetwhis method and the incremental
probability results shown earlier suggest that Waetou select trajectories based on
meteorology or chemistry, similar regions are id@t as being associated with sulfate
transport. Figures at the end of this appendixvsthe@ clusters and average pollution
values for all the sites in the region analyzed.

Figure A-10 displays the proximity-based clusteithwhe lowest average sulfate
concentrations. They show which meteorological encahtributes to the best pollution
days at three different sites, Acadia, Lye Broald Brigantine. This provides a method
that is comparable to Figure A-8 where incremepitabability for the lowest sulfate
trajectories is shown. Again, the comparison islenaetween this clustering technique
where trajectories are grouped solely on meteorcddgharacteristics and the
incremental probability technique that looks ajetctories with similar pollution
characteristics.

Much like the atmospheric modes that contributdhéohighest sulfate levels at
our three sites, very similar atmospheric patteordgribute to the best sulfate days across
multiple sites in the region. Air masses movindgrom the north and off the Atlantic
Ocean contribute to the best days at Acadia, Btigeanand Lye Brook. Similar modes
affect the best days at many other sites, sedreisdction following this appendix.
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Figure A-9. Proximity based cluster with the highest associated sulfate value for three sites
in the MANE-VU region, Acadia(sulf=3.19pg/m3), Brigantine(sulf:6.79ug/m3), and Lye
Brook (sulf=4.56pg/m?®).

wy  Brigantine

Lye Brook

Figure A-10. Proximity based cluster with the lowest associated sulfate value for three sites
in the MANE-VU region, Acadia (sulf=1.41pg/m?), Brigantine (sulf=2.23pg/m®), and Lye
Brook (sulf=1.16pg/m3).

Cluster weighted probabilities are used to combioster information with
pollution information and the following CWP plotisav regions with greater probability
of sulfate transport in red/yellow and regions efitased probability of sulfate transport
in blue. We have presented the CWP based on pitgxiiased clusters in Figure A-11,
which shows results similar to Figure A-9 since thesters weighted by the highest
pollution values tend to enhance the regions tloeei; consistent with a greater
probability of contributing to sulfate transpoiiowever, the CWP plots in Figure A-11
now contain information from all the clusters (@hds all the trajectories) in the dataset.

Figure A-11. Cluster Weighted Probability at three sites, Acadia, Brigantine and Lye Brook 2000-2004.

Brigéntine Lye Bérook
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By averaging the various probability fields acregss, we can gain insight into
which regions are most likely to be associated witliate transport to multiple sites in
the MANE-VU region. A region that is associatedhatransport to several sites in
different locations is far more likely to be assted with large emission sources. Figure
A-12 show a multi-site averages of incremental pholity for the top 10 percent worst
days at five northern sites, Acadia, Lye Brook, @ddbodge, Moosehorn, and Mohawk
Mountain. Figure A-13 shows the multi-site aver&@®P which includes all proximity-
based clusters for the same sites.

Figure A-12. Multi-site aver age probabilities showing ar eas of increased (yellow/red) or
decreased (cyan/blue) probability of being associated with sulfate transport to Acadia, Lye
Brook, Camp Dodge, M oosehor n, and M ohawk Mountain on the ten percent wor st sulfate

days.

I

Figure A-13. Multi-site average CWP showing ar eas of increased (yellow/red) or decreased
(cyan/blue) probability of being associated with sulfate transport to Acadia, Lye Brook,
Camp Dodge, M oosehorn, and Mohawk Mountain.
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From a qualitative perspective, the two metricsaitid CWP) are quite similar
showing significant sulfate transport (on an anravarage basis) along the Eastern
corridor from Virginia up through Maryland and East Pennsylvania. A second area of
influence along the Ohio River valley between Olennsylvania and West Virginia
seems to play a significant role as well.

These averages can also be applied to differemgrgpbical regions as well.
Figure A-14 shows the average IP while Figure Astidws the average CWP for four
southern sites, Brigantine, Shenandoah, Dolly Saxad,Great Smokey Mountains. The
figure highlights specific regions of higher probi# of sulfate transport affecting a
large area along the east coast.

Figure A-14. Multi-site average | P showing areas of increased (yellow/red) or decreased
(cyan/blue) probability of being associated with sulfate transport to Brigantine,
Shenandoah, Dolly Sods, and Great Smokey M ountains.

..............................................................

...................................

N,

Figure A-15. Multi-site average CWP showing ar eas of increased (yellow/red) or decreased
(cyan/blue) probability of being associated with sulfate transport to Brigantine,
Shenandoah, Dolly Sods, and Great Smokey M ountains.
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A.5. Conclusions

A large database of back trajectories and corredipgrair pollution
measurements have been used with trajectory clastdysis techniques to apportion
observed sulfate mass concentrations as an indepedideck on source modeling
results. Clusters have been used here to devedtqicerelated to Wishinski and
Poirot’s “incremental probability® which provides the relative increase in probabitit
a geographic region being associated with a preamiimeteorological pathway
associated with pollutant transport.

Several techniques have identified state-speatiicrdoutions of S@Qemission
sources to sulfate formation. Results indicaté ¢chester-based trajectory techniques can
provide a semi-quantitative check on chemical fparismodel results. This analysis
demonstrates a potentially novel way of identifyregions that play a role in pollutant
transport (and may host source emissions as wet)mbined with meteorological
information and source apportionment model restliss approach may yield a more
comprehensive picture of source emissions anditbensstances under which they are
transported to specific receptor sites.
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