Appendix A- Acadia Supplement

Trajectory analysis results at Acadia National Park.

Equations for Different Metrics

Everyday Residence-time Probability

$$EP = \begin{pmatrix} n_{ij} \\ N \end{pmatrix}$$

 n_{ij} = total endpoints passing through grid cell i, j N = total endpoints passing through all grid cells from all trajectories

Incremental Probability

IP = HP - EP

High Day Residence-time Probability

$$HP = \begin{pmatrix} m_{ij} \\ M \end{pmatrix}$$

 m_{ij} = total high day endpoints passing through grid celli, j M = total high day endpoints passing through all grid cells from high day trajectories

Cluster-Weighted Probability

$$CWP = \frac{1}{\overline{C}} \left(\sum_{i=1}^{L} (\overline{C})_i \cdot RP_i - \overline{C} \cdot EP \right)$$

L = total number of clusters calculated

 $(\overline{C})_i$ = Average pollutant concentration (based on observations associated with cluster i)

 \overline{C} = Average pollutant concentration (based on all days)

Description of Figures

- Central Trajectory (CT)- Trajectory with the largest number of nearest neighbors in the dataset.
- Frequency Based Clusters- These clusters are formed by finding the "central" trajectory which has the greatest number of neighboring trajectories within a subjectively selected radius of proximity (R). These trajectories are then removed from the dataset and the process is applied to the remaining trajectories.
- Proximity Based Clusters- Clustering relies on the frequency-based cluster groups, but forms trajectory groups based on proximity rather than frequency. In the first step, the frequency-based approach is used to identify the central trajectories that represent the most populated frequency-based clusters (approximately 10 clusters typically contain at least 98% of the trajectories in the dataset using R=12 and 120 hour back-trajectory (BT) time). These 10 central trajectories are then used to develop 10 proximity-based clusters by assigning every trajectory in the dataset to its nearest central trajectories (calculated back to 72 hours).
- Incremental Probability- Difference between the everyday probability (probability derived from all the trajectories in the dataset) and high day probability (probability derived from trajectories arriving at the site on the subset of high pollution days).
- Cluster Weighted Probability- Each PATH-derived cluster's residence-time probability is weighted by the average sulfate (or other pollutant) value for any measurements corresponding to a trajectory which is a member of that cluster. The weighted residence-time probability is summed over *all* clusters calculated for a site. The everyday probability is subtracted from the sum of cluster-weighted probabilities to identify areas of increased (or in the case of negative values, decreased) probability of being associated with a meteorological pathway for pollutant transport.

Acadia All Trajectories 00-04, Top 10 Clusters

Modes defined at: R=12, 120hr BT, 500m Start ht, 5111 Valid Trajectories, 9264 Invalid Reassigned Trajectories Based on 72hr BT, 500m Start Ht, 8274 Valid Trajectories

Cluster 1

Cluster 2

Central Trajectory

to'w teelw at'w etiw to'w so'w so'w

Frequency Based Cluster

an' wi to' wi

Cluster 3

Cluster 4

Cluster 5

Central Trajectory

no'w sed'w an'w so'w so'w so'w so'w

Frequency Based Cluster

Frequency Based Cluster

Proximity Based Cluster

	Frequency	Proximity		Frequency	Proximit
Sulfate	2.60	2.45	Sulfate	2.17	3.14
Bext	52.19	50.35	Bext	44.79	59.8
PM	6.91	6.54	PM	6.01	7.92
00	1.63	1.57	OC	1.55	1.52
# Trajs	3811	1347	# Trajs	1302	73
# Trajs w. Poll	1056	373	# Trajs w. Poll	324	19

Frequency Based Cluster

Proximity Based Cluster

	Frequency	Proximity	
Sulfate	2.76	1.79	Sulfate
Bext	54.39	39.91	Bext
PM	6.92	5.42	PM
OC	1.36	1.49	OC
# Trajs	817	1058	# Trajs
# Trajs w. Poll	221	302	# Trajs w. Poll

Frequency Based Cluster

Proximity Based Cluster

Proximity Based Cluster

Frequency Proximity Frequency Proximity Sulfate 1.30 1.40 1.31 3.13 29.89 30.83 Bext 30.24 57.88 4.04 4.09 ΡM 3.86 7.80 OC 1.21 1.04 1.15 1.58 487 1032 # Trajs 321 1165 137 245 # Trajs w. Poll 97 389 Proximity Based Cluster

x 10

3.5

2.5

Frequency Based Cluster

Acadia All Trajectories 00-04, Top 10 Clusters Modes defined at: R=12, 120hr BT, 500m Start ht, 5111 Valid Trajectories, 9264 Invalid Reassigned Trajectories Based on 72hr BT, 500m Start Ht, 8274 Valid Trajectories

Acadia All Trajectories 00-04, Best/Worst Sulfate Modes defined at: R=12, 120hr BT, 500m Start ht, 5111 Valid Trajectories, 9264 Invalid Reassigned Trajectories Based on 72hr BT, 500m Start Ht, 8274 Valid Trajectories

Highest Sulfate (Proximity Based)

	Frequency	Proximity
Sulfate	1.07	3.19
Bext	22.28	64.16
PM	2.85	8.19
OC	0.75	1.91
# Trajs	264	805
# Trajs w. Poll	78	222

	Frequency	Proximity
Sulfate	2.17	3.14
Bext	44.79	59.88
PM	6.01	7.92
OC	1.55	1.52
# Trajs	1302	738
# Trajs w. Poll	324	195

Lowest Sulfate (Proximity Based)

50° W	10	1 W 1	<u>00° W</u>	90° W	80° W	70° W	60° W	50
	50 [°] N		At the second se					
	40 ⁴ N							
	30 [°] N		St.	H		2	S	

	Frequency	Proximity
Sulfate	1.30	1.40
Bext	29.89	30.83
PM	4.04	4.09
OC	1.21	1.04
# Trajs	487	1032
# Trajs w. Poll	137	245

	Frequency	Proximity
ulfate	1.99	1.41
ext	46.99	28.96
M	5.59	3.78
C	1.25	0.89
Trajs	105	699
Trajs w. Poll	20	208

Sulfate- Sulfate ion Conc. (ug/m3) Bext- Extinction (Mm-1) *PM*- Particulate Matter Conc. (ug/m3) OC- Organic Carbon Conc. (ug/m3) Num Trajs- Number of trajectories in cluster

Num Trajs w. Poll- Number of trajectories in cluster with associated pollution measurement (Based on number of IMPROVE samples taken during the 2000-2004 period).

Acadia All Trajectories 00-04, Incremental Probability IP Based on Top10%

500m

1000m

Acadia All Trajectories 00-04, Cluster Weighted Probability Calculated using Proximity Based Clusters, 500m

Acadia All Trajectories 00-04, Cluster Weighted Probability Calculated using Frequency Based Clusters, 500m

